
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Operating System Concepts & Shell Programming
Master of Computer Applications (MCA)

Semester - 2

Course Introduction 1

Module 1

Introduction to operating system
3

Unit 1: Introduction to Operating Systems 4

Unit 2: Need and Functions of Operating Systems 15

Unit 3: Computer System Operations 32

Module 2

Process management and synchronization
133

Unit 4: Process Concepts 134

Unit 5: Process State 140

Unit 6: Process Control Block 142

Module 3

Storage management
164

Unit 7: Contiguous Memory Allocation 165

Unit 8: Paging Techniques 167

Unit 9: Demand Paging 169

Module 4

Disk scheduling and distributed systems
196

Unit 10: Disk Scheduling and Distributed Systems 197

Unit 11: I/O Hardware 199

Unit 12: Disk Structures 203

Unit 13: Disk Scheduling Algorithms 205

Module 5

Stateful versus stateless service and shell programming
220

Unit 14: Shell Programming & Introduction to Shell Programming 221

Unit 15: Shell Programming in Different Shells 230

References 237

`

Operating System Concepts and Shell Programming
 ODL MCA 203

Master of Computer Applications

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Sunita Kushwaha, Associate Professor, School of Information Technology, MATS University,

Raipur, Chhattisgarh

COURSE PREPARATION

Dr. Sunita Kushwaha, Associate Professor and Mr. Digvijay Singh Thakur, Assistant Professor, School

of Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-81-4

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in

any form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1

COURSE INTRODUCTION

Operating systems (OS) are essential for managing computer

hardware and software resources, ensuring efficient execution of

applications. This course provides a comprehensive understanding of

operating system fundamentals, including process and memory

management, file systems, I/O handling, and shell programming.

Students will gain both theoretical knowledge and practical skills

necessary for OS administration and system-level programming.

Module 1: Operating System Basic Concepts – Overview

An operating system serves as a bridge between users and

computer hardware, providing essential functionalities such as

resource management, multitasking, and security. This Unit

introduces the fundamental concepts, architecture, and types of

operating systems, highlighting their role in modern

computing environments.

Module2: Process Management and Process

Synchronization

Processes are the basic units of execution in an OS. This Unit

covers process creation, scheduling algorithms, inter-process

communication (IPC), and synchronization techniques.

Students will explore concurrency control, deadlock handling,

and techniques for efficient process execution in multi-tasking

systems.

Module 3: Memory Management

Efficient memory management is crucial for system

performance and resource optimization. This Unit explores

memory allocation techniques, paging, segmentation, virtual

memory, and memory swapping. Students will learn how

operating systems manage RAM efficiently to ensure smooth

application execution.

Module 4: File Systems and I/O Management

File systems organize and store data systematically in an OS.

This Unit covers file system structures, file access methods,

disk scheduling algorithms, and I/O management techniques.

Students will gain an understanding of how OS handles file

storage, retrieval, and peripheral device management.

1

Module 5: Basics of Shell Programming

Shell programming allows users to automate tasks and interact

with the OS using command-line scripts. This Unit introduces

shell scripting fundamentals, basic commands, control

structures, and script execution. Students will learn how to

write shell scripts for system automation and administration.

2

MODULE 1

INTRODUCTION TO OPERATING SYSTEM

LEARNING OUTCOMES

• To understand the basic concepts of an operating system (OS).

• To explore the need and functions of an OS.

• To analyze different types of operating systems.

• To study OS services and system calls.

• To examine OS structure and design goals.

3
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Introduction to Operating Systems

1.1 Introduction to Operating Systems

Operating systems are one of the most essential classes of software in

computing technology. An operating system (commonly referred to as

an OS), on the other hand, is a critical bridge between the computer's

physical machinery and the software applications you use on a day-to-

day basis. Because modern computing devices possess complex

hardware elements from execrable powerful central processing units

to astounding memory hierarchies to endless I / O devices, without an

operating system, they would remain ha tocd, uncoordinated organs

that cannot perform useful work. For example, the operating system is

the critical interface that turns hardware into a cohesive, working

computing machine, coordinating the myriad interactions between

physical resources and software requirements. Operating system is

fundamental, it manages computer hardware, provides common

services for computer programs, and provide user with an user

interface to computer system. They have grown from simple program

loaders and memory managers on early mainframe computers into

complex working environments, supporting multitasking, multi-user

operations and distributed computing over networks. Modern

operating systems, from supercomputers to personal desktop

machines to mobile devices and even embedded systems in everyday

objects, all share core design and implementation utility principles,

while also tailoring their designs to meet the needs of the hardware

environments and use cases they were chosen to serve. The detailed

exploration of operating systems provides us not just with the

practical knowledge of how computers work at a fundamental level,

but also the philosophical considerations concerning resource

allocation, security paradigms, and user interface design that have

influenced the evolution of computers and continue to shape its path

forward. This course will introduce you to the core concepts,

components, and design principles that require the powerful software

systems we call operating systems by providing a foundation upon

which later study of the specifics of implementations of operating

systems and the theoretical underpinnings of those implementations

will be built. Operating systems have evolved in much the same way

as the computers they serve, progressing in phases that respond to

4
MATS Centre for Distance and Online Education, MATS University

Notes new hardware and new applications. However, the earliest electronic

computers of the 1940s and 1950s had no components we'd recognize

as an operating system today; these machines had to be run directly by

their users, who physically inputted programs and data with the help

of switches, punch cards or paper tape. Programs were fully in charge

of the machine while executing, and writing programs required

intimate knowledge of the hardware architecture. In the late 1950s,

the emergence of batch processing systems marked the beginning of

the actual operating system, which automated the loading and

execution of series of programs in the background, making use of

costly and scarce computing resources by reducing idle time between

jobs. Operating systems It was too complex to trust a single program

directly to the hardware, and it generally controlled the execution of

one or more workloads, and executed with the allocation of hardware

resources in memory and CPUs, and also allowed multiple users to

communicate interactively with the computing environment (time

sharing). Personal computing rose in the 1980s, still relying on

command-line interfaces but making operating systems like MS-DOS,

the Macintosh System Software, and various implementations of

UNIX available for individual computers, and user interfaces matured

into graphical user interfaces as the standard for human/machine

interaction in the 1990s, including Microsoft Windows, the Macintosh

operating system, and various Linux distributions with desktop

environments. The 21st century saw the rise of the networked

operating system with focus on internal security and multimedia, as

then the mobile explosion of the 2010s saw the birth of new models

altogether around touch, battery and connection optimised operating

systems like Android and iOS. Cloud computing, virtualization, and

containerization take this even further - they extend the operating

system to a distributed computing environment where many devices

serve as part of a dynamic resource allocation and management pool

across a vast web of connected server infrastructure. Across this

evolution, operating systems have always been dealing with basic

problems: effectively managing hardware resources, providing

developers with layers of abstraction to simplify application

development, ensuring the security and stability of the system, and

building a user experience that is more convenient points that are still

5
MATS Centre for Distance and Online Education, MATS University

Notes valid no matter the specific implementation or hardware platform

used.

You learn from a variety of sources and specialization; however, the

definition and understanding of the architecture of an operating

system is often vague and can come across confusing to the common

reader. At the lowest level, the kernel is the heart of the operating

system, running in privileged mode with hardware access and

handling essential functions such as process and memory

management, file systems, device drivers, and interprocess

communication. So, amongst these processes, managing their access

to the CPU is process management (including process scheduling to

give the illusion of concurrency, process creation and termination,

process synchronization and communication and context switching on

single core systems). Memory management involves mapping virtual

addresses to physical memory addresses, allocating and deal locating

chunks of memory, maintaining a page or segment table, and

providing memory protection against unwanted access. Device

Management Device management is process of controlling a hardware

peripheral through device drivers that abstract device-specific details

and present standardized interfaces, allocate device to competing

processes, service interrupts from hardware components. The

networking stack is at the core of modern operating systems: it

implements communication protocols, manages local network

interfaces, provides socket abstractions for network programming, and

handles routing and packet filtering. Security elements are woven

throughout the operating system, providing user authentication and

user authorization, enforcing access to resources, giving encryption

services, and protecting against malware and other security threats.

On top of these basic services, modern operating systems provide

application programming interfaces (APIs) i.e., methods for

applications to request standard services from an OS as well as

graphical subsystems to allocate display resources and act as a

windowing system, and user interface frameworks to abstract away

some of the complexities of building interactive applications. The

operating systems have intricately layered architecture demonstrating

several design principles: modularity (capability of constructing

components independently and modifying them without having an

effect on other components), abstraction (the ability of an operation to

6
MATS Centre for Distance and Online Education, MATS University

Notes hide details of implementation behind the sorts of interfaces that are

less complicated) protection (which prevents unauthorized access to

resources) and extensibility (refers to the capability of the system to

adapt to the ever-changing hardware and software capabilities). This

is a crucial aspect of operating system functionality, and is used

heavily in system performance and resource utilization, as well as the

overall user experience. A process, from the operating system's

perspective, represents a single task of a running program and

includes information not just about the program code, but also the

state of the work in progress, including the program counter, register

values, values of the program variables, files currently open, and the

program's memory allocations. When a new process is being created--

from a user request, an existing process request, or at boot time by the

system itself--the operating system allocates all of the necessary

resources, sets up data structures to keep track of the state of the

process, and loads the program code into memory. A process goes

through several states during its lifecycle: running (actively executing

on some CPU), ready (waiting to be allocated to a CPU), blocked

(waiting for some event, such as I/O completion), and terminated

(execution has finished or has been aborted). The operating system's

scheduler must decide which ready process to run next according to

algorithms that balance competing objectives such as fairness,

priority enforcement, response time, throughput, and resource

utilization. Threads are the basic units of execution that share the

address space within a process, making it a lightweight alternative to

concurrent programming that avoids the cost of a full process

creation. Similarly in thread management, but with the added

challenge of developing concurrency control and synchronization to

avoid race condition and provide safety in data access to shared

resources. To enable cooperating processes to coordinate their action

and exchange data, modern operating systems provide several

interposes communication and synchronization mechanisms, such as

pipes, message queues, shared memory, semaphores, and mutexes.

Multiprocessor and multicore systems further complicate process

management, as they must also consider processor affinity (keeping

certain work units on certain processors in order to make the best use

of local caches), balancing the load between multiple processing

units, and parallel execution models that take into account the

7
MATS Centre for Distance and Online Education, MATS University

Notes multiple sources of hardware parallelism. These have been developed

over years of research, leading to advanced operating system features

such as migrating processes between computational nodes in

distributed systems, check pointing processes to allow recovery from

faults, and dynamic scheduling algorithms that optimize resource

allocation according to varying uses of workload and environmental

conditions. Process and thread management is critical for the overall

performance, responsiveness, scalability and optimal utilization of

hardware resources while preserving system stability under different

loads.

An underlying OS feature that has wide-reaching effects for the

performance of the system and the programs running on it, as well as

the hardware being used, is Memory management. Perhaps the main

issue of memory management is to allocate the available physical

memory resources among the various competing processes in a way

that users know that their sensitive data is protected and are running in

their own “large” address space. Virtual memory: Modern operating

systems implement virtual memory systems, which provide an address

space for a program that is separate from the physical memory the

program runs in. Programs can use this space directly instead of the

physical memory they will actually occupy, allowing each program to

think it has more memory than what is available and that it has access

to the complete memory space. This conversion from virtual to

physical memory is generally performed by dedicated hardware (the

Memory Management Unit, MMU) under the direction of operating

system data structures such as page tables. Paging, which is the most

commonly used virtual memory implementation technique, splits

virtual memory into equally sized blocks of memory, or pages, and

splits physical memory into frames, paving the way for fine-grained

memory allocation and efficient allocation of infrequently (but

potentially) used pages to secondary storage when physical memory

rack is full. Page replacement algorithms, such as Least Recently

Used (LRU), First-In-First-Out (FIFO), and Clock algorithms, decide

which pages to evict and when, balancing access frequency, regency,

and page fault costs. More advanced memory management strategies

include demand paging (paging in memory pages on access), copy-

on-write (sharing read-only pages across processes until one of them

writes to the page), memory-mapped files (which map file contents

8
MATS Centre for Distance and Online Education, MATS University

Notes directly into a specified portion of the process address space), and

large page support (using variable size memory pages so that at least

some applications can reduce the translation of pages and

fragmentation). Memory protection mechanisms enforce access

restrictions to prevent processes from reading or writing to the

memory allocated to other processes or (in most cases) the operating

system kernel itself, implemented through protection bits in the page

tables that are checked by the MMU during address translation.

Address space layout randomization (ASLR) is also a technique

employed by modern systems that adds another layer of security of

randomly reordering important locations where the program is

occupying memory, making it harder for attackers to guess addresses.

Advanced memory management features include working set models

that attempt to keep a process's most actively used pages in physical

memory, non-uniform memory access (NUMA) in multiprocessor

systems, where access time to memory varies by distance to memory

module, and transparent huge pages that use larger page sizes to

reduce overhead for applications with contiguous memory access

patterns. Memory management is a critical part of an operating system

design and implementation because it affects not only the speed of

program execution, but also the responsiveness of the system, energy

consumption, and concurrency in terms of the number of applications

that can run without the overhead of pages being constantly made.

The organization of I/O devices and decoupling between software and

hardware capabilities and resources is provided by file systems and

I/O management systems, which represent one of the most significant

parts of an Operating System. I/O management handles the classic

problem of presenting abstract, uniform, high-level interfaces to

extremely heterogeneous hardware devices ranging from disk drives

and network cards to keyboards, display units, and application-

specific sensors each with its own timing behaviors, data formats, and

control interfaces. Structured to separate and abstract various aspects

of I/O, the operating system adopts a layered design approach: the

lowest level contains device drivers, which are hardware-dependent

code responsible for interfacing with devices; above that there is a

device-independent I/O layer that standardizes the common I/O

operations of the same class of devices; and ultimately higher up are

high-level interfaces that provide simple abstractions to applications.

9
MATS Centre for Distance and Online Education, MATS University

Notes Depending on the specific implementation, input and output can be

either synchronous, where the calling process gets suspended until the

operation is complete, or asynchronous, where the process continues

executing while the I/O operation completes in the background, and

most new systems use an asynchronous model improving system

responsiveness and throughput. The OS uses a number of techniques

to improve I/O performance, these include buffering (storing a subset

of data in memory temporarily to help speed differences between

devices and reducing batch operation timings), caching (storing a

copy of recently requested data in memory to quickly access again,

reducing access time), scheduling (rescheduling I/O requests in their

order to minimize mechanical movements between devices), direct

memory access (or DMA, which eliminates the need of the CPU in

facilitating the transfer process between certain devices and memory

locations). At the larger scale of I/O, file systems probably offer the

most prevalent abstraction: the structuring of persistent storage as

named files grouped in hierarchically arranged directory structures.

Some more regarding the functionality of file systems they perform

one of the most important jobs, map the logical file operations to the

storage locations, keep track of what space is occupied, manage free

space, record the metadata for the files (such as creation dates,

permission), maintain access control, and ensure data integrity as well

through journaling or copy-on-write techniques that protect them from

corruption even in case of the system crashing. All modern operating

systems support multiple types of file systems, from general-purpose

systems (e.g., NTFS, ext4, and APFS) to specialized systems that are

better optimized for specific use cases (e.g., high-performance

computing, network-attached storage, or even solid-state drives which

wear out differently than conventional magnetic media). Some

advanced file system features include snapshots (point-in-time

captures of file system state), transparent compression and

deduplication to maximize storage efficiency, and encryption to

protect sensitive data, as well as distributed designs that span multiple

physical storage devices or network nodes. I/O management and file

systems, taken together, allow applications to communicate with the

physical world via a multitude of devices and discreetly store and

retrieve data without needing to worry about the intricacies of the

hardware implementation, making them one of the most useful

10
MATS Centre for Distance and Online Education, MATS University

Notes services provided by the operating system from user and programmer

points of view. Security and protection mechanisms pervade modern

operating systems, a reflection of the evolution of computing from

isolated, single-user systems to interconnected devices containing

sensitive information and operating in possibly hostile networked

environments. In terms of operating system security, the most

fundamental aspect is the separation between user mode and kernel

mode (or supervisor mode) of operation, which establishes a privilege

boundary, restricting applications from directly accessing hardware

resources or manipulating memory regions not assigned to them,

ensuring that transitions between modes are made safe by means of

system calls. Users are authenticated by passwords, who they are as

the person, biometric factors, and cryptographic tokens, and

authorization mechanisms then allow or restrict what resources they

can access (typically implemented by ACLs or capability-based

security models that associate permissions with objects or subjects,

respectively). Process isolation ensures that one process cannot

access the memory or resources of another process unless explicitly

allowed to do so, and achieves this through mechanisms such as

virtual memory and hardware aids like protection rings or privilege

levels. Memory protection takes that isolation even further by

applying permissions on these memory regions and marking them

either as readable, writable, or executable, while the hardware itself

does not allow any operations that bypass these rules, catching a lot

of potential attacks at the hardware level itself, before they get a

chance to cause damage. File system security ensures access to

persistent data is restricted by ownership attributes and permission

bits, or through more sophisticated mandatory access control

frameworks that enforce system-wide security policies regardless of

file ownership. Modern operating systems have also added many

more layers of security: address space layout randomization (ASLR)

to randomize targets of attacks and avoid predictability in the memory

addresses to which attack targets can be trained by the attacker; data

execution prevention (DEP) to prevent code from executing on data

pages; secure boot mechanisms to ensure integrity maintains from

system boot until shutdown; mandatory integrity control to prevent

processes running with lower integrity from changing the state of

processes running with a higher integrity; sandboxing which isolates

11
MATS Centre for Distance and Online Education, MATS University

Notes an application’s execution in a restricted environment and with

limited privileges; or specialized enclaves or secure execution

technologies that allow sensitive computation to be protected even

against privileged system software. These include host-based firewalls

to control incoming and outgoing connections, and intrusion

detection systems that detect suspicious behavioral patterns, and

encrypted communication channels that protect data in transit.

Security encompasses more than just technical mechanisms; there are

system policies, security-sensitive defaults in configuration,

automated update systems which reclaim the latest vulnerability in

patching them as quickly as possible, and audit logging shoals with

security-relevant events in the system for subsequent analysis. Given

these layering of protections, and how virtualization secures the OS

itself, and system call white listing further isolates user processes, one

might think that the OS is a relatively safe place to run user code

unfortunately, OS security is a difficult problem, and will likely

become harder with time thanks to system complexity, the discovery

of new vulnerability classes, and the fundamental tradeoff between

security and usability every new security mechanism adds friction to

legitimate user activities. I should add that the best strategies combine

technology-based controls with practical threat modeling that

introduces the idea that there is no perfect security, creating defense-

in-depth models that construct layer-after-layer of protection where

the failure of one or more layers can be mitigated by the others,

conducting fail-secure design, in which the failure of components

defaults to protected instead of unprotected states.

Modern operating systems are not statically defined but are tailored to

adapt to the hardware, and use case, and user when the environments

evolve, even if not always in a progressive manner, with at least a few

of the following trends becoming dominant to each new release within

current deployment matrices. Cloud-native OS are a radical break

with their predecessors, optimized for the deployment of workloads in

virtualized or containerized environments where resources are

elastically allocated, workloads are assumed to be distributed over a

number of nodes, and system services are accessed through standard

APIs to the resources instead of hardware interfaces. On the system

design front, containerization and micro services architectures have

driven operating system implementation toward a more modular,

12
MATS Centre for Distance and Online Education, MATS University

Notes lightweight style, in which system components are compostable on

demand rather than deployed as monolithic images, generating

resource overhead and reducing the flexibility to deploy distinct parts

of the system independently. Time-sensitive workloads driven by

requirements for deterministic performance guarantees and

predictable latency even under changing load conditions such as

control of autonomous vehicles, industrial automation and augmented

reality, have propelled real-time operating systems (RTOS) into more

than just traditional embedded applications. From the design of

operating systems, where security in enforcing compatibility has

taken precedence over optimizations to rack mount servers behind

firewalls in grey rooms, displaying cold metrics in measured

temperatures, even to now newer patterns that incorporate validated

modules of the OS through axioms or providing remote attestation

methods as always verifying your mass surveillance hardware that

forces your components on hardware to trust no device only its

configurations, all areas throughout computing have been revised and

are undergoing a much more rigid recliner to minimize surfaces and

reducing injury narratives. At the same time, advances in aggressive

power management, workload-aware scheduling, and heterogeneous

computing models that partition workloads among the most energy-

appropriate processing units are now routine even on cloud

computing platforms since user experiences over this wide range of

computing have moved now from purely performance-driven to

considering price and environmental footprint as primary design

considerations. To further mitigate this gap, where CPU throughput is

orders of magnitude greater than that of memory, these advanced

memory management techniques also permeate both the multi-layer

memory hierarchies of DRAM, persistent memory and storage-class

memory due to their varying performance characteristics along with

sophisticated perfecting and migration policies that predict memory

access patterns. Even when it comes to interface paradigms, they are

evolving away from solely pointing to desktop metaphors and

branching further out into the world with conversational interfaces

powered by natural language processing, ambient computing models

where the interaction takes place through environmental sensors

instead of explicit commands, or cross-device experiences where

applications and workflows cross-pollinate various hardware form

13
MATS Centre for Distance and Online Education, MATS University

Notes factors. The era of specialized hardware accelerators—Graphics

Processing Units (GPUs), Tensor Processing Units (TPUs), Field-

Programmable Gate Arrays (FPGAs), and custom Application-

Specific Integrated Circuits (ASICs) for specific workloads such as

machine learning, cryptography, or video processing—has forced

operating systems to create more complex models of resource

abstraction and scheduling systems to manage the diversity of

computing resources. With the advent of quantum technologies such

as quantum-randomness and quantum-superposition, we will witness

the need for new programming models, different resource

management strategies, fundamentally different operating systems,

and error correction techniques that are going to shape this field for

years to come and which need to be explored. Far from converging to

a single dominant fruit-of-the-meeting-of-the-twain OS model, these

diverse trends point to a continuing diversification of specialized

systems, optimized for specific hardware environments, workload

characteristics, and usage scenarios, around common theoretical

foundations but increasingly differentiated in their implementation

details and optimization priorities.

Figure 1: Operating System
[Source - https://medium.com/]

14
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Need and Functions of Operating Systems

1.2 Need and Functions of Operating Systems

The world of computing we experience today is built on a foundation

of ever-evolving hardware and software, all doing its job in concert.

Central to this ecosystem is the operating system (OS) a complex

piece of software that acts as the vital bridge between computer

hardware and the applications that operate on top of it. Operating

systems are everywhere, running everything from the smart phones in

our pocket to the supercomputer that are behind scientific

breakthroughs. But at that same time, operating systems are deeply

complex and critical and many users are shaped by their interactions

with them without ever fully contemplating the bedrock of their

complexity and criticality. Simply put, the operating system is a

complex resource mediator and service implementer that exposes a

simpler and safer way to run applications on top of real-world

hardware. Without the layers of abstraction an operating system

provides, any application would have to be responsible for directly

manipulating hardware components from managing memory and

processing resources to managing input/output operations to

peripherals like keyboards, displays, and storage devices. This would

result in insane redundancy, bloat, and security holes and would

make the application development process a thousand times harder.

Operating system development has run side by side with the progress

of computing hardware, each generation responding to progressively

more intricate problems. Some early computing systems were without

operating systems or had very little system software, and so operators

had to run the machine and manage the timing of operations

manually. As computing power and other capabilities grew, operating

systems integrated to manage and protect the more complex

resources, becoming the multi-user, multi-tasking familial that they

are today and running across everything from embedded micro-

controllers to distributed cloud infrastructures.

The Need for Operating Systems: Bridging Hardware and

Software

We can also note that modern computing hardware includes many

different types of components multi-core, multi-threaded CPUs with

multiple, complex version processors in overall instruction set, a

15
MATS Centre for Distance and Online Education, MATS University

Notes multi-level hierarchy of memory systems (registers, caches, RAM,

disk), graphics processing units, networking interfaces, different

input/output devices, etc. Each chunk operates on its own protocols

and clocks: it's a nightmare of complexity. Without any abstraction,

they would have to know all the details of the hardware: its

specifications, its operational characteristics, and so on, making it

extremely difficult to write software, and making that software only

hardware specific. This basic missing piece is supplemented by

operating system which provides abstraction layers over the hardware.

Training makes a native operating environment by hiding the

complexity of the underlying hardware and presents standardized

interfaces. The abstraction allows application developers to

implement functionality directly as opposed to worrying about the

details of the actual hardware. For instance, when an application

wants to persist its data, it can use high-level file system calls offered

by the OS instead of accessing directly the disk controllers, managing

sector allocations or creating error correction protocols.

Resource Sharing and Protection

Contemporary computing environments generally have multiple

applications vying for limited system resources processor time,

memory space, I/O bandwidth, and storage capacity. To avoid these

conflicts, a mediating system stands between the applications running

within the OS. Imagine two different applications wanting to access

the same memory region or the same storage space at the same time or

one application wants to capture the processor and not allow other

applications to run.

The operating system implements mechanisms for resource allocation,

scheduling, and protection to ensure:

1. Fair access to resources: Through sophisticated scheduling

algorithms, the OS ensures that all applications receive

appropriate access to the CPU and other resources.

2. Memory protection: Modern operating systems implement

virtual memory systems that provide each process with its own

address space, preventing unauthorized access to memory

regions belonging to other processes or the OS itself.

3. I/O management: By centralizing control of input/output

operations, the OS prevents conflicts in device usage and

16
MATS Centre for Distance and Online Education, MATS University

Notes ensures that all applications can access peripherals in a

controlled manner.

4. File system management: The OS provides a structured way

to store and access data, preventing applications from directly

manipulating storage devices and potentially corrupting data.

Hardware Independence and Portability

Operating systems are one of the most valuable software in the

information technology world, as they allow portability for software

across hardware platforms. Without this layer of abstraction,

programs would have to be rewritten for every hardware

configuration or platform. The operating system provides

standardized interfaces (APIs) which are (for the most part)

consistent between different hardware implementations; this enables

applications to run on various systems with little or no change. The

reason the OS can insulate its applications from the actual hardware of

the computer is by taking generic requests made by the application

and translating those requests into specific operations on the

hardware. As an example, when an application wants to print

something, the OS converts that into the printer specific protocol that

the connected printer supports. When an application requests memory

to be allocated, for example, the OS knows how to abstract the

complexity behind managing physical memory resources, including

virtual memory systems, paging and address translation.

Security and Access Control

In multi-user and networked computing environments, security

concerns become paramount. The operating system plays a crucial

role in implementing security mechanisms that protect:

1. System integrity: Preventing unauthorized modifications to

the system itself.

2. Data confidentiality: Ensuring that sensitive information is

accessible only to authorized users.

3. User authentication: Verifying the identity of users before

granting access to resources.

4. Access control: Enforcing policies that determine which users

can access which resources and in what ways.

5. Isolation: Containing potential damage from malicious or

malfunctioning applications.

17
MATS Centre for Distance and Online Education, MATS University

Notes Applications and widespread vulnerabilities. If these protections were

not implemented at the level of the operating system, each application

would have been responsible for implementing its own security

features, which would have had the result of inconsistent protection

among Systems, file sandboxing for applications to limit inter-process

cooperation, and walking-talking real-time attack monitoring. With

computing systems becoming more networked and subject to a greater

variety of attacks, operating system security functions became more

advanced, adding secure boot procedures, encrypted file

Core Functions of Operating Systems: Process Management

Process Concept and Implementation

A process is the execution of a program, which contains the program

code as well as its current activity (it is a unit of work). We focus on

processes, one of the most basic abstractions provided by modern

operating systems, which enable multi-tasking and a fundamental unit

of isolation between executing software.

Each process includes several components:

1. Program code: The executable instructions of the program.

2. Data: The variables and data structures used by the process.

3. Process stack: Containing temporary data such as function

parameters return addresses, and local variables.

4. Process heap: Dynamically allocated memory during process

runtime.

5. Process control block (PCB): A data structure maintained by

the OS containing process identification, state information,

scheduling information, memory management information,

accounting information, and I/O status information.

The operating system is responsible for creating processes when

programs are initiated, managing their lifecycle, and eventually

terminating them. This lifecycle typically follows transitions between

several states:

1. New: The process is being created.

2. Ready: The process is waiting to be assigned to a processor.

3. Running: Instructions are being executed.

4. Waiting/Blocked: The process is waiting for some event to

occur (such as an I/O completion).

5. Terminated: The process has finished execution.

18
MATS Centre for Distance and Online Education, MATS University

Notes Process Scheduling

Process scheduling is one of the most complex functions performed

by operating systems, directly influencing system performance,

responsiveness, and resource utilization. The scheduler determines

which processes run when and for how long, based on scheduling

algorithms designed to meet specific system goals such as:

1. Maximizing CPU utilization: Keeping the processor as busy

as possible.

2. Maximizing throughput: Completing as many processes as

possible per unit time.

3. Minimizing turnaround time: Reducing the time between

process submission and completion.

4. Minimizing waiting time: Reducing the time processes spend

waiting in the ready queue.

5. Minimizing response time: Providing quick initial responses

to interactive users.

Operating systems implement various scheduling algorithms to

balance these often-conflicting goals:

• First-Come, First-Served (FCFS): Processes are executed in

the order they arrive.

• Shortest Job First (SJF): Prioritizes processes with the

shortest expected execution time.

• Priority Scheduling: Assigns priorities to processes and

executes the highest-priority process first.

• Round Robin (RR): Allocates a fixed time slice (quantum) to

each process in a circular queue.

• Multilevel Queue Scheduling: Partitions the ready queue into

separate queues for different process types.

• Multilevel Feedback Queue: Similar to multilevel queue but

allows processes to move between queues based on their

behavior.

Modern operating systems often implement complex hybrid

approaches that consider factors such as process priority, execution

history, and system load to make scheduling decisions.

Process Synchronization and Communication

In contemporary computing environments, processes rarely operate in

isolation. Instead, they frequently need to coordinate their activities

19
MATS Centre for Distance and Online Education, MATS University

Notes and share data. This necessity introduces two critical challenges that

operating systems must address:

1. Race conditions: When multiple processes access and

manipulate shared data concurrently, the outcome can depend

on the particular order in which the accesses occur, potentially

leading to inconsistent or corrupt data.

2. Deadlocks: A situation where two or more processes are

unable to proceed because each is waiting for resources held

by another process.

Operating systems provide synchronization mechanisms to address

these challenges:

• Mutual exclusion: Ensuring that only one process at a time

can access shared resources or critical sections of code.

• Semaphores: Synchronization variables that control access to

a common resource in a multi-processing environment.

• Monitors: High-level synchronization constructs that

encapsulate both the shared data and the operations that

manipulate it.

• Message passing: Allowing processes to communicate and

synchronize by exchanging messages.

• Deadlock prevention, avoidance, detection, and recovery:

Strategies to handle the deadlock problem.

Inter-process communication (IPC) mechanisms enable processes to

exchange information and coordinate their activities:

• Shared memory: Allows processes to communicate by

reading and writing to a common memory region.

• Pipes: Provide a unidirectional communication channel.

• Named pipes (FIFOs): Similar to pipes but with a name in the

file system, allowing unrelated processes to communicate.

• Message queues: Allow processes to exchange messages

through system-provided queue structures.

• Sockets: Enable communication between processes running

on different machines across a network.

These synchronization and communication mechanisms are essential

for building complex, cooperative software systems where multiple

processes work together to accomplish tasks.

20
MATS Centre for Distance and Online Education, MATS University

Notes Memory Management: Optimizing a Critical Resource

Memory Hierarchy and Management Challenges

Many computer memory systems have a hierarchy from fast, but more

costly, limited capacity (registers and cache memory) to slower but

larger and cheaper (main memory and secondary storage). Memory is

a critical resource, and managing its use is paramount to system

performance, as access times can vary by orders of magnitude across

this hierarchy.

The operating system faces several key challenges in memory

management:

1. Allocation: Determining how to assign available memory to

processes as they are created and as they request additional

memory during execution.

2. Deal location: Reclaiming memory when processes terminate

or explicitly release memory.

3. Protection: Ensuring that processes can only access memory

allocated to them, preventing unauthorized access to memory

regions belonging to other processes or the operating system.

4. Sharing: Allowing controlled sharing of memory regions

between processes when appropriate.

5. Physical organization: Managing the physical arrangement of

data in memory to optimize access patterns and utilize

memory hierarchy effectively.

Memory Management Techniques

Operating systems employ various techniques to address these

challenges:

1. Contiguous Memory Allocation: In early systems, each

process was allocated a single contiguous block of memory.

While simple to implement, this approach led to fragmentation

issues and inefficient memory utilization.

2. Paging: A memory management scheme that eliminates the

need for contiguous allocation by dividing physical memory

into fixed-sized blocks called frames and logical memory into

blocks of the same size called pages. This allows the physical

address space of a process to be non-contiguous, with the

operating system maintaining a page table to map logical

addresses to physical addresses.

21
MATS Centre for Distance and Online Education, MATS University

Notes 3. Segmentation: Divides memory into variable-sized segments,

each corresponding to a logical unit of the program such as the

code segment, data segment, or stack segment. This approach

aligns more naturally with how programmers think about

memory but can lead to fragmentation.

4. Virtual Memory: An extension of the paging system that

allows programs to execute even when they are only partially

loaded in memory. The operating system keeps active portions

of the program in main memory and transfers other portions

between main memory and secondary storage as needed.

5. Page Replacement Algorithms: When implementing virtual

memory, the operating system must decide which pages to

remove from memory when space is needed. Algorithms such

as Least Recently Used (LRU), First-In-First-Out (FIFO), and

Clock algorithm help make these decisions to minimize page

faults.

6. Memory Compression: Some modern operating systems

compress infrequently used memory pages rather than writing

them to disk, reducing the performance penalty associated

with page swapping.

Virtual Memory Implementation

Multiple significant advantages: way memory management work. It

offers One of the groundbreaking innovations of any operating

system design is virtual memory, which changed the whole

1. Programs can be larger than physical memory: By keeping

only portions of programs in memory, the system can execute

programs that are larger than the available physical memory.

2. Higher degree of multiprogramming: More programs can

run concurrently since each only needs part of its address

space in physical memory.

3. Less I/O for loading and swapping: Programs can start

execution after loading just their initial pages, rather than

waiting for the entire program to load.

4. More efficient use of memory: Memory is allocated only

when needed, not based on worst-case estimates.

The implementation of virtual memory involves several components:

1. Page tables: Data structures that map virtual addresses to

physical addresses.

22
MATS Centre for Distance and Online Education, MATS University

Notes 2. Translation Look aside Buffer (TLB): A special cache that

stores recent address translations to improve performance.

3. Page fault handling: When a program accesses a page that is

not in memory, a page fault occurs, and the operating system

must load the required page from secondary storage.

4. Swapping mechanism: The component responsible for

transferring pages between main memory and secondary

storage.

5. Working set management: Tracking the set of pages a

process is actively using to make intelligent decisions about

which pages to keep in memory.

(loading pages only when accessed), copy-on-write (initially sharing

pages until they are modified), and memory-mapped files (mapping

file contents directly into virtual memory). For example, modern

virtual memory systems tend to contain advanced optimizations like

demand paging

File Systems and Storage Management

File Concepts and Organization

Files are the basic building blocks of permanent storage in the

computing world. We introduce the core function of the operating

system for file management, which provides an essential layer of

abstraction that protects applications from handling the details of

physical storage devices.

Key file concepts managed by operating systems include:

1. File attributes: Information about files, including name, type,

size, location, protection settings, creation time, last

modification time, and access permissions.

2. File operations: Functions such as create, delete, open, close,

read, write, append, seek, and get/set attributes.

3. File types: Regular files (containing user data or program

data), directories (catalogs that organize files), special files

(representing devices in UNIX-like systems), and other

system-specific types.

4. File access methods: Sequential access (reading/writing

records in order), direct access (random access to any block),

and indexed access (using an index to locate records).

23
MATS Centre for Distance and Online Education, MATS University

Notes Operating systems organize files using directory structures, which

have evolved from simple single-level directories to sophisticated

hierarchical structures. Modern file systems implement:

1. Hierarchical directory structures: Organized as tree

structures with directories containing files and subdirectories.

2. Path names: Absolute paths (from the root directory) and

relative paths (from the current directory).

3. Directory operations: Creating, deleting, opening, closing,

and traversing directories.

File System Implementation

The implementation of file systems involves several layers of

abstraction:

1. Logical file system: Manages metadata information, directory

structures, and file control blocks (inodes in UNIX-based

systems).

2. File organization module: Maps logical blocks to physical

blocks, manages free space, and allocates storage.

3. Basic file system: Issues commands to device drivers to

read/write physical blocks.

4. I/O control: Device drivers that communicate directly with

storage hardware.

File systems must address several implementation challenges:

1. Allocation methods: How to allocate disk space to files:

• Contiguous allocation: Allocates consecutive blocks,

providing excellent performance for sequential access

but leading to fragmentation.

• Linked allocation: Each block contains a pointer to the

next block, eliminating external fragmentation but

complicating random access.

• Indexed allocation: Uses an index block containing

pointers to data blocks, supporting efficient random

access at the cost of additional overhead.

2. Free space management: Tracking available storage space

using techniques such as bit maps or linked lists of free blocks.

3. Directory implementation: Typically implemented as files

containing entries that map file names to their metadata.

24
MATS Centre for Distance and Online Education, MATS University

Notes 4. Efficiency and performance: Using techniques like block

caching, read-ahead, and delayed writes to improve

performance.

5. Recovery mechanisms: Implementing journaling or other

techniques to maintain file system consistency after system

crashes.

Advanced File System Features

Modern operating systems implement sophisticated file system

features to address evolving needs:

1. Journaling: Records changes in a journal before applying

them to the main file system, ensuring consistency after

crashes or power failures.

2. Copy-on-write file systems: Never overwrite existing data,

instead writing modified data to new locations and updating

pointers, providing snapshots and simplified backup.

3. Logical Volume Management: Abstracts physical storage

into logical volumes that can span multiple disks and be

resized dynamically.

4. Encryption: Protecting file contents through transparent

encryption/decryption.

5. Compression: Reducing storage requirements by compressing

file contents.

6. Deduplication: Eliminating redundant data to save storage

space.

7. Distributed file systems: Allowing access to files from

multiple hosts over a network.

8. Object-based storage: Managing data as objects rather than

files or blocks, often incorporating metadata and access

methods.

The choice of file system significantly impacts performance,

reliability, and functionality. Modern operating systems typically

support multiple file system types to accommodate different needs,

such as NTFS and ReFS in Windows, ext4 and Btrfs in Linux, and

APFS and HFS+ in macOS.

Input/output Systems and Device Management

O Hardware and Challenges

Input/output (I/O) operations are fundamental to computing systems,

enabling interaction with users and the external world. I/O devices

25
MATS Centre for Distance and Online Education, MATS University

Notes vary tremendously in their characteristics, presenting significant

challenges for operating system design:

1. Diversity of devices: I/O devices range from simple character-

oriented devices like keyboards to complex block-oriented

devices like disk drives, each with different data rates, data

formats, and control requirements.

2. Varied data transfer modes:

• Programmed I/O: The CPU executes instructions that

directly control I/O operations.

• Interrupt-driven I/O: Devices signal the CPU via

interrupts when they complete operations.

• Direct Memory Access (DMA): Hardware controllers

transfer data directly between devices and memory

without CPU intervention.

3. Performance disparities: The speed gap between CPU

processing and I/O operations (particularly mechanical

devices) can be orders of magnitude, requiring sophisticated

buffering and scheduling.

4. Error handling: I/O operations are prone to various errors

(media failures, transmission errors, device unavailability)

requiring detection and recovery mechanisms.

Subsystem Architecture

Operating systems implement layered I/O subsystems to manage

complexity:

1. User-level I/O interfaces: High-level libraries and system

calls that provide device-independent interfaces for

applications.

2. Device-independent I/O software: Performs common

functions such as buffering, error handling, and managing

device-independent naming.

3. Device drivers: Software modules that understand the

specifics of particular devices and translate generic I/O

requests into device-specific commands.

4. Interrupt handlers: Manage device interrupts,

acknowledging completion of I/O operations and initiating

next steps.

5. Hardware: The actual I/O devices and their controllers.

This layered approach provides several benefits:

26
MATS Centre for Distance and Online Education, MATS University

Notes 1. Device independence: Applications can use generic I/O

operations without concerning themselves with device

specifics.

2. Uniform naming: Devices can be accessed through a

consistent naming convention, regardless of their physical

characteristics.

3. Error handling: Errors can be managed at appropriate levels

of the hierarchy.

4. Synchronous and asynchronous I/O: Support for both

blocking operations (where the process waits for completion)

and non-blocking operations (where the process continues

execution while I/O proceeds).

5. Buffering: Managing data transfer rate mismatches between

devices and processes.

6. Spooling: Handling devices that can serve only one process at

a time, such as printers.

I/O Performance Optimization

Operating systems employ numerous techniques to optimize I/O

performance:

• Caching: Keeping recently accessed disk data in memory

to reduce access times for subsequent requests.

• Buffering: Using memory areas to temporarily hold data

during transfers, accommodating speed mismatches and

allowing for more efficient batch processing.

• Scheduling: Reordering I/O requests to minimize

movement in devices with mechanical components (such

as disk head scheduling in hard drives).

• Request merging: Combining adjacent requests to reduce

the number of separate I/O operations.

• Anticipatory I/O: Predicting future I/O requests based on

observed patterns and prefetching data.

• I/O parallelism: Using techniques like RAID (Redundant

Array of Independent Disks) to spread I/O operations

across multiple devices.

1. Quality of Service (QoS): Ensuring that critical I/O

operations receive priority treatment.

of modern operating systems evolves to support new hardware types

and connection types. The I/O subsystem

27
MATS Centre for Distance and Online Education, MATS University

Notes Security, Protection, and Advanced OS Functions

Security Fundamentals and Implementation

Functions will be implemented at several levels by modern operating

systems: have become increasingly inter-connected and they store

and process sensitive information, the security of the operating system

has become even more important. Security As computing systems

1. Authentication: Verifying the identity of users through

methods such as:

• Password-based authentication

• Multi-factor authentication

• Biometric authentication

• Token-based authentication

• Certificate-based authentication

2. Authorization: Determining what authenticated users are

permitted to do, typically implemented through:

• Access control lists (ACLs)

• Role-based access control (RBAC)

• Mandatory access control (MAC)

• Capability-based security models

3. Cryptographic services: Providing encryption, decryption,

and cryptographic hashing functions to:

• Protect data confidentiality

• Ensure data integrity

• Verify the authenticity of software and

communications

4. Process isolation: Preventing processes from interfering with

each other or with the operating system itself through:

• Memory protection mechanisms

• Hardware-supported privilege levels

• Containerization

• Virtual machine isolation

5. Security monitoring and auditing: Detecting and logging

security-relevant events to:

• Identify attempted breaches

• Support forensic analysis after security incidents

• Provide accountability and non-repudiation

28
MATS Centre for Distance and Online Education, MATS University

Notes 6. Secure boot processes: Ensuring that only authenticated and

unmodified operating system components are loaded during

system startup.

Deployment environment. These security mechanisms need to find a

trade-off between protection, usability, performance, and

manageability, which often leads to complex trade-offs depending on

the security needs of the

Virtualization and Containerization

Virtualization has transformed modern computing by allowing

multiple operating systems to execute simultaneously on a single

physical machine, while containerization offers lightweight

abstraction for applications running in the same operating system

instance.

Virtualization refers to the creation of virtual (rather than actual)

versions of computing resources, implemented through:

1. Hardware virtualization: Using a hypervisor that:

• Presents virtual hardware interfaces to guest operating

systems

• Manages resource allocation between virtual machines

• Provides isolation between virtual environments

• Types include:

▪ Type 1 (bare-metal) hypervisors that run

directly on hardware

▪ Type 2 hypervisors that run on top of a host

operating system

2. Para virtualization: Where guest operating systems are

modified to use special APIs for improved performance.

3. Memory virtualization: Techniques such as shadow page

tables or hardware-assisted memory virtualization that manage

the mapping between guest physical addresses and host

physical addresses.

4. I/O virtualization: Methods for sharing physical I/O devices

among multiple virtual machines.

Containerization provides application isolation without the overhead

of full virtualization by:

1. Sharing the host operating system kernel while providing

isolated userspace environments.

29
MATS Centre for Distance and Online Education, MATS University

Notes 2. Using namespace isolation to separate container process

trees, network interfaces, mount points, and user IDs.

3. Employing resource control mechanisms like cgroups to

limit and account for resource usage.

4. Providing standardized image formats and deployment

mechanisms.

Both virtualization and containerization have become fundamental

technologies in cloud computing and modern application deployment

strategies, enabling more efficient resource utilization, improved

isolation, and greater flexibility in application hosting.

Distributed Operating Systems and Cloud Infrastructure

Contemporary computing increasingly spans multiple physical

systems, leading to the development of distributed operating system

concepts and cloud computing infrastructures:

1. Distributed operating systems extend operating system

functions across multiple physical machines:

• Transparency: Hiding the distributed nature of the

system from users and applications

• Communication: Low-level message passing and

higher-level remote procedure calls

• Process migration: Moving processes between nodes

for load balancing

• Distributed file systems: Providing a unified file

namespace across machines

• Distributed synchronization: Mechanisms for

coordinating activities across nodes

• Fault tolerance: Handling node failures gracefully

2. Cloud computing infrastructure builds on virtualization and

distributed systems concepts to provide:

• Infrastructure as a Service (IaaS): Virtualized

computing resources

• Platform as a Service (PaaS): Runtime environments

for applications

• Software as a Service (SaaS): Complete applications

delivered over the network

• Elasticity: Dynamic scaling of resources based on

demand

30
MATS Centre for Distance and Online Education, MATS University

Notes • Resource pooling: Sharing physical resources among

multiple tenants

• Measured service: Tracking resource usage for billing

and optimization

3. Emerging operating system paradigms adapt to these

distributed environments:

• Microkernel architectures: Minimizing kernel code

and moving functionality to user space

• Unikernel approaches: Creating specialized single-

purpose applications that include only the OS

functionality they need

• Server less computing: Further abstracting

infrastructure management away from application

developers

Operating systems advanced to support more complex applications,

requiring features like these to support interconnected and

orchestrated systems over the networks built up around computers as

they became pervasive. This is an example of how want to

understand modern computing systems and/or build software that

interacts with them in a meaningful way. Providing abstractions to

simplify writing applications, mechanisms that guarantee your

applications utilize resources as required, and protections to enable

safe and reliable computing; as we have discussed throughout this

book. It is vital to understand these basics and their functions if you

the operating systems are the ultimate base on which all other

software.

31
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Computer System Operations

1.3 Computer System Operations

At the core of contemporary computing lies a complex choreography

involving the cooperation of myriad hardware and software elements,

working in unison to perform tasks from basic arithmetic to

sophisticated data processing. Computer system operations involve

how computers organization works under the guidance of standard

processes that describe the operational condition of the system which

is well defined by the standards represented through several protocols

and architectures A computer system is built on top of four main

layers: hardware, software, data, and users, with components of each

layer communicating via designed interfaces and communication

channels. These pieces of hardware share different characteristics and

performance specifications the CPU, memory, hard drives, I/O

interfaces, network devices etc. Hardware resources, user

applications, operating system, utility programs, development tools,

and application software to carry out certain tasks. Data lives in

different states (input, information, layout tables, files, streams)

across a variety of protected boundaries and access patterns within

computer systems. Interfaces facilitate interaction between users, be

they human operators or automated systems, and the individual

components, translating intentions into actionable commands. The

details of how these bits and pieces cooperate are the domain of the

science of computer system operation: processor scheduling

algorithms, methods of memory management, input/output operations,

file system organization, network communications protocols, all of

the moving parts of physical computers at the core of these systems.

System architects, software developers, IT administrators, and

computer scientists use this information regarding operational

frameworks to improve performance, security, reliability, and design

new computing paradigms. By now, the paradigm of present-day

computational environments has significantly changed from

independent, self-sufficient computing units to interrelated,

systematized infrastructures, that consist of cloud computing,

virtualization, containerization, edge computing, and several

challenges that come with them all. With computers increasingly

dominating all facets of society, whether that is through corporate

32
MATS Centre for Distance and Online Education, MATS University

Notes processes, scientific investigation, social connection, or

entertainment, the importance of fast, secure, and reliable computation

is further amplified. Inhabiting a singular text but spanning through

many disciplines, this textbook explores what makes computer

systems operate; it analyzes not only the theory behind it, but also the

practical considerations and approaches to ensure that our computing

systems operate as intended. Learning about how a computer system

works at the low level enables students and professionals to create

more efficient systems as well as solve complex problems, design new

solutions, and help to push computing technology forward to meet

the demands of modern society in ways that were previously

unimaginable or impossible.

Processor Management and Scheduling

Processor management is the kernel of computer system operations a

complex system of mechanisms that control the execution of

instructions on a system's central processing units. The architectures

of modern CPUs involve multiple cores, instruction pipelines, branch

prediction, speculative execution, and multiple levels of cache. For

this purpose, a CPU operates on a loop: fetches instructions from

memory, decodes what the instruction means and executes operations

on data as per the instruction. The control unit attempts to

synchronize the time of operations and make sure the instructions

executed through the arithmetic logic unit and registers inside the

processor. Operating systems use processor scheduling algorithms to

decide which processes get CPU time and in what order, essentially

juggling multiple requests for this scarce resource. Basic scheduling is

about what to run processes, which are instances of programs that are

in execution, along with the state for the execution of that process,

such as the value of the program counter, the registers, stack, and

memory that those processes have allocated, and the resources that

such processes are utilizing. A process has different states in its life

cycle: new (has been created), ready (waiting for CPU time), running

(currently executing), waiting (waiting for an event or resource), and

terminated (finished executing). The operating system kernel includes

a scheduler that decides which processes get to execute using an

advanced algorithm that strives to optimize a particular metric for the

system. The simplest scheduling algorithm, First-Come-First-Served

(FCFS), executes processes in the order they arrive in the ready state,

33
MATS Centre for Distance and Online Education, MATS University

Notes assuring fairness but allowing short processes to be delayed by long-

running ones, a problem called the convoy effect. The Shortest Job

First (SJF) policy, which minimizes the average waiting time by

executing the process that will finish the quickest (predicted), but it

requires you to have the ability to make predictions, and it might

starve some of the processes. Round Robin scheduling assigns each

process a small time slice or quantum, and processes are served in a

rotating order, preserving the doctrine of fairness and responsiveness

while preventing a single process from dominating the CPU, although

it does incur context switching overhead. A priority-based scheduling

scheme marks every process with a priority level and only executes

those with the highest priority before others, with preemptive policies

(suspending tasks with lower priority) or non-preemptive methods

(waiting for task completion or voluntary release). It achieves this

through the use of meta data, and real-time file systems use specific

algorithms like Rate Monotonic Scheduling (RMS) or Earliest

Deadline First (EDF) to provide timing guarantees for real-time

applications like medical devices, automotive systems, or industrial

control systems. With the advent of modern multi-core processors,

this has changed again; scheduling becomes much more complex, as it

must be able to deal with the affinities between the cores, the cache

coherence, and their ability to be executed in parallel. Thread

scheduling (finer-grained) handles scheduling at the level of threads,

allowing multiple threads to execute in the same process

concurrently, sharing the same memory space and resource. The

sophisticated scheduling methods include multilevel feedback queues

that increase or decrease the priority of processes based on their

execution history; affinity-aware scheduling that keeps workloads on

the same processors to take advantage of cache reuse; and

heterogeneous computing scheduling that allocates concurrent

workloads to specialized processing units such as graphics processing

units (GPUs), field programmable gate arrays (FPGAs) or artificial

intelligence (AI) accelerators. Load balancing algorithms balance the

amount of computational work taking place at any given time, by

distributing the processes that execute across multiple systems or

processors, to maximize throughput & minimize response times.

There has been a growing need for energy-aware scheduling in

mobile devices as well as in data centers to perform intelligent trade-

34
MATS Centre for Distance and Online Education, MATS University

Notes offs between performance and power consumption through

mechanisms like dynamic voltage and frequency scaling (DVFS),

core parking, workload consolidation, etc. Practical implementations

of scheduling must also deal with cases of priority inversion (a high-

priority process is waiting on (a resource controlled by) a low-priority

process), which can be managed with protocols such as priority

inheritance or priority ceiling. Processor management also includes

interrupt handling—the method used by external events to notify the

CPU that it should temporarily stop normal execution in order to

address time-critical tasks, such as state changes in hardware, the

completion of an I/O operation or error conditions. The enhanced

sophistication of modern processor management systems is a direct

result of these challenges, as a diverse set of workloads with widely

differing requirements from background batch processing to

interactive user applications to time-critical control systems must be

able to be run and execute efficiently in the same environment on

common hardware resources.

Memory Management Systems

Memory management represents an essential component of

computational system functionality, involving the various methods

and processes operating systems utilize to oversee, distribute, and

structure the primary memory resources of a computer. Tiers of the

memory hierarchy: registers, cache memory, main memory (RAM),

and virtual memory (in secondary storage devices). To effectively do

this, it needs to address some basic issues: how to allocate memory to

processes when they need it, how to free the memory when it no

longer needs it, track usage to ensure performance, prevent

unauthorized access and maintain memory coherency in a multi-

processor system. Virtual memory is at the heart of modern memory

management an abstraction that gives to every process the illusion of

owning its own large, contiguous space of addresses without regard

for available memory or competing processes. The logical

representation of memory allows developers to get a finer-grained

view of hardware, flexibility in memory allocation, access protection

between processes, and the ability to run programs independent of

physical memory (e.g. if an executing program size exceeds physical

memory). Virtual and Physical Addresses the translation between

virtual and physical addresses is done through a mix of hardware and

35
MATS Centre for Distance and Online Education, MATS University

Notes software mechanisms, where address translation is performed through

memory management units (MMUs), with the help of operating

system-maintained page tables. The most common implementation of

virtual memory is called paging, where both physical and virtual

memory are divided into fixed-sized units called blocks or pages

(usually between four and sixty-four kilobytes in modern systems).

Access to a virtual address by a process would translate to a

corresponding physical location using a page table that stores a

mapping between a virtual page number to a physical frame number.

When the page requested isn't present in physical memory (page

fault), the operating system suspends the process, retrieves the page

from the secondary storage (women's clothing warehouse or hard

disk), updates the page table, and resumes execution, but these details

are invisible to the application; even so, it's key to extending memory.

Page replacement algorithms decide which pages to evict when

physical memory is full, with popular approaches being Least

Recently Used (LRU), which evicts pages that have not been accessed

for the longest time; First-In-First-Out (FIFO), which evicts pages in

the order they were loaded; and Clock algorithm, which approximates

LRU without the high overhead by maintaining a circular list of pages

with reference bits. Its advanced forms are approximations (e.g.,

CLOCK) and improvements (e.g., CLOCK-Pro) which both try to get

the simplicity from FIFO but the performance from more advanced

caching algorithms. Paging divides physical memory into fixed-size

units, typically 4 or 8 KB pages, and maps logical address space pages

to physical pages without considering the program structure.

Segmentation is an alternative or complementary method of memory

management; it organizes memory according to the logical structure

of programs (procedures, data structures, etc.) rather than fixed-size

space. It allows more granular protection and sharing mechanisms as

each segment is a logical unit with attributes such as read only or

executable. Most modern systems use a combination of segmentation

to provide logical organization and paging for physical memory.

Processes manage their own memory allocation in ways that can

range from basic contiguous allocation to complex dynamic memory

management. A part of memory known as the heap is devoted to

runtime allocation, and algorithms are required to process requests

for variable shaped allocations without causing fragmentation. These

36
MATS Centre for Distance and Online Education, MATS University

Notes strategies include first-fit (using the first sufficiently large free block),

best-fit (choosing the smallest block that still satisfies the request),

and buddy system allocation (dividing memory into contiguous

power-of-two sized blocks to simplify coalescing of free space). For

instance, advanced memory managers use either segregated fits (two

or more free lists for various classes of sizes, which keeps the

fragmentation of memory in check), or generational garbage

collection in managed-language settings, which keeps track of the

time-to-die, since the majority of objects exist for a short time only.

Memory protection mechanisms use hardware features such as

protection bits in page tables and memory protection keys to prevent

processes from accessing or modifying memory allocated to other

processes, or the operating system. Modern systems also use Address

Space Layout Randomization (ASLR) to protect against security

vulnerabilities by randomizing the locations in memory of program

components. (Cache management is almost always implemented in

hardware, but it has a lot to do with what the operating system does

regarding memory policies.) By influencing the manner in which

virtual pages map to cache lines, techniques such as cache coloring

aim to improve cache usage. Memory compression is a new paradigm

for adding effective memory capacity by compressing infrequently

touched pages instead of writing them to disk and later reading them

back from disk to reduce latencies for future accesses. Multi-

processor systems with Non-Uniform Memory Access (NUMA)

architectures add further complexity by making memory access times

dependent on the processor's proximity to the memory location, thus

necessitating the use of NUMA-aware allocation policies. To address

this fragmentation, heterogeneous memory management systems that

take advantage of the characteristics of different types of memory

have been implemented, such as placing data intelligently into

different memory regions as a function of access frequency and

performance needs. Despite these advances, effective memory

management is still critical to system performance and stability, with

contemporary operating systems continuing to develop increasingly

sophisticated memory management techniques, managing the

conflicting requirements of capacity, performance, protection and

power efficiency across a complex and ever evolving hardware

architecture.

37
MATS Centre for Distance and Online Education, MATS University

Notes Storage Systems and File Management

Storage systems are crucial for saving data after the computer is

turned off, transforming it into persistent data, whereas the file

management framework allows you to save that persistent data within

the storage system. The storage hierarchy ranges from fast, costly, and

low-capacity storage technologies (like solid-state drives (SSDs)) to

slower, cheaper, and larger-capacity technologies (such as hard disk

drives (HDDs), optical drives, and tape drives), each offering distinct

trade-offs in terms of performance, cost, and longevity. We rely on

file systems to offer this fundamental abstraction layer that turns raw

storage trafficking capabilities into structured, well-defined

hierarchies of organized blocks that users and applications can easily

traverse and maneuver in. At the hardware layer, storage devices use

different principles; HDDs rely on magnetic recording stored on

spinning platters and accessed by mechanical read/write heads so

performance is dependent on rotational latency, seek time, and

transfer rates; SSDs with no moving parts leverage flash memory cells

laid out in pages and blocks with rapid random access times, though

introduce complications like write amplification, wear leveling, and

garbage collection; emerging technologies such as 3D XPoint (Intel

Optane) bridge the gap between memory and storage with their own

performance metrics. Storage device drivers and I/O subsystems in

the operating system interact with the devices, abstracting hardware-

specific details and providing a standardized interface for higher-

level components. RAID (Redundant Array of Independent Disks)

configurations that use multiple physical drives as a single logical unit

(potentially for performance, capacity, and/or redundancy via striping

(RAID 0), mirroring (RAID 1), or parity-based redundancy (RAID 5,

RAID 10), are common in modern storage architectures. Block-level

storage virtualization abstracts physical devices in blocks, presenting

logical volumes that span multiple physical devices and process thin

provisioning, snapshots and replication, while storage area networks

(SANs) and network-attached storage (NAS) extend those capabilities

over a networked spaces. File systems abstract these block-level

capabilities into the hierarchical realm of files and directories, which

serve as the main interface for organizing and accessing the data. And

different file systems, based on the type used by the computer, could

take different approaches to primary problems like space allocation,

38
MATS Centre for Distance and Online Education, MATS University

Notes metadata, directory structure and crash recovery (for example FAT

File Allocation Table, ext4 Fourth Extended File System, NTFS New

Technology File System, and HFS+ — Hierarchical File System

Plus). You will need to retain critical metadata about the files, such as

names, timestamps, ownership, permissions, and the mapping of

logical file structures to physical storage locations. Modern file

systems have developed such sophisticated capabilities to meet new

needs: logging file systems such as ext4, XFS, and NTFS write

metadata about data changes in addition to the data itself, ensuring

consistent operations during catastrophic failures; copy-on-write file

systems such as ZFS and Btrfs never overwrite existing data locations,

they write updates to new locations and atomically update pointers in

metadata, allowing features like snapshots and providing protection

from corruption after unexpected power failures; log-structured file

systems such as F2FS map random writes to sequential writes to

maximize performance for SSD and other flash-based file systems,

thereby improving write performance and reducing write

amplification. Obtaining knowledge and status: File management

activities encompass the file's entire lifecycle, including creation,

naming, access control, modification, backup, and finally deletion or

archiving. Each file can vary widely in characteristics: Executable

binaries require specific formats and alignment; Databases often use

their own internal storage structures optimized for access patterns;

Multimedia files utilize various compression algorithms; and text

files require character encoding support. Different ways of access

provide optimization opportunities as well as challenges (sequential

processing versus random access patterns). Virtual File Systems

(VFS) play an essential role in modern operating systems by exposing

a uniform interface to applications while supporting a wide variety of

underlying file system implementations alike the network file systems

and the local ones having extremely diverse internal structures. When

the same file is accessed frequently, file caching improves

performance by keeping data and metadata in memory, using

sophisticated algorithms that attempt to hold on to data that is useful

without exceeding available memory. Modern file systems support

advanced features such as encryption which secures sensitive data

even if the physical storage is compromised, deduplication which

minimizes the storage of identical data blocks, the ability to compress

39
MATS Centre for Distance and Online Education, MATS University

Notes data to save space, and specification of quotas to restrict the amount

of resources consumed by users or groups thereof. With the arrival of

cloud storage, whole new paradigms for files arose, with object

storage systems like Amazon S3, Google Cloud Storage, and Azure

Blob Storage employing flat namespaces of objects and (meta)data

associated with them instead of hierarchical file structures, along

geared for scale, durability and while being easily accessible over

distributed environments. These systems include well-known

distributed file systems (e.g., Google File System (GFS), Hadoop

Distributed File System (HDFS), and Ceph), which take the concepts

of traditional file systems and apply them over clusters of machines,

using replication, fault tolerance, and parallel access mechanisms to

achieve scalability and performance impractical with single-system

approaches. Emerging storage technologies further obfuscate

traditional categories: persistent memory provides byte-addressable

access with durability; storage-class memory delivers near-DRAM

performance with non-volatility; and computational storage moves

processing closer to data to mitigate data movement and improve

efficiency for select workloads. As workloads change, as hardware

capabilities and reliability requirements shift, so must file and storage

management systems, and researchers are focusing efforts in areas

such as improved performance for emerging non-volatile memory

technologies, secure transparent encryption for enhanced security, low

power consumption for massive storage arrays, and self-healing

mechanisms to maintain data integrity when hardware fails or is

victimized by a cyber attack.

Input/Output Systems and Device Management

Input/output (I/O) systems and Strategies for effective Device

management antigen are the vital intermediary link between

computing systems and the outside environment, including the

hardware components, software subsystems and operational protocols

that allow computers to interact with peripheral devices, sensors,

networks and storage systems. I/O devices are the most diverse class

of peripherals and can be as simple as human interface peripherals

such as keyboards and mice or as complex as communication

equipment, graphics processors, and special purpose controllers used

in industrial control; thus providing standard interfaces while

attempting to provide some range of performance characteristics,

40
MATS Centre for Distance and Online Education, MATS University

Notes communication mechanisms, and functionality can prove to be quite a

challenge for the system designer. In the context of hardware-level I/O

communication architectures, these authors describe four common

modes: programmed I/O where the CPU explicitly instructs devices to

transfer blocks of data, interrupt-driven I/O where devices can

interrupt in the event of needing the processor's attention, freeing up

the CPU; DMA (Direct Memory Access) which leads to devices

pulling or pushing data from memory without requiring the CPU to

watch over; and channel I/O commonly used in mainframe systems,

where entire I/O programs can be sent to special processors to be

executed without the requirement of the attention of the main CPU.

Wired connections for devices and computer systems have

transitioned from parallel buses like ISA and PCI to serial connections

such as USB, PCIe, and Thunderbolt delivering higher speeds, fewer

pins, and even the ability to hot-plug the devices. Such connections

are made via controllers, hardware that can translate between the

internal signals of a computer and the specialized protocols of the

devices, usually with some form of buffers to account for differences

in timing between CPUs and slower devices. Through a layered

system of device drivers, software components that allow devices to

communicate with the operating system and abstract away device-

specific implementation, this hardware is managed by the operating

system. There are driver frameworks built into modern operating

systems that describe application development patterns that third

parties can use to implement drivers that will be compatible without

needing to learn about the internal architecture of the system. Such

frameworks generally provide interrupt handling, memory

management, power management, error recovery, and other low-level

services so that driver developers can concentrate on device-specific

details. Purpose: ACPI, UEFI, PnP Device discovery and

configuration mechanisms that help in automatic detection,

configuration and allocation of resources for devices without any

manual intervention. From the application perspective, OSes expose

devices through abstraction layers that make interaction simple:

character devices (like keyboards and serial ports) transfer data byte

by byte in streams; block devices (like disk drives) transfer fixed size

blocks of data; and network devices with their own interfaces for

packet-based communication. Even higher-level abstractions reduce

41
MATS Centre for Distance and Online Education, MATS University

Notes development complexity file system interfaces for storage devices,

graphical frameworks for display devices, and audio subsystems for

sound equipment expose active APIs that abstract applications from

hardware specifics. Particularly for devices such as disk drives, where

the physical characteristics are a major factor in their performance,

I/O scheduling is an important component of device management.

Reordering requests based on physical location using elevator

algorithms (SCAN) and its derivatives helps to keep mechanical

movement to a minimum; anticipatory scheduling has been shown to

be useful in predicting future requests based on previous patterns; and

completely fair queuing ensures that bandwidth is allocated fairly

across processes. Most recent systems employ a deadline-based

mechanism that optimizes throughput while providing service

guarantees at a predefined level to time-sensitive operations.

Buffering and caching layers exist all throughout the I/O stack to

handle timing discrepancies between the various components that all

operate at different speeds: device controllers have hardware buffers;

OSes have buffer caches for block devices and network stacks; and

applications have their own buffering schemes. By using double-

buffering approaches, you can read and write to different buffers, such

that one can be used to write data while another is rendered or

transmitted, making them suitable for streaming like video playing or

audio recording. With the advent of virtual machines, containerized

applications, and other forms of system virtualization, the need for a

different approach for virtualized devices was created, including

device emulation (where hardware behavior is simulated through

software), par virtualization (modified drivers in guest systems

interact with the hypervisor) and direct device assignment (allowing

virtual machines to have direct, exclusive access to physical devices).

You are familiar with virtualized environments, where one physical

device can be seen by one or more guests; SR-IOV (Single Root I/O

Virtualization) allows a single physical device to advertise up to n

virtual devices with dedicated resources. However, the increasing

adoption of mobile and energy efficient systems has led to the advent

of device power management. Examples include selectively powering

down unused hardware components, dynamically adjusting its

performance to match current needs, and aligning device states with

global power management policies. USB Power Delivery is one

42
MATS Centre for Distance and Online Education, MATS University

Notes example of a standards-based specification that allows for intelligent

negotiation of power requirements between devices and hosts.

Domain-specific I/O subsystems are designed for their specific type of

needs, e.g. cameras and graphics use APIs like DirectX, Vulkan, and

Metal with increasingly complex rendering pipelines, audio

subsystems mix, convert formats, and align playback across many

channels, and human interface device frameworks (HIDs) manage

arbitrary input from many sources with accessibility and

internationalization considerations. The two main differentiating

features of true real-time I/O are deterministic response time which is

critical in industrial control systems, medical devices, and automotive

systems. As such, real-time systems use dedicated I/O stacks with

bounded latency guarantees, priority-based IRQ servicing, and very

little jitter. As IoT devices suitable for various purposes can be very

light-weight, I/O management has always been crucial for those

devices with bandwidth constrained protocols, energy-efficient

communication patterns, etc. Edge computing architectures allow the

processing of data at or near the source, decreasing latency and

bandwidth consumption but also introducing new challenges for

device management across distributed environments. Security touches

every part of modern I/O systems: device attestation ensures the

hardware is what we expect; secure boot verifies device firmware;

access control restricts which processes may interact with sensitive

devices; and encryption protects data in flight. As computation

expands into new spheres, I/O systems evolve further, with

technologies such as neuromorphic interfaces directly wired into

biology; quantum I/O enveloping the extreme environmental needs of

quantum processors; and brain-computer interfaces (BCI)

transforming neural activity into computational input, all presenting

new levels of difficulty for device management systems on which I/O

profiled devices depend.

43
MATS Centre for Distance and Online Education, MATS University

Notes Network Operations and Distributed Systems

Network operations and distributed systems are the fundamental

threads that connect the fabric of computing today, facilitating

communication, resource sharing, and collaborative processing across

components that are geographically or physically separated, whether

they be local clusters or global-scale infrastructure that spans

continents. A layered architectural view is essentially the foundation

of computer networking and the most common manifestation of that is

the TCP/IP model: A link layer, which provides a similar physical

connection and media access to the alternate layer, a layer responsible

for addressing and routing between networks (Internet Layer), a

transport layer for reliable delivery and flow control of data, and

finally activated by a layer for user applications and network services

(Application Layer). Disparate physical characteristics of the

transmission mediums make a big difference in terms of bandwidth,

propagation delays, fault tolerance, etc. For these physical media, we

need some data encoding techniques to take our digital information

and convert it into signals suitable for those types of media, such as

using a scheme to enable the appropiate type of encoding like

Manchester, PAM-4 and QAM modulation, maximizing the density of

the data and minimizing errors. Media access control (MAC)

mechanisms organize when shared channels can be used, from

deterministic techniques like time-division multiplexing, to

contention-based schemes such as CSMA/CD (Carrier Sense

Multiple Access with Collision Detection) in classical Ethernet or

CSMA/CA (Collision Avoidance) in wireless. Network addressing

schemes form the backbone on the way to the identification and

location of devices: MAC addresses uniquely identify physical

network interfaces on the link layer; IP addresses (both IPv4 and

growing IPv6) allow global routing in the internet layer; and finally,

domain names create human-readable identifiers (resolved into IP

addresses by the Domain Name System or DNS). Routing works as a

process of establishing routes and data transmission across the

interconnected networks through paths that are determined by using a

set of algorithms that strike a balance between the distances,

reliability, heaps and administrative policies. Routing protocols such

as RIP (Routing Information Protocol), OSPF (Open Shortest Path

First), BGP (Border Gateway Protocol) employ distinct

44
MATS Centre for Distance and Online Education, MATS University

Notes methodologies for exploring and administering routes; interior

gateway protocols concentrate on routing within organizations, while

exterior gateway protocols control routing across the internet between

diverse autonomous systems. The transport layer provides essential

functionalities such as connection management, reliable delivery, flow

control, and congestion avoidance. The Transmission Control

Protocol (TCP) uses connection-oriented transmission with reliable,

ordered service with mechanisms for acknowledgments of received

data, retransmissions of lost packets, and dynamic adjustments of

transmission rates to conditions on the network. UDP (User

Datagram Protocol) is a connectionless protocol that provides

communication without the overhead of establishing a connection and

is often used when low latency is more important than reliability, such

as for real-time streaming and DNS lookups. Newer protocols like

QUIC merge elements from both strategies, offering reliability and

security from the application layer above UDP layers to minimize

connection creation latency and optimize performance across difficult

link conditions. Network security involves many specialized

processes: encryption preserves the confidentiality of information via

protocols such as TLS (Transport Layer Security); authentication

validates communicating endpoints through certificates, pre-shared

keys, or multi-factor systems; access control mechanisms like

firewalls and segmentation ensure communication routes are restricted

according to rulesets and policies; intrusion detection/prevention

systems inspect traffic patterns for the presence of malevolent

behaviours. DDoS protection uses traffic analysis, rate limiting and

traffic spreading to keep service available in the face of an attack.

Quality of Service (QoS) involves mechanisms that would allow

traffic to be prioritized based on type, source, or requirements of the

application, and it works by implementing techniques like packet

classification, queue management, traffic shaping, and reservation of

resources to make sure that critical communications are properly

treated even when the network is congested. The SDN is a new

networking architecture that separates the control and data planes,

allowing for centralized control, programmability, and more efficient

resource allocation (most commonly used with the Open Flow

Protocol). Network virtualization, then, takes these concepts and

applies them at the network level, allowing logical network

45
MATS Centre for Distance and Online Education, MATS University

Notes abstractions of sufficient complexity to exist independently of the

physical infrastructure beneath them, facilitating multiple isolated

networks to share hardware concurrently. Different flavours of this

are radiating out in the form of virtual LANs (VLANs), Virtual

eXtensible LANs (VXLANs), and Network Function Virtualization

(NFV) which virtualizes hardware appliances (e.g., a router) and

firewalls and load balancers that are implemented as virtualized

software rather than hardware. Writing detailed networking code does

not usually lead to success; instead, distributed systems are built on

top of these foundations for networking to create coherent

programming environments over multiple physical machines, using

middleware, protocols, and architectural structures to overcome the

inherent problems in distributed computing: heterogeneity of

components, open-ness to extension, security across trust boundaries,

scalability to increasing demand, failure handling, concurrency

enabling, and transparency that hides distribution from the

programmer

Complexity of users and applications inside. There are varying

designs of distributed system architectures; client-server architecture

separates service providers from consumers, peer-to-peer distributes

services among participating nodes, hybrid architectures like edge

computing position processing at the edge of the network close to the

sources of data, and cloud computing offers resources that are

virtualized and accessible through standard interfaces. Distributed

systems communicate in multiple ways: remote procedure calls

(RPCs) with their object-oriented variant allow remote procedures to

be invoked as if they were local; message-oriented middleware’s

implement queuing, routing and transformation services to enable

asynchronous communication; publish-subscribe systems allow for

many-to-many communication with loose coupling between

participants; streaming platforms process continuous data flows across

distributed components. Consistency models govern what to expect

around visibility and order of data across other distributed

components; they stretch from strong consistency (all nodes see the

same thing at the same time) through eventual consistency (the data

will converge with time but does not require synchronization in the

moment). The CAP theorem presents absolute trade-offs for

distributed systems by saying that they can only offer two of three

46
MATS Centre for Distance and Online Education, MATS University

Notes guarantees: consistency (all nodes see the same data), availability (the

system responds to requests) and partition tolerance (the system still

operates even when networks do not). Modern distributed databases

all implement different consistency models depending on applications

requirements: classical relational databases tend to enforce ACID

properties (Atomicity, Consistency, Isolation, Durability) through

two-phase commit protocols and distributed transactions; NoSQL

systems often embrace BASE properties (Basically Available, Soft

state, Eventually consistent) for improving partition tolerance and

scalability; and NewSQL approaches try to combine ACID guarantees

with horizontal scalability. Distributed coordination services such as

Apache ZooKeeper, etcd, Consul, etc provide primitives for leader

election, configuration management, service discovery, distributed

locking that make it easy to build reliable distributed applications.

Container orchestration platforms (like Kubernetes) automate the

deployment, scaling, and management of containerized applications

across a cluster of servers with advanced scheduling, load balancing,

service discovery, and self-healing capabilities. Distributed file

systems and object stores, such as Hadoop HDFS, Ceph, Amazon S3,

and Google Cloud Storage, offer storage services that span machine

boundaries with replication, fault tolerance, and scalability. Block

chain technologies are a specialized subclass of distributed system

that enables decentralized consensus protocols to have consistent state

without a trusted central authority, leading to applications from

crypto currency to supply chain tracking to digital identity

management. Fundamental challenges in connecting and coordinating

computational resources across physical, organizational, and trust

boundaries continue to be tackled by evolving practices of network

operations and distributed systems underlying the operation

paradigms that have emerged; server less computing abstracts away

(even managing) the infrastructure; 5G and beyond wireless

technologies enable new classes of distributed applications; zero-trust

security eliminates implicit trust due to network location; edge

computing pushes the processing closer to the data source.

Security, Performance Optimization, and System Reliability

Security, performance optimization, and system reliability are critical

dimensions of computer system operations they define how well

systems protect sensitive assets, provide timely service, and continue

47
MATS Centre for Distance and Online Education, MATS University

Notes to operate consistently under stressful conditions. These three form a

triad of operational concerns that intersect in many complex ways

security practices can impact performance, performance

improvements can add reliability compromises, and reliability

mechanisms can influence both security posture and performance

efficiency. Systematic approaches that balance competing priorities,

such as institutional, macroeconomic, sectoral, and organizational

factors, to robustly implement practices across all three dimensions in

specific operational settings. Computer security involves the securing

of hardware, software, data, and communications of system assets

from unintended access, use, disclosure, disruption, modification, or

destruction. Fundamentally, security enforces the CIA triad;

Confidentiality ensures that no one accesses sensitive information;

integrity preserves information integrity from intentional or accidental

tampering; and availability ensures authorized users can reach their

resources when needed. These objectives are accomplished through

various defensive mechanisms targeting distinct facets of the security

dilemma: cryptographic schemes that safeguard data utilizing

encryption ciphers, such as AES, RSA, and elliptic curve

cryptography, alongside hashing algorithms like SHA-256 that ensure

data integrity(ies); authentication systems that validate claims of

identity through knowledge factors (passwords, security questions),

possession factors (hardware tokens, mobile devices), and inherence

factors (biometrics like fingerprints, facial recognition); authorization

schemes that delineate action permissions for authenticated subjects

through models such as discretionary access control (DAC),

mandatory access control (MAC), role-based access control (RBAC),

and attribute-based access control (ABAC); secure communication

protocols like TLS/SSL that establish encrypted channels impervious

to interception and modification; and network security mechanisms

encompassing firewalls, intrusion detection/prevention units, and

VPNs that confine communication pathways to legitimate channels.

Vulnerability management processes are designed to identify, assess,

and remediate security weaknesses in a software application, often

through activities such as static and dynamic code analysis,

penetration testing, and regular patching. Security monitoring and

incident response abilities that recognize and respond to security

occurrences (through log analysis, behavior monitoring, and

48
MATS Centre for Distance and Online Education, MATS University

Notes established threat-handling procedures). Zero-trust architecture and

similar approaches move away from perimeter-based security models

and instead analyze each access request, wherever it originates from

or however attached to a network, to verify that it’s still valid.

Optimizations improve overall performance as measured by multiple

metrics: throughput (amount of work done per unit time), latency

(time taken to finish given operations), resource utilization (helping

make use of relevant points of computing resources), energy

efficiency (amount of work accomplished per amount of energy

consumed). Optimization exists at all levels of the system from

hardware choices and configurations balancing compute resources

with workload needs, to processor optimizations (instruction

pipelines, branch predictors, speculative execution, and

synchronization of work across cores), memory hierarchy tuning

(including cache sizes, memory alignment, perfecting and NUMA

awareness), I/O (effective buffering, asynchronous I/O, and device

selection), and networking performance (protocol, buffering and

topology). Software-level improvements involve the implementation

of more efficient algorithms to minimize computational complexity,

optimizing compilers for specific target architectures to high-quality

machine code, improvements on databases with indexing, query

rewriting, and execution plan selection, and application-specific

improvements that focus on the hot paths in the code graph. Load

Balancing and Capacity Planning Techniques; Load balancing

techniques distribute work across multiple resources to prevent

bottlenecks, while capacity planning processes ensure sufficient

resources for anticipated demands. Performance monitoring and

analysis tools help improve data-driven optimizations by performing

profiling, tracing, and benchmarking for locating a performance

bottleneck and validating the impact of improvements. The system is

reliable if, under typical operation, it ensures consistent, correct

operation regardless of the failures, flaws, or environmental stresses

that might occur in components. At a high level, reliability

engineering encompasses a few broad elements: defect prevention

avoids the introduction of defects through strict design practices,

formal verification, and quality methods; fault tolerance enables

continued operation in the face of component failures with

redundancy (keeping duplicate components to take over when

49
MATS Centre for Distance and Online Education, MATS University

Notes primary components fail), diversity (multiple different

implementations of the same solution to avoid common failure

modes), isolation (restricting the failure propagation to a limited

scope), and graceful degradation (maintaining the best possible level

of service during partial failures); fault detection finds problems

through health monitors, watchdog timers, checksums or error

detection codes; and fault recovery restores normal operations post-

failure with techniques like rolling back to known-good states, failing

over to backups, and self-healing where certain failure classes are

automatically repaired. Reliability metrics measure how dependable a

system is: Mean Time Between Failures (MTBF) indicates the

average amount of operational time between one failure and the next;

Mean Time To Repair (MTTR) measures the average time taken to

return a system to an operational state after a failure; availability

communicates the percent amount of time a system is functioning;

and durability represents the percentage chance that data will remain

intact over a certain period. High-strength structures use active-

passive or active-active setups between dispersed geographical areas

to keep the service running, regardless of localized failures or such

disasters. Chaos engineering tests reliability proactively by sneaking

in controlled failures into production systems and checking to see if

recovery mechanisms kick in, as expected. Approaches to security,

performance, and reliability are traditionally developed in isolation, as

though the three are independent; this plain non-sense. Performance

optimizations that avoid safety checks or reliability mechanisms that

leak diagnostic information are common sources of security

vulnerabilities. Security controls which add more processing steps or

reliability features that keep redundant state can cause performance

bottlenecks. Security mechanisms that raise the complexity of the

system or performance optimizations that narrow the tolerable fault

margins may lead to reliability challenges. In practice, systems must

be oriented to meet varying criteria across these dimensions

depending upon use case requirements—system must balance security

and reliability against raw performance (i.e. mission critical systems

will typically favor non-performant options over less reliable

systems); systems must maintain performance guarantees whilst

ensuring adequate security and reliability (e.g. real time systems); or,

systems must maintain optimal performance while maintaining

50
MATS Centre for Distance and Online Education, MATS University

Notes adequate security and reliability (e.g. consumer applications). This

evolution of computer systems continues to fundamentally alter the

operations landscape(s): Cloud introduces shared responsibility

models for security, performance, and reliability, where some level of

responsibility is managed by a service provider with others

maintained by the customer; containerization and micro services

architectures divide these concerns into smaller, more manageable

modules; DevSecOps incorporates security into the development

lifecycle (i.e. not an afterthought); site reliability engineering (SRE)

applies software engineering paradigms to operationalise problems;

and artificial intelligence increasingly encroaches to help humans

identify and profile security threats, performance parameters, and

reliability components that pose a risk to service and product

offerings. As systems grow more complex and interconnected, the

strategic orchestration of the management of security, performance,

and reliability operations is becoming a core function for delivering

systems to support the increasing expectations of both organizations

and individuals in our digital society.

Emerging Trends and Future Directions in Computer Systems

The operations of computer systems are evolving at an unprecedented

pace, highlighting the importance of writing semantics in the

continuous integration and deployment process. At the same time,

several disruptive trends are reformulating the very fabric of computer

systems, heralding a new realm of capabilities and new operation

challenges that will characterize the next generation of computing

infrastructure. Quantum computing is perhaps the most disruptive

change on the horizon, as it computes fundamentally differently than

classical computation, by utilizing quantum mechanical effects like

superposition and entanglement. In contrast to conventional bits with

distinguished states of 0 or 1, quantum bits or “qubits” can be in

superposition with multiple possible states at once, potentially

allowing for exponential parallelism on certain problems. Go to any

specialized quantum system from companies like IBM or Google or

D-Wave or other new starts, and you can find ways in which these

experimental systems demonstrate capabilities in areas such as

cryptography, optimization, simulation of quantum systems, and even

some machine learning functions. Modules. Operationally, quantum

computing has enormous implications: quantum algorithms need

51
MATS Centre for Distance and Online Education, MATS University

Notes completely novel ways of programming; quantum decoherence

makes error correction exponentially harder; dedicated environments

with extremely low temperature requirements lead to new types of

infrastructure problems; hybrid architectures with classical and

quantum processors need new interface paradigms. Although general-

purpose quantum computers are many years away from practical use,

the security consequences are already causing changes to quantum-

resistant cryptographic algorithms that would be safe against future

quantum systems. Neuromorphic computing mimics biological neural

systems using hardware architectures that more closely mirror the

structures in the brain, in contrast to traditional von Neumann

architectures. Such systems use massively parallel processing

elements that integrate memory and computation and provide large

performance improvements for pattern reorganization, sens

1.4 Types of Operating Systems: Batch Processing, Multi-

Programming, Time Sharing

An operating system (OS) is a crucial software layer that acts as a

bridge between computer hardware and its users, on top of which

users can conveniently and efficiently run programs. Operating

systems have come a long way since the birth of electronic

computers, continuously adapting to new hardware capabilities

and user needs. It represents a basic shift from primitive, single-

function applications to advanced, multi-feature settings that can

run several simultaneous processes in a resource-efficient manner.

The earliest computers didn’t contain anything that resembled an

operating system, as we understand the term today; they required

programmers to talk directly to the machine hardware through

physical switches and lights. This hands-on approach proved

insufficient with the increasing complexity behind our computing

hardware and the increasing expectations users had of their

applications. The ever-increasing sophistication of operating

system designs was driven by the need for more efficient resource

utilization and improved user experience. This Unit provides

insight into three base operating system paradigms that

approximate significant evolutionary stages in computer history:

batch processing systems, multiprogramming systems, and time-

sharing systems. These systems all addressed the shortcomings of

their predecessors and provided new abstractions that still shape

52
MATS Centre for Distance and Online Education, MATS University

Notes modern operating systems today. Understanding these

fundamental operating system types help us appreciate the

principles that underlie many of the modern computing

environments we use today and the historical context that drove

their evolution. Batch processing, multiprogramming, and time-

sharing represent not just an evolution in technology but also a

shift in computing priorities; in other words, from maximizing the

usage of hardware to maximizing the matched interactivity of the

system. In this article, we will delve into each of these types of

operating systems individually, highlighting what defines each

one, their main architectural components, advantages,

disadvantages, and historical significance to give you an all

encompassing perspective on how the evolution of operating

system design has catered towards the complex needs of

computing in modern times.

Batch Processing Operating Systems

Batch processing represents the earliest systematic approach to

operating system design, emerging in the 1950s and early 1960s as a

response to the limitations of manual program loading. In a batch

processing operating system, similar jobs are grouped together into

"batches" and executed sequentially without user interaction during

processing. This revolutionary approach addressed significant

inefficiencies in early computing environments, where computer

operators had to manually load and unload programs and data,

resulting in considerable idle time for expensive hardware resources.

The fundamental architecture of a batch processing system consists of

several key components. First, the job scheduler maintains a queue of

submitted jobs, determining their execution order based on predefined

criteria such as priority or resource requirements. Second, the batch

monitor supervises job execution, loading the appropriate program

into memory, allocating necessary resources, and collecting output for

later retrieval. Third, job control language (JCL) provides a

standardized mechanism for users to specify job requirements and

execution parameters. The operational workflow typically begins with

users submitting programs and associated data (often on punch cards

or magnetic tape) to computer operators. These jobs are then grouped

by operators into batches with similar resource requirements. The

batched jobs are loaded onto input devices, and the batch processing

53
MATS Centre for Distance and Online Education, MATS University

Notes system automatically executes them in sequence, producing output

that is subsequently distributed to the appropriate users. This approach

offered several significant advantages over manual program loading.

Primarily, it improved throughput by reducing transition time between

jobs and eliminating the need for human intervention during

execution. It also enhanced resource utilization by keeping expensive

computing hardware operational for longer periods. Additionally,

batch systems introduced the concept of accounting and resource

allocation, enabling organizations to track and manage computing

resources more effectively. Despite these benefits, batch processing

systems suffered from notable limitations. The lack of interaction

during program execution meant that debugging was cumbersome,

often requiring multiple submission-execution cycles to identify and

correct errors. Furthermore, turnaround time the interval between job

submission and result delivery could be substantial, ranging from

hours to days depending on system load and job priority. These

systems also typically operated with a "first-in, first-out" (FIFO)

scheduling approach or simple priority schemes, which could lead to

inefficient resource allocation. Historical examples of influential

batch processing systems include the IBM 7094 with its Fortran

Monitor System (FMS) and the IBM System/360 running OS/360.

These systems demonstrated the viability of automated job processing

and established fundamental concepts in operating system design,

including job scheduling, resource allocation, and system monitoring.

Although pure batch processing systems are rarely used in

contemporary computing environments, their core principles continue

to influence modern computing, particularly in high-performance

computing centers, scientific computing applications, and financial

processing systems where large volumes of data must be processed

without user interaction.

54
MATS Centre for Distance and Online Education, MATS University

Notes

Multiprogramming Operating Systems

Multiprogramming was introduced in 1960s which was a leap over

batch processing systems, as it addressed one of the hot topics of

CPU underutilization. Batch systems ran jobs one at a time, but

multiprogramming brought the radical idea of having multiple

programs in memory together at once and transforming numbers

between jobs in a process that the OS could switch back and forth

among and save CPU cycles lost to I/O. This core adjustment

increased system throughput and resource usage dramatically.

Multiprogramming systems have many more features in their

architecture than batch systems. Managing memory becomes a lot

harder, we need to make sure branches marked with load instructions

are protected against being scratched by other programs that are in

memory at the same time. Process management systems maintain the

state of each loaded program and coordinate transitions between

them. In advanced CPU scheduling algorithms meaning which ready

process should get processor time depending on factors such as

priority, resource needs, and fairness. System level types of operations

that allow for I/O requests and refinement. And complex I/O

management systems that allow for multiple active programs. From

the operating system perspective, when a program initiates an I/O

operation, the multiprogramming operating system will do a context

switch, saving the current program state and handing control to a

different program that is ready to execute. This context switching

operation means saving the contents of registers, program counters,

and other relevant information about the execution states of the

blocked program and loading that of the other program to be

Figure 2: Batch Operating System
[Source - https://www.geeksforgeeks.org/]

55
MATS Centre for Distance and Online Education, MATS University

Notes executed. When the I/O completes, the first program is re-eligible for

execution, enabling the operating system to return control to it at an

appropriate time. This was a great improvement over simple batch

processing. Most importantly, it greatly enhanced CPU utilization

because with this way the processor never visited the idle state if

programs were blocked waiting on an I/O operation. More jobs could

be completed in the same amount of time, thus increasing system

throughput accordingly. It also offered more complex mechanisms

for allocating resources such as: memory, peripheral or even

processor time among different workloads running in parallel. These

developments were in addition to the challenges and limitations using

multiprogramming systems. Memory limits became especially real,

since you needed enough physical memory to run multiple programs

at once. Now, with multiple processes running on the system, there

was contention for the various resources that a process could use,

such as I/O devices. Fairness, priority, and throughput considerations

required more complex scheduling algorithms. They also introduced

the possibility of deadlock, where two or more programs each had

resources that the others needed, creating a standstill. Notable

example of multiprogramming systems are IBM's OS/360 MFT

(Multiprogramming with a Fixed number of Tasks) and MVT

(Multiprogramming with a Variable number of Tasks), UNIVAC's

EXEC 8, and derivatives of Unix. These systems introduced essential

concepts that would become the basis for contemporary operating

systems, such as process management, memory protection, and

resource allocation. Multiprogramming is still a basic paradigm of

modern computing and is built into the core principles of almost

every operating system in use today. Multiprogramming laid the

groundwork for concurrent computing, which would be further

realized in the form of time-sharing systems, a subsequent category

of operating system specifically designed to support interactive

computing experiences.

56
MATS Centre for Distance and Online Education, MATS University

Notes

Time-Sharing Operating Systems

Time-sharing operating systems, which developed in the mid-1960s,

were a significant paradigm shift in computing. They overcame a

fundamental constraint of batch and early multiprogramming systems:

they did not offer interactive computing capabilities.

Multiprogramming only increased the needs of the hardware, and

time-sharing systems changed this by creating an illusion of exclusive

accessibility of the system by each user. This development

fundamentally changed human-computer interactions, allowing

people to directly and interactively utilize computers in ways that

vastly broadened computing use cases and made computing accessible

to many more people. The interactive nature of time-sharing comes

from its implementation method—context switch at a high rate

between several programs that belong to users. Using time-slicing

(usually in milliseconds) this creates the illusion that programs are

being executed in parallel (this does not mirror the underlying

hardware, which is inherently sequential). This methodology is

distinctly differentiated from multiprogramming through its primary

intent as opposed to multiprogramming, which focuses on maximizing

CPU utilization by swapping control between programs during I/O

tasks, time sharing switches programs based on the time that has been

allotted to them versus the waiting on I/O process the architecture of

a time-sharing operating system boasts numerous enhancements over

multiprogramming executing systems. It needs better CPU scheduling

algorithms that balance responsiveness and fairness among many

Figure 3: Multiprogramming Operating System
[Source - https://www.geeksforgeeks.org]

57
MATS Centre for Distance and Online Education, MATS University

Notes interactive users. In such cases, virtual memory systems become

vital, enabling the aggregate memory requirements of all users in

active status to be larger than available system memory. Terminal

handling subsystems are responsible for interfacing with possibly

hundreds of attached user terminals. The file systems of time-sharing

environments also utilize concurrency controls to allow multiple users

to access shared files at the same time without causing conflicts. The

actual time-sharing works with slightly different processes. When a

user starts a session, a process is created to represent that user's

environment. The system grants short processor time slices to the

corresponding process, as the user inputs commands. A process is

allowed to run in the CPU until its time slice expires, and if it does not

finish its work in the time slice, the process is forcibly suspended and

the operating system saves its state and switches to the next one in the

ready queue. This is how preemptive multitasking works to prevent a

single user from hogging the system. Compared to its predecessors,

the time-sharing delivered revolutionary benefits. It pioneered

interactive computing, providing a means for users to enter commands

and receive immediate feedback. This interactivity made possible new

classes of applications, including real-time communication,

interactive programming environments and early computer-aided

design systems. In addition, time-sharing democratized access to

computing resources by enabling multiple users to share expensive

hardware simultaneously, making it feasible for many users who

could not afford dedicated use. In addition, it allowed many users to

work on related tasks in a cooperative manner, sharing both data and

resources. Early time-sharing systems did face considerable

challenges, however, despite these advantages. Context switches do

incur overhead, so if they become too frequent, they could impact

overall system performance and should be avoided at large numbers

of active users. These systems needed many megabytes of memory

and megahertz worth of processing power to even approach

acceptable response times compared to their counterparts. Moreover,

the prominence of security concerns added another layer, as the

system needed to defend users from unauthorized access to each

other's data and processes. Some of the pioneering time-sharing

systems include the Compatible Time-Sharing System (CTSS) at

MIT, Dartmouth Time Sharing System (DTSS), which introduced the

58
MATS Centre for Distance and Online Education, MATS University

Notes BASIC programming language, and MULTICS (Multiplexed

Information and Computing Service), which served as the model for

many future operating system designs, especially Unix. In addition to

its broad applicability to modern computing, these systems

introduced basic ideas such as interactive user interfaces, preemptive

multitasking, and user-oriented computing environments. The concept

of time-sharing was a profound leap forward in making computers

accessible to a wider audience and more useful, paving the way for

principles that still undergird modern operating systems and their

interaction with users.

Comparative Analysis: Evolution and Trade-offs

This evolution from batch processing to multiprogramming, and then

to time-sharing systems, represents a fundamental shift in computing

philosophy and capability, as each technique built on its predecessors

to overcome their limitations while adding new capabilities and

challenges. Plotting out the evolution of operating system design

reveals how balancing competing objectives such as hardware

utilization versus system throughput versus response time versus user

experience have continued to drive optimization. One dimension to

compare these operating system paradigms is resource utilization.

Batch processing systems were designed to maximize resource

utilization on expensive computing hardware by minimizing idle time

between jobs, but at the expense of interactive capabilities.

Multiprogramming systems took this one step further by overlapping

Figure 4: Time-Sharing Operating System

[Source - https://www.geeksforgeeks.org/]

59
MATS Centre for Distance and Online Education, MATS University

Notes I/O operations with CPU activity, thereby minimizing idle time for

the processor. While time-sharing systems managed to use their

resources fairly well on average, it did require some sacrifice of the

raw efficiency of the hardware in favor of interactive capabilities,

accepting the overhead of switching contexts often to remain

responsive. Another important difference between these operating

system types is their treatment of users. Batch processing systems

created a great separation between users and the computing

environment, with operators acting as intermediaries and users

typically getting results hours or days after their submission.

Multiprogramming may have alleviated this separation to an extent

but still required limited direct intervention. Before the arrival of

time-sharing systems, this relationship was what I would call sort of a

batch processing thing, where there wasn't a lot of interaction on

demand because there were two degrees of separation between the

human and the resources available. These paradigms also differed

considerably in their performance metrics. Batch systems optimized

for throughput the number of jobs completed per unit time and of

necessity, low overhead processing of batch jobs, preferring high-

volume processing over minimizing per-job completion time.

Multiprogramming had already improved throughput but added a

new metric, device utilization. The emphasis of time-sharing systems

moved sharply toward response time the elapsed time from the user

request until the system response even when this sometimes had a

negative effect on overall throughput. These changing priorities are

reflected in the evolution of scheduling algorithms. Batch systems

mostly used either basic first-come-first-served or simple priority

types. This led to scheduling techniques such as shortest-job-first,

priority-based preemptive scheduling, and so forth in

multiprogramming in order to maximize throughput and CPU

utilization. Time-sharing systems implemented round robin

scheduling with preemption and complex priority aging mechanisms.

Therefore memory management techniques naturally evolved among

these paradigms. Batch systems usually handled a single program at a

time with primitive memory management. Multiprogramming

required memory protection facilities and introduced partitioned

allocation strategies. Time-sharing systems introduced virtual memory

techniques that allowed programs to run as if they had access to more

60
MATS Centre for Distance and Online Education, MATS University

Notes memory than (actually) existed, and facilitated new strategies to

allocate memory in a more flexible way. This evolution persists with

modern operating system designs. Modern systems are designed

according to aspects of all three paradigms: batch processing (for

background tasks and processing of high-volume data) and

multiprogramming (to increase resource use efficiency) and time

sharing (for interactive users). Familiarity with these historical

paradigms exposes the origins of how contemporary operating

systems balance competing goals and make explicit tradeoffs

necessary to enable a wide range of computing applications. And as

batch went to multiprogramming to time-sharing, one didn't the other,

but expanded capabilities that enabled the operating system to handle

an increasingly wide variety of computing needs onto increasingly

complex hardware environments.

Modern Implementations and Legacies

Modern operating systems are characterized by some combination of

batch, multiprogramming and time sharing, and many aspects of

these historical models have adapted and carry through to their

modern counterparts. Rather than discarding such approaches to

innovate these paradigms, modern systems seamlessly incorporate

these in a single unifying architecture capable of addressing a broad

variety of computing demands, from high-throughput processing for

background jobs all the way to highly interactive applications for end-

users. Aspects of modern operating systems are still reminiscent of

batch processing. It's the background processing capabilities, which

let resource-hungry work happen in the background at the system

level, usually when the system is idle. In larger environments, job

scheduling components orchestrate the execution of batch

administrative work, data processing jobs, and systems maintenance

functions. Print spooling systems gather document printing requests

and process them in the order in which they were received or as

resources allow, without user intervention. These batch-oriented

capabilities are still critical for operational efficiency in enterprise

computing environments, illustrating how ideas presented in early

batch processing systems have proved very useful and in-play even

today. Multiprogramming principles are pervasive throughout the

design of almost every modern operating system. Modern process

management subsystems build on this foundation of

61
MATS Centre for Distance and Online Education, MATS University

Notes multiprogramming, and when the need arose for thousands of

concurrent processes, sophisticated scheduling algorithms were

introduced that allow balancing of throughput, fairness, and

responsiveness. Hardware virtualization techniques allow memory

management systems to contain such advanced protection

mechanisms which lets multiple processes run in parallel without one

process's data being affected by the other. I/O subsystems manage

shared devices by multiple processes, using techniques like buffering,

caching, and asynchronous I/O to balance throughput against wait

time. These functionalities are a natural extension of the fundamental

ideas developed in early multiprogramming systems but are also

designed to scale parallelism up to the broader parallelism required in

contemporary computing environments. Modern computing is a

highly interactive affair and so time-sharing principles have evolved

to support them. The use of dynamic sections and immediate

usability, for example, allows modern user interfaces to give a sense

of almost dedicated responsiveness due to always having blocks of

resources seemingly available regardless of underlying contexts.

Preemptive multitasking allows interactive applications to remain

usable even under resource strain from background actions. The

advanced scheduling paradigms incorporate ideas such as multilevel

feedback queues that shall dynamically change priorities in response

to process behavior and tend to favor interactive processes while

ensuring progress in compute-intensive background processes. These

features also represent the direct descendants of early time-sharing

systems, mapped into the context of personal computing, and

extended to nurture a wide set of interaction models, across devices

and form factors. In the present day, many operating system types

illustrate the evolution and convergence of these paradigms. General-

purpose operating systems (OSes) such as Windows, macOS, and

desktop Linux distributions provide both interactive components and

significant background processing by supporting both end-user

applications (e.g., browsers, editors) and system services (e.g.,

drivers). Deterministic response times are extended to time-critical

applications through the use of real-time operating systems, in which

many of the scheduling concepts from the three paradigms are

extended, and they continue to be used in industrial control, aviation,

and medical devices. Concepts such as these are further expanded in

62
MATS Centre for Distance and Online Education, MATS University

Notes distributed operating systems, which work over a network of

computers and control processes that may exist on multiple physical

machines, providing a single image for users and applications. Cloud

operating systems take these ideas a step further, managing resources

across entire data centers and dynamically allocating computing

capacity to serve variable workloads while ensuring tenants can’t

interfere with one another. Batch processing was the earliest method

of running programs and subsequently evolved into

multiprogramming and more recently, time-sharing, providing a

foundation for emerging technologies and future trends in operating

systems development. In multiprogramming systems, the concepts of

process isolation were first introduced, from which containerization

and micro service architectures extend. Server less computing

platforms combine elements of all three paradigms, delivering

responsiveness in an interactive style but managing background

processing over shared infrastructure with efficiency. It also helps

improve the responsiveness of edge computing systems, which

leverage time-sharing principles to partition computing resources

closer to users, subject to resource limitations. Though quantum

computing environments will need to implement aspects of these

classical paradigms likely augmented with new mechanisms to handle

the inherent properties of quantum processing. The evolution of

operating system paradigms over the years has laid the groundwork

for the sophisticated systems we enjoy today, and offers insight into

the trends that will define the future of computing, as software must

contend with an increasingly complex interplay between technology

and human interaction to deliver seamless user experiences.

Conclusion and Future Directions

From the historical perspective of operating systems, the evolution of

computing systems from batch-processing to multiprogramming to

time-sharing gives us a broad sense of where computing priorities

were focused, from hardware maximization to CPU utilization

efficiency to interactive-responsiveness. This evolutionary path

reflects not only progress in technology, but also changes in views

regarding the purpose of computing and how computing resources

should be made available. This next paradigm was born out of the

limitations of its predecessors, providing innovative solutions that

extended the power of computation at the expense of other priorities.

63
MATS Centre for Distance and Online Education, MATS University

Notes They all share the unifying theme of managing complexity through

abstraction and coordination of resources — the core operating system

functions. The advent of batch processing brought about the notion of

program automation and job management, positioning the operating

system as an intermediary or mediator between users and hardware.

Multiprogramming extended this mediating role to manage multiple

overlapping activities, introducing features of process management

and protection that are still core to modern computing. Then came

time-sharing that built even further on this foundation; computers

engaged users directly and human-computer interaction established

patterns (which survive today) in how we interact with a computer.

As this evolution surfaced, principles stood out that continue to be

surprisingly relevant and well-suited to the future. Operating systems

became more composed of and layered upon these initial building

blocks and abstractions, which have yet to be challenged by

fundamentally better alternatives (excepting certain resource-

constrained or bare-metal use cases). These fundamental abstractions

have not only persisted since its inception, but have continued to

remain relevant even as computing hardware evolved from

mainframes to personal computers to distributed systems, proving to

be both conceptually powerful and flexible. One can look into the

future where operating system design attempts to solve new problems

while following the principles laid in the past. The increasing need

for security and privacy protection is a result of widespread awareness

of the vulnerability of computing systems and the critical nature of the

data that they process. The explosive growth of networked and

distributed computing environments caused the focus of the operating

system be extended from individual machines, to communication,

coordination, and resource sharing among complex networks. As new

computational paradigms such as quantum computing, neuromorphic

systems and ambient computing emerge, they will introduce new

operating system requirements while still leveraging the core

principles created by the historical evolution of classical systems.

Operating systems are evolving as a process and not a product. As

technology capabilities grow and user needs change, operating

systems have to evolve alongside them, walking a tightrope between

efficiency, security, usability and other competing priorities. The need

to evolved from batch processing to multiprogramming to time-

64
MATS Centre for Distance and Online Education, MATS University

Notes sharing, being necessary for a better understanding of that, the ever-

evolving need gained is more appreciation of the existing structure,

which always has core functionalities then addressed under such

needs. That historical view provides useful lessons for making sense

of existing systems and predicting future ones. Exploring how

operating systems have adapted to competing priorities and

responded to emerging needs is revealing of perennial principles

likely to inform the design of operating systems across future

technology transitions. The evolution from batch processing to

multiprogramming to time-sharing is not solely a matter of historical

interest but rather, is living history whose effects continue in the form

of computing environments, and by extension, modern society’s

interaction with information technology.

1.5 Operating-System Services

An Operating System (OS) is vital software that sits between the

hardware of a computer and a user, enabling the user to effectively

run programs in a user-friendly environment. It is a software that

manages the computer's hardware resources, including the processors,

memory, storage devices, and input/output devices, and provides

them to all users and tasks. It has to reconcile the often conflicting

objectives of user convenience and efficient utilization of the

computer system’s resources. Over the years, operating systems have

evolved and adapted to new hardware technologies, materials and

processing environments, giving birth to specialized operating system

designs to meet the diverse needs of different computing scenarios.

Operating systems have grown increasingly complex in order to be

expanded functionality-wise, security-wise, and providing a support

framework for cutting-edge applications, ranging from the first batch

systems that processed jobs in a serial way without user-extent to the

multi-user, multitasking operating systems of today. Operating

systems also have to provide a user interface through which people

interact with the computer, and a set of services that programs can

utilize. These services are the more technical, lower-level functions

that most users never directly use that are necessary for the system

and the programs that run on it to operate correctly. Teaching some

of the different types of operating systems and their respective

services is a staple in the computer science curriculum as it illustrates

the interactions between software and hardware and provides insight

65
MATS Centre for Distance and Online Education, MATS University

Notes into how modern computing environments operate. This is especially

important for those who will design or maintain computer systems,

develop applications or make decisions about computing

infrastructure in an organizational context.

Types of Operating Systems

A range of operating system has evolved over time to cater to specific

computing requirements and environments. The first historical type of

operating system is a batch operating system, which takes jobs that

are similar to one another and minimizes user interaction in order to

keep the processor as busy as possible and minimize idle time

between jobs; the modern equivalent and still very relevant to any

environment where repetitive processing is needed in volume can be

found in batch systems of early mainframe systems (e.g. OS/360 from

IBM) that keep jobs running through job queues in environments like

payroll systems or an environment where something like a scientific

batch computation is needed. However, Multi-user operating systems

are based upon the idea of time-sharing systems where multiple

processes from multiple users can be run on a single computer more

or less simultaneously as the processor can switch among user

programs extremely fast thereby giving the impression that each user

has an exclusive access to the system, it was first implemented in

CTSS (Compatible Time Sharing System) in 1960s, streamlining

multi-user access in the computer system, this success led to the

development of multics system. For single-user operating systems, the

complexity lies in creating user-friendly interfaces and maximizing

responsiveness without compromising too much on performance,

examples include Microsoft Windows, macOS, and many Linux

distros, which cater to individual users (but might not be as optimized

as possible for resource utilization). Multi-processor operating system

types handle systems with more than one standalone processors or

with multi-core processors by utilizing higher algorithms to execute

multiple processes over the processing units, while sustaining the

system order and stability, which becomes much tougher with every

additional processor because it needs to synchronize and allocate

simultaneously different resources. RTOS (real time operating

systems) provide guarantee that something will happen within a

specific period of time; timing is critical in some applications like

industrial control systems, medical devices or avionics; RTOS focuses

66
MATS Centre for Distance and Online Education, MATS University

Notes on deterministic behaviour rather than throughput or other

performance metrics with examples such as VxWorks, QNX, or

RTLinux. Distributed operating systems, e.g., Amoeba, Mach, and

recent cloud operating environments manage resources spread over

several physically separate computers to create the illusion of single,

unified system, no matter the complexity of anthropogenic cally

relevant inter-computer (networks of computers) valid operations.

Embedded operating systems are tailored for dedicated systems with

limited resources, like smart appliances, automotive networks, and

Internet of Things (IoT) devices; these systems are optimized for

resource-constrained environments and emphasize simplicity and

reliability over complex feature sets, with examples like embedded

Linux distributions, ThreadX, and FreeRTOS. Network operating

systems. Network operating systems (NOS) are primarily concerned

with managing network resources and providing connectivity services

such as file sharing, printer sharing, user authentication, and network

traffic management; e.g., early Novell NetWare, Microsoft Windows

Server, and portions of various Unix/Linux distributions configured as

network servers.

Core Operating System Services

OS Core Services Overview Every operating system consists of a

core services layer. Process management is central to multitasking

environments, where the operating system needs to create, schedule,

synchronize, communicate between and terminate processes while

maintaining a balanced allocation of resources and system stability;

this process juggle involves a harmonius process of scheduling

algorithms that ascertain which process runs when, by priority, its

execution time, requirements for resources, etc. Memory management

services allocate and deallocate portions of memory as needed by

processes and implement mechanisms such as paging and

segmentation to provide virtual memory which gives the illusion to

the user that they have more space of available memory than the

physical memory present in the system; now to further ensure that

processes read only from their own memory, memory protection

mechanisms are in place that prevents processes from accessing other

processes' memory or the memory of the kernel. Specifically, file

system management introduces an important layer of abstraction

whereby a user interacts with files and directories, instead of with the

67
MATS Centre for Distance and Online Education, MATS University

Notes tracks or sectors of a physical storage device (such as a hard disk

drive, solid-state drive, or network storage device) it is responsible for

managing entities, maintaining the file metadata required and

enforcing access control and sharing across users and processes.

Device drivers allow applications to interact with different types of

hardware components by providing a consistent interface, which

reduces the need for applications and the operating system to know

the intricate specifics of each device; this abstraction helps operating

systems support a wide range of devices, while also shielding

software developers from needing to manage each devices unique

features. Input/output (I/O) management is the process of handling the

transfer of data between the system memory and peripheral devices,

through the use of buffering, caching and spooling mechanisms to

maximize the performance of the system when the I/O is performed,

reconciling the speed discrepancy between the CPU and slower

external devices; the efficiency of I/O significantly affects overall

system performance, especially in applications that rely heavily on

data. They secure the system, the applications, and the data from

unauthorized access or modification by means of verifying user

identity, with authorization mechanisms that decide what

authenticated users can do, and audit logging that records security-

relevant events for later examination; in addition to this modern

operating systems incorporates several other isolation mechanisms,

such as process sandboxing, to mitigate potential security breaches.

Error detection and handling mechanisms detect hardware and

software faults and trigger recovery procedures if possible or

terminate the faulty component so it cannot bring down the whole

system (which also applies to exceptional conditions such as division

by zero or invalid memory access that would otherwise crash an

application or system).

User Interface and Interaction Services

Interface Operating systems offer many interfaces from the command

line to complex GUI. CLIs refer to text-based interaction using shells

like Bash in Unix/Linux environments, Power Shell in Windows or

Zsh in macOS by which users enter predefined commands that the OS

knows how to interpret and execute; typically not as user-friendly for

novices as graphical interfaces, CLIs give you exactness, script

ability, and often speed for seasoned users, thus especially useful for

68
MATS Centre for Distance and Online Education, MATS University

Notes automation and tasks in IT. Graphical user interfaces (GUIs) provide

a framework of visual components such as windows, icons, menus,

and pointers, permitting intuitive interaction with pointing devices

while abstracting away underlying technical complexities and making

computers more accessible to non-technical users; notable GUI

environments include Microsoft Windows Desktop Environment,

Apple's Aqua interface in macOS, and diverse Linux desktop

environments such as GNOME, and KDE. Modern operating systems

have incorporated voice user interfaces (VUIs) and natural language

processing capabilities, enabling users to provide spoken commands

and queries by means of assistants like Microsoft's Cortana, Apple's

Siri, or Google Assistant in Android; there are advantages to this

hands-free operation in certain scenarios, but these interfaces

continue to be refined with respect to their accuracy and capabilities.

Features that make sure operating systems remain usable by people

with a variety of disabilities — screen readers for people with no

sight, keyboard-only access for those with motion limitations, closed

captioning for people who are hard of hearing, visual modes that help

people with low or high contrast sensitivity rely on accessibility

services, whether that be Microsoft's Narrator, Apple's Voiceover, or

the Orca screen reader for Linux; accessibility services implement

frameworks on top of which applications can build to ensure a high

level of usability for their software. These include help systems and

documentation, which provide contextual assistance, tutorials, and

references to help users understand system functionality and

troubleshoot problems; these resources have evolved from

rudimentary manual pages to interactive, searchable knowledge bases

integrated directly into the operating system. Notification services let

users know about events in the system, application updates, new

communications, or situations that might need attention; these

systems have become progressively more elaborate, with fine-grained

user control over the notifications that are displayed, and the means

by which they're delivered to limit disruption while filtering in

important information that the user needs. Configuration and

customization services let users change how systems work, how they

look, and which applications are default; these systems may include

control panels, settings applications, and profile management, which

69
MATS Centre for Distance and Online Education, MATS University

Notes may support maintaining separate configurations for individual users

on shared systems.

Resource Management and System Performance

Operating system is tested on a very large and hefty The CPU

scheduling algorithms decide which process receives CPU service and

how long it does, consequently applying complex policies balancing

delivery of throughput, response time, fairness, and prioritizing these

requirements; and include round-robin access to each process at

everything fixed time quantum, priority-based scheduling where

higher-priority processes are favored, and various hybrid methods

when workloads are known in advance. Virtual memory and memory

allocation virtually expands limited physical memory by effectively

treating portions of disk space as an external cache area for running

processes and applying page replacement algorithms like Least

Recently Used (LRU) or Clock to systematically decide which

memory pages to trade out of RAM when the physical-memory is

over-allocated; efficient memory management needs to facilitate

keeping frequently accessible data in faster physical memory while

keeping costly disk operations as low as possible. Storage

management services manage the allocation and location of disk

space, building file system structures (for example, NTFS on

Windows, ext4 on Linux, APFS on macOS) to optimally organize

data for storage and retrieval, and may offer advanced data protection

features such as journaling to help prevent data corruption in the event

of system crashes, as well as volume management to allow multiple

physical devices to be combined into a single logical storage unit, and

transparent compression or deduplication to optimize and maximize

available space. In more detail, energy management services create a

profile of components in a system to monitor and control their power

consumption by dynamically scaling back processor speed, for

example, dimming displays, suspending inactive devices, and

employing advanced sleep states; energy management services

maintain a balance between performance requirements and battery life

issues, frequently tuning themselves to the idiosyncrasies of active

workloads as well as available energy. Load balancing, state and

memory monitors are tracking the actual utilization of CPU cores,

memory and swap utilization, disk I/O and network resource usage,

redistributing workloads to prevent bottlenecks as well as visibility to

70
MATS Centre for Distance and Online Education, MATS University

Notes the system to the admins using tools like Windows Task Manager, top

command under Linux or Activity monitor on Macs. QoS

mechanisms are implemented to ensure that certain applications or

services are prioritized, guaranteeing that important functions receive

the necessary resources even when the system is heavily loaded; for

instance, a video conferencing application could be assured of

sufficient bandwidth and processing priority, avoiding disrupted

communication even when other heavy applications may be running

on the system. Caching services keep and serve frequently accessed

data from their faster memory layers, greatly improving performance

by minimizing fetches from slower storage devices, with sophisticated

tracking that discriminates not only between processor caches and

disk buffer caches, but can also implement sophisticated algorithms

that predict what will be needed next based on access patterns and

program state.

Networking and Communication Services

Like (or worse than) host rewriting fun, it's well defined by modern

Operating systems with a stack of services up to local networks and

the world. At the higher level, network protocol support provides the

necessary foundation for communication standards such as TCP and

IP, ensuring that data transmission across different networks occurs

uniformly, irrespective of the underlying hardware differences; most

operating systems contain a protocol stack responsible for

encapsulating data, directing it toward the appropriate destination,

and ensuring reliable delivery despite issues such as network failure

or congestion. Network configuration and management services are

responsible for other networking tasks such as assigning an IP

address (either statically or through DHCP), subnet mask

configuration, gateway settings, and DNS server settings; they may

also include diagnostic tools responsible for finding and fix

connectivity issues through programs like ping, traceroute, or network

configuration panels. Remote access services enable users to log into

a system from far away and run commands or access files supposedly

as though they were in person; they include terminal services (such as

SSH in Unix/Linux systems), remote desktop protocols (such as

Microsoft’s RDP or VNC in cross-platform environments), and

Enable secure connections between the user and the system across the

public infrastructure, called the virtual private network (VPN)

71
MATS Centre for Distance and Online Education, MATS University

Notes capability. Distributed file systems and network file sharing make

files stored on remote computers available as though they were on the

user's local machine, typically supporting devices running the

SMB/CIFS and NFS protocols in Windows and Unix/Linux

environments, respectively, or AFP, previously, in Apple

environments, such services handle the complexities of performing

file operations on remote storage, caching, and managing consistency

with regard to shared files and multiple users. Network security

services safeguard systems against unauthorized access and malicious

activities by introducing the likes of firewalls to filter incoming and

outgoing network traffic according to a system of predefined rules,

intrusion detection systems to monitor for suspicious patterns,

encryption services to maintain the confidentiality of data during

transit, and other mechanisms; these defenses have evolved in

sophistication as network threats have grown more complex.

Directory Services allow you to authenticate users in a centralized

location and also allow users to search for resources; these

authentication systems include items such as Microsoft Active

Directory, Open DAP, and Apple Open Directory, which maintain

large databases of user accounts, group memberships, and callable

resources on the network. Internet and web services integrate browser

and related applications and tools into the operating system,

providing API for applications to access internet resources; most new

operating systems ship with libraries to common internet protocols

like HTTP, FTP, and email to facilitate application development and

promote consistency of network behavior.

Advanced and Specialized Operating System Services

Beyond essential functionality, modern OS provide advanced services

that accommodate specialized requirements and emerging

technologies. Hypervisors (such as those used in Microsoft's Hyper-V,

VMware, or KVM on Linux) allow multiple operating systems to run

at the same time on a single piece of hardware by creating isolated

virtual machines with their own allocated resources—leading to

server consolidation, testing environments and improved system

utilization. Container support, as evidenced by Docker support in

many server OSs, provides a lightweight application isolation

approach without the performance overhead of full virtualization;

alongside, container services manage namespace isolation, resource

72
MATS Centre for Distance and Online Education, MATS University

Notes limits and communication between container-based applications,

yielding deployment consistency between development and

production setups. Cloud integration is the integration of local

operating systems with remote cloud resources, which includes

synchronizing files across devices, offering backup services, and even

hybrid computing since processing can occur between local

environments and the cloud; examples include Microsoft's Azure

integration with Windows, Apple's iCloud services within macOS and

iOS, and multiple forms of cloud connectivity within Linux

distributions. Modern operating systems increasingly include artificial

intelligence and machine learning services, which provide application

programming interfaces and frameworks that applications can take

advantage of for speech recognition, analysis of images, natural

language processing, and predictive functionality; these services often

include a combination of on-device processing for privacy and

responsiveness and reliance on the cloud for more compute-intensive

tasks. These multimedia services are responsible for handling audio

and video processing, including hardware acceleration, supporting

codecs, and streaming capabilities that enable applications to provide

rich media experiences without concerns about low-level details

(Windows uses DirectX, macOS has Core Audio and Core Video, and

various frameworks are available in Linux distributions). Database

and information management services provide structured data storage

and retrieval capabilities, either via embedded databases (e.g. SQLite)

or standardized interfaces to external database systems; some

contemporary operating systems include indexing services that scan

catalog file contents for rapid queries, facilitating user workflow by

increasing user productivity when finding data. Software update and

maintenance services automatically check, download and install

updates to the operating system and applications, balancing security

vulnerabilities patches and new features with user control by

configuring update policies to suit organizations or users; examples of

these services are Yum and APT. Services are there to help use

different ecosystems, e.g., WSL that runs Linux code on Windows,

compatibility layer like Wine to run Windows programs on Linux, or

software solutions integrated into OS (virtualization software) that

allow the same or another OS to run in the main one.

73
MATS Centre for Distance and Online Education, MATS University

Notes Conclusion and Future Trends

Operating systems of today are in an ever-evolving phase, aren't

they? Multi-core processors and specialized hardware accelerators

such as GPUs, TPUs, and custom chips are becoming widespread; this

leads to a new generation of operating systems that can effectively

allocate resources and schedule jobs to both homogeneous and

heterogeneous workload, offering streamlined, cohesive interfaces to

applications and users. Such profound growth of Internet of Things

(IoT) devices introduces specific challenges for operating system

(OS) design, particularly when you consider that these constrained

environments must leverage minimal resources, but still meet

unprecedented scale with regards security, connectivity, and

manageability, as we're witnessing the arrival of specific IoT OSs

alongside the adaptation of existing platforms to operate at some of

these limitations. Unlike the traditional centralized cloud model, edge

computing necessitates operating systems able to function well with

sporadic connectivity, variable resource availability, and strict latency

constraints; the distributed nature of the edge model challenges

operating system core assumptions about how resources are available

to applications and how they communicate. Security and privacy still

propel operating system really of their features, notable adoption of

hardware-backed security features, and strong encryption of data (the

system and application information), containerization for application

isolation and a fine-grained permission model for sensitive user

information and this will only get better in the future provides with

more complex threats. The lines separating diverse computing

environments desktop, mobile, cloud, embedded—are rapidly

disappearing, with operating systems moving towards more common

systems that deliver consistent experiences and application mobility

across multiple device clases; notably, Windows running on desktops,

tablets, and servers; Linux variants found everywhere from embedded

devices to supercomputers. Autonomous computing,

1.6 System Calls

Operating systems act as the crucial link between hardware

components that execute instructions and the software programs that

users interact with on a regular basis. One of the greatest feats in

computer science is the design of operating systems that manage the

resources of computer hardware while providing standard interfaces

74
MATS Centre for Distance and Online Education, MATS University

Notes that hide and abstract away the complexities that underlie the

hardware. The concept that lies behind this interaction is that of

system calls. They are the interface between user applications and the

protected kernel space, giving controlled access to hardware resources

while maintaining system stability and security. This Unit discusses

the wide phonotypical spectrum of OS types and their mechanisms to

implement system calls. To this end, we first present the basic

principles regarding operating system architectural designs and the

importance of system calls within this context, followed by a survey

of operating system paradigms (i.e., monolithic, microkernel, hybrid

kernel, exokernel and virtualisation). We will explore how the design

and implementation of system calls affects important operating

system properties including performance overhead, security

boundaries, extensibility, and hardware abstraction. This should give

students an understanding of subtle differences in system call

mechanisms among operating system architectures and highlight key

tradeoffs and decisions found in system software in general. You learn

how computers operate at a systems level, context that is critical for

writing, optimizing, and securing software on various computing

platforms.

Figure 5: : System Call
[Source - https://www.scaler.com/]

75
MATS Centre for Distance and Online Education, MATS University

Notes The Foundation of Operating Systems and System Calls

Operating systems is the most important software in any computing

environment and is the fundamental software layer on top of which all

other software runs. To appreciate the importance of syscalls, we'll

first have a look at how modern operating systems are organized and

what their responsibilities are. Operating systems do several important

things: they manage and allocate the underlying hardware resources

(such as the CPU, memory, or I/O devices); they isolate and protect

separate processes from each other; they implement a file system and

networking stacks; and they expose standard interfaces that let

application developers write programs without a detailed

understanding of the underlying hardware specifications. An

operating system is divided into high level and low level components

with respect to privileges. Application programs run with limited

privilege and have restricted access to system resources in user mode,

but have unrestricted access to memory and hardware devices in

kernel mode. It is important to note that this separation is not only a

software construct, as it is usually enforced by the hardware itself, for

example, by hardware implemented protection rings implemented by

the CPU. System calls are designed to be a controlled entry point to

the underlying system kernel from the user level applications,

allowing user applications to request services that require elevated

privileges or access to protected resources. If we look at the history

behind system calls, we can see they were born within early time-

sharing systems like MULTICS and early UNIX, where these systems

needed to manage resource access among multiple users, requiring a

more formal approach toward system services. System calls have been

a consistent abstraction for decades The fundamental concept of

system calls hasn’t changed much in decades of operating system

designs, although the implementation details and specific interfaces

have improved quite a bit. System calls usually require a context

switch, which means the processor must switch from user mode to

kernel mode to perform the requested privileged operation and then

switch back to user mode. This switch is tightly managed and is

considered a major milestone along the execution life of any

application. Unlike regular library functions, system calls do not

return at the entry to user mode and the actual implementation of

these is often through a combination of interrupts (software interrupts/

76
MATS Centre for Distance and Online Education, MATS University

Notes trap instruction or by special CPU instruction depending on the

hardware architecture). For example, on contemporary x86-64

machines, the SYSCALL instruction provides a fast mechanism upon

an entry of user and kernel mode, while ARM implementations may

use the SWI (Software Interrupt) instruction. Hardware mechanisms

make sure the transitions go well, going to different layers do not

permit access to unwanted memory protected. System Calls: The

system calls can be broadly grouped into the following functional

categories: process control (used to create and terminate processes),

file management (used to read, write, and manipulate the file system),

device management (used to interface with hardware peripheral

devices), information maintenance (for data transfer between user

and kernel space), and communications (used to communicate

between processes and networking). Each operating system

implements a different set of system calls, but there are many

common operations that run on both systems. For instance, process

generation on UNIX-like systems is performed with a sequence of

fork() and exec(); on Windows, Create Process is used. Similarly, file

operations like open(), read(), write() and close() have equivalents in

most OSs, but the parameters and specifics may vary. The number of

system calls varies widely by OS an embedded OS might implement

only a handful of system calls, while a complex general-purpose

operating system like Linux would have hundreds of specialized

system call functions. The performance of any operating system

depends on the design and the implementation of system calls, since

each system call has an overhead due to context switch from user

mode to kernel mode. To minimize this overhead, we use a number

of optimization techniques; modern operating systems actually use

system call batching to combine multiple operations into one system

call, as well as fast paths for common ones. In order to understand

how the design and implementation of each system call interface

differs from those found in other types of operating systems, it is

essential we explore this foundation.

Monolithic Kernels and Their System Call Architecture

Unlike the most optimized, derived Micro-kernel, monolithic kernels

are the default architecture for historic Operating System design

strategy. This architecture defines many mainstreams OSs like classic

UNIXs, Linux and the old Windows. By avoiding the overhead that

77
MATS Centre for Distance and Online Education, MATS University

Notes comes with inter-process communication (IPC) or message passing,

the monolithic approach provides substantial performance benefits

since various components can directly communicate with one another

from within the kernel. The primary interface between user

applications and kernel services is through system calls in a

monolithic kernel. For a monolithic environment, when a user

program makes a system call (which is the first step in any system

call), a pretty simple chain of events happens. The first phase is for

the application to fill CPU registers with the system call number and

any required arguments, and then invoke a special instruction (such as

SYSCALL on x86-64 processors) that makes the transition to kernel

mode. Using the system call number, the kernel's system call handler

finds the right function in a dispatch table, checks the arguments, and

performs the requested operation with full kernel privileges. Results

are then stored in registers or memory locations that may be accessed

by the user program after completion, and control is returned to user

mode. The execution path in this fashion leads to reasoned

performance efficient patterns that are a hallmark of monolithic

designs. Linux (the operating system) is a perfect example of the

monolithic approach to system-call implementation but with many

modern improvements to the kernel concept. If you get the same name

as an application binary interface (ABI) or processor architecture (due

to Linux), the Linux system call interface has grown: We maintain a

wide range of entry points. For example, while legacy 32-bit

applications would use the INT 0x80 instruction to perform system

calls, contemporary 64-bit applications usually employ the more

efficient SYSCALL instruction instead. Linux takes additional steps

to improve system call performance with things like the vDSO

(virtual dynamic shared object), which maps certain parts of the

kernel memory directly into user space so some system calls can

bypass the full context switch overhead. As an illustration, operations

such as gettimeofday can be performed fully in user mode if the

conditions are proper, leading to a reduction in latency by several

orders of magnitude. In Linux, you have a system call table with a

unique number for each system call. This table has grown

significantly over the years, and Linux kernel version 5.10 has support

for more than 400 unique system calls. New system calls come into

the kernel as part of a carefully controlled process to minimize

78
MATS Centre for Distance and Online Education, MATS University

Notes backward incompatibility, because system call numbers and interfaces

are a key part of the kernel's guarantees about ABI stability. Looking

at individual system calls shows us a little bit about this monolithic

approach. Take the open system call in Linux which creates or opens

a file. The open() system call is the widely known interface, but

underneath, the kernel's implementation does so much more: it

resolves the file path and permission, traverses the file system

directory hierarchy, works with the correct file system driver,

allocates the file descriptor and updates multiple internal data

structure, all within the kernel's address space. This highly cohesive,

single-context execution is a prime example of the monolithic

philosophy behind tightly integrating various system services directly

into the kernel. While it has performance advantages, the monolithic

approach has some challenges. The single address space design; A

bug in any part of the system say in a third-party device driver can

crash the whole system or even take control of the entire system.

Moreover, the monolithic structure can make it challenging to develop

and test new kernel features due to the need to integrate changes into

the monolithic codebase, potentially necessitating full system reboots

during development. Policies get more complicated too since kernel is

running with highest level privileges, and therefore presents a bigger

attack surface. These restrictions have driven alternative approaches

to kernel architecture, but the performance gains and practical benefits

of monolithic kernels have ensured their continued dominance in

nearly all computing platforms. Many of these concerns have been

mitigated in modern monolithic kernels similar to Linux, which utilize

a modular design where components can be dynamically loaded and

unloaded, allowing for some of the flexibility of a microkernel while

still retaining the performance benefits of the monolithic design. From

monolithic kernel perspective, the implementations of various system

calls are still evolving towards some fancy implementations which

reduces the latency, enhance security and extensibility at high level,

while retaining its kernel architecture for general purpose computing.

79
MATS Centre for Distance and Online Education, MATS University

Notes

Microkernels: Minimalist Approach to System Calls

Microkernels, in the clearest possible departure from monolithic

design philosophy, put only the bare essentials in the privileged

domain of the kernel, embodying the most minimalist approach

possible to operating system architecture. This set of new ways of

thinking about how an operating system works came out in the 1980s,

and there were a few systems that became the first microkernel

systems like Mach developed at Carnegie Mellon University. Under

the microkernel philosophy, only those functions that are absolutely

necessary to have kernel privileges usually address space

management, thread scheduling, and simple inter-process

communication (IPC) are kept within the kernel itself. And, for the

most part, all conventional operating system services (file systems,

device drivers, networking stacks, process management, etc) are

implemented as user-space servers running with regular privileges.

This architectural separation also fundamentally changes properties

and implementations of system calls as compared to monolithic

systems. Microkernel based operating systems ideally reduce the

system call interface to less than around 20 core system calls as

opposed to hundreds of system calls in general monolithic kernels.

Instead of implementing diverse functionality this building component

allows only for system calls that bridge the user application to the

numerous separate server processes that facilitate the operating

system services. Instead of passing all the arguments which causes a

lot of redundancy, the microkernel will just expose system calls that

Figure 6: Monolithic Operating System
[Source - https://tutoraspire.com/]

80
MATS Centre for Distance and Online Education, MATS University

Notes you can call from a process that communicates within the kernel the

file operations to be run by this file system server process. When a

program wants to read a file, for example, it constructs a message that

describes the requested parameters and sends it via the microkernel's

IPC mechanism to a file system server; that server processes the

request and returns results to the application using the same IPC

channel. That indirection makes system service execution paths

radically different from monolithic systems. One such brilliant and

successful project is MINIX, originally developed as an educational

tool by Andrew S. Tanenbaum, and over the years, evolved to grow

into a robust microkernel based operating system. The entire MINIX 3

kernel comprises only the minimal core functionality: interrupt

handling, process scheduling, and basic IPC. System services are

implemented by independent processes with least-privilege assigned.

And the Virtual File System (VFS) server, which sits atop the actual

file system implementations, is responsible for coordinating file

operations, delegating work to individual server processes for the file

system implementations. Device drivers run as separate user-space

processes and communicate with hardware over controlled interfaces

offered by the kernel itself. This rigorous isolation results in an

architecture where even essential elements, such as device drivers,

are prevented from directly accessing memory beyond their

designated boundaries, which greatly improves the system immunity.

Another well-known example of commercially deployed microkernel

architecture, particularly in embedded, automotive, and safety-critical

environments, is the QNX Neutrino real-time operating system. QNX

employs a message-based architecture with system calls primarily

providing synchronous IPC between clients and servers. Using a very

small microkernel (100KB or less) that handles memory protection,

thread scheduling, and message passing, all other features of the

system are implemented in user-space processes. Pros of the

microkernel approach here on systems calls Second, it improves

system reliability via fault isolation — a crashing device driver or file

system server can never corrupt kernel memory; the system can detect

and restart individual components without bringing the entire system

down. Second, the architecture enhances security by limiting the

privileged code base (the “trusted computing base” or TCB) and

enforcing least privilege for system components. Third, microkernel’s

81
MATS Centre for Distance and Online Education, MATS University

Notes enable extensibility, as new services can be added without any kernel

code changes. Lastly, this architecture has the potential for lowering

the cost of the formal verification of the kernel, as exemplified by

seL4, a formally verified microkernel designed by NICTA (now a

division of Data61) that offers mathematical proofs of its correctness.

But the microkernel approach comes with performance challenges

mostly concerning IPC overhead. Microkernel systems have

historically taken a performance penalty versus monolithic designs,

since even basic operations may involve context switching between

user processes multiple times. Many of these issues were addressed

by the implementation of modern microkernel’s using several

optimization methods. As an example, L4 family microkernels sew

up IPC paths very tight and efficient via direct process switching and

messaging as registers for short messages. Until these optimizations,

the performance gap between microkernel and monolithic systems

was huge, but still, although it was reduced to the size of a knife, it

was never eliminated. Mechanically, the system call implementation

is different between microkernel and monolithic systems. Although

the basic hardware primitives (like SYSCALL instructions or

interrupts) are not much different, the work done in the kernel is

often much simpler. Instead of executing complex operations directly,

the microkernel typically checks the validity of the system call

parameters, delivers the parameters to the corresponding user-space

server via a message passing mechanisms and manages the responses.

This separation leads to clean interfaces and minimizes the attack

surface within the privileged kernel code. The microkernel approach

to system calls is a philosophically different vision of operating

system design – one focused on modularity, reliability, and security,

rather than maximum performance. This leads us to the second point:

Microkernels are not the dominant architecture among general-

purpose operating systems: Because microkernel architectures involve

a higher level of indirection and typically introduce intercrosses

communication (IPC) overhead, they have not displaced their

monolithic counterparts for general-purpose workloads. Microkernel0

systems are still evolving, with projects such as seL4 and Genode

taking this one step further by proving the security / separation

guarantees achieved through formal verification.

82
MATS Centre for Distance and Online Education, MATS University

Notes

Hybrid Kernels and Pragmatic System Call Implementations

Hybrid kernels are a practical solution born out of the theoretical

elegance and practical difficulties of pure microkernel designs,

incorporating elements from both monolithic and microkernel systems

to provide a compromise between modularity and performance. This

reflects an understanding that while the strong delineation of

components provided by microkernel provides significant advantages

for reliability and security, the performance penalties thereof

especially for I/O-intensive operations make this a deal-breaker for

many real-world workloads. Therefore hybrid kernels allow

performance-critical subsystems to be implemented in kernel space

while keeping the microkernel philosophy of modularity and

separation for other components. This architectural trade-off has a

strong impact on how system calls are designed, implemented and

behave in those operating systems. Beginning with Windows NT,

Microsoft Windows is probably the most commercially successful

example of hybrid kernel architecture. The Windows NT kernel was

first designed as a microkernel, separating the kernel-mode Executive

services from user-mode subsystems. Though, to mitigate

performance issues, the following components previously held in

user space in a pure microkernel design (Window Manager, graphics

drivers, portions of the file system) were placed in kernel space. To

facilitate performance optimization, this pragmatic adaptation

achieved a situation where the theoretical boundaries between kernel

and user components were blurred. This Windows system call

interface, referred to as "syscall" or "Nt" functions (e.g., NtCreateFile,

Figure 7: Microkernel Operating System
[Source - https://en.wikipedia.org]

83
MATS Centre for Distance and Online Education, MATS University

Notes NtReadFile) is the basis for the Windows API. Note that applications

normally do not call these native API functions directly, but instead

call higher-level libraries like kernel32. dll, which offer the more

familiar Win32 API functions (CreateFile, ReadFile, etc.). This

abstraction allows Windows to implement multiple API personalities

(Win32, POSIX, OS/2) on top of a single system call interface, and

subsystem independence also means centralized access control and

validation within the kernel. Now, in Windows, there is a mechanism

called the System Service Descriptor Table (SSDT) through which

the system calls are addressed in the Windows. When an application

advances a system call, the processor switches to kernel mode with

the specific hardware instruction (X86–64 uses SYSCALL and older

X86 systems use INT 2E), and the kernel's system service dispatcher

will use the syscall number to look up and invoke the corresponding

handler function. This pattern is somewhat hybrid, as the dispatch

mechanism is similar to that of a monolithic kernel, while the actual

architecture provides some degree of separation between kernel

objects. Another well-known example of a hybrid kernel architecture

is Apple’s macOS (formerly OS X). The XNU (X is Not Unix)

macOS kernel is a non-microkernel that combines the Mach

microkernel, a core component of the NeXT STEP operating system,

with parts from FreeBSD and Apple's proprietary I/O Kit framework.

In this hybrid exercise, the Mach parachute delivers low level

facilities like memory management, thread scheduling, and IPC, for

its part, the BSD level implements the UNIX system call interface and

\networking \stack. The I/O Kit, managed in the kernel, but operating

with an object-oriented design, helps increase modularity of device

drivers. An interesting case with hybrid design is the system call

interface in macOS. Applications access system services through

traditional UNIX system calls inherited from BSD, and implemented

by XNU directly in the kernel. Many of the macOS-specific services

use Mach messages instead of traditional system calls, thus

promoting a microkernel-like interaction model for those services.

This hybrid philosophy is in action for performance sensitive

operations so they are implemented directly in the kernel but other

services maintain a more separated message-passing architecture. For

example, hybrid kernels implement system calls with various

techniques to reduce the user-kernel barrier performance penalty.

84
MATS Centre for Distance and Online Education, MATS University

Notes This can include batching together related operations into single

system calls, user-space libraries that reduce system call frequency,

or special fast paths for common operations. Both Windows and

macOS, for example, provide mechanisms for speeding up certain

graphics operations by allowing user applications to directly access

frame buffer memory, with user-mode access being controlled by the

kernel, as long as certain conditions are met, thus avoiding the need

for kernel access with every draw operation. Sandboxing hybrid

kernel system calls: Security minefield Hybrid kernels, while

preserving the basic interface between user and kernel modes, may

present more opportunities for exploitation than pure microkernel

because of the greater architectural complexity and a larger codebase

in the kernel itself. In response to these issues, contemporary hybrid

kernels adopt several hardening mechanisms, including kernel

memory ASLR (Address Space Layout Randomization), control flow

integrity techniques, and rigorous parameter validation for system

calls. For example, Windows 10 and later use Virtualization Based

Security (VBS) features to drive this same theme by using hardware

virtualization to further isolate critical kernel components from the

rest of the system, achieving a more microkernel-like division for

security-sensitive subsystems alongside the performance benefits of

the hybrid architecture in normal operation. System calls in hybrid

kernels have evolved as a result of this pragmatic approach to

changing needs. Both Windows and macOS, for example, have added

mechanisms to allow kernel extension (filter drivers, kernel

extensions, or the entire open-source core kernel) which third-party

software can utilize to view and telescope back into system call

behavior without modifying the underlying core kernel. However,

both have evolved over time toward kernel extensibility models that

are more constrained than what either system started out with (Driver

Kit in macOS and Windows Driver Framework), moving a lot of this

functionality into user mode, suggesting a slow return toward a

microkernel model for these particular things. Hybrid kernels in short

capture an interplay between the theoretical ideal and the practical

upper bound of performance based on considerations of security,

compatibility, and architectural purity.

85
MATS Centre for Distance and Online Education, MATS University

Notes Specialized Operating Systems and Unique System Call

Paradigms

Outside of the standard categories of monolithic, microkernel, and

hybrid architectures are specialized operating systems that are

tailored for niche computing environments and use cases. Such

specialized systems often tailor their system call implementations in a

way that bears little resemblance to traditional system calls, focusing

instead on characteristics like real-time constraints, execution

security, or limited resources. Exploring these other paradigms, in

turn, illustrates the inherent wiggle room in the system call concept,

and its ability to trade off different requirements. RT systems (real-

time systems) are one example of a specialized system with a unique

implementation of the system call interface. In hard real-time systems

where missing a deadline can mean failure or even disaster

determinism and predictability are more important than average-case

behavior. Real-time operating systems (RTOS) implementations such

as VxWorks, FreeRTOS, and RTLinux modify the classic system call

way to provide bounded rate execution and minimized interrupt

latency. For example, many RTOS designs do disable interrupts in

critical sections of system call processing, preventing lower-priority

interrupts from preempting high-priority tasks. Also, RTOS system

calls usually implement priority inheritance protocols to avoid priority

inversion situations in which a high-priority task is blocked waiting

for a resource from a low-priority one. RTOS environments, for

example, usually provide a system call interface that includes

dedicated APIs for fine-grained timing control; absolute and relative

sleep functions; high-resolution timers; and predictable scheduling

APIs. These specialized interfaces take into account the unique needs

of real-time applications, where the timing of the response is just as

important as the function of the response. Exokernels are a radically

different way of thinking about operating system design, representing

an extreme minimalism that exceeds even microkernel. Originally

conceived by researchers at MIT in the mid-1990s, exokernels

remove almost all abstraction from the kernel, exposing hardware

resources to applications directly through a narrow interface of

multiplexing primitives. Exokernel systems avoid using traditional

system calls such as read or write and use low-level hardware access

operations instead. Exokernels expose only physical resources like

86
MATS Centre for Distance and Online Education, MATS University

Notes disk blocks, memory pages and network interfaces, instead of higher

abstractions like files or processes, and their system calls are centered

on safely multiplexing these resources. Applications (or their

accompanying library operating systems (libOSes)) implement

higher-level abstractions depending on what is needed in the

application layer. For instance, rather than a traditional read system

call which acts on abstract files, an exokernel might expose

primitives to directly manipulate specific disk sectors, and the file

abstraction is fully user-space. In such a model, domain applications

gain the highest possible level of control and performance, because

kernel abstractions are removed, and they can implement exactly

those resource management policies that the applications need.

Exokernel MIT implementation showed better performance for

specific applications but with more competence code development. A

more recent specialized approach, unikernels take us even further and

destroy the classic distinction between operating system and

application altogether. A unikernel system compiles the application

together with only those parts of the operating system that it needs,

into a single-address-space executable that runs directly on virtualized

hardware. Unikernel implementations, like MirageOS (in OCaml),

IncludeOS (C++) and Unik, often cut out traditional system calls

altogether, substituting them with calls to functions in the OS libraries

slotted right in with the actual application. Because the whole system

operates on a single privilege level, this scheme leaves very little

overhead for user-kernel transition. Although unikernels give up

general-purpose functionality (like multi-tenancy), they do offer large

benefits around security (lowering the attack surface), performance

(removing mode transitions) and resource efficiency (images are

measured in MB, not GB). The system call interface essentially

becomes the API of the included OS libraries and the boundaries

between application and OS code become fuzzy or get completely

obliterated. For example, secure operating systems such as seL4,

Genode, and KeyKOS utilize syscalls that have been explicitly

designed to ensure strong security and isolation properties. In these

systems, capabilities (unforgeable tokens used to denote access rights

to resources) typically replace or augment conventional system call

interfaces. In contrast to specifying resources by identifiers (like the

numbers of file descriptors or process identifiers), system calls in

87
MATS Centre for Distance and Online Education, MATS University

Notes capability-based systems operate on capability references that

implicitly represent both the resource identity and the operations that

it permits. This radically redefines the security model of system calls,

as access rights are proved via possession of capabilities rather than

via explicit permission checks in the system call implementation.

Instead of opening the file by path and checking permissions against

user credentials (as done in traditional UNIX systems), a capability

system would have the application present a directory capability, and

obtain a derived file capability through a controlled operation.

Container-style OSes and library OSes are another flavor of system

call implementation. Other systems, such as gVisor from Google,

intercept system calls made by containerized applications and

reimplement them in the Go programming language, providing a

higher level of isolation and compatibility. gVisor intercepts these

system calls through its potential PTRACE platform (using ptrace) or

its KVM platform (acting as a KVM guest), essentially providing a

backing implementation of every single system call and mediating

access to the host kernel. By going with the existing concept of

system calls to know how to approach the security, Flexi gate can turn

a traditional process into a safer process. LibOSs, such as Graphene-

SGX, do the same, running applications inside Intel SGX enclaves

and interposing on system calls to the host system that can be reached

via a secure interface. A common approach adopted by many network

operating systems (e.g. Cisco IOS, Arista EOS or Cumulus Linux) is

to build up a specialized system call interface mostly covering

network configuration and monitoring instead of general-purpose

computing. Because of the proprietary nature of the hardware and the

needs of network equipment in general, these systems tend to present

proprietary APIs alongside more typical interfaces. In some cases

these systems employ restricted or modified standard system call

interfaces to block operations that would otherwise impact the

networking functionality or security. Perhaps the biggest deviation

from the standard system call story is for embedded operating systems

that run on highly constrained devices. In very severely resource-

constrained environments like microcontrollers with kilobytes of

RAM, traditional system call mechanisms may be outright too costly

in terms of the amount of code they require and the execution

overhead that they incur. In systems such as TinyOS and Contiki,

88
MATS Centre for Distance and Online Education, MATS University

Notes traditional system calls are largely replaced by event-based

programming models (e.g., with event queues) or direct function calls,

both of which eliminate the mode transitions and context switches

often seen with more conventional system calls. Sometimes the entire

operating system might run at a single privilege level, and be

protected using features of the programming language or just careful

code review rather than through hardware means. Particularly for the

operating systems that do not follow the traditional Unix architecture

and their individual techniques to system calls, this underscores the

intrinsic pliability of the system call idea and allows for adjustments

to myriad needs. By exploring these other paradigms we can learn

more about the tradeoffs embedded in system interface design and

how a unique system call mechanism can be suited to particular

operating environments and needs.

Virtual Machines, Containers, and Layered System Call

Implementations

The rise of virtualization technologies has added new tiers to the

system call model in terms of functionality and behavior, as system

calls cross numerous barriers in multi-layer architectures. Neither is a

trivial question, especially in our modern computing infrastructure

where applications tend to run in evermore nested environments than

sitting directly on the metal. To add further complexity, you must

know how system calls work inside these layered sectors to

comprehend the performance, security, and compatibility features of

these systems when they undergo virtualization or containerization. In

contrast, hardware virtualization uses hypervisors such as VMware

ESXi, Microsoft Hyper-V, Xen, and KVM, which implement a series

of resources in a virtualized type of virtual machine (VM), imitating a

complete computer, including virtual CPUs, memory, and devices.

From a system call perspective, this architecture introduces a massive

complexity: system calls made by applications within the VM are first

handled by the guest OS running inside the VM, not by the host

system controlling the physical hardware. This kind of indirection

establishes a multi-layer execution path which operations go through

to eventually access physical resources. When an application running

inside a VM makes a system call, the usual mechanisms (SYSCALL

instruction, software interrupt, etc.) trap to the guest OS kernel. Lack

of information from the host machine means the guest kernel

89
MATS Centre for Distance and Online Education, MATS University

Notes processes the system call in a normal way, as if it were running on

physical hardware. However, when the guest kernel tries to access

hardware i.e. if it wants to write to a disk or send network packets it

interacts with virtual hardware devices that the hypervisor provides.

These interactions most often lead to additional transitions from guest

to hypervisor (or VM exits/hypercalls) and inject additional context

switches on the execution path. As an example, here is a possible

scenario for a simple write to a file from an application running in a

VM: (1) the application performing a system call to the guest kernel;

(2) the guest kernel creating an I/O request to its virtual disk; (3) a

VM exit to the hypervisor when the guest tries to talk to its virtual

disk; (4) the hypervisor translating this request to something dealing

with the underlying storage hardware, which may involve making

system calls to the host OS; and (5) completion of the physical I/O

and walking back through all of those layers. This layering comes at

the price of performance overhead, especially for I/O bound

workloads. To overcome these limitations, modern day virtualization

systems use several optimization techniques. Para-virtualization is a

technique to modify the guest operating system so that it

communicates with the hypervisor through special hyper calls and

cannot directly access the virtualized hardware, thus aiming to

decrease the overhead of trapping and emulating privileged

instructions. Features like Intel VT-x and AMD-V (surprisingly, those

don't always get detected properly) enable more optimized transitions

between the guest and host contexts. Further, methods like direct

device assignment (pass-through) enable VMs to communicate

directly and use physical hardware for critical devices, bypassing

some of the layering overhead. Instead of relying on this last

deployment model, containers provide an alternative virtualization

strategy by using OS-level mechanisms without using hardware

emulation to make isolated environments. Container technologies,

such as Docker, LXC, and Kubernetes pods, take advantage of kernel

features like namespaces and control groups (cgroups) to build

isolated process environments without needing the complexity of full

hardware virtualization. Containers provide a very different model

from hardware virtualization at the system call level. In containers,

applications perform system calls directly to the host kernel, with no

intervening guest operating system layer. On the other hand, these

90
MATS Centre for Distance and Online Education, MATS University

Notes system calls are filtered, redirected, and translated between

namespaces in various ways to change their behavior with respect to

non-containerized programs. Container runtimes use system call

filtering modes to limit the set of system calls available to any given

containerized application (e.g., seccomp-bpf for Linux). This filter

decreases the kernel attack surface visible to the potentially malicious

app, so it is more secure. A containerized web server, for instance,

could be allowed to perform certain network-related system calls and

disallowed to perform others that modify kernel modules or access

unauthorized file systems. Namespace virtualization changes the

semantics of many system calls when inside containers. When a

containerized application makes a system call that references global

resources such as process IDs, network interfaces, or mount points the

kernel resolves these references to the global resources in accordance

with the mappings set for the namespace associated with the

container. An example of this can be found when considering that the

process inside the container would see itself as PID 1 (the init

process), while in the global namespace of the host system effectively

assigning the container process a different PID. Likewise, when the

containerized process tries to reach the root file system, these

operations get mapped to a container’s designated root directory

through mount namespace mappings done by the kernel. These

translations are invisible to the application but radically change the

impact of system calls made by an application depending on how the

container's namespaces are configured. Advanced container security

mechanisms such as gVisor and Kata Containers provide extra layers

of system call handling. gVisor is a user-space kernel that intercepts

and reimpements the system calls from containerized apps while

providing an isolation boundary beyond ordinary container isolation.

Instead of sending container system calls directly to the host kernel,

gVisor emulates them in its Sentry component, and fulfill them over

the more limited interface to the host. Kata Containers follows a

similar pattern, whereby containers are executed inside lightweight

VMs, a hybrid of sorts where the system calls of the container are

handled by a guest kernel inside a tailored virtualization VM. Server

less computing and Function-as-a-Service (FaaS) platforms have

added yet another layer of system call complexity. The code gets

executed in highly controlled environments, sometimes with custom

91
MATS Centre for Distance and Online Education, MATS University

Notes system call interception and a virtualization (e.g., AWS Lambda,

Google Functions, Azure Functions) when developers deploy

functions to the platforms listed above. Thus, these platforms

basically employ a mixture of container technologies, special library

interposition, and custom so-called runtime environments to deliver

secure and isolated execution environments while still trying to ensure

high efficiency for short-lived function invocations. These

technologies stack on top of each other and can result in complex

paths for the system calls a function running in a server less platform

might be running in a container that runs in a VM, with system calls

potentially traveling several layers of interception, filtering and

translation before reaching physical resources. System call security

has special significance for virtualized and containerized system.

Every layer of virtualization generates attack surfaces for more

security boundaries but also potential attack vectors at the borders

between layers. Hypothetical example: Hypervisor vulnerabilities

may allow guest operating systems to escape their VM boundaries,

whereas container escape vulnerabilities are providing examples of

how system call implementation bugs can be exploited to bypass

namespace or capability restrictions. Current research efforts in this

domain focus on concepts like hardware-enforced isolation, formal

verification of security properties and least-privilege models with

respect to system-call permissions. Understanding the complex

interplay of system calls across virtualization boundaries is necessary

for performance analysis and optimization in these layered

environments. Tools like Linux's eBPF (extended Berkeley Packet

Filter) tracing enable developers to discover which system calls

dominate in a mixed environment and where the most important

performance bottlenecks appear (as they often cross container and

virtualization boundaries). Likewise, various hardware capabilities,

such as Intel Performance Monitoring Units (PMUs), can allow the

detailed measurement of the impact that virtualization has on the

performance of system calls. Innovation in system call

implementation and optimization is still ongoing, driven by the

evolution of virtualization technologies. Emerging solutions like

Firecracker (used by AWS Lambda), lightweight hypervisors that are

tailored for container workloads, and unikernel-based isolation

techniques are example of continued attempts at striking the right

92
MATS Centre for Distance and Online Education, MATS University

Notes balance between the security advantages of enforced isolation and the

performance needs of modern cloud applications. It is important to

understand how system calls work across these layers of abstraction

in order to design, deploy and debug your applications on modern

virtualized infrastructure.

The Future of System Calls: Innovations and Emerging

Paradigms

In light of a wide variety of hardware, security needs, and application

trends, the operating system and system call interface has continued to

evolve. These frontier technologies & research areas indicate a

paradigm shift in how applications will interact with O/S, and the

core idea of system calls, which has been quite steady for decades.

The final section examines emerging technologies and theoretical

concepts that may reshape system call design and implementation

paradigms on diverse operating system architectures in the years to

come. One important trend is a growing deployment of hardware

extensions to improve system call security and performance. Modern

processors include special features that enhance and protect

privileged transitions. Intel CET (Control-flow Enforcement

Technology) and ARM PAC (Pointer Authentication Code) prevent

return-oriented programming (ROP) and jump-oriented programming

(JOP) attacks that could abuse the system call interfaces. Likewise,

AMD's Secure Encrypted Virtualization (SEV) and Intel's Trust

Domain Extensions (TDX) add hardware-enforced divide between the

virtual machines, resulting in the modification of how system calls

work in virtualized environment and providing cryptographic isolation

of guests memory. Such hardware innovations enable new methods of

implementing system calls that do not compromise security for

performance. An example of such an optimisation is the usage of

user-interrupt by Intel — it reduces the number of context save and

restore calls when going from user mode to kernel and the other way

round. The increasing need for these types of systems is helping shape

new approaches to system call design as part of efforts to create new

confidential computing and trusted execution environment (TEE)

initiatives. Intel SGX, ARM Trust Zone, and AMD SEV are

environments that establish execution contexts in which even the

operating system kernel is untrusted. Such models often use

specialized "ocalls" (calls from enclave to outside) and "ecalls" (calls

93
MATS Centre for Distance and Online Education, MATS University

Notes from outside to enclave) that might replace (or augment) traditional

system calls, with cryptographic protection that guarantees that

sensitive data is protected even if we have to utilize services from the

untrusted operating system. Technologies like Asylo from Google, the

Open Enclave SDK from Microsoft and the Enarx project are showing

how these new system call paradigms could end up being transformed

to accommodate confidential computing over a range of hardware

technologies. The recent proliferation of programmable I/O devices,

most notably smart NICs and computational storage devices, is

forcing a rethinking of the syscall interface for I/O. Instead of

funneling all of their I/O through the operating system kernel using

traditional system calls, applications will increasingly communicate

directly with smart peripherals through memory-mapped interfaces,

RDMA (Remote Direct Memory Access), or specialized

programming frameworks. SPDK (Storage Performance Development

Kit) and DPDK (Data Plane Development Kit) are some of the

technologies that allow existing high-performance applications to

bypass system calls for the common I/O operations in favor of more

direct hardware access, which will only become more common as

devices are equipped with dual-purpose CPUs capable of executing

those workloads onboard. So the programming languages

environment and runtime systems are also shaping system call

evolution. With runtimes like Was time, Wasmer, and WAMR (Web

Assembly Micro Runtime), Web Assembly, originally defined to only

run compiled code in the browser, is now growing into the server as

well.

94
MATS Centre for Distance and Online Education, MATS University

Notes 1.7 Operating-System Structure

An operating system (OS) is software that acts as an intermediary

between applications and the computer hardware, managing hardware

resources and providing a user environment in which programs can be

performed conveniently and efficiently. The operating system

structure describes how the components of the operating system

interact with each other and with the hardware underneath. Over the

course of computing history, OS designs have changed from

monolithic OSes, to multi‐layered and distributed OS architectures.

The earliest operating systems date back to the mid-1950s as simple

control programs for batch processing on mainframe computers,

performing little more than sequencing through jobs and managing

input/output. As computing technology progressed through the

decades, operating systems expanded to support interactive time-

sharing, real-time processing, distributed computing, and the wide

variety of personal and mobile computing environments we have

today. The architecture of an operating system has a great impact on

its performance attributes, fault tolerance, maintainability, and

application to specific computing environments. Different structural

approaches make different trade-offs between these attributes, but

there is no single best design for every use case. In this Unit, we will

analyze the main types of operating system structures we have, their

strengths, weaknesses, and when to use the structure. We'll explore

monolithic systems where the code base is tightly integrated, layered

systems that organize functionality hierarchically, microkernel

architectures with minimal privileged code, modular designs that

minimizing loose coupling with component isolation. Per each

architectural type, we will discuss the philosophy behind the design,

implementation aspects, performance implications, and real world

examples. We will also look at how new emerging technologies, such

as virtualization, containerization, and cloud computing are shaping

the range of available operating systems and their layout. The students

will also know when and why certain features will become important

along the history, various trade-offs made in order to achieve a

workable system, and understand how Operating system organization

is achieved in many systems.

95
MATS Centre for Distance and Online Education, MATS University

Notes Monolithic Operating Systems: Comprehensive Integration

The first and arguably simplest approach to operating system design,

monolithic operating systems, refer to a set of operating system

components that reside in a single location, with all system services

running in kernel space with hardware access. Monolithic: The entire

operating system, including the kernel, device drivers, file systems,

memory management, process scheduling, and inter-process

communication mechanisms, runs as a single program in a single

address space in a privileged mode. This architecture was prevalent

from the 1960s on, with systems like UNIX and its descendants, and

is still reflected in contemporary systems like Linux, FreeBSD, and, at

least in a part, Windows, although the latter has taken on aspects of

other architectural ideas too. The primary benefit of the monolithic

approach is performance, as components of the system can

communicate by calling functions rather than having to pass messages

or utilize other inter-process communication methods, which tend to

be more expensive. All components operate in the same address

space, and so data structures can be shared directly without the

overhead of copying data between protected memory domains. In

early computing environments, where hardware was scarce and

expensive, monolithic systems dominated due to their performance. In

a monolithic kernel, the functionality within the kernel itself is often

organized as many logical layers, with the low-level hardware

interfaces at the bottom and higher-level application interfaces at the

top, but this layered implementation is not so much enforced by

hardware protection mechanisms, but by software conventions. Early

UNIX systems can be thought of this way, where the lowest layer was

hardware management and the next layer up was memory

management, process scheduling had its own, and file systems had

theirs, and at the highest level was a syscall interface where each level

was separate but depended on lower layers. Monolithic architectures,

despite their performance advantages, pose considerable challenges

for development, maintenance, and reliability of the system. Because

the code base is unified, a bug in any component from a device driver

to the virtual memory system can potentially crash the entire

operating system since all code runs with full hardware privileges.

With so much dependency between components, the system can be

particularly vulnerable, and debugging can be a challenge, as bugs

96
MATS Centre for Distance and Online Education, MATS University

Notes that originate in one subsystem can rear their ugly heads elsewhere in

the system. In addition, the construction and development of

monolithic systems need to be coordinated carefully between teams

working on various components with one subsystem change can have

domino effects all around kernel. The most common modern approach

has been to maintain good performance whilst still implementing

some of the benefits of modularity through loadable kernel modules,

as the monolithic architecture evolves. This allows components like

device drivers to be dynamically loaded and unloaded from the kernel

at runtime, thereby increasing system flexibility and incremental

updates without a complete boot. For instance, Linux implements a

rich module system that allows it to support a tremendous number of

hardware devices and specialized functionality while keeping its base

kernel relatively small. Modernizing monolithic operating systems

such as Linux learn and thus apply rich development and testing

processes to address the intrinsic weaknesses of their design.

Additionally, a variety of testing and debugging tools, like automated

tests and code inspection frameworks, can catch bugs before they go

live, combined with an extensive review process, help keep the

system stable through such a massive, complex code base. To solve

this, there are certain techniques that have been introduced, like kernel

preemption and fine-grained locking to improve the responsiveness

and scalability on multiprocessor systems, which used to be the

weaknesses of the monolithic design. Although monlithic

architectures are more problematic than new comers to computing and

newer architectural paradigms have been added to mitigate those

problems, monolithic systems such as Linux continue to be popular,

suggesting that the performance advantages and practical

effectiveness of monolithic architectures can remain relevant in

modern computing environments, especially in the arena of hardware

classes geared toward server systems in which are senriced by

applications where performance and hardware support breadth are the

primary products of arguable utility. It is a great example of the

evolution of monolithic systems, showing how a solution that looks

relatively simple from an architectural viewpoint can be improved

and progressively developed to cope with new needs while keep its

weaknesses under control and, most importantly, keep its advantages

unscathed.

97
MATS Centre for Distance and Online Education, MATS University

Notes Layered Operating Systems: Hierarchical Abstraction

Layered OS type is a structured way to design the system, where

functionality is divided into brows of functionalities, high level

functionalities are provided using lower layer, And abstraction of

services of lower layer are provided to upper layers. This architectural

paradigm is derived from some of the early theoretical work on

structured programming and systems design in the early 1960s that

was applied first through systems such as the (TechnischeHogeschool

Eindhoven) operating system developed by EdsgerDijkstra and later

in commercial systems like Multics. A layered architecture is one

wherein a strict hierarchy is maintained, so a component at layer N

can only make use of services offered by components at layer N-1 and

lower N (i.e. a layer N service cannot access a service or data

structure provided directly by a layer N-2 component. The main

theoretical benefit of this strict layering is that we can work on and

validate each layer in isolation, with clearly defined interfaces

between adjacent layers giving us well-rounded boundaries for

testing and validation. The concept of a layered operating system also

typically involves functionalities to form layers, from the lowest

hardware dependent level, to the highest user-oriented level. The first

(bottom) level may deal with physical hardware resources and

interrupts, the next layers manage memory, processes, inter-process

communications, virtual memory, file system, the higher most layers

with user-interfaces and applications. You are provided with layers of

abstraction, where each layer obscures the complexities of the layer(s)

below and translates the naked hardware into the ornate computational

environment experienced by users and applications. A major goal of

an early operating system called THE, built in the late 1960’s, was to

implement this paradigm, and THE itself was divided into five levels:

process management, memory management, console management,

input/output buffering, and user programs. With this level of clean

separation, once the lower layers had been verified, the upper layers

could be independently tested in systematic debugging of the entire

system. But the IBM PL/1 system in the 1970s ushered in a new

model with the Venus operating system, which had six distinct layers

to tackle the many facets of process and resource management.

Although conceptually elegant, the strictly layered model has practical

challenges that, in practice, have made strictly following it a

98
MATS Centre for Distance and Online Education, MATS University

Notes challenge in modern systems. The loss of spatial locality and strict

hierarchy can add a huge performance cost, because something that

could happen in a single monolithic system must now cross multiple

levels of indirection, each of which might involve a context switch or

even transform data. Also keep in mind that many Operating System

functions do not have a natural hierarchy: services such as security,

logging, or power management cut across various layers of the

system and do not really fit a single layer. Additionally, rigid layering

can make it challenging to implement efficient inter-process

communication and synchronization mechanisms, which frequently

depend on direct interaction between the components residing within

diverse layers. In the face of such practical constraints, most modern

operating systems take a more flexible approach to layered

architecture but still retain their organizational principles, with

carefully controlled breaches of strict layering where performance or

functionality require them. For instance, while Windows uses a

layered kernel architecture, with kernel components nested in various

tiers, it enables some cross-layer optimizations to improve system

throughput. Layering does end up looking something like this in

modern systems, but more through a combination of practices,

interface definitions, and documentation than through strict hardware

boundaries enforced between all layers. This more pragmatic strategy

retains much of the software engineering advantages of layering while

avoiding many of its worst performance penalties. The multi-layered

OS model still inspires OS design, especially in contexts like certain

real-time and embedded systems where reliability and verifiability

are more important than sheer performance. The idea also manifests in

the way software development teams are organized and

documentation trees are structured for complex operating systems,

even where the underlying implementation likely offers more freedom

than a rigidly layered model might imply. In practice, contemporary

systems often integrate layered design components with various

architectural styles, resulting in hybrid architectures that capitalize on

the advantages of different paradigms and offset their respective

drawbacks.

Microkernel Operating Systems: Minimalist Core Design

Microkernel operating systems are an architectural evolution from

monolithic operating systems, based on a philosophy of reducing the

99
MATS Centre for Distance and Online Education, MATS University

Notes amount of code that executes in privileged mode to the minimal set of

components necessary to facilitate computing. This is an architectural

style that is developed in the 1980s and early 1990s with systems such

as Mach, which was developed at Carnegie Mellon University, and

has formed the basis of many systems including QNX, MINIX, and

parts of macOS through its XNU kernel. Microkernel architecture's

primary realization lies in the fact that only the services that truly

require privileged or specialized access (generally IPC, basic memory

power management, and minimum scheduling) should be

implemented within the kernel itself, while the rest will run as user

interaction processes which will have limited control, hence limiting

the risk of impacting the entire system. This strict separation is

intended to ensure greater reliability, security and maintainability of

the system by limiting the trusted computing base (TCB) and isolating

failure-induced components. The microkernel approach has a solid,

multi-sided theoretical advantage. Because it minimizes the amount of

code that must run in privileged mode, the system becomes less

susceptible to catastrophic failure — for example a crash of a user-

space file system server need not bring down the entire operating

system, as it would have to do in a monolithic design. This provides

better fault containment, as you can restart individual servers without

bringing down the entire system. Similarly, security benefits arise due

to the reduced attack surface that the minimal kernel exposes and

provides fewer opportunities for privilege escalation attacks by

targeting kernel vulnerabilities. From a software engineering

perspective, the microkernel approach makes it easier to implement

systems with noticeable modularity, allowing development teams to

focus on specific servers with well-defined channels between

components. This modularity furthermore allows for extensibility of

the system, as new services can be introduced as user-space servers

without any need to update the microkernel itself. Also, the

architecture in theory provides greater portability, with hardware-

dependent code mainly residing at the microkernel level and in low-

level device drivers, meaning that porting the system to new

hardware platforms is easier. Microkernel System Design The

advantage of microkernels is their small size; everything most

applications could need is implemented as a distinct service that a

monolithic kernel would contain, leading to high levels of modularity

100
MATS Centre for Distance and Online Education, MATS University

Notes but high communication costs as the interposes communication needs

to be deeply efficient given the nature of a microkernel architecture

where each service operates in its own space. A user application sends

a message to the file system server, for instance, when it has to

perform a file system operation; the file system server can send

another message to the disk driver server, and the microkernel takes

care of this communication. Early hardware microkernel

implementations (the most notorious entry here being Mach) suffered

painful performance penalties due to the overhead associated with

such message passing and the resulting context switches between

address space. QNX, a commercial real-time operating system with a

more efficient implementation, yet more forgiving of lower-

performance hardware, especially in embedded systems where

timelines take precedence over other performance statistics. The

shortcoming of the pure microkernel approach from a performance

standpoint triggered many refinements and hybrid implementations.

L4 (originally developed by JochenLiedtke in the 1990s) was a

second-generation microkernel that achieved astonishing rates of

interposes communication by virtue of careful design and

implementation, demonstrating that much of the theoretical overhead

of microkernel could be eliminated by amazing amounts of

optimization. macOS (formerly known as OS X) comes with a hybrid

approach on its XNU kernel, which incorporates the Mach

microkernel and a monolithic UNIX kernel into a single address

space, trading some of the fault isolation benefits for a performance

improvement. Although Windows NT has been designed with

microkernel principles, more and more components were incorporated

into kernel space to address performance issues. Notwithstanding the

above compromise, the conceptual impact of the microkernel

architecture is far-reaching. Andrew Tanenbaum's MINIX 3 was

another early but significant example, originally developed as an

educational tool but then substantially evolving into a research

system, providing demonstration of how microkernel principles

continue to be refined, with a focus on reliability through isolation of

components. The seL4 microkernel, developed by NICTA (now part

of Data61), is possibly the most important recent development in this

area and allows the formal mathematical verification of certain

properties that could only have been accomplished at all due to the

101
MATS Centre for Distance and Online Education, MATS University

Notes very smallness and clean design of a microkernel. Though many

recent systems may incorporate elements beyond the classic

microkernel philosophy, the microkernel's optimization towards

reducing privileged code and decoupling systems have undeniably

left a mark on contemporary OS design, specifically where security is

of the utmost importance, such as in embedded systems and those

with high reliability constraints. Microkernel systems are one place

where this same idea plays out and demonstrates how an architectural

solution can continue to take shape and drive innovation in the field

even while the pure idea struggles to be relevant in certain contexts.

Modular Operating Systems: Component-Based Architecture

Modular operating systems are an architectural shift based on clean

interfaces between well-defined systems (modules) rather than strict

layering or minimal priv. execution. This approach came to

prominence in the 1990s and 2000s with systems such as Solaris (and

its Spring research predecessor) and Windows NT, which included

substantial modular design facets in them, even though they weren't

strictly modular in every way. The first of these innovations, Low-

level modular architecture focuses not on the vertical stack (layered

systems) or privilege levels (microkernel) used to organize elements

of a system, but rather on the set of interfaces defining the interactions

between components of a system, and allows any component of a

system to be developed, tested, and replaced independently of the

other components it interacts with, provided they adhere to agreed-

upon specifications of interaction. Modular architectures allow

separate components at the same conceptual level (i.e., layers) to

interact horizontally with each other in ways that are easier to express

away from strictly layered systems, enabling natural expression of

cross-cutting concerns and cross-layer functions. The principles that

drive the design of modular operating systems are based closely on

object-oriented programming principle, where system components

implements their internal workings behind a well-defined interface

which describes both services offered by the component and services

the component require from other components. Thus it creates a

system of modules, which are interdependent on each other but are

connected via explicit interface declarations as opposed to implicit

dependencies, enabling better comprehensibility and maintainability

of systems. In the ideal modular architecture, the system is

102
MATS Centre for Distance and Online Education, MATS University

Notes represented as a graph of components, with edges representing

module dependencies mediated through interfaces, instead of a stack

of layers. Modular operating systems usually feature a component

framework that handles loading, initialization, and communication

between modules. For example, Microsoft's Windows Driver Model

(WDM) and later Windows Driver Framework (WDF) enable device

drivers to work together in a way that was previously impossible by

establishing standardized interfaces and support infrastructure that

allow dozens able devices to be implemented as independent drivers

but still interact in an orderly manner within the driver stack. Jigsaw,

as the Java-based project is called, inspired Java 9's module system,

which embodied the same principles regarding module dependencies

and encapsulated implementations within the context of programming

language runtime environments. The modularity approach, spurred by

Solaris 7 and 8 major redesigns of the solaris operating system,

adopted the heuristics of ServicePlex architecture a means of layering

system significance into distinct removable parts with standard

interfaces. This allowed for things like dynamic reconfiguration of

system services without the need for a reboot a market first, for

enterprise systems where availability requirements often mean

upgrading the whole system cannot be taken down in order to perform

the upgrade. The subsequent implementation makes use of

methodologies like dynamic linking, runtime service discovery and

component registration to design a flexible yet strong system

architecture. Benefits of modular design go beyond just software

engineering to operational considerations. In a modular architecture,

it may be possible to implement “hot-swapping” of components,

allowing for updating or reconfiguration of the system without

downtime which is an important property of high-availability

environments, such as telecommunications systems or financial

services infrastructure. Moreover, the modular structure enables the

use of different configurations for various use cases or hardware

platforms by allowing components to be included or excluded as

needed without major changes to the rest of the system. However, we

find many of these same advantages pall in comparison to the nominal

performance efficiency of non-modular, tightly integrated designs.

Runtime overhead in these frameworks may be caused by interface

compliance checking, dynamic binding between components, or even

103
MATS Centre for Distance and Online Education, MATS University

Notes potential need to convert data from one module to another. Moreover,

the challenges of developing and maintaining an application tend to

escalate proportionally to the number of components involved when

there are explicit dependencies to manage. The challenge of

comprehensive testing becomes more complicated with the increase

in the number of interchangeable modules, as the number of potential

combinations of the components grows exponentially. A hybrid

approach often features in modern modular operating system designs,

which retains a unified kernel core while enabling modular

extensibility via precisely designed frameworks. The Linux kernel,

despite being fundamentally a monolithic kernel, introduces a

substantial layer of modularity via its loadable kernel module system

allowing for dynamic extension of kernel functionalities while

preserving performance within the core system. Windows also has

such a driver model, but keeps a much more tight base system with

options for modular extension. For Example, The prevalence of micro

service architecture in distributed systems as well as containerization

technologies are part of the continuing evolution of modular

approaches, applying similar principles of componentization at a

higher level. So again considering the evidence that we have been

exposed to, it would seem that pure modularity has potentially created

some pseudo-components that ultimately do not yield the fruitful

experience one may want but the overall principles of modularity

component isolation, interface-based design and explicit dependency

management remain bedrock of every level of the system that we

interact with. And as computing environments further diversify and

specifications deepen (even if only at particular segments of a

community), I suspect that the flexibility provided by such modular

design approaches will remain valuable; as long as it is married

pragmatically to efficiency with respect to performance and

complexity.

Hybrid Operating Systems: Pragmatic Integration

Hybrid operating systems serve as a pragmatic amalgamation of the

various architectures that can be seen on the operating system

spectrum, containing some monolithic, layered, micro, and modular

features to balance performance, reliability, maintainability, and

flexibility. Hybrid systems do not follow strictly any communication

structural philosophy but choose portions of each architecture that fit

104
MATS Centre for Distance and Online Education, MATS University

Notes the specific system functions and operational needs. This pragmatic

idea has held sway over commercial OS design since the late 1990s,

and all mainstream OSes today from Windows, macOS, iOS, and

Android to modern Linux distributions are, to varying degrees,

hybrids. The key argument for hybrid architectures says that because

different parts of the system exercise different demands with regard to

performance, availability and development flexibility, you cannot lag

the same architectural solution for everything in the system. While

performance or stability may benefit from implementing network

protocol stacks in-kernel, experimental file systems may be better

written as user-space components that crash without taking down the

rest of the system. A hybrid system allows different subsystems to

follow different architectural models, enabling the most appropriate

design approach to be used on a given part of the overall system in

pursuit of performance, pragmatism, and real-world usage instead of

theoretical purity. One of the more recognizable examples of the

hybrid approach is the macOS (formerly OS X) operating system,

which features a hybrid kernel called XNU that integrates components

of the Mach microkernel and BSD Unix in a single privileged

execution environment. Although this design loses some of the fault

isolation benefits of the pure microkernel approach, it greatly

increases performance by removing the message-passing overhead

for frequently used services. At the same time, the I/O Kit driver

framework, the BSD subsystem, and Mach-based underpinnings are

kept distinctly separate within the system, creating internal

boundaries that provide a great deal of potential for maintainability

with minimal impact on performance. Likewise, the Windows version

implemented by modern Windows products also follows hybrid

architecture principles, with a mixture of aspects of monolithic

integration, modularity and layering. Running in privileged mode, the

Windows kernel delivers essential services: the Hardware Abstraction

Layer (HAL), which insulates a lot of the system from specifics of

the hardware, memory management, process scheduling, and an

elaborate object manager. On top of this foundation the Executive

services provide higher-level functionality such as the registry,

security reference monitor, and I/O system. Even though the various

components execute in kernel mode for performance purposes, they

adhere to well-defined abstractions with a modular organization that

105
MATS Centre for Distance and Online Education, MATS University

Notes supports independent development and testing. The Win32 subsystem,

along with various other environment subsystems, operate partly in

user mode, illustrating a practical separation of function across

privilege levels determined by security and stability concerns rather

than strict architectural dogma. Linux has developed an extremely

successful hybrid, retaining much of the performance advantages of

its monolithic roots while also integrating concepts from alternative

architectural paradigms. We will use the term core kernel to refer to

such a high-privilege mode codebase, as the core kernel operates as a

single privileged-mode entity, but implements an extensive module

system to allow components such as device drivers, file systems and

networking protocols to be loaded and unloaded dynamically. This

method maintains performance efficiency with improved extensibility

and maintainability. Moreover, much of Linux's functionality has

been gradually pushed to user space when it makes sense to do so,

with systems such as FUSE (File system in Userspace) allowing file

systems to be written and run without modification to the kernel, as

well as container technologies such as Docker and Kubernetes that

offer user-space isolation mechanisms achieving many of the

objectives of microkernel-process separation without compromising

on performance. Notable advances in the hybrid model have indeed

been made, particularly in mobile environments such as Android and

iOS, providing privilege separation and process isolation of third-

party applications which would be the primary threat of an untrusted

environment. Therefore, the logic behind Android is to isolate

applications into their own process spaces with limited permissions

over the core system services that run with elevated privileges.

Running on an XNU-derived kernel fused with Mach and BSD

components in a security model that embraces sandboxing at the per-

app level, iOS also takes a layered approach to security just like the

Android variant. The performance benefits of hybrid designs are

significant in multi-purpose operating systems that have to

accommodate a wide range of often conflicting requirements. Hybrid

systems have the potential to apply different architectural principles to

different aspects of the system, allowing them to optimize

performance for performance-critical paths, provide reliability

through isolation of less stable components, enable development

through modularization where it makes sense, and maintain

106
MATS Centre for Distance and Online Education, MATS University

Notes backwards compatibility within existing software ecosystems, all in a

single, coherent operating system. They illustrate that real systems

are not mere implementations of theoretical models but rather the

solutions of engineering problems whose challenges outstrip elegant

abstractions — such that real systems are more like hybrid

architectures, borrowing from different architectural paradigms. It is

this pragmatic synthesis that continues to define modern operating

system design, with each new generation assimilating the lessons of

multiple architectural traditions, while responding to new hardware

capabilities, security threats, and application demands. Due to the

continued diversification of computing environments across a wider

range of form factors extending from embedded systems to cloud

infrastructure, the versatility of hybrid approaches may prove useful

in the construction of systems that fulfill their intended purpose, rather

than over-commit to a single design (which is associated with a set of

trade-off in the articulation of competing objectives of design).

Specialized and Emerging Operating System Structures

In addition to the mainstream architectural paradigms described

earlier, a large number of specialized and new operating system

architectures have emerged to meet specific computing

configurations, workloads, or design objectives. These tailored

architectures often serve as narrowly considered modifications of

established methods toward specific goals or as novel constructs made

possible by technological advances and changing computational

models. The evolution of computing — from "general purpose

computing" across embedded systems, mobile devices, cloud

infrastructure and new advanced platforms, including wearable’s and

IoT devices — has made these particular structures more and more

relevant in the operating system landscape. For instance, real-time

operating systems (RTOS) are tailored for predictable, deterministic

behavior, as opposed to maximum average throughput. Such

operating systems (OSs) test and operate to strict specifications to

guarantee response times for time-critical operations, and often

employ specialized scheduling algorithms, such as rate-monotonic

and earliest deadline first scheduling, rather than the fair-share

algorithms found in general-purpose OSs (like those in the UNIX

family). This has architectural implications that tend to polarize: you

want to reduce non-deterministic system behaviors like dynamic

107
MATS Centre for Distance and Online Education, MATS University

Notes memory allocation, virtual memory page faults, or complex caches

that contribute to timing variability. Some real-time systems use

microkernel designs to increase reliability (as in QNX) while others

focus on minimal execution intervals and slim designs that are akin to

stripped-down monoliths showing a degree to which functional

requirements can dictate architectural design stronger than theories of

software organization can. What are embedded operating systems?

Embedded operating systems are the systems created for such

resource-constrained environments as industrial controllers,

automotive systems or consumer electronics and often end up having

highly tailored architectures tuned for their limited memories,

processing power and energy budgets. An example is TinyOS, which

implements a component-based architecture but adopts static

composition; the system is built at compile time rather than run time,

allowing developers to avoid the cost to bind components

dynamically, while losing flexibility. Embedded Linux variants

commonly minimize the standard kernel removal of excess

components, and static methods where dynamic mechanisms are

unnecessary. These systems are examples of scaling limits that are

pushing innovations in architectures that would never work for

general-purpose computing but are exceptionally suitable for their

targets. Network Operating System: Another specialized category is

called distributed operating system which is a distributed version of

an operating system, meaning that the OS services are extended to

multiple networked computers and make it appear as a single coherent

system to its client. Distributed computing systems such as Amoeba

(1980-1999) took process migration, distributed shared memory,

global resource naming, and similar features from single user

distributed systems and implemented them across multiple physically

independent networked computers. Although pure distributed

operating systems have had limited commercial success, fundamental

aspects of their architecture have been incorporated in most

contemporary cloud infrastructure and cluster computing frameworks.

First, Google's Borg system (the inspiration for Kubernetes) comes in

as a brilliant solution for its distributed resource management and

scheduling across a cluster of data center machines, functioning as a

distributed operating system at the cluster level even while regular

OSs are running on single machines. Virtualization has even given

108
MATS Centre for Distance and Online Education, MATS University

Notes rise to entire new hypervisor architectures that reconfigure the OS

actualization on the hardware. Hypervisors like VMware ESXi,

Microsoft Hyper-V, and Xen serve as thin abstractions atop physical

hardware to multiplex it among multiple guest operating systems,

providing them the illusion that they are operating on exclusive

hardware. In addition to requiring efficient mechanisms for hardware

abstraction, these systems emphasize having effective inter-virtual

machine isolation and low performance overhead, often resulting in

designs that closely resemble microkernel with a small trusted

computing base but specialized to virtualization primitives over

generic operating system services. Architectural implications of

virtualization undergo changes at the syscalls layer such as binary

translation, par virtualization and/or hardware-assisted virtualization

that fundamentally alter the behavior of operating system code

interacting with the underlying hardware. Container-based systems

provide a lighter-weight form of virtualization and have led to

additional innovations in architecture. Unlike VMware, Virtual Box,

or similar technologies, which virtualized at the hardware level,

Docker, Kubernetes, and other related technologies virtualized at the

operating system level, allowing multiple isolated user-space

instances to share the same kernel. This model requires namespaces

and the architectural support to have isolated namespaces, resource

control mechanisms and multi-tenancy in the kernel level, needs that

have already driven mainstream kernel development and facilitated

new deployment and orchestration avenues in higher levels of the

stack. The principle of separating the protection of resources from

their management is pushed even further by Exokernels and library

operating systems, which enable abstraction of resources at the

application level. In these systems, demonstrated by MIT's Exokernel

research and recently commercialized through systems like

Unikernels, the kernel simply gives very low-level protection and

multiplexing for resources, while applications link directly to library

implementations of standard operating system services. This design

takes away the distinction between application and operating system,

which may further reduce overhead and enable applications to impose

resource management policies according to their own requirements.

Things like MirageOS compile high-level application code alongside

only the OS components a particular application needs into a specific

109
MATS Centre for Distance and Online Education, MATS University

Notes image to run directly on virtualized hardware, the commercial

embodiment of those principles in practice; The emergence of

heterogeneous computing architectures with specialized accelerators

(e.g. GPUs, TPUs, FPGAs and other domain-specific processors) has

provided significant new pressures for operating systems innovations.

Systems now have to not just manage traditional CPU resources but

also allocate, schedule, and provide programming models for these

heterogeneous compute engines. This has resulted in traditional

operating systems being extended with new subsystems that mediates

device- specific memory management, task scheduling and data

movement, forminga hybrid architectures that incorporates multiple

computational paradigms within a single system. The fundamental

nature of computing is changing, and with it new architectural

approaches. From unikernel designs that package applications with

minimal operating system services inside specialized virtual machines

to server less computing models that remove operating system

concerns entirely from the developer workflow to edge computing

paradigms that distribute computation across networks of devices

from sensors near the physical world to cloud servers in the way of

their own using novel storage and networking abstractions, these

challenges have forced innovation on the structure of operating

systems such that they are a vibrant space of ongoing design

engineering. These specialized and evolving architectures show that

operating system design is still a lively field that continues to change

in response to new hardware capabilities, new application needs, and

new computing paradigms. Instead of converging on one optimal

shape, operating systems continue to diversify to meet an ever-

growing set of computing needs and scenarios, and architectural

innovation occurs across the spectrum from microcontrollers to

global-scale distributed systems. These approaches highlight the

notion that operating systems are engineering artifacts: elegant in

theory but compromised by practicalities and imperatives that are

often very different from the original requirements.

Conclusion and Future Directions

Indeed, the subsequent coalescing of various operating systems

structures is an ongoing process, driven by the intersection of theory,

engineering, technology and application needs. Operating system

structures thus have a long evolution from early monolithic systems

110
MATS Centre for Distance and Online Education, MATS University

Notes optimized for performance and hardware utilization to modern hybrid

architectures that selectively embrace elements across multiple

paradigms, continuously adapting to new demands yet balancing the

inevitable tradeoffs of conflicting design goals.7 So, this adaptation

process reflects both the timelessness (tymaldb probably has things

like partitions, normalization, sharding, etc, etc) of some basic

architectural concepts plus the pragmatic flexibility needed to use

them in different computing environments. Feeding into the ongoing

development of OS architectures are a number of trends that the future

seems to hold. The rise of heterogeneous computing architectures

integrating specialized processors alongside general-purpose CPUs

creates new resource management challenges that may catalyze even

more structural innovation. Operating systems must increasingly

orchestrate computation across diverse processing units with their

own programming models, memory architectures, and performance

characteristics, a need that tests the limits of traditional process and

memory management abstractions designed for homogeneous

systems. This trend might hasten the adoption of the more explicitly

parallel and distributed architectural models even within single-

machine operating systems. Security and reliability issues become

more important as computing systems are more deeply integrated into

critical infrastructure (power systems, transportation, etc.) and daily

life. These priorities often favor architectural approaches that

emphasize isolation, least privilege, and minimal trusted computing

bases — principles long promoted by microkernel and capability-

based designs. With hardware support for virtualization, memory

protection and secure execution environments steadily improving, the

performance penalty historically associated with these more formally

secure architectures is diminishing, making it feasible for them to be

used widely in mainstream systems. The growth of edge computing

the distribution of computation between everything from IoT devices

to cloud data centers challenges traditional operating system

boundaries and resource management models. By 2030, future

operating systems may have to work efficiently across such

distributed settings, coordinating resources, moving data, and

determining where computation occurs across heterogeneous

networks rather than on single machines. This may compel the fusion

of traditional OS structures with distributed system paradigms,

111
MATS Centre for Distance and Online Education, MATS University

Notes leading to emergent hybrid adjacently woven architectures spreading

across device ecosystems, while exposing consistent interfaces to

applications and end users. Virtualization is still remodeling how

applications, operating systems and hardware interact. Applications

downloading services provide for greater compos ability, and can

serve as the basis for a move toward more library-like systems,

allowing applications to have only the system services they need. The

distinctions between application and operating system become less

and less clear in this transition. Domain like machine learning,

augmented reality, autonomous systems have emerged where the

workloads exhibit different characteristics and have different

requirements that can drive domain specific architectural innovations

Specialized operating system structures that would be radically

different from general-purpose ones optimised for traditional

interactive and server workloads might be needed for real-time

constraints, massive parallelism and probabilistic computing models.

Enabling persistent memory technologies that weaken the traditional

boundaries between volatile memory and persistent storage break

common operating system abstractions and might drive architectural

updates in file systems, memory management, and process models.

Systems tailored to make the most of these new technologies might

take on structures that differ substantially from those optimized for

the strict hierarchy of memory-storage elements that’s been the

hallmark of computing for decades. These trends indicate that we

have just scratched the surface, and operating system structures will

only become more and more diverse rather than converging on the

one true path. We believe different computing environments and

workloads will continue to require specialized architectural

approaches, although particular fundamental principles modularity,

appropriate abstraction, separation of mechanism from policy, and

efficient resource utilization will remain applicable to many different

implementations. Perhaps the best lesson regarding the history of

operating system structures is one of pragmatism: the ability to adapt

to changing requirements and capabilities rather than faithfully

adhering to any given architectural paradigm is what best

characterizes successful systems design. Operating system developers

must therefore appreciate both the theoretical underpinnings of these

varieties of structure and the engineering requirements that colour

112
MATS Centre for Distance and Online Education, MATS University

Notes their application in individual circumstances. The ideal system

architect will combine principle and pragmatism, creating a new

generation of operating systems which will effectively serve the needs

of all users, applications and computing environments. But as we end

this abstraction on operating system structures, and it is necessary to

state that operating systems are a field of continuous development,

full of new problems and innovations. (The architectures explored in

this Unit are not just dead ends, but growing traditions that remain in

the DNA of contemporary system design and will help guide future a

direction as computing continues to evolve into exciting new

domains, form factors, and application spaces.)

1.8 Design Goals

Introduction and Fundamental Concepts

Indeed, the subsequent coalescing of various operating systems

structures is an ongoing process, driven by the intersection of theory,

engineering, technology and application needs. Operating system

structures thus have a long evolution from early monolithic systems

optimized for performance and hardware utilization to modern hybrid

architectures that selectively embrace elements across multiple

paradigms, continuously adapting to new demands yet balancing the

inevitable tradeoffs of conflicting design goals.7 So, this adaptation

process reflects both the timelessness (tymaldb probably has things

like partitions, normalization, sharding, etc, etc) of some basic

architectural concepts plus the pragmatic flexibility needed to use

them in different computing environments. Feeding into the ongoing

development of OS architectures are a number of trends that the future

seems to hold. The rise of heterogeneous computing architectures

integrating specialized processors alongside general-purpose CPUs

creates new resource management challenges that may catalyze even

more structural innovation. Operating systems must increasingly

orchestrate computation across diverse processing units with their

own programming models, memory architectures, and performance

characteristics, a need that tests the limits of traditional process and

memory management abstractions designed for homogeneous

systems. This trend might hasten the adoption of the more explicitly

parallel and distributed architectural models even within single-

machine operating systems. Security and reliability issues become

more important as computing systems are more deeply integrated into

113
MATS Centre for Distance and Online Education, MATS University

Notes critical infrastructure (power systems, transportation, etc.) and daily

life. These priorities often favor architectural approaches that

emphasize isolation, least privilege, and minimal trusted computing

bases — principles long promoted by microkernel and capability-

based designs. With hardware support for virtualization, memory

protection and secure execution environments steadily improving, the

performance penalty historically associated with these more formally

secure architectures is diminishing, making it feasible for them to be

used widely in mainstream systems. The growth of edge computing

the distribution of computation between everything from IoT devices

to cloud data centers challenges traditional operating system

boundaries and resource management models. By 2030, future

operating systems may have to work efficiently across such

distributed settings, coordinating resources, moving data, and

determining where computation occurs across heterogeneous

networks rather than on single machines. This may compel the fusion

of traditional OS structures with distributed system paradigms,

leading to emergent hybrid adjacently woven architectures spreading

across device ecosystems, while exposing consistent interfaces to

applications and end users. Virtualization is still remodeling how

applications, operating systems and hardware interact. Applications

downloading services provide for greater compensability, and can

serve as the basis for a move toward more library-like systems,

allowing applications to have only the system services they need. The

distinctions between application and operating system become less

and less clear in this transition. Domain like machine learning

augmented reality, autonomous systems have emerged where the

workloads exhibit different characteristics and have different

requirements that can drive domain specific architectural innovations

Specialized operating system structures that would be radically

different from general-purpose ones optimised for traditional

interactive and server workloads might be needed for real-time

constraints, massive parallelism and probabilistic computing models.

Enabling persistent memory technologies that weaken the traditional

boundaries between volatile memory and persistent storage break

common operating system abstractions and might drive architectural

updates in file systems, memory management, and process models.

Systems tailored to make the most of these new technologies might

114
MATS Centre for Distance and Online Education, MATS University

Notes take on structures that differ substantially from those optimized for

the strict hierarchy of memory-storage elements that’s been the

hallmark of computing for decades. These trends indicate that we

have just scratched the surface, and operating system structures will

only become more and more diverse rather than converging on the

one true path. We believe different computing environments and

workloads will continue to require specialized architectural

approaches, although particular fundamental principles modularity,

appropriate abstraction, separation of mechanism from policy, and

efficient resource utilization will remain applicable to many different

implementations. Perhaps the best lesson regarding the history of

operating system structures is one of pragmatism: the ability to adapt

to changing requirements and capabilities rather than faithfully

adhering to any given architectural paradigm is what best

characterizes successful systems design. Operating system developers

must therefore appreciate both the theoretical underpinnings of these

varieties of structure and the engineering requirements that colour

their application in individual circumstances. The ideal system

architect will combine principle and pragmatism, creating a new

generation of operating systems which will effectively serve the needs

of all users, applications and computing environments. But as we end

this abstraction on operating system structures, and it is necessary to

state that operating systems are a field of continuous development,

full of new problems and innovations. (The architectures explored in

this Unit are not just dead ends, but growing traditions that remain in

the DNA of contemporary system design and will help guide future

directions as computing continue to evolve into exciting new

domains, form factors, and application spaces.)

Batch Operating Systems: Maximizing Throughput and Resource

Utilization

Operating systems are the most critical link between computer

hardware and the software applications that provide value to users.

Operating systems are sophisticated software ecosystems meant to

resolve computational resources for performance, giving core

services to applications, and to offer interfaces that are human and

machine accessible. The development of operating systems has been

inextricably linked to the development of computer hardware, with

each generation of operating systems reacting to and facilitating novel

115
MATS Centre for Distance and Online Education, MATS University

Notes possibilities in computing hardware. The evolution of operating

systems: from the first systems, this simply loaded programs up

sequentially into memory, through to modern complex environments

that manage distributed resources over global networks. Operating

systems must balance competing objectives: isolation or controlled

communication, security or accessibility, reliability or failure, high

performance or fairness. The architecture of an operating system is

ultimately a game of tradeoffs: architectural choices differ radically

based on what the system is optimizing for. This fundamental trade-

off dynamic has spawned a diversity of OS types, each optimized for

specific use cases and environments. Batch systems care more about

throughput than interactivity, real-time systems care more about

predictability than general performance, distributed systems care more

about availability than simplicity, and desktop systems care more

about user experience than raw performance. That makes these

distinctions important for students of computer science, since the

operating system one chooses has fundamental implications regarding

the applications that can be built on top of a given operating system,

the performance of the operating system, and what guarantees can be

given to users of applications built on top of a given operating system.

In this Unit we discuss the different types of operating systems that

operated as the backbone of computer systems and analyzing their

goals and architectures as time progressed in computer science

innovation. These variations and the particular problems they solve

give us a sense of both the depth of diversity in computing

environments, and the wide principles that underlie all operating

system design. Operating System Design Goals Operating systems are

about more than abstract design goals they inform the features,

shortcomings, and usability of our computing systems. While

exploring these differing approaches, we will find overlapping

themes in how the designers of these systems manage complex

requirements, balance competing objectives, and address the timeless

issues of resource management and coordination of processes. From

the embedded systems controlling household appliances to the

massive cloud infrastructures powering global services, operating

systems form the fundamental layer upon which all applications run,

thus making their study critical to understanding modern computing.

116
MATS Centre for Distance and Online Education, MATS University

Notes Interactive and Time-Sharing Systems: Prioritizing User

Experience

Interactive operating systems were a radical paradigm shift that

changed the way we related to computers, turning computing

machinery from batch processing calculators into systems that could

respond in something more like closer to human thought processes

and work practices. Interactive systems are characterized by the

presence of a loop that delivers timely responses to user commands,

giving the appearance of having the machine dedicated to the user

even when resources are being shared among many users or

processes. Of particular note in this cohort was time-sharing, which

enabled multiple concurrent user interactions with a single system by

multiplexing control through a rapid switching of attention on the

system by the operating system in order to keep the computing

environment feeling responsive. The initial rise of such systems in the

1960s as illustrated by groundbreaking projects such as MIT's

Compatible Time-Sharing System (CTSS) and even MULTICS

(Multiplexed Information and Computing Service) were not merely

technical advancements but a philosophical reimagining of what the

computing experience should be: that a computer was a utility that

could be always on for many users (as opposed to a constrained

resource that should be carefully docketed). This highlights the central

design goals of interactive systems: maximizing response time to the

user at the expense of raw throughput (the measurement of how much

work a computer can do), leading to complex scheduling algorithms

trading fairness for interactive performance. These systems provided

preemptive multiprogramming, in which the operating system could

interrupt running programs after very short time slices in order to

make sure that no individual program hogged system resources to the

detriment of interactivity. Another important result of time-sharing

research was virtual memory, a mechanism that made it possible for

programs to run as if they had access to more memory than what was

physically present, paving the way in those days for more

sophisticated applications and more efficient use of the memory

among many users working at the same time. With interactive

systems, user interfaces evolved significantly, moving from

command-line interactions, through early graphical user interfaces to

the rich multi-touch and voice driven interfaces we know today. This

117
MATS Centre for Distance and Online Education, MATS University

Notes evolution is illustrative of the continuing effort to make computers

usable for the non-expert while giving powerful abstractions to the

more knowledgeable. The need for protection mechanisms in multi-

user systems led to great strides in security since these systems were

required to prevent users from interfering with each other’s processes

or data. Compounding this demand, architects further needed to

ensure that different processes (types of applications) could not

interfere with each other, so memory protection, file access controls,

and user authentication systems were developed to meet these needs

and laid the groundwork for modern computer security. This is

perhaps the most recognizable form of interactive systems, with

personal computer operating systems including Microsoft Windows,

Apple macOS and multiple distributions of Linux, representing the

maturation of several decades of interactive system development,

bringing time-sharing ideas that had previously been developed for

mainframes into personal computing environments. Modern personal

computers are optimized for a single user rather than multiple

concurrent users, but the low-level mechanisms created for time-

sharing (such as preemptive multitasking and virtual memory with the

concept of protection rings) are absolutely essential for multiple

concurrent applications and system stability. Besides the command

interface itself, interactive systems also introduced concepts like the

shell (command interpreter), hierarchical file systems, and graphical

windowing systems, which remain critical to how users engage with

computers today. The focus on human factors in system design has

resulted in rich research in the human-computer interaction literature

highlighting that technical performance metrics do not capture system

quality well enough — perceived responsiveness, consistency, and

usability translate directly to productivity and user satisfaction. We

are taught that the transition from batch to interactive computing is

one of the great paradigm shifts in all of computing and has had

effects on how computers are designed, programmed and used. The

change shows how operating system design goals directly impact

technical architecture and the overall computing experience, including

hardware design, programming languages and application

capabilities. As computing moves ever forward toward more natural,

context-aware interfaces, the lessons we learned in the formative days

118
MATS Centre for Distance and Online Education, MATS University

Notes of interactive computing are still relevant guideposts to find balance

between technical constraints and human needs.

Real-Time Operating Systems: Ensuring Predictable Timing and

Reliability

A Real-Time Operating System (RTOS) is an operating system with

a real-time application that processes data as it comes in, typically

without buffering delays. Real-time systems differ from general-

purpose operating systems in that most general-purpose operating

systems optimize for average performance rather than guarantee

someone meets deadlines, which is essential in applications like

industrial automation, automotive control systems, aerospace, medical

devices, telecommunication infrastructure and more. What sets real

time systems apart from others is predictability; that is, meeting

constraints to response times within bounds, even at peak loads or

under stress. Such determinism is enforced by custom scheduling

algorithms, avoidance of stochastic mechanisms such as virtual

memory, and careful attention to interrupt latencies and context

switch overhead. Real-time systems fall generally into hard real time,

in which failure to meet a deadline constitutes system failure (like

aircraft flight controls or automotive anti-lock braking systems), or

soft real time, where infrequent failures to meet a deadline degrade

quality but don’t cause catastrophic failure (like multimedia streaming

or telecommunications). This distinction has a very strong

repercussion on architectural choices, as hard real-time systems

typically use static resource allocation and worst-case execution time

analysis to deliver absolute guarantees. For instance, the real-time

operating system employs a fundamentally different scheduler than

that of a general-purpose system, using algorithms such as Rate

Monotonic Scheduling (RMS) that allocate priority based on the

frequency of tasks, or Earliest Deadline First (EDF) which

dynamically determines priority based on which process has the

impending deadline. These strategies help assure that the right

resources get to important tasks in time to meet their limitations even

if they need to be run in front of less time-critical operations. Paging

and virtual memory techniques that allow for indeterminate timing

behavior are usually avoided in memory management for real-time

systems, in favor of static allocation or controlled dynamic memory

allocation with bounded allocation times. I/O operations similarly

119
MATS Centre for Distance and Online Education, MATS University

Notes make predictable timing characteristics by, e.g., using direct memory

access (DMA) and dedicated hardware for the transfer of data

between the I/O device and the processor without being the

bottleneck. Some commercial RTOS implementations like VxWorks,

FreeRTOS, QNX, and RTLinux are mature and cater to a wide range

of industries with diverse requirements of certification, reliability,

and performance. It is worth noting that these systems include

functionality rarely found in general-purpose operating systems such

as priority inversion prevention protocols, deterministic inter-process

communication mechanisms, and timing and synchronization features.

Verification techniques come into play specifically for the

development of real-time systems because they cannot just be

functionally correct, but they also need timing analysis; in most cases,

formal methods are used to prove that a real-time system meets its

deadlines under all possible operating conditions. This level of rigor is

crucial for safety-critical applications where timing failures may

threaten human lives or cause immense economic loss. Embedded

systems, a related category of systems often using real-time operating

systems, impose an additional set of constraints with limited

resources, power efficiency and specialized hardware interfaces.

These devices, from basic microcontroller applications to complex

multi-core systems, frequently require specialized OS environments

designed to optimize resource utilization but still support real-time

guarantees. Another modern trend in real-time systems is the

implementation of time-sensitive networking protocols that can

extend timing assurances across distributed systems. Hypervisors that

run both real-time and non-real-time operating systems on one

hardware are also trending. Finally, artificial intelligence techniques

are continuously applied to real-time systems while providing timing

productivity. The changing landscape of real-time systems Several

applications in mainstream computing are now emerging requiring

timing guarantees that were once only employed in specialized

domains, such as virtual reality, autonomous vehicles, and industrial

IoT hence the increasingly ubiquitous importance of the principles of

real-time computing. The design of real-time operating systems is an

example of how fundamentally divergent goals yield tightly divergent

architectural choices even while performing the same basic sets of

functions for process management, memory allocation, and I/O

120
MATS Centre for Distance and Online Education, MATS University

Notes handling. We have been allowing our systems to become predictable

instead of faster, and this shift has enabled important applications that

become critical where failure is not an option, such as space

exploration and medical devices that sustain human life. As

computation becomes more tightly woven into physical systems that

interact with the world in real time, the principles that drove the

development of specialized real-time operating systems are finding

wider applications throughout the computing stack.

Distributed Operating Systems and Network-Centric Approaches

They are a significant evolution from conventional single-node

computer focused models to a distributed environment where many

Linked computers operate as a single virtual computer. Whereas

traditional operating systems control resources on a single computer,

distributed systems coordinate across multiple machines that might be

spread through worldwide networks, working together for goals that

the machines couldn’t achieve individually. These systems developed

due to the exponential growth of networked computing and the need

for scalability, high availability, and resource sharing between

organizations. Distributed systems are designed to achieve a set of

common goals, including location transparency, allowing users and

applications to access resources without the need to know the physical

location, fault tolerance, where the system maintains the availability

of services even in case of any component failure, scalability, where

the system grows with the increase in the number of users and

resources, and also geographic location of the resources, and

consistent performance irrespective of the hardware heterogeneity of

the system. To satisfy these objectives, more sophisticated

mechanisms for communication, coordination, resource management

and failure detection and handling are needed which go far beyond the

needs of standalone systems. The architectural approaches to

distributed operating systems vary widely, from completely

decentralized peer-to-peer systems in which all nodes are functionally

equivalent, to hierarchical architectures with specialized management

nodes. Client-server models are another common approach which

provide the benefits of both centralization and distribution by splitting

the functionality of the system between service providers and

consumers. More recently, micro service architecture has gained

popularity as a paradigm for building distributed applications,

121
MATS Centre for Distance and Online Education, MATS University

Notes decoupling functionality into small independently deployable services

that communicate over a well-defined interface. Messages can be

delayed, delivered out of order, or not delivered at all. Distributed

operating systems facilitate different forms of communication (such

as remote procedure calls (RPC), message passing, or distributed

shared memory), and use advanced protocols to address those

uncertainties. Clock Synchronization is another fundamental

challenge, since every node has its own idea of time that may deviate

with respect to others, complicating the ordering of events and

carrying out time-dependent operations. In general, process

management in distributed systems consists of traditional scheduling,

process migration (which could be as simple as moving running

processes to other nodes based on load balancing or resource access),

detection of global deadlocks, and global resource allocation. This

allows the system to make more efficient use of available resources

across the network as a whole while still delivering acceptable levels

of performance to individual users and applications. Especially for

distributed systems, one of the most challenging parts is data

consistency and duplication, because if we keep more than one copy,

it might lead to higher availability and performance, but when we

update the data, it would cause inconsistency. Distributed operating

systems support a range of consistency models from strong

consistency that gives the illusion of single copy, to eventual

consistency that allows for temporary divergence with corresponding

tradeoffs in terms of performance, availability and programming

complexity. Several distributed operating systems stand out,

including: Amoeba (VrijeUniversiteit Amsterdam), Chorus (A

microkernel-based OS that started the revolution for distributed

systems), and more recently, Borg and Kubernetes from Google that

schedule containerized applications on Beowulf cluster. Though only

a few pure distributed operating systems have seen extensive

commercial adoption, their principles have had an immense impact on

modern computing ecosystems. Cloud computing platforms such as

Amazon Web Services, Microsoft Azure, and Google Cloud Platform

use many ideas of distributed operating systems at a massive scale,

providing users the illusion of an infinite amount of resources that are

available on demand. Virtualization technologies, which allow

multiple logical systems to share physical hardware, have become

122
MATS Centre for Distance and Online Education, MATS University

Notes foundational techniques for deploying distributed systems, allowing

resources to be abstracted, isolated and managed in heterogeneous

environments. Finally, some models of Distributed Systems today

have autonomous management capabilities, which allow them to learn

the best configuration to use through machine learning and

adjustment through AI. Security issues in distributed settings are

when challenges become most disturbing when continuous attack

surfaces grow with another type of node and every communication

channel. They should also implement comprehensive security

architecture with proper authentication, authorization, export risk

management and intrusion detection across organizational and

geographic boundaries. The gradual replacement of existing operating

systems with distributed ones indicates a paradigm shift in the

understanding of what computing means and what it can achieve,

moving from snapshot- or image-based computation to holistic

systems that are defined more by their connectedness than by their

individual components. As computer technology continues to progress

towards more and more distributed models from edge computing at

the network periphery through to global cloud infrastructures human-

centered design principles as discovered through distributed operating

system research remain vital in guiding system designers aiming to

strike the right compromise of performance, reliability, security and

manageability across diverse, complex networks.

Specialized Operating Systems: Tailoring Design to Unique

Requirements

Outside of the general categories of languages there is a broader

operating systems ecosystem which addresses niche requirements or

constraints in specific domains. These specialized systems are

instances of how the bare metal principles of operating systems can be

repurposed and reshaped into something new that is uniform and

guided by some base constraints, often resorting to extreme design

choices that would be completely unthinkable in any sort of general-

purpose computing, hence perfect for their dedicated environment.

The most common subcategory here is embedded operating systems,

which power the billions of dedicated computing devices baked into

everything from cars and appliances to industrial equipment and

consumer electronics. These systems are typically resource-

constrained in terms of memory, processing power, energy

123
MATS Centre for Distance and Online Education, MATS University

Notes consumption and reliability, many of them requiring deterministic

operation over years of continuous operation without user

intervention. Operating systems such as FreeRTOS, Zephyr, and

Rethread all prove that embracing a more minimalist design approach

can deliver a capable operating system with memory footprints in

kilobytes rather than gigabytes, and are perfect for microcontrollers

with limited resources. Operating systems for mobile devices, such as

Android and iOS, have become a class of their own, combining the

interactivity of desktop systems with the resource-depleted

environment and alternate interaction model that mobile devices have.

These systems are optimized for energy efficiency, touch based

interfaces, connectivity, and security based on the personal nature of

mobile devices. The design picks a number of the classic trade-offs

on mobile systems, including higher application isolation, per-

application permissions and complex power management that to be

definitively increases battery utilization by doing usage allocation and

lessening background activity. High-performance computing (HPC)

operating systems cater to the specific requirements of

supercomputers and large computing clusters utilized in scientific

simulations, weather forecasting, genomic analysis, and various other

computationally demanding applications. Advanced job scheduling

for batch workloads, support for extreme parallelism across hundreds

or thousands of processors and optimized communication facilities on

the hardware level for tight-coupled parallel programs are built into

systems such as Cray Linux Environment and IBM Parallel

Environment. Since these systems are designed for machine

workloads, and not man-computers use, instruments are applications

that prioritize established computation throughput and efficient

resource utilization over the interactive responsiveness. Exadata and

Oracle RAC, as systems which combine traditional operating systems

functionalities as implemented with specialized functionalities for

data processing, storage management, and transaction management,

use special purpose systems for data management and data

interaction. Such systems employ advanced buffer management,

query optimization, and concurrency control techniques tuned for

data-specific workloads, often eschewing general purpose operating

system facilities altogether to ensure higher performance through

direct access to the hardware device. Network operating systems (like

124
MATS Centre for Distance and Online Education, MATS University

Notes Cisco IOS, Juniper JUNOS, and VyOS) are used for running the

network infrastructure equipment (like routers, switches, and

firewalls). Such systems are designed to process packets at an

extremely high throughput, manage traffic, and remain highly

available under very high loads, often with some form of a real-time

scheduler to ensure the network functions well even during peak

demand times. Again, systems such as VMware ESXi, Microsoft

Hyper-V, and Xen are another more specialized category providing

the abstraction and multiplexing of the physical hardware that offers

support for several guest operating systems on the same infrastructure.

Hypervisor-based systems have advanced resource management,

isolation, and emulation capabilities that provide the ability to run

multiple different operating environments together on the same

hardware bases. Operating systems that fall into safety-critical

categories — which cover aerospace, medical devices, nuclear

facilities, and automotive applications — typically use formal

verification, redundancy, and fault-tolerance mechanisms that exceed

those found in consumer devices. INTEGRITY, LynxOS and PikeOS,

for example, are designed for meeting stringent certification

requirements such as DO-178C (airborne) or ISO 26262 (automotive)

where the correctness of critical system components can often be

proven mathematically. For example, security-controlled OSs -- such

as SEL4 (with its formally verified microkernel), Qubes OS (with its

threat model that emphatically prioritizes isolation) and Open BSD

(which approaches secure defaults, and process separation) -- favor

the maximization of attack surface as opposed to features or

performance, making architectural decisions that systematically

discard whole classes of threats. They prioritize the correct drawing

and playback of multimedia content in real time according to

parameters like scale and type via specialized scheduling and resource

management, all while ensuring the sound and visuals remain in sync

regardless of system load. Over these 50 years operating systems

concepts have proven extremely adaptable over even very different

environments and requirements as evidenced by the great variety of

these specialized operating systems. Though the basic functions of

process management, memory allocation, and I/O handling are

universal, their wildly divergent design goals for their ecosystems

lead to unique architectures crafted for specific use cases. The

125
MATS Centre for Distance and Online Education, MATS University

Notes specialization trend continues to accelerate as computing is seeping

into all manner of new domains, from wearable’s to smart home

systems to autonomous vehicles to industrial IoT applications, each

with its own set of unique requirements that influences how operating

systems are designed. By studying these specialized systems, we gain

valuable insights into the flexibility of OS principles and the powerful

effects that design goals can have on the architecture of a system,

lessons that we can apply hopefully to innovation even with more

general-purpose computing.

Future Directions and Emerging Paradigms in Operating System

Design

So continues the evolution of operating systems as we seek to broaden

the scope of computing and face increasing complexity and

challenges that test the limits of the designs we have known. A dozen

or so trends are revolutionizing operating system design, fueled by

hardware advances, evolving usage patterns, and pressing needs for

security, efficiency, and adaptability in an interconnected world.

Cloud computing, along with edge devices, is driving a sea change in

the architectural distinction of operating systems and how that

functionality is spread across computing environments. Edge

computing is blurring traditional delineations between local and

remote execution, and is giving rise to new operating system

paradigms that enable the seamless relocation of processes, data, and

state from edge devices to cloud infrastructure (and vice versa) in

response to dynamic conditions, resource availability, and application

requirements. Such a distributed execution model calls for operating

systems able to operate across heterogeneous hardware while

maintaining coherent application state and security across trust

boundaries. Operating system functions are increasingly powered by

artificial intelligence, which allows for adaptive resource management

and predictive optimization with autonomous operations that exceed

static policies or heuristics. Machine learning or AI-based operating

systems can offer benefits in areas such as pre-fetching and

scheduling based on system usage patterns (more on this in the next

section), optimizing power consumption for anticipated workloads,

discovering anomalies from baseline usage patterns that may correlate

with potential security hazards, and automatically re-tuning system

parameters to maximize application performance as requirements

126
MATS Centre for Distance and Online Education, MATS University

Notes change. The transition to self-tuning systems encapsulates a radical

move away from the deterministic, rules-based systems that have

defined operating system design for decades, for systems that improve

themselves over time through usage. Architectural innovations that

fundamentally rethink traditional operating system models are being

driven by security and privacy concerns. Increased threats are

pushing techniques such as capability-based security, formal

verification of critical components, and hardware-enforced isolation

from the research realm into the real world. Perimeter-based security

models are being supplanted by zero-trust architectures that require

every access request to be validated irrespective of its origin, and

privacy-preserving computation methods such as homomorphic

encryption and secure enclaves are now being built into operating

system services. Security as a Fundamental Design Principle that

Shapes Core Operating System Architecture These developments

make a departure from security as an add-on feature to security as a

fundamental design principle. The booming world of Internet of

Things (IoT) devices is forcing innovation in lightweight operating

systems that can run on limited hardware and that participate in

distributed applications that potentially involve hundreds or thousands

of devices. This trend is evident in the various operating systems (OS)

for embedded devices, such as RIOT, TinyOS, and Amazon

FreeRTOS, which provide sophisticated functionality that is also

highly resource-efficient. This includes new network protocols

designed for low-power, low-bandwidth wireless communication;

discovery mechanisms allowing battery-powered devices to

efficiently find services; and security models that are both lightweight

and suitable for unattended operation in the face of possible attacks. It

also hints how containerization and micro services architectures are

transforming application deployment models, with operating systems

adapted to this model. Some third-party operating systems built

specifically to host containerized applications include those from

CoreOS (now owned by Red Hat), RancherOS and Google

(Container-Optimized OS). They are designed with the bare

minimum components required for what they do. This specialization

trend is a return to purpose-built OSs, following decades of

convergence onto general-purpose platforms, driven by virtualization

technologies that allow many highly specialized systems to co-exist

127
MATS Centre for Distance and Online Education, MATS University

Notes on shared infrastructure. The use of quantum processors, based on a

range of principles that differ fundamentally from classical designs,

poses possibly the most dramatic challenge to traditional designs for

an operating system. New quantum operating systems face unique

challenges such as qubit allocation, quantum error correction and the

fusion of quantum and classical processing. Although functional

quantum computers are still being developed, the operating systems

used by these devices are likely to need completely new abstraction

and resource management paradigms more similar to nature than to

classical operating systems. The increasing focus on sustainability

and energy efficiency is driving the operating system design from the

mobile devices being designed to maximise battery life to data centres

being designed to lower their carbon footprints. Energy-aware

scheduling, dynamic voltage and frequency scaling across multiple

cores, workload consolidation, intelligent resource hibernation, and

other techniques are being developed into fundamental components of

the operating system, rather than merely optional power-saving

features. This move shows that more and more people are starting to

understand that energy efficiency is not just an operational issue but

the core design constraint that should inform system architecture from

the ground up. Operating systems innovations that minimize latency

and provide consistent performance guarantees in haselwareeug

applications are driven by real-time analytics and event processing

requirements. The well-known batch-oriented paradigms are replaced

by the stream processing model able to manage continuous data flows

with predictable processing times, supported by operating systems

functionalities designed to achieve such a behavior. This historical

bifurcation has blurred, and both workloads need to coexist on

systems that efficiently support both whilst maintaining isolation

where required. Together these emerging paradigms imply a new era

of radical innovation in operating system design, rivaling the

paradigm shift from batch to interactive computing or the rise of

distributed systems. With the ubiquity of computing, its increasing

complexity, and its integration into essential infrastructure, operating

systems should move beyond acting merely as resource managers of

stand-alone platforms and instead become orchestration systems for

heterogeneous sets of distributed computational resources that can

self-adapt to novel operating conditions and needs. The operating

128
MATS Centre for Distance and Online Education, MATS University

Notes systems of tomorrow are likely to be based on a greater degree of

specialization (largely thanks to specialization in hardware and

firmware as well) running on tightly-coupled interoperation;

continuous self-optimization based on AI; active security models

rather than passive ones; and design paradigms treating sustainability

directly as a design goal rather than as a side consideration to

performance, or reliability, etc. We aren’t simply going to add to the

existing space of operating systems; What these changes will do is

change the nature of what an OS is and what is an OS to applications,

to us to the outer environment. Operating systems is one of the few

aspects of computer science that has tangential implications on

almost everything; they are foundational systems that either enable or

constrain what can be accomplished in computing, so it should come

as no surprise that this field remains centrally located to many of the

most exciting problems and opportunities in computer science today.

Multiple-Choice Questions (MCQs)

1. Which of the following best defines an Operating System?

a) A collection of programs that manage hardware

resources

b) A software used for document processing

c) A hardware component of the computer

d) A program used to browse the internet

(Answer: a)

2. Which is NOT a function of an Operating System?

a) Process management

b) Memory management

c) Compiling programming languages

d) File system management

(Answer: c)

3. What is the main purpose of system calls?

a) To provide an interface between user programs and the

OS

b) To execute application software

c) To compile programs

d) To manage network devices

(Answer: a)

129
MATS Centre for Distance and Online Education, MATS University

Notes 4. Which type of OS executes jobs one at a time without user

interaction?

a) Multi-programming OS

b) Time-sharing OS

c) Batch processing OS

d) Real-time OS

(Answer: c)

5. Which of the following is an example of an Operating System

service?

a) File creation and deletion

b) Providing direct access to hardware

c) Executing JavaScript in web browsers

d) Playing multimedia files

(Answer: a)

6. Time-sharing operating systems are designed for:

a) Running a single program at a time

b) Providing fast response time to multiple users

c) Executing batch jobs sequentially

d) Eliminating multitasking

(Answer: b)

7. Which system call is used to create a new process in

Unix/Linux?

a) exec()

b) fork()

c) open()

d) exit()

(Answer: b)

8. Which OS structure follows a hierarchical design with layers?

a) Monolithic OS

b) Layered OS

c) Distributed OS

d) Network OS

(Answer: b)

9. Which design goal focuses on ensuring an OS remains

operational despite failures?

a) Security

b) Portability

c) Reliability

130
MATS Centre for Distance and Online Education, MATS University

Notes d) Efficiency

(Answer: c)

10. Which of the following is NOT an OS design goal?

a) User convenience

b) System security

c) Hardware development

d) Efficient resource allocation

(Answer: c)

Short Questions

1. What is an Operating System, and why is it needed?

2. List three primary functions of an OS.

3. Define batch processing operating system.

4. What is time-sharing OS, and where is it used?

5. Explain the purpose of system calls.

6. What is the difference between multi-programming and

multitasking?

7. Describe two key services provided by an OS.

8. What is the role of the kernel in an OS?

9. Explain the concept of monolithic vs. layered OS structures.

10. Why is security an important OS design goal?

Long Questions

1. Explain the need and functions of an operating system in

detail.

2. Compare and contrast batch processing, multi-programming,

and time-sharing OS.

3. Discuss the main services provided by an operating system.

4. Explain system calls with examples and their role in OS

functionality.

5. Describe different operating system structures and their

advantages.

6. How does the design of an OS affect its performance and

usability?

7. Explain the importance of OS reliability, efficiency, and

security in modern computing.

8. Discuss the role of the kernel and user space in OS

architecture.

131
MATS Centre for Distance and Online Education, MATS University

Notes 9. How does an OS manage process scheduling and memory

allocation?

10. Explain different types of operating systems and their real-

world applications.

132

MODULE 2

PROCESS MANAGEMENT AND

SYNCHRONIZATION

LEARNING OUTCOMES

• To understand process concepts and states.

• To explore process control and operations.

• To analyze process scheduling and CPU scheduling

algorithms.

• To study inter-process communication and synchronization

techniques.

• To examine deadlock characterization and handling

mechanisms.

133
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Process Concepts

2.1 Process Concepts

Aforementioned processes. times and speeding the instruction

processing. Control Unit; The control unit (CU) is in charge of

managing the instructions (pipelining) fetch and execute different

instructions at the same time (in different stage of the cycle)

significantly improves instruction throughput. Additionally, the

processor architecture uses caching techniques to temporarily store

frequently needed data in fast-access memory that is physically close

to the CPU, dramatically reducing memory read system performance,

and CPU designers have invested in improving the performance of

individual stages of this cycle. Overlap of fetch-execute of multiple

perform some complicated calculation. Thus, this cycle efficiency

directly dictates to is stored back to either memory or a register. And

it continues infinitely in the same fashion, so the CPU can process a

flow of instructions and an arithmetic/logic operation, data transfer,

or change control flow. The final output of the execution the fetched

instruction (opcode and operands). After decoding, the CPU executes

the instruction – which could be (a register that keeps track of the

instruction currently in execution). Once fetched, the instruction is

decoded, in this step, the CPU identifies the operation to be done from

loaded into memory of computer. The CPU starts by fetching an

instruction from the memory; the address is determined by the

program counter the fetch-decode-execute cycle, is the basic way

CPUs do stuff. When a program begins execution, the instructions it

needs are that must be completed in order: fetch, decode, execute and

write back. This cycle, called to understanding how computers

operate at a fundamentally low level. At the core of how a CPU

operates is the instruction execution process, which is a series of

actions interplay of processes that allow it to carry out commands and

handle information. Learning these processes are key The CPU's

functionality is based on a complex Other running processes. not in

RAM at the time. These mechanisms are essential to support multiple

processes running concurrently without affecting the to process

memory beyond the one physically accessible to it, extending the

address space by treating secondary storage as an extension of RAM.

MMU is the part of the computer that takes care of the address

134
MATS Centre for Distance and Online Education, MATS University

Notes translation, the process of converting virtual addresses to physical

addresses, and page faults, which happen when a process tries to

access a page that is memory, and ensuring data integrity. Virtual

memory is a technique that gives the CPU uses that is, the layers of

memory it works with, such as registers, the cache, main memory

(RAM) and then secondary storage. Memory management consists of

allocating and deal locating memory to various processes, processing

virtual memory is equally important. And the hierarchical memory

that multitasking environment. As with execution of process,

managing will be finite. These types of scheduling algorithms are key

for fairness and responsiveness in a shortest execution time. With

this, no single process can gain control of the CPU for too long as the

CPU time allocated for a process to execute of resources and

minimize wait times. This algorithm "First Come First Served" means

that the processes are scheduled in the order they arrive, and the

second is "Shortest Job Next" which decides based on the state,

which is then loaded into the context of the next process that is going

to be executed. The operating system scheduler uses algorithms such

as First-Come, First-Served (FCFS), Shortest Job Next (SJN), and

Round Robin to determine the order in which processes are executed

in order to optimize the use by giving time slices to each process and

doing context switches extremely faster. This is the process of

switching the context, which means the current process must save its

of contemporary operating systems. The CPU does this involved in

many concurrent processes with concurrent threads using scheduling

algorithms and memory management. Multitasking, the ability to run

many programs at once, is one of the pillars The core of the CPU is

the instruction cycle but it is and exceptions are critical in their ability

to allow systems to respond promptly to incoming events and

exceptions. Exception handlers is not stored in memory, instead, the

CPU accesses the interrupt descriptor table (IDT), which contains an

entry representing the address of the handler for each interrupt or

exception vector. Interrupts to an interrupt controller, which decides

their priority and dispatches them to the CPU. The location of

interrupt and in keeping the system stable and preventing errors from

cascading through the system. Interrupt requests are sent that takes

proper actions to rectify the wrongdoing. Exceptions play an

important role event alerts emitted by the CPU itself when any errors

135
MATS Centre for Distance and Online Education, MATS University

Notes or unusual conditions, such as division by zero, invalid memory

access, or illegal instructions, occur. Similarly, when an exception

gets raised, the CPU as well gives up on its current instructions and

passes control to an exception handler happens, or, any hardware

devices need to be read, cpu gets interrupted. Exceptions are the

continues its previous execution after the interrupt has been handled.

When data is needed from storage, or, a network event handler, a

special routine set up to deal with the interrupt. The CPU restores the

saved state and the CPU. When an interrupt happens, the CPU pauses

its current operations, saves the current state, and branches off to an

interrupt can react to external events and error conditions. Hardware

devices like keyboards, mice, and network interfaces generate signals

to initiate an interrupt request to these are vital mechanisms any CPU

must have in place so it and multicore design, enabling better

performance and more complex task processing. In addition, CPU

architecture has evolved to incorporate features such as parallelism

tasks can be executed simultaneously through the use of multicore

processors, which is crucial to meet the growing performance

requirements of modern applications. and throughput. These topics

allow you to understand how computational a common address space

and resource pool, making them lighter than processes.

Multithreading enables applications to execute multiple threads

simultaneously (including background computations while

responding), which improves responsiveness create multiple threads

of execution. Threads have systems and allow performance gains for

applications that can use parallel processing. Another technique that

improves Parallelism is threading, allowing a process to have

multiple cores, each of those cores can do things autonomously

executing its own specific instructions and managing its own

resources. Multicore processors are everywhere nowadays in

computer threads/processes.

If you branch (conditional branch instruction) will go, in order to

reduce the amount of penalty cycles that occur from branch

instructions. This feature of Multicore processing integrates many on-

chip CPU cores together, enabling simultaneous execution of

numerous units in the CPU so the CPU can execute multiple

instructions at the same time. Branch prediction is the process of

guessing which way a executed at various stages simultaneously.

136
MATS Centre for Distance and Online Education, MATS University

Notes This means that there is multiple execution a CPU core, which makes

it possible for the processor to carry out several instructions at a time.

Pipelining splits the instruction execution cycle into stages, so you can

have several instructions being instructions (monads) simultaneously

using one core or even across multi-cores. Techniques like pipelining,

superscalar execution, and branch prediction enable instruction-level

parallelism (ILP) within Parallelization means executing the multiple

process is basically a program in execution, which includes the

program code, the current activity represented by the value of the

program counter, and the contents of the processor's registers. an

operating system schedules computational task. A active entities

(representing running programs) that are owned, scheduled, and

managed by the OS. Learning about the process state and CPU

utilization is essential to understand how A modern operating

system's core functionality is process management, where processes

are processes. and it is taken out of the system. The process scheduler

in the operating system takes care of this complexity by ensuring

efficient usage of the CPU and equitable distribution of resources to

competing to the ready state as well. Finally, when it completes its

work or if it is terminated by a user or system, the process enters the

'terminated' or 'exit' state, during which its resources are freed the

process returns to the 'ready' state until it gets a chance to use the

CPU. A process can also be preempted by the operating system,

usually because it has run out of its time slice, or because a higher-

priority process needs to run, sending the process back does not

execute until the needed resource is released or the event it is waiting

for gets finished. Next, once the condition is satisfied, process may

give up the CPU voluntarily, for example, when it needs some input

from user or to read from a file, it moves into the waiting or blocked

state. While in this state the process not permanent. A this state, the

queue executes its operations with an active CPU. But this running

state is 'running'. In the CPU to become free. So the scheduler is an

important part of an operating system, which picks one of the

processes from the ready queue and allocates it the CPU which passes

the state of the process from 'ready' to process starts in the 'new' state,

adopting a process life-cycle when it’s creating or loading itself into

memory. On successful creation, it moves into the ready state,

indicating that it is ready to execute and is waiting for and other

137
MATS Centre for Distance and Online Education, MATS University

Notes system resources. A By evolving through a series of states throughout

its lifecycle, this abstract entity indicates its relationship with the CPU

Issues. and responsiveness. As an administrator, tools like your task

manager and performance monitoring utilities give real-time insight

into your CPU utilization, enabling rapid assessment and adjustment

for performance low CPU usage indicates that the CPU is not being

fully utilized, which might mean that certain resources are left idle, or

that scheduling is inefficient. CPU Usage Basics CPU utilization is

one of the most essential metrics for both system performance slowly

spinning, may raises response time, indicates the CPU is greatly

loaded. On the other hand, system loads and potential bottlenecks.

Very high CPU usage, is by assigning them equally sized time slices.

The operating system keeps track of CPU utilization using hardware

timers and performance counters to provide information about

Number) can be starvation. It ensures fairness among processes next

(SJN): It is concerned with processes that have the shortest execution

time. In Priority Scheduling, every process is assigned a priority

number, and the CPU is allocated to the process with the highest

priority number (Lowest for short processes. Shortest job Job Next

(SJN), Priority Scheduling, Round Robin, etc. The simplest CPU

scheduling algorithm is First-Come, First-Served (FCFS) which

simply assigns the CPU to the processes arriving first but can cause

long wait times algorithms designed to maximise CPU usage with

fairness and responsiveness. The common types of scheduling

algorithms are First-Come, First-Served (FCFS), Shortest types of

scheduling algorithms in the operating system to decide which process

will get the CPU at a particular time. They are different gets CPU

cycles. We use different utilization is the fraction of time the CPU is

active doing non-idle work. CPU utilization refers to the percentage of

time that a CPU is busy checking the state of processes, and when a

process is in the running state, it figure for applications monitoring.

CPU the central processing unit and the brain of your computer; it

runs instructions and processes calculations. Its usage is an important

The CPU is Fairness and responsiveness to make sure that every

process gets a fairly different share of the CPU time. that is holding

back for low priority processes for too long and it would be not

executed in a crude manner." The scheduling algorithm should be

designed such that it can balance between that important tasks are run

138
MATS Centre for Distance and Online Education, MATS University

Notes quickly. But, if all the processes get assigned priority at all time, then

that could lead to starvation; the scheduler. Generally, high-priority

processes get the CPU a lot more than low-priority processes, so

context switching is a key to reducing overhead while maximizing

CPU usage. The OS also manages process priorities which can affect

decisions made by data. Now, fast saves the state of one process and

load the state of the second process. This process also comes with

overhead in terms of the time taken to store and retrieve all register

values, memory mappings, and process-specific and thus controls the

selection process. But switching is a vital job of the scheduler and we

are the one who CPU. The scheduling algorithm determines in what

order processes are run, the state of becoming ready. When a process

is forced to wait or made to relinquish the CPU, the scheduler takes

another process from the ready queue to share the SJN are examples

of non-preemptive scheduling algorithms, where process can run to

completion w/o interruption and thus long wait times for other

process. It also maintains the ready queue that connects all the

processes in the utmost importance. FCFS and process, adding it to

the in-wait queue and giving the CPU to another process so no single

process owns the CPU for a long time. This is especially critical in

interactive systems, where responsiveness is of long it has been

executing for, and what resources the process needs, in order to make

educated guesses on what process should be allocated the CPU. For

example, a preemptive scheduling algorithm like Round Robin or

Priority Scheduling allows the operating system to suspend the

execution of a an involved endeavor that must consider numerous

conflicting goals regarding CPU utilization, waiting time, and fairness

among competing processes.

139
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Process State

2.2 Process State

The scheduler needs to also consider factors like process priority, how

Process scheduling is in order to optimize performance and remain

responsive. Through process system calls. It helps to understand the

process state and CPU utilization and communication. When a

program needs to interact with the operating system (e.g. to perform

file I/O, memory allocation, or create a new process), it uses manage

shared resources. You are using it to process management features

followed by the Linux operating system, including process creation,

termination, processes, ensuring data consistency and eliminating

race conditions. There are such as semaphores, mutexes, and monitors

to synchronize processes and process at previous executions. In

addition, the scheduler is responsible for inter-process communication

and synchronization: the coordination between several balancing is

an important part of multi-processor scheduling when processes are

evenly distributed among the available cores so that no core becomes

a bottleneck. To improve performance and minimize cache misses, the

scheduler must account for cache affinity, or the relative caching

similarity of a processors so that the maximum parallelism can be

achieved and consequently, the performance. Load process

scheduling gets a little harder. The operating system has to spread

processes over multiple cores or So with the modern-day multi-core

and multi-processor systems, the CPU resource allocation, the

operating system allows applications to run efficiently, ensuring a

stable and reliable computing environment. Management and

resulting in chaos and instability in the system. Switch In the absence

of the PCB, the OS would not be able to distinguish between

processes, processes; which resources are being used? This data

structure is crucial for smooth multitasking as it allows the OS to

switch between processes efficiently, a procedure called a context the

OS’s dossier on every running program, containing critical

information that informs the operating system so it can correctly

allocate and coordinate their execution. When a program is start, OS

make matching PCB, which contains information about the state of

the delicate art of multitasking, where multiple programs compete for

the attention of the CPU, the PCB serves as an individual identity card

140
MATS Centre for Distance and Online Education, MATS University

Notes for each process, containing and preserving intrinsic and extrinsic data

about the state of a process.

Figure 8: Process State Model
[Source - https://www.researchgate.net/]

141
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Process Control Block

2.3 Process Control Block

In other words, its key structures used by an operating system is the

Process Control Block (PCB), which serves as the main repository of

information about the running processes. In the One of the processes

is currently running, in a ready state, or waiting, or has been

terminated. Multifaceted concept. The process state is a key

component that signifies if a A PCB itself can do many, and like

process management itself, is a of each process. can separate it from

others. These data points are aggregated within the PCB, which

allows the operating system full control and accounting info provides

resource usage like CPU time and memory usage. Lastly, the process

ID uniquely identifies itself among all the processes so the OS

allocated CPU time. Status info tracks the allocated input/output

devices for the process, tables and segment tables, control how the

process accesses memory. Moreover, the process control block (PCB)

stores scheduling information such as process priority and scheduling

queues the OS uses to decide which process should be registers,

along with the PCB, and preserves the computational state.

Information about memory management facts, like page the context

switch. Temporary data that is utilized by the process is stored in CPU

A context switch involves saving the state of the currently running

process, and restoring the state of the next scheduled process, the

program counter is a critical part of that state that tells the CPU where

to resume execution of the process after place and allowing it to

quickly switch from one task to the next. of performance, and the

PCB serves to minimize the overhead associated with this operation.

PCB becomes the building block that makes the context switching

process possible and less complicated by allowing the OS to store all

the needed information in one allows the new process to continue

where it left off the other process. For multitasking operating systems,

the efficiency of switching contexts is a key determinant PCB into

memory, which allows the OS to restore its saved state by copying the

data stored in the PCB back into the CPU registers. These process

other relevant data in the PCB of the process. Then, the OS loads the

next process's running process. It does this by storing the CPU

registers, program counter, and context switching. When the OS

142
MATS Centre for Distance and Online Education, MATS University

Notes wants to switch from one process to another, it first has to save the

state of the currently The PCB is especially useful during from

destabilizing the rest of the system. PCB's are stored in a protected

area of memory that normal users cannot access. This prevents

malicious (or inadvertent) data corruption importance. That's why it

has a smooth and efficient computing environment. DONOTSPEC in

PCB is of utmost share data and synchronize their actions. In short,

the PCB acts as the OS's main mechanism for process management

and control, which helps that higher-priority processes get more CPU

time. In addition, it provides intercrosses communication as a means

for processes to like memory, input/output devices to the Processes.

The PCB also enforces process priorities and scheduling policies,

ensuring for resource management and process synchronization. PCB

contains all the information, which is used by OS to allocate and

deallocate resources In addition to context switching, the PCB is also

crucial

2.4 Operations on Processes

We also explore how the operating system, as orchestrator, manages

the processes (the unit of executing code) in the system, including the

method of scheduling those processes. Helpful for tuning resource

allocation and ensuring responsive UX. Processes are created and

executed, suspended, resumed, and terminated over their lifecycle.

Process creation is typically triggered by user input or software events

and involves allocating the necessary resources, such as memory and

file descriptors, and establishing the context in which the process will

Figure 9: Process Control Block
[Source - https://techspace.co.th]

143
MATS Centre for Distance and Online Education, MATS University

Notes execute. The CPU needs to save relevant data so it can resume

execution from where it left off, such as the program counter, registers

etc. The operating system keeps a data structure called the process

table, which holds the information about every process, which allows

it to manage state and a much greater detail about processes. The

process states are — new, ready, running, waiting, terminated and

they represent the various stages a process undergoes in its lifecycle.

Processes transit between these states due to events like I/O requests,

time-slice expirations, and process termination. That is, from the

running state, the process maybe move to the waiting state whenever

it asks for I/O, the when it finishes with the I/O, process get back to

the ready state. Explanation: The IPC, or also known as inter-process

communicational low communication and data transmission between

multiple processes PIPE; In computing, a pipe is a mechanism for

connecting the output of one process to the input of another.

Graphically represented as a message queue is a queue of messages

that can be read and written by different processes or threads. These

are essential for cooperation, where one process needs to wait for

another to finish a task or share data, and so on. The OS exposes

system calls which the processes use to leverage these IPC

mechanisms for controlled and secure communications. The last phase

is Process termination, where all allocated resources are released and

the process is removed from the process table. This returns system

resources, making them available for use by other processes. The OS

also needs to deal with unexpected terminations, like crashes or users

force-quitting, to ensure system integrity. This means that the

operating system needs to handle all processes, allowing them to run

concurrently and ensuring a seamless user experience. CPU

Scheduling is an OS function that chooses one of the ready processes

to be allocated CPU at a given time.

Goal of CPU scheduling:

1. CPU utilization should be high

2. Throughput should be high

3. Turnaround time should be low

4. Waiting time should be low

5. Response time should be low

6. Fairness.

144
MATS Centre for Distance and Online Education, MATS University

Notes There are two types of scheduling algorithms Preemptive and Non-

preemptive. In non-preemptive scheduling, when a process gets the

CPU, it holds it until it terminates or relinquishes the CPU by its own

accord. First-Come, First-Served (FCFS) is a simple non-preemptive

algorithm that handles the CPU to the process that arrives first.

Additionally, FCFS is straightforward to implement but can suffer

from the convoy effect, as a long process can block multiple smaller

ones, producing a poor average waiting time. Shortest-Job-Next (SJN)

~ SJN is non-preemptive which selects the process with a minimize

burst time. Shortest job next is an optimal algorithm for minimizing

average waiting time, but it needs knowledge about future burst times,

which is often impractical. On the other hand, preemptive scheduling

permits the operating system to suspend a currently executing process

and pass the CPU to another process. RR is a preemptive algorithm

that gives each process a fixed time slice, or quantum. If a process

fails to finish within its time quantum it is preempted and placed at

the end of the ready queue. When RR can ensure a fair share of the

CPU to all processes, small time slice can cause excessive context

switching, leading to lower CPU efficiency. Shortest-Remaining-

Time (SRT) is a preemptive implementation of SJN, which, at any

point in time, chooses the process with the shortest remaining burst

time. The Shortest Job First (SJF) algorithm, though has minimum

average waiting time, it hinges on accurately predicting burst times

and may lead to starvation for longer processes. We assign priority to

each process in priority scheduling and allocate CPU to the process

that reaches with the highest priority. Static or dynamic priority,

preemptive or non-preemptive. Therefore while preemptive priorities

scheduling can preferentially run higher-priority processes, it cannot

starve low-priority processes. This can be mitigated by using aging

techniques wherein the priority of a process increases overtime.

Multi-level queue scheduling It splits the ready queue into multiple

queues. Processes are queued according to their properties, like

whether they are foreground or background processes. The multi-level

feedback queue scheduler is considered one of the most flexible and

responsive process scheduling algorithms, as individual processes are

able to be moved between queues based on their behavior.

In process management and CPU scheduling, context switching is an

important operation performed by the operating system. Simply put,

145
MATS Centre for Distance and Online Education, MATS University

Notes this is the process of saving the state of the currently executing

process, and loading the state of the next process that needs to

execute. This includes information such as the program counter,

registers, and memory management. When a process gets preempted,

blocked, or terminated, or a new process is chosen to run, the

operating system must switch context. Context switching is an

essential function in operating systems, enabling multitasking by

switching between processes, but it comes with an overhead. Both the

time slices and scheduling algorithms affect how often context

switching happens. In Round Robin Scheduling, a time slice that is

too small would cause lots of context switches. Operating systems

make use of context switching optimization techniques like keeping

the context switching routine fast and utilizing hardware level support

by having special registers that stores process states. Context

switching must be efficient so that CPU resource usage stays high

and the system responds quickly. The underlying OS must balance

between the overhead of context switching to ensure fairness and

responsiveness, and minimizing overhead to maximize CPU

throughput. Scenarios such as real-time systems that must prioritize

the timely execution of critical tasks are another case where efficient

context switching is a necessity. Reducing the context switching

latency can be more critical for these types of system to maintain the

deadlines and improve the system stability. Modern operating systems

utilize advanced techniques to enhance task-switching efficiency

such as lazy context switching (only saving or restoring the context

that is actually needed) or hardware-accelerated context switching that

uses specialized hardware to speed up the process. The relationship

between process operations and CPU scheduling forms the basis for

the efficient operation of a computer system. You need to be able to

do so with one of multiple processes using multiple operating

systems. It is essential to utilize CPU scheduling algorithms that will

enhance the efficiency of the system to meet the demands of the

workload being processed. You also learn about the trade-off

between different scheduling algorithms, and the effect of context

switching overhead. Advancements in operating systems have

resulted in advanced scheduling algorithms and process management

approaches that can accommodate a wide range of workloads and

system needs. Machine learning and artificial intelligence techniques

146
MATS Centre for Distance and Online Education, MATS University

Notes will likely become an integral part of future operating systems for

advanced process management and CPU scheduling. Hardware and

software co-designs would keep complementing each other leading to

better performance and responsiveness and energy efficient systems.

This cycle continues as operating systems strive to optimize both

process operations and CPU utilization for efficiency and

responsiveness, creating a robust environment for application

execution and user engagement. Inter-Process Communication (IPC)

is a fundamental concept in operating systems and is especially

important in modern computing environments with concurrent

processes. It ensures these processes can communicate and

synchronize with each other, allowing them to exchange data,

coordinate actions, and work together toward a common goal. Such

inter-process interaction forms the foundation for developing

sophisticated applications that tap into the strengths of multi-tasking

and parallel processing. When it comes to CPU utilization, effective

IPC mechanisms play a vital role in boosting system performance.

2.5 Inter-Process Communications

The idea of inter-process communication (IPC) is quite standard

practice, but it can go wrong, and you will end up with bottlenecks,

context switches, and overhead, which can slow down CPU

performing tasks. On the other hand, well-designed IPC mechanisms

support efficient data transfer and synchronization between processes,

helping to keep the CPU busy and minimize inefficiency. IPC covers

various approaches, each with pros and cons, to cater to different

communication requirements and system architectures. Some of these

include shared memory, message passing, pipes, sockets,

semaphores, etc. The ideal approach depends on the specific

requirements of a program and the characteristics of its workload;

knowing the difference between these methods is important for

maximizing a CPU's performance and maintaining the efficiency of

multi-process systems. Shared memory, for example, provides fast

communication by allowing processes to each access that same region

of memory. But it requires synchronization, lest you corrupt your

data. In contrast, message passing is a more structured form of

communication, where processes send messages to one another via a

communication channel. This approach comes in handy for

distributed systems or when processes are running on different

147
MATS Centre for Distance and Online Education, MATS University

Notes machines. Certain IPC mechanisms are chosen based on the

communication latency, data size, and the complexity of

synchronization needed. Through effective IPC, normal applications

become more practical and system reliability and responsiveness are

improved, all of which lead to higher CPU usage IPC is facilitated at a

lower level by the CPU, which handles the hardware resources and

executes the communication primitives associated with IPC. When

processes communicate, whether via IPC, the CPU is responsible for

transferring the data, synchronizing operations and ensuring that the

communication protocol is addressed. For instance, in shared memory

intercrosses communication, it is the CPU that must coordinate access

to the shared memory region, enforce memory protection, etc. In

Message Passing, the CPU is responsible for buffering messages and

directing them to the destination process. The number of such

operations is directly proportional to the performance of the IPC

mechanism and hence utilization of the CPU. Context switching is a

very important operation in a multi-processing environment that is

invoked during IPC. When one process issues a communication

request, such as a message sender or a shared memory access, it is

possible that it will have to wait for another process to respond or

release the resource. The CPU can then switch to another process in

this waiting time so that it can do some usefully work. On the other

hand, frequent context switching can introduce a performance

overhead, as the CPU must save the state of the interrupted process

and restore the state of the next process. Some effective IPC

mechanisms improve the communication latency and minimize the

synchronizing efforts that eventually results in less number of context

switches during the message transfer. CPU also participates in IPC

security and integrity enforcing. For example, memory protection

mechanisms prevent unauthorized access to the shared memory

regions, and thus ensure that all active processes can access the data

they have permission to access. For example, message authentication

and encryption may be used to secure the confidentiality and integrity

of messages exchanged between processes. These measures rely

heavily on the security capabilities of the CPU to help build strong,

secure IPCs. The CPU is responsible for a large part of the IPC

process, as it provides the necessary hardware and software

infrastructure that allows processes to efficiently and effectively

148
MATS Centre for Distance and Online Education, MATS University

Notes communicate. This article explains how the CPU can be optimized by

optimizing IPC mechanisms and minimizing overhead to improve

multi-process applications.

Synchronization plays a crucial role in IPC, as it prevents conflicts

between accessing shared resources which can lead to race conditions

or data corruption. The CPU includes various synchronization

mechanisms, including semaphores, mutexes, and condition variables,

that processes can use to coordinate access to shared resources. For

example, semaphores are commonly used to manage access to a

limited number of resources, ensuring that multiple processes do not

access the same resource at the same time. In contrast, mutexes offer

mutual exclusion, preventing more than one process from entering a

critical code section simultaneously. Data that can be used to signal

that the shared resources state has changed. Q2: Why does the CPU

need to execute these operations? If synchronization is too inefficient,

deadlocks, livelocks, and other concurrency related problems would

limit performance of the system. For example, when two or more

processes wait indefinitely for each other to release resources, it is

called Deadlock. Livelocks happen when the processes in execution

are constantly changing their state in response to each other, causing

them to make no progress. It is using limited data and observing to

detect these system stability problems and trigger the proper

correction mechanism. The CPU architecture, beyond primitive

synchronization, can directly impact synchronization performance.

Hardware-level support enables lock-free synchronization techniques

(e.g., atomic instructions such as compare-and-swap), which can

greatly decrease contention (when multiple threads are competing for

the same resource, causing some to wait for access) and reduce

overhead under heavy contention in comparison to software-based

locks. Modern CPUs have specialized instructions and cache

coherence protocols to improve the performance of these atomic

operations. This fusion between hardware and software is key to

building highly perform ant and scalable concurrent applications. The

CPU has a lot to do with synchronizing and handling interrupts, and

you'd want to build up the ability for some signals as well. For

example, interrupts might be used to inform processes about events or

changes in the system, where signals could be used to facilitate inter-

process communication. More advanced synchronization patterns, like

149
MATS Centre for Distance and Online Education, MATS University

Notes event-driven programming or asynchronous communication, can be

implemented using these mechanisms. Modern computing scenarios

have introduced new CPU architectures and operating systems that

have altered IPC considerably. These inter-process communication

facilities have been fundamentally impacted by factors such as multi-

core processors, distributed systems, and cloud computing

environments. It becomes an even more urgent requirement with the

increased number of cores per CPU. If you have a multi-core

processor even that you have also multi-processes can run in parallel

on different cores. Nevertheless, this level of parallelism brings its

own problems relating to cache coherence, memory consistency, and

synchronization. And, seeking to fill a gap, operating systems have

delivered new IPC mechanisms that are tailor-made for the multi-core

world: lock-free data structures, message queues that can be

efficiently built on the underlying shared-memory architecture, etc.

Distributed systems, where processes are on different machines

connected over a network, would depend on IPC mechanisms that can

handle network communication. Inter-process communication across

network barriers is often achieved in distributed environments using

something like remote procedure calls (RPC) or message queuing

systems. Dynamic resource allocation and the nature of virtualized

infrastructure in cloud computing environments introduce unique

challenges for IPC. Virtual machines (VMs) and containers, for

example, add another layer of abstraction, which potentially affects

communication latency and performance. Micro services

Architecture: Cloud-native applications can be developed using micro

services architecture, which means the applications are composed of

small, independent services that communicate with each other using

lightweight IPC (inter-process communication) mechanisms, such as

REST APIs or message brokers. It is important for the CPU to be

able to manage these different IPC types efficiently in order to create

cloud applications which can scale and remain resilient. The advent of

specialized hardware accelerators, e.g., GPUs, TPUs, etc., has further

introduced new paradigms for parallel processing and IPC. These

accelerators likely have different memory hierarchies as well as

communication protocols, which creates a need for specific inter-

process communication (IPC) strategies to effectively transmit data

from CPU to the accelerator.

150
MATS Centre for Distance and Online Education, MATS University

Notes

Foundations of Process Management and Communication

In the delicate ballet of an operating system, processes serve as the

smallest entities of execution, an isolated instance of a program

contending for the computer resources. The efficient scheduling of

these processes and the coordination of their interaction is the

cornerstone for a working operating system. Now, at the core of this

management is this thing called process scheduling, which is

basically a mechanism that determines the order in which the

processes are given access to the CPU. One CPU can only run one

process at any instance, but many processes may be ready or waiting

to run, and this indicates the need for process scheduling. New

processes that need CPU time will need to be queued up with deciding

algorithms that balance effective allocation of CPU time while

preventing starvation for other processes. But before we dive into

these algorithms, it is important to first understand how processes

communicate with one another and coordinate their activities. IPC

(Inter-Process Communication) enables processes to exchange data

and synchronize their actions. This is especially important for

complex applications where multiple processes handle various tasks

to save resources and improve modularity. IPC methods are used to

allow processes to work together and share resources in order to

accomplish common tasks (such as shared memory, message passage

Figure 10: Inter-Process Communication
[Source - https://www.slideserve.com/]

151
MATS Centre for Distance and Online Education, MATS University

Notes and pipes). Had these communication pathways not been established,

various processes would have been functioning in isolation, which

would have prevented the evolution of complex and cooperative

software systems. Sharing information and synchronizing execution is

crucial for not only application functionality but also the efficient use

of system resources. Examples include a print spooler process that

communicates with application processes to receive print jobs, or a

database server that coordinates with multiple client processes to

handle data requests. And that's why IPC is a vital part of

contemporary operating systems, allowing for the development of

resilient and highly networked applications. Furthermore, the

paradigm is also extended with the concept of process threads where

a single process can run several threads at the same time. A thread is a

small unit of process that may be addressed, which shares the same

address space and resources of its parent process, allowing for more

fine-grained parallelism and higher performance As such, this

threading model is widely useful for any application that can be

broken down into independent, smaller subtasks, such as web servers

that can concurrently handle multiple client requests or multimedia

applications that can process audio and video streams on separate

threads at the same time. However, the addition of threads brings

new problems significantly around shared resources and preventing

race conditions which takes us to the critical section problem.

2.6 Process Scheduling and CPU Scheduling Algorithms

In multitasking operating systems, process scheduling is the keystone

of the system, making sure that the CPU is effectively utilized, and

making sure that processes are run in a timely manner. The scheduler

is part of the operating system that determines the next process that

gets to run from the ready queue. The scheduling algorithm we choose

has a great impact on the performance of the system such as

throughput, turnaround time, waiting time and response time, etc. As

such, different scheduling objectives and system requirements have

led to the development of various CPU scheduling algorithms. First-

Come, First-Served (FCFS) is the most basic algorithm you can have

it executes processes in the order in which they enter the ready queue.

FCFS is easy to implement but can cause variants of the convoy

effect: a long process can block other, shorter processes, leading to

large average waiting time. Selecting the process with the shortest

152
MATS Centre for Distance and Online Education, MATS University

Notes burst time attempts to minimize average waiting time that is the goal

of Shortest-Job-Next (SJN). However, knowing future burst times as

SJN requires is often not feasible. Shortest-Remaining-Time (SRT) is

a preemptive version of SJN where a shorter process can preempt the

currently running process if its remaining burst time duration is less.

In priority scheduling each process is assigned a priority, the

scheduler selects the process with the highest priority. This algorithm

can also be classified as preemptive or non-preemptive, and it enables

the use of various scheduling policies based on process priority.

However, the priority inversion problem when a low priority process

blocks a high priority process can add more time as it cooks up

counterproductive wait states. Round-Robin (RR) is a time-sharing

algorithm in which, every process is assigned a fixed time quantum.

In case a process has not completed its quantum, it will be pausing

(or will be preempt) and the process that is at the front of the ready

queue will start. RR is a little bit fairer in assigning CPU time but with

relatively poor averages compared to the previous sorting algorithms,

it is most appropriate for Interactive Systems and depends heavily on

the values for the Time Quantum. Ready Queue Scheduling:

Multilevel Queue Scheduling Multilevel queue scheduled the ready

queue into several individual queues. Processes are queued into these

queues according to certain properties such as types of processes or

based on priority. A slightly more complex scheduling algorithm is

multilevel feedback queue scheduling, in which processes can move

between the various queues based on their behavior (e.g. length of

CPU burst or frequency of I/O burst). This allows for a highly

adaptable and efficient scheduling system. Each of these algorithms

has its own advantages and disadvantages, and the selection of

algorithm is based on the different operating system requirement and

corresponding workload. Therefore, you must grasp these algorithms

to design and optimize operating systems capable of managing and

executing numerous processes efficiently.

2.7 Process Threads and Their Significance

Process threads can be seen as a radical departure from the traditional

model of process management, where separate processes operated in

isolation from one another; they allowed for much greater parallelism

and more efficient use of resources. A thread (or lightweight process)

is the basic unit of CPU utilization. At the same time, unlike

153
MATS Centre for Distance and Online Education, MATS University

Notes processes that have their own address space and resources, threads in

the same process share the same code section, data section, and

operating-system resources, such as open files and signals. Better yet,

the model where threads share the same resource means they can

communicate and collaborate more easily than separate process, since

they just need to read/write directly a shared data instead of using any

IPC mechanisms. User-Level and Kernel-Level Threads Threads can

be implemented either at user level or kernel level. User-level

threads: are managed without kernel support by a thread library at the

user level. This is a lightweight solution, but not useful when there are

blocking system calls or usage of multiple CPUs. In contrast, kernel-

level threads are handled by the OS kernel, which offers improved

parallelism and blockage operations. But kernel level threads have

relatively higher overhead as the kernel is also in charge of managing

the threads. Multithreading is the concurrent execution of more than

one sequence of instructions, or thread. It increases application

responsiveness by allowing multiple threads to perform work in

parallel, so the whole program isn't stuck doing one task. It enhances

resource utilization by enabling threads to share resources and run

simultaneously on multiple CPUs. It simplifies the development of

complex applications by enabling tasks to be broken down into

smaller, independent threads. For example, a web server might spawn

a separate thread to service each client request, allowing it to service

multiple clients simultaneously. A multimedia application can decode

audio and video streams in separate threads for smooth playback. But

multithreading also comes with its own set of challenges, including

shared resource management and data consistency. Race conditions

which lead to unpredictable and erroneous results result when the

outcome of a computation depends on the relative timing of threads

executing in parallel. Synchronization: You are built with the ability

to synchronize yourself. Mutexes, semaphores, and monitors are some

of the synchronization methods used to control automatically

synchronized thread execution and to safeguard shared resources.

These mechanisms allow threads to safely access shared resources

without causing issues such as data corruption or unexpected

behavior. Has threads always been a part of Operating System design

and implementation?

154
MATS Centre for Distance and Online Education, MATS University

Notes 2.8 The Critical Section Problem and Synchronization

The critical section problem is the challenge faced by multiple

processes/threads regarding the sharing of resources. Note that a

critical section is a piece of code that accesses and modifies shared

resources. If several processes or threads execute their critical sections

at the same time, data inconsistency and race conditions may arise,

resulting in incorrect and varying results. To avoid these problems,

synchronization mechanisms are implemented to make sure that only

one process/thread can access its critical section at a time. Protocols

that solve the critical section problem must meet three requirements,

namely mutual exclusion, progress, and bounded waiting. This means

that only one process or thread is allowed to access the critical section

at a time, a concept known as mutual exclusion. Note that if no

process is in its critical section and some processes need to enter their

critical sections, only those processes that are not in their remainder

sections can take part in deciding which will enter its critical section

next, and such selection cannot take place indefinitely. Bounded

waiting makes sure that there is bound on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before that

request is granted. To overcome the critical section problem several

synchronization mechanisms have been introduced. Mutex (Mutual

exclusion) locks are simple 2 state locks that can be acquired or

released by a thread or a process. The mutex ensures that a single

process (or thread) holds the mutex lock at a time, providing mutual

exclusion. Semaphores are more general-purpose synchronization

mechanisms that can be used to limit access to a given number of

resources. Semaphores are integer variables that can only be accessed

through two atomic operations: wait and signal. The wait operation: it

decrements the semaphore value, and it blocks the process or thread

when the value goes negative. The signal operation increases the

value of the semaphore, and if the value is greater than or equal to 0,

a blocked process or thread is released. The high-level

synchronization constructs that encapsulate shared data and the

operations that can be applied to that shared data are called monitors.

It provides mutual exclusion by allowing only one process (or thread)

into the monitor at any time. Condition Variables Condition variables

are used to make a process or a thread wait until a specific condition

155
MATS Centre for Distance and Online Education, MATS University

Notes occurs. You can access shared data between threads using constructs

like Mutex, Atomic Int and other synchronization mechanisms. It is

essential to correctly implement these mechanisms to avoid race

conditions and ensure the correctness and reliability of concurrent

systems.

2.9 Semaphores and Classical Problems of Synchronization

Synchronization, the coordination of multiple processes to ensure

orderly execution and data integrity, is one of the fundamental

challenges in operating systems. Semaphores are a classic

synchronization data type in computer science, introduced by Edsger

W. Dijkstra, and are an incredibly useful mechanism for regulating

access to shared resources. A semaphore is an integer variable, the

value of which is never negative, that, during initialization, is only

accessed through two standard atomic operations: wait and signal.

The wait operation, also known as P (it comes from a Dutch word

"proberen", which means "to test"), is used to decrement the

semaphore value. If the value is negative then the process that is

executing wait is blocked until the semaphore value is non-negative.

On the other hand, the signal operation (also referred to as V, from the

Dutch word "verhogen" which means "to increment") increases the

semaphore value. If any processes were blocked on the semaphore,

one is unblocked. There are two types of semaphores: binary

semaphores, which may only have values 0 or 1, and counting

semaphores, which allow any non-negative integer value. Mutual

exclusion is commonly implemented using binary semaphores, so

only one process has access to a critical section at a time. Counting

semaphores, in contrast, control access to a limited number of

resources. The original value gives you the total amount of available

resources for this instance of your counting semaphore. Semaphores

offer a general solution to different synchronization problems, in fact,

the classical synchronization problems. The bounded-buffer problem,

also referred to as the producer-consumer problem, describes a work

environment with a fixed-size shared buffer, where producers make

the items that are put in the buffer, and consumers take items from

the buffer. The Semaphores make sure the producers don't insert an

item into the full buffer and the consumers don't remove an item from

the empty buffer. The readers-writers problem is a common

synchronization problem that deals with concurrent access to a shared

156
MATS Centre for Distance and Online Education, MATS University

Notes data set in which there are multiple readers and only one writer.

Semaphores can also be implemented to ensure writers have exclusive

access to the data set, and that readers do not access the data set while

a writer is modifying the data set. The dining-philosophers problem

consists of five philosophers seated around a circular table, each with

a plate of spaghetti and two chopsticks. It takes both chopsticks to eat

in a philosopher way. One way not to have a deadlock, which is

where everyone is holding a chopstick and is waiting for the other, is

to use semaphores. These are classical problems that illustrate the

challenges of synchronization and the necessity of using the proper

mechanisms, such as semaphores, to correctly and effectively operate

concurrent systems. Though semaphores are powerful, they need to be

used cautiously to prevent synchronization errors which could lead to

deadlock and starvation, when processes are unable to proceed

indefinitely.

2.10 Deadlock Characterization

Deadlock in concurrent systems is a scheduling problem that occurs

when two or more process are blocked forever, each holding a

resource and waiting for another resource held by another process in

the cycle. Before designing a deadlock handling mechanism, it is

important to know the features of deadlock. A deadlock can only

occur under four necessary conditions, which must hold (at the same

time): mutual exclusion, hold and wait, no preemption, circular wait.

Mutual exclusion means that resources are non-shareable i.e. only one

process can use a resource at a time. Hold and Wait: A process

holding at least one resource is requesting additional resources held

by other processes. In a no preemption scenario, resources cannot be

forcefully taken away from a process; they need to be released

voluntarily by the process holding them. Circular wait → We are

having a set of waiting process {P0, P1,..., Pn} such that P0 is waiting

for a resource hold by P1, P1 is waiting for a resource hold by P2,...,

Pn is waiting for a resource hold by P0. All four of these conditions

cause the processes to hang and leave a wait, where the processes

never move forward, leaving the whole system as a standstill.

Resource-allocation graphs: These are very useful to both visualize

and to analyze deadlock. A resource-allocation graph G is defined by

a set of verticesV, and a set of edges E. The vertices are partitioned

into two types, P = { P1, P2,..n }, the set of processes currently active

157
MATS Centre for Distance and Online Education, MATS University

Notes in the system, and R = { R1, R2,…m }, the set of resource types in the

system. If we say that there is a directed edge from process Pi to

resource Rj, written Pi → Rj, this means that process Pi has requested

one instance of resource type Rj. Here, an edge from resource Rj to

process Pi, Rj → Pi, indicates that a resource of type Rj was allocated

to process Pi. If a cycle exists in the resource-allocation graph, there

is a possibility of deadlock. If there is only one instance of each

resource type, then a cycle indicates that a deadlock has occurred. If

there are multiple instances of each resource type, then a cycle does

not necessarily indicate a deadlock. This means you have to do

additional work to see if there is a deadlock, in this case. The

deadlock characterization gives a technique to reason about the

scenarios that can lead to deadlock, and how to prevent, avoid, detect,

and recover from deadlock. By acknowledging the required

conditions and applying mechanisms such as resource-allocation

graphs, system architects can develop resilient strategies to avoid the

threat of deadlock and preserve the reliability and responsiveness of

concurrent processor systems.

2.11 Deadlock Handling: Avoidance

Deadlock avoidance is the appropriate technique of eliminating

deadlock when the program executes, which ensures that the system

will not enter a deadlock state. Ithence requires the operating system

to know upfront the maximal resource needs of each process. It then

checks request on resources to see if doing so will cause deadlock.

The Banker's algorithm is a well-known deadlock avoidance

algorithm, which is inspired by a banker who grants loans to

Figure 11: Deadlock
[Source - https://www.scaler.com]

158
MATS Centre for Distance and Online Education, MATS University

Notes customers. The Banker's algorithm needs every process to specify its

maximum needs in advance. In the operating system, information

about available resources, resources allocated to processes and

maximum resources required by processes are maintained. When a

process requests a resource, the system simulates the allocation to

check if the resulting state is safe. If there exists some order in which

the remaining resources can be allocated to each process then that

state is called as safe state. The resource is allocated if the resulting

state is safe; else the process has to wait. It is the Banker's algorithm

which makes sure that system always remains in safe state and there

is no deadlock. But it also has its limitations. It requires providing a

declaration of maximum resource request size in advance for each

process, which is not always possible. Computation can also be

expensive since it requires the operating system to run complex

calculations to determine if each state is safe. A different method of

avoiding deadlock is the resource-allocation graph algorithm. This

algorithm is when there's only one instance of each resource type.

The system uses a resource-allocation graph and checks it for cycles

before allocating resources. The resource is not allocated if

allocating a resource will create a cycle. This algorithm is simpler

than the Banker's algorithm, but it can only be applied on single-

instance resource types. Deadlock avoidance methods are helpful to

prevent deadlock but they incur an overhead and not all resources can

grow as per the demand. Deadlock avoidance mechanisms in systems

require careful consideration of the trade-offs between deadlock

prevention and resource usage.

Deadlock Handling:

Is a reactive approach for deadlock management, allows the system to

enter a deadlock state and detects and recovers from it. The second

approach is used by systems where it's not possible to avoid deadlocks

due to the overhead in maintaining information about the resource

needs and the lack of any advance information about the resource

needs. Periodic Checking for Deadlock; in this scheme, we check the

system for deadlock periodically. A popular technique is to utilize a

resource-allocation graph and look for cycles. A deadlock is detected

if a cycle is found. Another approach is the wait-for graph, a

modification of the resource-allocation graph that focuses on the

waiting relationships between processes. A wait-for graph has vertices

159
MATS Centre for Distance and Online Education, MATS University

Notes as processes and edges as waiting relationships. An edge from

process Pi to process Pj indicates that Pi is waiting for a resource that

is being held by Pj. The cycles in the wait-for graph are a deadlock.

After the deadlock is detected, the system needs to get out of that

state. Many recovery methods can be applied. One approach is to kill

all processes involved in the deadlock. While this is a very

straightforward way to do this, it can lead to a lot of work being lost.

Another approach is to kill one process at a time until the deadlock is

broken. Based on like priority, resource consumption, and the amount

of work completed, have a process chosen which will be aborted. A

second recovery strategy is preempting resources. This means

stealing resources from one process and giving them to another. You

need to be careful not to starve in this approach when a process is

being preempted so many times and it never reaches completion with

its execution. The selection of recovery mechanism depends on

various aspects of the system and the trade-off between performance

and resource consumption. Deadlock detection and recovery are

flexible methods for managing deadlocks, but they can incur overhead

and cause work to be lost. Designers of systems that need to support

semantics like deadlock detection and recovery must evaluate these

trade-offs against the rest of their system requirements.

Deadlock Handling: Prevention

Deadlock prevention is a prevention-based scheme, this scheme tries

to remove one or more of the four necessary conditions for deadlock.

If the system can prevent those conditions from ever occurring, then

deadlock will never happen. To prevent deadlock that happens,

mutual exclusion should be removed. One way to do this is to make

resources shareable. Some resources, like printers and tape drives, are

inherently non-shareable, however. An alternative is to remove the

hold and wait. This is done by requiring processes to request all of

their resources at once before they begin execution, or by requiring

that processes release all of their resources before requesting more.

Multiple-Choice Questions (MCQs)

1. Which of the following is NOT a valid process state?

a) New

b) Running

c) Terminated

https://www.scribd.com/document/258572954/OS-CN-DS-DBMS-SE-Interview-Questions
https://www.scribd.com/document/258572954/OS-CN-DS-DBMS-SE-Interview-Questions

160
MATS Centre for Distance and Online Education, MATS University

Notes d) Scheduled

(Answer: d)

2. The Process Control Block (PCB) contains which of the

following information?

a) Process state

b) Program counter

c) CPU scheduling information

d) All of the above

(Answer: d)

3. Which operation creates a new process in an operating

system?

a) Terminate

b) Fork

c) Kill

d) Swap

(Answer: b)

4. Inter-process communication (IPC) allows:

a) Processes to share data and synchronize actions

b) A single process to run multiple times

c) The CPU to execute only one process at a time

d) A process to execute in kernel mode only

(Answer: a)

5. Which CPU scheduling algorithm selects the process with the

shortest burst time first?

a) First-Come, First-Served (FCFS)

b) Shortest Job Next (SJN)

c) Round Robin (RR)

d) Priority Scheduling

(Answer: b)

6. Which of the following is NOT a characteristic of a thread?

a) Shares the same address space with other threads in the

same process

b) Requires more resources than a process

c) Can run independently within a process

d) Improves program efficiency and responsiveness

(Answer: b)

161
MATS Centre for Distance and Online Education, MATS University

Notes 7. Which of the following synchronization problems occurs when

multiple processes access shared resources incorrectly?

a) Thrashing

b) Critical Section Problem

c) Page Fault

d) Fragmentation

(Answer: b)

8. What is the role of semaphores in process synchronization?

a) They eliminate the need for process scheduling

b) They prevent deadlock conditions completely

c) They help control access to shared resources

d) They replace CPU scheduling algorithms

(Answer: c)

9. Which of the following is NOT a classical problem of

synchronization?

a) Producer-Consumer Problem

b) Readers-Writers Problem

c) Dining Philosophers Problem

d) Page Replacement Problem

(Answer: d)

10. Deadlock occurs when:

a) A process is forced to terminate by the OS

b) Multiple processes are waiting indefinitely for

resources held by each other

c) CPU scheduling fails to work

d) All processes finish execution successfully

(Answer: b)

Short Questions

1. Define a process in an operating system.

2. List the different process states and explain any two.

3. What is a Process Control Block (PCB)?

4. Name two operations on processes and explain their purpose.

5. What is Inter-Process Communication (IPC), and why is it

important?

6. List and briefly explain any two CPU scheduling algorithms.

7. What is a thread, and how does it differ from a process?

162
MATS Centre for Distance and Online Education, MATS University

Notes 8. Define the Critical Section Problem in process

synchronization.

9. What is a semaphore, and how does it help in synchronization?

10. Explain the concept of deadlock avoidance in process

management.

Long Questions

1. Explain the concept of a process and describe the different

process states with a state transition diagram.

2. What is a Process Control Block (PCB)? Discuss its

components and significance in OS.

3. Discuss the different operations on processes, including

process creation and termination.

4. What is Inter-Process Communication (IPC)? Explain message

passing and shared memory as IPC mechanisms.

5. Compare and contrast different CPU scheduling algorithms

with their advantages and disadvantages.

6. Explain the concept of process threads and the benefits of

using multithreading in an OS.

7. Discuss the Critical Section Problem and the different

solutions used to resolve it.

8. What is a semaphore, and how does it help in process

synchronization? Provide an example.

9. Explain the different strategies for handling deadlocks,

including avoidance, detection, and prevention.

10. Describe the Dining Philosophers Problem and propose a

solution using semaphores.

163

MODULE 3

STORAGE MANAGEMENT

LEARNING OUTCOMES

• To understand memory allocation techniques and paging.

• To study virtual memory concepts and page replacement

algorithms.

• To analyze file systems, access methods, and their

implementations.

• To explore free space management in file systems.

164
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Contiguous Memory Allocation

3.1 Contiguous Memory Allocation

One key aspect of operating system function is memory management,

which begins with the simplest option, contiguous memory allocation.

Though deceptively simple, this technique sets the stage for

understanding more complex ones. Contiguous memory allocation =

All the data of a process is allocated in a single block. A process that

is executed must also have a memory laid out for its code and data. In

some ways it simplifies memory management for the operating

system because it only needs to track one starting address and a size

for each process's memory section. While this leads to benefits, it also

presents some major challenges; especially as far as memory

fragmentation goes. Consider a system with a fixed partition scheme

(with pre-defined number of fixed partition sizes). When a process

arrives, it is assigned to the smallest available partition that is large

enough to hold it. Hence proved external fragmentation while

allocating memory using this algorithm; where allocation takes little

time and hits on memory. External fragmentation when total free

memory is enough for a process's request but is not contiguous; So for

example, after many processes have been loaded and exited, free

memory may hold many small isolated blocks. Large process cannot

get loaded even though the total free memory is large enough, as no

single free chunk is big enough. & Variable partition schemes (try to

address this by allowing partitions to be created dynamically as per

process size. When a process loads, a current partition of the exact

size is assigned. This is because it minimizes internal fragmentation,

which is created when the allocated partition for a process is larger

than the actual size, thereby wasting space that belongs to that

partition. But variable partitions add to external fragmentation. When

processes are loaded and ended, memory gradually becomes more

fragmented and memory usage is less efficient. This compaction is a

solution for external fragmentation; it moves various processes in

memory, to make the free space in memory become a continuous

block. Although effective, compaction is neither cheap operation as it

involves relocating processes and updating their memory addresses.

The cost of compaction could greatly affect the throughput of the

system, although it potentially only occurs at large objects in systems

165
MATS Centre for Distance and Online Education, MATS University

Notes where processes arrive and leave frequently as described in thin

provisioning. Although mathematically straightforward, successive

contiguity is burdened with issues of fragmentation that more pliant

and effective strategies for memory management would tackle.

Figure 12:Contiguous Memory Allocation

[Source - https://www.scaler.com]

166
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Paging Techniques

3.2 Paging Techniques: Swapping, Paging, Segmentation,

Fragmentation

In order to improve when it comes to contiguous memory allocation,

operating systems started to use more complex methods, such as

swapping, paging, and segmentation. Swapping refers to memory

management process in which a process is moved from main memory

(RAM) to secondary storage (disk) and vice versa. When the

principles of working are full then one of the inactive processes or

processes with a low priority are transferred to the disk using

Operating System and it will free memory for other processes. When

it is again needed, the swapped-out process is brought back into main

memory. Swapping is when the memory used by a running process is

written to the disk, to free up RAM and reduce overall memory

consumption, if the total memory requirements of the running

processes exceed the available memory in RAM. This, however,

incurs considerable overhead, as moving processes back and forth

from memory to disk takes a non-negligible amount of time when

compared with switching between processes that are in memory.

Paging, a more complex technique, solves the problems of

fragmentation that contiguous allocation has many. The paging

mechanism divides physical memory (Ram) as well as logical

memory (process address space) into fixed-size blocks, namely frames

(for physical memory) and pages (for logical memory). The size of a

frame is called the page size, which is usually from 4-8KB. The

pages of a process are placed into the free frames in memory when

the process is loaded. More specifically, the OS maintains a page table

for every process, which translates the logical pages used by the

process to the physical frames in which those logical pages are stored.

This enables a process's pages to be not consecutive in physical

memory, thus avoiding the issue of external fragmentation. Yet,

paging complicates internal fragmentation because the last page of a

process may not be fully used. Again, segmentation is another

memory management technique by which the logical address space

of a process is divided into a number of segments. Paging divides

memory into fixed-size pages, while segmentation allows variable-

length segments. Each process has a segment table maintained by the

167
MATS Centre for Distance and Online Education, MATS University

Notes OS that maps base address and limit (size) of the segment.

Segmentation has the benefit of storing memory in a logical structure

since the segments are related to logical units of the program. They

do suffer from external fragmentation though, as segments can be of

different length, leading to gaps in physical memory. Fragmentation is

the general term for wasting memory, and it is a common problem in

managing memory. Paging has another drawback named as Internal

Fragmentation since allocated memory is greater than the required

memory. In contiguous allocation and segmentation, external

fragmentation refers to the condition of having enough total free

memory, but it is spread throughout the system in small blocks.

Solving fragmentation is an important aspect of memory management

optimization and advancement of the system performance. Many

contemporary operating systems implement a combination of paging

and segmentation in order to gain the benefits of both techniques

while minimizing their disadvantages. And, for instance, segmented

paging combines logical segmentation with fixed-size allocation

(which of course gives the best of both worlds).

Figure 13: Paging
[Source - https://www.scaler.com]

168
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Demand Paging

3.3 Demand Paging

It is a virtual memory management concept that allows a page to be

loaded into a virtual memory only when the page is needed. In

classical paging, all the pages of a process are brought into memory

immediately after the process is first invoked, even if some of these

pages were not used. Demand paging, however, loads pages on

demand, i.e., a page is loaded only when the process tries to access it.

In this way, the memory that the process only actively uses is in

RAM, thus drastically cutting down the required memory for a

process to run. A page fault happens when a process tries to access a

page that is not currently in memory. The operating system responds

to the page fault by bringing in the missing page from secondary

storage (disk) and placing it into a free frame in physical memory.

The operating system keeps track of which pages are valid (in

memory) and which are invalid (not in memory) by using a

valid/invalid bit for each page in the page table. When a page is

loaded, valid bit is set to 1 else its set to 0. The operating system will

select one page currently in memory and evict it in order to bring in

the page that caused the page fault. In this case, whichever page

replacement algorithm decides to replace a certain page. Page

replacement algorithms include Common Page Replacement

Algorithms (First In, First Out · Least Recently Used · Optimal).

FIFO: Replace the oldest page in memory; LRU: Replace the page

not used for the longest time. Optimal replaces the page not going to

be used for the farthest future time, but it is not practical to implement

because it requires future knowledge. The performance of demand

paging is greatly influenced by the page replacement algorithm used.

A good algorithm should try to minimize page faults, so as to reduce

the overhead involved with disk I/O. Thrashing happens when a

process is executing so fast that it spends more time paging than

running. A page fault occurs when the number of pages that are kept

in memory at a time is less than the working set for a process (i.e. the

set of pages that a process is actively using). This poses a serious

problem, though; when thrashing occurs, the system is busy thrashing

pages and the CPU is waiting for page loads from disk more time than

it is spending in user space. The only solution left to avoid thrashing

169
MATS Centre for Distance and Online Education, MATS University

Notes is for the operating system to provide each process with enough

frames to hold its working set. That was where working set models

come in handy to figure out the working set of a process and the

correct amount of frames to assign. In summary, demand paging is an

efficient memory management technique that allows for greater

flexibility in program execution and optimal memory usage. It is a

key feature of contemporary virtual memory architectures, allowing

optimal utilization of hardware resources and improving overall

system efficiency.

Advanced Demand Paging Considerations

There are a few more advanced topics concerning demand paging

beyond the scope of basic implementation. A key element of this is

managing changed pages, so-called dirty pages. If an operation

modifies a page in memory, the OS must write back the changes to

disk before replacing the page. This is generally done by keeping a

dirty bit in the page table, which is set when a page is modified. When

it is determined that a page needs to be replaced, the operating system

checks the dirty bit. If the bit is set, the page will be written back to

disk, if not, it gets discarded. However, keeping consistency across

the data has an implication that adds an overhead to the paging

replacement process which is an impact of the write-back operation.

Figure 14: Demand Paging

[Source - https://www.naukri.com]

170
MATS Centre for Distance and Online Education, MATS University

Notes Another factor is the use of shared pages. This reduces memory usage

and can lead to performance improvements because shared pages

allow the same physical page to be used by multiple processes in-

memory. There are system-wide caches as well, for example, if there

are multiple processes running the same program, these processes can

share the code pages of the program. The pages are usually sharing

implemented with a reference count, which counts the how many

processes are sharing the page right now. If a process doesn’t need the

shared page anymore, the reference count is decremented. The page

can be reclaimed once the reference count drops to zero. In fact, you

are trained on shared pages although, copy-on-write (COW) pages are

given higher efficiency. The fork system call creates a new process,

and initially the pages are shared between the parent and the child.

On the other hand, as soon as one of the processes tries to modify a

shared page, a copy of the page gets created and the modification is

applied to the copy. Such system call results Page Fault on page level;

So very minimal pages are copied on process creation. You can also

do things like page buffering, which works to improve the

performance of demand paging by keeping a pool of free frames.

When a page fault happens, the operating system can easily take a

free frame from the pool, thus improving the latency of retrieving a

page. So, before they are really used, they put it in a memory page

buffer, that is called page buffering.

3.4 Page Replacement Algorithms and Virtual Memory

With the shift to modern OS, virtual memory is the backbone that

allows processes to run without needing to load their entire memory

into physical RAM. The trick is enabled by a subtle combination of

hardware and software working behind the scenes: pages — the

discrete units of virtual memory are transferred between the limited

main memory and more commodious secondary storage as needed.

The process of swapping pages in and out of memory is allowed, but

requires implementations of effective algorithms to practice a certain

strategy for when to evict a page to load in a new one to make it more

efficient. This approach is complicated, however, because the

behavior of a process is difficult to predict, and it is not easy to say

which pages are the least likely to be needed immediately. The

earliest and one of the conceptually simplest algorithms is called the

First-In, First-Out (FIFO) algorithm. It works on the principle of

171
MATS Centre for Distance and Online Education, MATS University

Notes replacing the oldest page in memory. Although simple to implement,

FIFO is subject to Belady's anomaly, in which increasing the number

of page frames may sometimes result in an increase in the number of

page faults, which is counterintuitive and undesirable. In contrast, the

Least Recently Used (LRU) algorithm looks to evict a page that has

not been accessed for the longest time. The hint behind this algorithm

is localization which explains that recently accessed memory

addresses are likely to be accessed again in the near future. LRU is

often more efficient than FIFO, but it requires keeping track of a

history of page usage, which can have a non-negligible cost. Access

time journals (aka workless access time journal devices) (or

seemingly all-in-ones (with pagetable cache ontop of workless ram)

computelemens or what have you) back ends usually rely on hardware

(counters getting set to zero (max delay) on page access) to track

access times. Page Replacement Algorithms Belady's optimal (OPT)

algorithm is a theoretical but unattainable optimum for page

replacement. The Optimal (OPT) algorithm. The page replacing

Algorithm is the best theoretical optimum scope for page replacement.

It replaces the page that will not be used for the longest period of time

in the future. Please note: OPT offers the optimal page fault rate; this

is how it is defined; however, in practice, it requires knowledge of

future memory accesses, which are impossible to have in real life,

and hence, impractical. Nevertheless, OPT is a good baseline to use

for estimating the performance of other page replacement algorithms.

The clock replacement algorithm, also called the Second Chance

algorithm, provides a compromise between the simplicity of FIFO and

the efficiency of LRU. It has a circular queue of pages, and a use bit

for each page. When it’s time to replace a page, the algorithm walks

down the queue, resetting the use bit for every page it sees. If a page

with a cleared use bit is found, it is replaced. When all pages have

their use bits set, the algorithm resets use bits and keeps traversing the

queue until a page with a cleared use bit is encountered. Because it is

efficient and does not suffer from Belady's anomaly, the Clock

algorithm is widely used in many operating systems. The Clock

algorithm and its variants (e.g. Not Recently Used algorithm) refine

the algorithm by taking the use bit and modified bit (whether or not

the page has been modified since loading into memory) into account.

This allows the algorithm to focus on replacing clean pages before

172
MATS Centre for Distance and Online Education, MATS University

Notes dirty pages, which can save on the cost of writing existing modified

values back to secondary storage. Working Sets Working sets also

help us understand page replacement. A working set is the collection

of pages being actively used by a process over a time interval.

Working set model: The working set model tries to keep the working

set of the process in the memory to reduce page faults and improve

performance. The model requires estimating the size of the working

set, which is difficult to do. Thus, it does not give the complete image

but it serves its purpose by being a useful guide to prevent the

memory from being shredded into million pieces in a Virtual memory

system. Another algorithm is called the page fault frequency (PFF),

which dynamically allocates page frames to a process depending on

its page fault rate. In performing this algorithm, if the rate of page

fault is high, the number of page frames gets increased by the

algorithm, and if the page fault rate is low, the number of page

frames gets decreased. By adapting in this manner, memory usage is

kept optimized, and the system's performance benefits. One of the

major concerns in the context of virtual memory is the idea of

thrashing, which is when a process spends more time swapping pages

in and out than executing instructions. These working sets are what's

stored in the system memory, including RAM, which is why thrashing

happens. Operating systems, to successfully eliminate thrashing, can

use load control, which is the adjustment of the level of

multiprogramming (the number of processes that can be in execution

at a given time), and working set. A study of an interface between

hardware and software is essential for understanding the

implementation aspects of virtual memory. MMU (Memory

Management Unit) is a hardware unit that translates a virtual address

to a physical address from the physical address to a page table

mapping virtual memory to physical memory In contrast, the

operating system is responsible for maintaining the page table--the

data structure that keeps track of the mapping between virtual and

physical pages--and executing the page replacement algorithm. The

performance of virtual memory relies on how well this teamwork

works. Though for the simplest sense, the modern operating systems

are still reliant on the base concepts of page replacement but they also

have integrated the concepts of demand paging where the pages are

loaded from disk into physical memory only when they are needed

173
MATS Centre for Distance and Online Education, MATS University

Notes and page clustering where similar pages are clustered together in such

a way that the number of page faults could be less. The use of these

approaches, in combination with smart page replacement algorithms,

allows virtual memory to operate smoothly and effectively,

facilitating the proper performance of processes, regardless of the

limited number of physical memory resources that the system

possesses.

3.5 File Concepts

Files are fundamental abstractions in operating systems, providing a

structured and persistent mechanism for storing and retrieving data.

They serve as the primary means for users and applications to interact

with data, whether it be documents, images, executables, or system

configuration files. A file, at its core, is a named collection of related

information that is recorded on secondary storage, such as hard disks,

solid-state drives, or optical media. The concept of a file encompasses

not only the data itself but also metadata, which includes information

about the file's attributes, such as its name, size, creation date, and

access permissions. The file system, a crucial component of the

operating system, is responsible for organizing and managing files

and directories. It provides a hierarchical structure that allows users to

organize files into directories, creating a logical and intuitive file

organization. Directories, also known as folders, can contain both files

and other directories, forming a tree-like structure that facilitates

efficient file management. The file system also manages the allocation

of storage space, ensuring that files are stored and retrieved

efficiently. Different file systems employ various data structures and

algorithms to manage storage space, such as linked lists, bitmaps, and

inodes. The choice of file system can significantly impact

performance, reliability, and security. File naming conventions vary

across operating systems, but they generally adhere to certain rules

and guidelines. File names typically consist of a base name and an

optional extension, separated by a period. The extension indicates the

file type, such as .txt for text files, .jpg for image files, and .exe for

executable files. Operating systems impose restrictions on the length

and characters allowed in file names to ensure compatibility and avoid

conflicts. File types are essential for identifying the format and

structure of a file. Operating systems recognize various file types and

associate them with specific applications. This allows users to open

174
MATS Centre for Distance and Online Education, MATS University

Notes and manipulate files using the appropriate software. File types can be

classified into several categories, such as text files, binary files,

executable files, and directory files. Text files contain human-readable

characters and are typically used for storing documents, source code,

and configuration files. Binary files contain non-text data, such as

images, audio, and video, and are typically processed by specialized

applications. Executable files contain machine code that can be

executed by the operating system. Directory files contain information

about other files and directories, forming the hierarchical structure of

the file system. File access methods determine how data is accessed

and manipulated within a file. Sequential access is the simplest access

method, where data is accessed in a linear order, from the beginning

to the end of the file. This method is efficient for processing large

files that are accessed sequentially, such as log files and backup files.

Direct access, also known as random access, allows data to be

accessed in any order, regardless of its position in the file. This

method is efficient for accessing specific records or data elements

within a file, such as database files and index files. Indexed sequential

access combines the advantages of sequential and direct access. It

uses an index to locate specific records within a file, allowing for both

sequential and direct access. This method is commonly used in

database management systems and file systems that require efficient

access to large amounts of data. File attributes provide information

about the characteristics of a file, such as its name, size, creation date,

modification date, and access permissions. File attributes are stored in

the file's metadata and can be accessed and modified by users and

applications. Access permissions control who can access and

manipulate a file. They typically include read, write, and execute

permissions, which determine whether a user can read, modify, or

execute a file. Access permissions can be set for different user groups,

such as the file owner, group members, and other users, ensuring that

files are protected from unauthorized access. File operations are the

actions that can be performed on files, such as creating, deleting,

opening, closing, reading, writing, and renaming. These operations are

typically provided by the operating system through system calls,

which allow applications to interact with the file system. File systems

employ various techniques to ensure file integrity and reliability, such

as journaling, which logs file system changes before they are applied,

175
MATS Centre for Distance and Online Education, MATS University

Notes and checksums, which detect data corruption. These techniques help

to prevent data loss and ensure that files are stored and retrieved

correctly. File caching is another technique used to improve file

system performance. It involves storing frequently accessed file data

in memory, reducing the need to access secondary storage. File

caching can significantly improve performance, especially for

applications

3.6 File System Structures and Implementation

The file system structures and implementation is what underlines any

operating system's capability to manage persistent data. Why is there

a file system? At the most basic level, a file system is a natural way

of organizing data when stored, enabling users and applications to

access, modify and share data. It abstracts away the intricacies of

physical storage devices, providing a straightforward interface for

data management. From raw storage blocks to a coherent file system

is a long and complex journey involving a myriad of design decisions

and implementation details, each of which greatly impact the end

product's performance, reliability, and security. At the core, file

system is built upon a hierarchical structure usually represented as a

tree, where directories (or folders) act as containers for files and other

directories. Such a hierarchical structure encourages a logical

organization of related files, making it more navigable and

manageable. At the very top of the hierarchy is the root directory,

which serves as the entry point for the entire file system. In this

arrangement, files are located by their pathnames lists of directories

to navigate through until the desired file is located. Must also store

metadata (e.g. names, size, timestamps, permissions, owner, etc.) in

addition to the actual data content. This metadata is important in

regards to file management operations and is often stored in data

structures such as inodes or file allocation tables. A file system must

manage both data and metadata, and the efficient organizing and

accessing of this information is key to performance. Different

allocation policies are used by file systems, which have effects from

fragmentation to access speed to storage utilization. Here are some of

the most commonly used methods of allocation: contiguous

allocation, linked allocation, and indexed allocation. Discontinuously,

on the other hand, is efficient with access but may leave behind

external fragmentation. In linked allocation, the blocks are connected

176
MATS Centre for Distance and Online Education, MATS University

Notes using pointers, which can reduce fragmentation but uses more

memory for random access. In contrast, indexed allocation creates an

index block that points to data blocks, allowing random access but

also requiring more storage for the index. The allocation strategies

are chosen based on the expected usage patterns and performance

requirements for the file system. Beyond merely managing data and

metadata, file systems must grapple with concurrency control, crash

recovery, and security. Concurrency control mechanisms, including

locks and transactions, provide the ability for multiple processes in a

system to read and write files without corrupting data. Crash recovery

mechanisms such as journaling, logging, etc., allow the file system to

restore its consistency post a system crash. Such as access control lists

(ACLs) and encryption help to secure sensitive data by preventing

unauthorized access. How these features are designed and

implemented have a major effect on the file system's reliability and

robustness.

The implementation of a file system involves a complex interplay of

data structures, algorithms, and system calls. The operating system

kernel plays a central role in managing the file system, providing an

interface between user applications and the underlying storage

devices. The kernel maintains data structures that represent the file

system hierarchy, metadata, and allocation information. These

structures are often stored in memory to facilitate fast access and

manipulation. When a user application requests a file operation, such

as opening, reading, writing, or deleting a file, the kernel translates the

request into a series of operations on the storage device. This involves

locating the file's data and metadata, allocating or deal locating

storage blocks, and updating the relevant data structures. The kernel

provides system calls, such as open(), read(), write(), close(), mkdir(),

and rmdir(), which serve as the interface between user applications

and the file system. These system calls encapsulate the low-level

details of file operations, allowing applications to interact with the file

system in a standardized and platform-independent manner. The

implementation of these system calls involves intricate algorithms for

navigating the file system hierarchy, managing metadata, and

accessing storage devices. For instance, the open() system call

typically involves searching the directory structure for the specified

file, verifying access permissions, and allocating a file descriptor to

177
MATS Centre for Distance and Online Education, MATS University

Notes represent the opened file. The read() and write() system calls involve

locating the file's data blocks, transferring data between the storage

device and the application's memory, and updating the file's metadata.

The close() system call releases the file descriptor and updates the

file's metadata, such as the last access time. The kernel also manages

the buffer cache, a region of memory used to cache frequently

accessed file data and metadata. The buffer cache improves file

system performance by reducing the number of disk accesses, which

are significantly slower than memory accesses. When an application

requests data from a file, the kernel first checks the buffer cache. If

the data is present in the cache, it is retrieved directly from memory,

avoiding a disk access. If the data is not in the cache, the kernel reads

it from the disk and stores it in the cache for future use. The buffer

cache employs various replacement algorithms, such as least recently

used (LRU), to manage the cached data and ensure that frequently

accessed data remains in the cache. The implementation of the buffer

cache is critical for file system performance, as it directly impacts the

speed at which applications can access and manipulate files.

The choice of file system implementation significantly impacts the

overall performance and reliability of the operating system. Different

file systems employ varying data structures, algorithms, and

techniques to manage data and metadata, each with its own set of

trade-offs. For example, the FAT (File Allocation Table) file system,

commonly used in older versions of Windows, uses a simple linked

allocation scheme and a flat directory structure. While FAT is

relatively simple to implement and understand, it suffers from

performance limitations, especially with large files and fragmented

disks. The NTFS (New Technology File System), used in modern

versions of Windows, employs a more sophisticated B-tree structure

for managing metadata and supports advanced features such as

journaling, access control lists, and encryption.NTFS offers better

performance and reliability than FAT, but it is more complex to

implement and manage. The ext4 (Fourth Extended File system),

commonly used in Linux distributions, also employs a B-tree structure

for metadata management and supports features such as extents,

which improve performance for large files, and delayed allocation,

which reduces fragmentation.Ext4 is known for its performance and

scalability, making it suitable for a wide range of applications. The

178
MATS Centre for Distance and Online Education, MATS University

Notes implementation of a file system also involves considerations for

portability and interoperability. Operating systems may support

multiple file systems, allowing users to access data stored on different

devices or partitions. The kernel must provide a common interface for

accessing these file systems, abstracting the differences in their

underlying implementations. This involves the use of virtual file

system (VFS) layers, which provide a uniform interface for file

system operations, regardless of the specific file system being used.

The VFS layer translates generic file system operations into specific

operations for the underlying file system, enabling applications to

interact with different file systems in a consistent manner. The

implementation of the VFS layer is crucial for supporting multiple file

systems and ensuring interoperability between different operating

systems. Furthermore, the implementation of distributed file systems,

such as NFS (Network File System) and AFS (Andrew File System),

involves additional complexities related to network communication,

data consistency, and fault tolerance. Distributed file systems allow

multiple computers to access and share files over a network, enabling

collaborative work and resource sharing. The implementation of these

file systems requires careful consideration of network protocols,

caching strategies, and security mechanisms to ensure efficient and

reliable data access. The design and implementation of file systems

continue to evolve, driven by advancements in storage technology,

changing user requirements, and the need for improved performance,

reliability, and security. In essence, the file system implementation

constitutes a critical component of the operating system, bridging the

gap between user applications and physical storage devices. It

involves intricate algorithms, data structures, and system calls to

manage data and metadata effectively. The kernel plays a pivotal role

in orchestrating file system operations, providing an interface for user

applications and managing the buffer cache to enhance performance.

The choice of file system implementation significantly impacts the

overall performance, reliability, and security of the operating system.

Different file systems offer varying trade-offs, and the selection

depends on the specific requirements of the system and its intended

usage. The implementation of the VFS layer enables interoperability

between different file systems, while distributed file systems facilitate

network-based file sharing. As storage technology advances and user

179
MATS Centre for Distance and Online Education, MATS University

Notes demands evolve, file system implementations continue to adapt and

innovate, ensuring efficient and reliable data management. The

efficiency of a file system is judged by its speed of access, its

reliability in the face of system failures, and its ability to manage

storage space effectively. The speed of access is determined by factors

such as the allocation strategy, the buffer cache size, and the disk

access time. The reliability is ensured through mechanisms such as

journaling, logging, and redundant storage. The ability to manage

storage space is influenced by the file system's ability to minimize

fragmentation and utilize available space efficiently. Modern file

systems also incorporate features such as data compression and

encryption to enhance performance and security. Data compression

reduces the amount of storage space required for files, while

encryption protects sensitive data from unauthorized access. The

implementation of these features requires careful consideration of

performance trade-offs and security implications. The future of file

system implementation lies in addressing the challenges of managing

increasingly large and complex data sets, supporting diverse storage

technologies, and ensuring security and reliability in distributed and

cloud-based environments. As data continues to grow exponentially,

file systems must evolve to handle the demands of modern computing

and data management. Finally, the intricacies of file system

implementation extend beyond the core functionalities of data storage

and retrieval. The modern computing landscape demands

sophisticated features that cater to diverse user needs and evolving

technological paradigms. Features such as snapshots, which allow for

point-in-time recovery of file system states, are increasingly vital for

data protection and disaster recovery. Similarly, copy-on-write

(COW) techniques optimize storage usage and enhance performance

by delaying physical data copying until modifications are made.

These advancements underscore the continuous innovation within file

system design, driven by the need for efficiency and resilience.

Furthermore, the rise of cloud computing has necessitated the

development of scalable and distributed

3.8 Free Space Management: Principles, Techniques, and

Implementation

It is the core of a congruous operating system to expose persistent

data which lives inside its own file system structures and

180
MATS Centre for Distance and Online Education, MATS University

Notes implementation. Essentially, file system is a computing method

known as the logical organization of data being stored, so the user and

any application can read, edit or share information easily. It abstracts

the chaff of physical devices into a form that is much more useful,

which allows you to deal with data, rather than devices. Creating a

complex file system on top of ordinary storage blocks requires careful

thought and systematic execution: every decision at the design and

implementation stages of the project can have a tremendous impact on

speed, dependability, or even safety of data. Essentially, a file system

is based on a hierarchy one that is normally represented as a tree in

which directory (folder) nodes are used to contain files and other

directory nodes. This Top-Down Organization Makes for Naturally

Related Files That Are More Effortlessly Navigable and Manageable.

The highest node in the hierarchy is called the root directory, which

provides the entry point to the whole file system. Under this structure,

files are referenced by their pathnames, which define the path through

the directory hierarchy to the file. The file system has to keep track of

metadata that describes file names, sizes, creation and modification

timestamps, permissions, and ownership data in addition to the actual

data itself. This metadata is essential for file management operations

and is usually stored in data structures such as inodes or file allocation

tables. Efficient organization and retrieval of data and metdata is

paramount to the performance of the file system. There are a number

of different allocation strategies that a file system can use to allocate

the real physical space, which has implications for fragmentation,

speed of access, and overall utilization of storage space. The most

common methods include contiguous allocation, linked allocation,

and indexed allocation. In contiguous allocation a file gets a sequence

of blocks, providing faster sequential access but causing external

fragmentation. Linked allocation links blocks using pointers which

avoids fragmentation but adds random access cost. Reloading of

pointers from data block example in Indexed allocation Indexed

allocation uses index block that contains pointers to data blocks which

allows random access, but comes at the price of using more space to

store the index. Which allocation strategy to chose depends on the

access patterns and performance of the file system. File systems also

deal with concurrency control, crash recovery, and security, among

other things, in addition to data and metadata management.

181
MATS Centre for Distance and Online Education, MATS University

Notes Mechanisms for concurrency control, such as locks and transactions,

help ensure that multiple processes can simultaneously access and

modify files without corrupting the contents. Crash recovery

procedures (such as journaling and logging) allow the file system to

return to a consistent state after a system crash. Sensitive data is

safeguarded by security measures like access control lists (ACLs) and

encryption. What and how these features are designed and

implemented has a great influence on the reliability and robustness of

file system.

Theoretical Foundations and Fundamental Algorithms

The figure (left) shows how the operating system kernel manages the

file system, acting as an interface between the user applications and

the underlying storage devices. Data structures that represent the file

system hierarchy, metadata and allocation information are maintained

by the kernel. These are usually kept in the memory to enable them to

be accessed and modified quickly. When a user application needs to

perform a file operation like opening, reading, writing, and deleting a

file, the kernel converts that request to a series of operations on the

storage device. This includes finding the file's data and metadata,

allocating or deal locating storage blocks, and updating the

corresponding data structures. User applications interact with the

system calls provided by the kernel, including open, read, write, close,

mkdir, and rmdir; these function calls act as the interface to the file

system. These system calls abstract the underlying complexities of file

manipulation, enabling applications to communicate with the file

system in a uniform and OS-agnostic approach. Basic file system

functionality: File systems provide a set of system calls for operations

like opening, reading, writing, and closing files. The open system call

usually requires traversing the directory structure to find the

requested file, checking access rights, and allocating a file descriptor

to represent the opened file. The read and write system calls go

through finding the file's data blocks, moving blocks of data around

from the storage device to the memory of the application and updating

the file's metadata, etc. assert close fd The close system call closes a

file descriptor and updates the file's metadata (e.g. last access update).

The kernel also controls a method called a buffer cache, which is a

portion of memory that is used to store file and metadata that is

frequently accessed. The post cache improves file system performance

182
MATS Centre for Distance and Online Education, MATS University

Notes by reducing the number of necessary accesses to disk, which are

orders of magnitude slower than memory accesses. It works by

checking a cache that sits between the application and the file itself.

When there are a huge number of records, this greatly speeds up data

retrieval since the data is only fetched from the memory, not from the

disk. If the data is no longer on the cache, the kernel fetches it from

the disk and places it in the cache for subsequent access. It uses

various replacement algorithms, including least recently used (LRU)

as examples, to efficiently manage the cached data (more frequently

accessed data should remain in the cache). The buffer cache is

responsible for file system performance, which is what makes every

application read and write files faster.

Memory Allocation Strategies and Fragmentation Management

In other words, memory allocation strategies are tactical

implementations of free space management principles, moving us

from theoretical constructs to systems that balance competing

objectives. Choosing the right allocation strategy is largely influenced

by workload characteristics, hardware architecture, and application

needs. The consecutive-fit strategies first-fit, next-fit, best-fit, and

worst-fit strategies only differ in the search policy for free lists.

Unlike first-fit, which always starts from the beginning of the free

list, next-fit continues from the last allocated location, which likely

improves locality but may fragment hot sections in memory over time.

The best-fit and the worst-fit strategies optimize for different goals by

the former minimizing the short-term waste of memory at the cost of

creating completely unallocatable small fragments while the latter

preserves the large continuous regions of memory at the cost of short-

term wastage. One example of a power-of-two strategy is the buddy

system, which only allows for allocations to power-of-two sizes,

making bookkeeping easier; the drawback is internal fragmentation. If

a block is freed in this system, it can be combined with its buddy (the

adjacent block of the same size) to make a bigger block, which may

make it possible to mitigate external fragmentation. Slab allocation,

introduced in solaris, is a technique where memory blocks are pre

allocated (called slabs) for certain types of objects, making it because

each allocated object knows its size and freeing the memory blocks

for more easy insertion of allocated objects. Segregated free lists keep

a separate pool for each size class, allowing for fast allocation of

183
MATS Centre for Distance and Online Education, MATS University

Notes common sizes and improved locality, but at the cost of increased

overall memory consumption due to potential fragmentation, since a

smaller allocation won’t fit into the pool of a larger allocation. These

kinds of allocators are typically bitmap-based, meaning that they store

the state of each byte of memory in a bit vector very compact but

slightly slower allocation than with list-based allocators. The main

problem with free space management is fragmentation, which occurs

when the free memory is broken into non-contiguous nodes so blocks

cannot be fully utilized, which has two kinds external fragmentation

(inaccessible gaps between allocated blocks) and internal

fragmentation (the space allocated but not actually used). Many

different techniques used in the implementation of allocation

strategies to avoid fragmentation such as split (to break down the

larger blocks to satisfy smaller requests), coalescing (the merger of

two adjacent free blocks), compaction (the process of moving

allocated objects to give larger spaces of free in a contiguous manner),

and size rounding (the practice of standardizing the size of allocations,

therefore, avoiding very small ones) These techniques hit different

performance notes depending on the allocation profile of the

application: programs that allocate lots of short-lived objects benefit

from allocation-time optimizations like generational schemes,

whereas long-running systems are characterized by their small but

more unpredictable lifetimes and require balanced techniques that

avoid the accumulation of fragmentation over extended periods of

time. Adaptive allocation strategies monitor their workload and adapt

their behavior according to observed workload properties, changing

policies when needed, for example, depending on memory pressure

or allocation patterns. Adapting request optimization strategies

dynamically based on data regarding allocation requests, memory

usage over time, and fragmentation statistics. How freed memory is

retained (or not) also affects fragmentation and performance through

memory reservation policies, which dictate how memory is

provisioned for use beyond immediate needs: over-reserving memory

decreases fragmentation but wastes memory resources, while under-

reserving memory (to keep it less fragmented) means that you have to

do increasingly frequent resizing operations that involve costly system

calls or reorganization of memory.

184
MATS Centre for Distance and Online Education, MATS University

Notes Operating System Memory Management and Virtual Memory

Integration

The most obvious and important implementation of free space

management principles is in operating system memory management,

which gets instrumental as the bridge between hardware resources and

application needs. Most modern operating systems implement a

layered architecture on the topic of memory management, utilizing a

virtual memory space that provides an additional layer of abstraction

separating the viewpoint of the application from the physical structure

of the storage devices. Giving this sort of abstraction allows advanced

free space management techniques that would simply not be possible

in systems with only physical memory. The virtual memory I/O sub-

system will divide the address space to fixed size pages (usually 4KB

up to 64KB) which will be mapped to physical frame when using

page tables, and use Translation Lookaside Buffers (TLBs) to reduce

the address translation process. This paging mechanism adds a distinct

type of free space management at several levels: free virtual address

ranges within each process's address space, free physical memory

frames, and pages moving between main memory and secondary

storage via page replacement algorithms. During such periods the

operating system free space manager needs to balance conflicting

requests from different processes and ensure that the system remains

responsive and stable at different load levels. Demand paging, which

is bringing pages into memory and still keeping them on disk until

they are accessed stands as a more specialized version of the lazy

allocation and seeks to improve memory resource utilization as it

postpones the physical resource commitment to pages until the very

moment where such pages are required. Low-level page replacement

policies like LRU, Clock, Working Set, and ARC carry out advanced

free space management techniques that follow past fault experiences

to anticipate future access patterns. Many operating systems have a

mechanism called memory over commit that adds a level of

abstraction to memory management the total of all virtual memory

allocated can exceed the amount of physical memory available; it

allows the free space manager to act as if it had all the resources it

doesn't currently have at its disposal, based on statistical multiplexing,

keeping in mind that requesting all allocated memory in the same time

is rare. Operating systems provide multi-level free space management

185
MATS Centre for Distance and Online Education, MATS University

Notes at diverse granularities with distinct strategies: coarse-grained

management of large contiguous regions needed for memory-mapped

files or shared memory segments, medium-grained management for

process heap allocations and fine-grained management for kernel-

internal data structures. Most kernel physical frame allocators use the

buddy system, zones, or some hybrid which tries to optimize

performance and memory used by balancing the requirements of

both. Memory compaction methods are used to periodically

defragment physical memory into larger contiguous ranges, resulting

in larger contiguous physical memory to service enormous pages

(megabytes to gigabytes sized pages) on with less TLB pressure on

applications with sizable working collections. Operating system free

space manager and processor Memory Management Unit (MMU)

integration, in particular under NUMA (Non-Uniform Memory

Architecture), where memory access time varies as a function of the

distance between processor and memory location, adds more

complexity. Modern OS uses page migration and allocation policies to

favor local memory allocation while balancing the load amongst the

memory nodes. Free space management is furthermore complicated

when the kernel needs to deal with hardware prefacers, cache

hierarchies, and memory controllers, as decisions about where to

place memory affect not only how well you are packing the boxes but

also the latency of access to boxes and the use of bandwidth.

Specialized memory types such as persistent memory (PMEM) or

high-bandwidth memory (HBM) add even more complexity to free

space management by creating heterogeneous memory pools with

varying performance characteristics, cost profiles and persistence

guarantees, necessitating sophisticated tiring and placement

algorithms.

User-space Allocators: Design, Implementation, and Optimization

As the primary interface from applications to the operating system

memory management facilities—with each user-space memory

allocator utilizing their own sophisticated free space management

techniques tuned to application-specific workloads while abstracting

away system calls and virtual memory operations. Some allocators

allocate memory in bulk from the OS using sbrk or mmap or some

other syscall, and implement free space management through return

stacks and per-thread caches as optimizations on top of the more

186
MATS Centre for Distance and Online Education, MATS University

Notes granular allocations. General-purpose allocators like malloc/free

implementations must strike a balance between performance across a

variety of workloads with unpredictable allocation patterns, object

lifetimes and size distributions. These allocators are designed with

attention to thread safety, cache locality, fragmentation, and

allocation speed. There are a variety of production-quality

implementations such as ptmalloc (the allocator used by GNU libc),

jemalloc, tcmalloc, and mimalloc which in combination cover many

points in the design space each with a different focus on different

aspects of the allocation problem. Ptmalloc uses per-thread arenas to

avoid contention, where each of these arenas implements a hybrid

best-fit and segregated fit algorithm. Jemalloc, on the other hand,

focuses on reducing fragmentation by using a carefully chosen set of

size classes and regularly purging unused memory, making it

especially well-suited for long-lived applications. The primary focus

of tcmalloc is scalability in multi-threaded environments using thread-

local caches and a central heap for pages, while mimalloc emphasizes

security and performance by techniques like eager coalescing and

secure free lists. Specialized allocators are optimized for certain

workload characteristics: pool allocators preallocate memory for

objects of a single size, which allows for very rapid allocation and

deal location in returns for absolute flexibility; region-based allocators

(aka arena allocators) allow only bulk deal location, simplifying

memory management for phases of a computation with well-defined

lifetimes; and object-specific allocators will implement custom

strategies that suit particular data structures or usage patterns. In

garbage-collected environments, free space management encompasses

memory reclamation by means of automated compaction, and

allocators that are tailored to work with collector algorithms. These

allocators commonly reflected fast paths for allocation, object

contiguity to allow efficient collection, and management of metadata

for efficient reference tracking. Mark-sweep collectors want

allocators that can effectively reuse variably-sized free blocks, and

copying collectors capitalize on bump-pointer allocation strategies

over if contiguous memory regions. Thread-safe memory

management functions provide behavioral guarantees that help ensure

safe usage in multi-threaded environments. Modern allocators utilize

strategies to reduce contention, such as thread-local caches, lock-free

187
MATS Centre for Distance and Online Education, MATS University

Notes data structures for common operations, and fine-grained locking

approaches that improve parallelism at the cost of more complex

memory handling. Optimizing the performance of user-space

allocators requires clever engineering set of practices like size classes

where the sizes of various classes were designed to find the trade-off

between internal fragmentation and management overhead, hot/cold

splitting, perfecting, and alignment of each slab on the heap to help

utilization of the hardware. State-of-the-art allocators utilize hardware

features, e.g., transparent huge pages, non-temporal instructions, and

cache control primitives, to achieve high performance. Security has

become an important consideration in the design of allocators, and

many modern allocations have incorporated additional features such

as guard pages, canaries, randomization of object addresses, and even

separation of the metadata of objects from the objects themselves, to

mitigate issues such as buffer overflows, use-after-free vulnerabilities,

and double-free attacks. Production allocators are common with cross-

system memory management tricks like madvise calls, decommitting

of unused pages, memory compaction and so on, which reduce

physical pages and vastly enhance overall performance. Another

important aspect of modern allocators is their debug ability and

introspection capabilities, with support leak detection, heap

validation, allocation tracking, detailed statistics gathering, etc. to aid

development and debugging efforts.

Specialized Free Space Management Systems

Most memory allocators deal with general-purpose usage, but requires

for more specialized free space management systems that can fit the

needs of specific domains also are common an impressive

demonstration of how the core ideas of memory management can be

customized to specific restrictions and optimization possibilities.

While database management systems (DBMS) employ a buffer pool

manager responsible for many optimizations triggered by the

integration of a specialized free space manager and the in-memory

database page cache, the forced-page-layering policies can go beyond

simple regency used within memory even to page dirtyness, and I/O

scheduling opportunities, and query execution plans. It is common

for these systems to include their own application-level memory

allocators that are attuned to database workloads, with features such

as block-oriented allocation, specialized structures for index nodes,

188
MATS Centre for Distance and Online Education, MATS University

Notes and separate pools for different object types. Another area is they can

record information about free space availability, which file systems

usually do with a bitmap, extent trees, free lists, etc. Copy-on-write

file systems such as ZFS and Btrfs use novel strategies for file space

that is free but that also adheres to transactional semantics, while log-

structured file systems like F2FS organize free space around

sequential writes. Free space management techniques for real-time

systems trade off memory utilization efficiency for bounded

allocation and deal location times, which is often more critical than

memory utilization efficiency in these systems. These systems often

seldom use variable latency techniques like global coalescing or

complex search algorithms where the time complexity can rapidly

increase, in favor of a combination of pre-allocated pools, static

partitioning, or scope based memory allocation. High-performance

computing (HPC) environments use specialized allocators that are

tuned for extreme levels of parallelism, NUMA awareness, and

dedicated computation patterns. This includes topology-aware

allocators, custom alignment for vectorized access, and integration

with job scheduling systems for whole-node memory usage. Graphics

Pipelins use domain-specific memory management for resources such

as textures, frame buffers, and geometry data, with custom allocators

that understand the 2D or 3D nature of the resources and hardware-

specific alignment and padding requierments. Modern GPU compute

frameworks offer unified memory models with sophisticated free

space management that crosses host and device memory and

automatically migrates data based on access patterns, hiding the

complexity of explicit transfers. However, embedded systems have

limited memory resources and rely on specialized free space

management techniques that are applied based on specialized

constraints such as statically allocated objects that require

determinism, or objects of fixed size requiring a pool-based

allocation as well as custom fragmentation mitigation techniques that

exploit application-specific information about allocation patterns and

lifetimes. High-throughput, low-latency network stacks employ zero-

copy buffer management and must use specialized memory pools for

common packet sizes, present in systems such as packet processing

systems. Garbage collection systems are perhaps the most specialized

type of free space management, containing techniques such as

189
MATS Centre for Distance and Online Education, MATS University

Notes generational collection, concurrent marking, incremental compaction,

and region-based collection that take advantage of specific properties

and information from the managed languages and runtime

environments. Just-in-time (JIT) compilers manage code memory

according to their unique needs such as executable memory,

alignment requirements in addition to constant caches to invalidate

instructions. For example, hypervisors and virtual machine monitors

maintain multi-level free space management that must account for

physical memory allocation to virtual machines and be able to support

features such as memory ballooning, page sharing by using

deduplication, and live migration between physical hosts. Container

runtimes use specialized memory management techniques that work

with cgroup limits, accelerate page cache pressure and enable

efficient copy-on-write for container images. Big data frameworks

also have custom memory management systems understanding the

lifecycle of distributed computations, with specialized techniques for

spilling to disk, managing data from shuffles, or leveraging the

memory of heterogeneous nodes. When it comes to in-memory

databases and caching systems, free space management is typically

optimized for key-value storage using techniques such as log-

structured memory allocation or slab allocation to minimize

fragmentation and maximize throughput.

Future Directions and Emerging Research in Free Space

Management

The state of device-free space management is constantly equipped to

navigate these shifts driven by technologies, workload characteristics,

and computing paradigms that are also evolving. Non-volatile

memory technologies (NVM) like Intel Optane, Samsung Z-NAND,

and multiple flavors of resistance RAM are obfuscating the classic

boundary dividing memory and storage, prompting novel Layers of

Indirection for managing free space that take into consideration

persistence, wear-leveling, and hybrid memory hierarchies. The

existence of these technologies brings new floors for multi-tenant

read / writes performance, write endurance, and failure atomicity that

lead to research into special-purpose allocators minimizing writes,

batching updates, and recovering from power failures to keep

metadata consistent. This heterogeneous memory architectures

interoperability of DRAM, HBM, NVM, and traditional storage

190
MATS Centre for Distance and Online Education, MATS University

Notes introduces intricate memory hierarchies, necessitating sophisticated

tiering algorithms, placement policies, and migration strategies to

cost-efficiently accommodate diverse access patterns and performance

characteristics. Increasing popularity of multi-tenant environments in

cloud computing has motivated research into isolation-minded free

space management techniques that avoid performance interference

while maximizing resource utilization through techniques such as

page coloring, NUMA-aware allocation, and quality-of-service

guarantees for memory bandwidth. As free space management

research has turned to security considerations, new techniques such

as address space layout randomization (ASLR), fine-grained object

protection, guard regions, and memory tagging have emerged to help

mitigate vulnerabilities that spring from mistakes in memory

management. By combining machine learning and systems

programming, new horizons emerge learning-based free space

management with allocation strategies adapting to seen distributions,

predicting future memory usage patterns with predictive models, and

employing reinforcement learning to optimize long-term memory

usage on varied workloads. These allocations of resources are made

under the influence of energy efficiency, which has become a key

design constraint in contemporary computing systems and motivates

research on power-aware memory management techniques that factor

in the energy cost of allocation decisions, placement decisions and

data movement operations. To keep up with the never-ending memory

size race, ignoring the properties of the order-of-magnitude difference

in the size of memory addressed and the used datasets, research of

techniques that keep optimal memory behavior at extreme scales such

as hierarchical metadata, probabilistic (and shrinking) data structures

for free space management or approximate allocation techniques that

absolutely do trade perfect allocation size for allocation algorithm

range - have popped up as points of interest. Rust, Web Assembly,

and other memory-safe models are inspiring research works on

ownership-based memory systems that use compile-time knowledge

about the lifetimes and access patterns of objects to make smarter

allocation choices and eradicate entire categories of memory errors.

With the increasing significance of domain-specific workloads such

as machine learning, genomics, and cryptography — there is a rising

interest in domain-specific memory allocation strategies that go

191
MATS Centre for Distance and Online Education, MATS University

Notes beyond the traditional abstraction of a memory page to capture the

access patterns/characteristics/life-times/performance requirements of

such workloads. New concurrency models beyond classical threading

(e.g., asynchronous programming, actor-based and dataflow models)

are challenging traditional assumptions of free space management

regarding thread-local caching, allocation ordering and

synchronization strategies. Although the field of quantum computing

is in its early days, it presents many new free space management

challenges that are opportunities for terrestrial systems, stemming

from the probabilistic nature of quantum states, finite coherence time

of qubits, and different demands of quantum algorithms. Besides

driving technology, methodological innovations in research on free

space management include enhanced analysis and modeling

techniques, systematic benchmarking approaches, and formal

verification techniques that yield stronger guarantees regarding

correctness, performance characteristics and security properties of

allocators. Going forward, we will see free space management

become even more specialization and adaptive, with systems

dynamically choosing between many different strategies based on

workload characteristics and the utilization of hardware resources, as

well as application-specific needs. This evolution reflects the basic

tension that has always animated memory management: to seek

general principles that can be productively applied to an ever-wider

array of computing environments that itself become increasingly

diverse and specialized, balancing theoretical purity with practical

matter-of-factness at gradually increasing scales of time, space, and

complexity.

Multiple-Choice Questions (MCQs)

1. Which memory allocation method assigns a single contiguous

block to a process?

a) Paging

b) Segmentation

c) Contiguous Memory Allocation

d) Virtual Memory

(Answer: c)

2. What is the main drawback of contiguous memory allocation?

a) High efficiency

b) Internal fragmentation

192
MATS Centre for Distance and Online Education, MATS University

Notes c) Increased system security

d) Low overhead

(Answer: b)

3. Which memory management technique allows processes to be

swapped in and out of memory?

a) Paging

b) Swapping

c) Segmentation

d) Virtual Memory

(Answer: b)

4. In paging, what is a page?

a) A fixed-size block of data stored in main memory

b) A dynamic memory allocation technique

c) A method for organizing files

d) A replacement algorithm

(Answer: a)

5. Which type of fragmentation occurs in paging?

a) External fragmentation

b) Internal fragmentation

c) Logical fragmentation

d) No fragmentation

(Answer: b)

6. Which page replacement algorithm replaces the page that has

not been used for the longest time?

a) FIFO (First In First Out)

b) LRU (Least Recently Used)

c) Optimal Page Replacement

d) MRU (Most Recently Used)

(Answer: b)

7. Virtual memory allows:

a) More processes to be executed than the available

physical memory

b) Only real-time execution of processes

c) Immediate swapping of processes without demand

paging

d) Elimination of the need for secondary storage

(Answer: a)

193
MATS Centre for Distance and Online Education, MATS University

Notes 8. Which file access method reads data in the same order in

which it is stored?

a) Sequential access

b) Direct access

c) Indexed access

d) Random access

(Answer: a)

9. What is the purpose of free space management in file systems?

a) To increase file security

b) To track unused storage blocks

c) To reduce file sizes

d) To prevent user access to certain files

(Answer: b)

10. Which of the following is NOT a common file system

structure?

a) Single-level directory

b) Two-level directory

c) Hierarchical directory

d) Random directory

(Answer: d)

Short Questions

1. What is contiguous memory allocation, and what are its

limitations?

2. Explain the difference between paging and segmentation.

3. What is swapping, and how does it work in memory

management?

4. Define internal and external fragmentation.

5. What is demand paging, and how does it improve memory

utilization?

6. Name and briefly describe two page replacement algorithms.

7. Define virtual memory, and why is it important in modern

operating systems?

8. What are the different file access methods?

9. Describe the structure of a file system in an operating system.

10. What are the different techniques used for free space

management in file systems?

Long Questions

194
MATS Centre for Distance and Online Education, MATS University

Notes 1. Explain contiguous memory allocation, its advantages, and its

disadvantages.

2. Compare and contrast paging and segmentation, highlighting

their advantages and disadvantages.

3. Discuss the concept of demand paging, including the steps

involved and its advantages.

4. Explain the different page replacement algorithms (FIFO,

LRU, Optimal) and compare their efficiency.

5. What is virtual memory? Discuss its role in memory

management and how it is implemented.

6. Describe file system structures and explain the different types

of file organizations.

7. How are file systems implemented in an operating system?

Discuss various implementation techniques.

8. Explain different file access methods, with examples of where

they are used.

9. Discuss the challenges of free space management and describe

the various strategies used to manage free space in file

systems.

10. How does file system security impact file management, and

what are the methods used to ensure data protection?

195

MODULE 4

DISK SCHEDULING AND DISTRIBUTED

SYSTEMS

LEARNING OUTCOMES

• To explore disk structures and scheduling techniques.

• To understand RAID structures and disk management.

• To study distributed system structures and file systems.

• To analyze remote file access, naming, and transparency.

196
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: Disk Scheduling and Distributed Systems

4.1 Disk Scheduling and Distributed Systems

Data management in modern computing systems is a complex dance

between data requests, commonly controlled by disk scheduling, and

distributed systems, necessitating effective coordination between

distributed systems. This article would cover Disk scheduling part

part of Operating system which is a huge topic and addresses an

important challenge of minimizing the seek time and maximizing the

disk throughput. The order in which requests are serviced has a major

impact on performance, especially when there are multiple processes

simultaneously requesting access to disk blocks. Many disk

scheduling algorithms have been designed to solve this optimization

problem, including First-Come, First-Served, Shortest Seek Time

First (SSTF), SCAN, C-SCAN, and LOOK. FCFS is a straightforward

but inefficient disk scheduling algorithm that services requests in the

order of their arrival; it results in excessive head movement. SSTF

(Shortest Seek Time First) selects the request with minimum seek

time from the current head position, optimizing seek time in total but

may cause starvation to other requests if far from the current head

position. The elevator algorithm, also known as SCAN, moves the

disk head either way and services the requests along the way until it

reaches one end of the disk, at which point it reverses direction. To

counteract this uneven distribution of service, C-SCAN (Circular

SCAN) is an option, which moves the head in one direction and

begins serving requests back at the beginning of the disk instead of

servicing requests on the back trip. LOOK and C-LOOK are

optimized versions of SCAN and C-SCAN algorithms, respectively,

which do not go to the end of the disk if there are no requests in that

direction. This is single-disk, but distributed systems add even more

complexity. At first sight, distributed storage and network storage do

not sound like the same thing. Distributed file systems, like Hadoop

Distributed File System (HDFS) and Google File System (GFS), use

data replication and distributed caching to increase fault tolerance and

approach high performance. These systems also have to manage

network latency, data partitioning and consistency models (e.g.,

eventual consistency versus strong consistency). In such distributed

databases, two-phase commit and Paxos are examples of methods to

197
MATS Centre for Distance and Online Education, MATS University

Notes ensure the atomicity of transactions and consensus in execution

among the nodes. Additionally, incorporating derivative models

through cloud computing and edge computing has revolutionized

both disk scheduling and distributed systems, leading to virtualized

storage and widespread distributed data processing. To address these

challenges, organizations increasingly leverage cloud storage services,

such as Amazon S3 or Azure Blob Storage for scalable and durable

storage, and edge computing platforms that allow for distributed data

processing closer to end-users to minimize latency and bandwidth

usage. From these past trends, newer storage technologies such as

SSDs and NVMe have begun entering the market, with SSDs

containing orders of magnitude faster access times followed by no

seek time at all. For such situations, scheduling algorithms usually

target load balancing/ wear leveling for SSD lifetime support. The

interaction between disk scheduling and distributed systems remains

dynamic, as emerging trends in big data analytics, machine learning,

and latency-sensitive workloads push the boundaries of existing

architectures, highlighting the need for dedicated research on the

intersection of storage and distributed domain.

198
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: I/O Hardware

4.2 I/O Hardware

The I/O hardware is the glue that allows seamless interaction between

a computer and its external environment and is a key component of

any computing system. Wide variety of I/O hardware, including

keyboard, mouse, monitor, printer, scanner, network interface, storage

devices. Each of these devices are communicating through physical

hardware interfaces and protocols to send and receive data and control

state. Introduction The fundamental operation of I/O hardware is the

communication between the CPU and peripheral devices. These

communications are usually controlled by I/O controllers, dedicated

pieces of hardware that manage data transfers and interactions with

external devices. I/O controllers serve as bridges, converting high-

level instructions given by the CPU into low-level signals that the

peripheral devices can interpret. One such device might be a disk

controller, which will handle the positioning of the disk head, along

with actually transferring the data between the disk and the system

memory. Just like a network interface controller (NIC) is responsible

for sending and receiving data packets on a network. Further training

on I/O hardware I/O hardware's continued advancement in speed, key,

and connectivity older interfaces have been superseded by high-speed

variants, such as PCI Express (PCIe) or Thunderbolt, which provide

vastly improved throughput rates compared to their predecessors

(PCI & ISA). PCIe Domination One notable aspect of the evolution of

the computer motherboard is the widespread adoption of the PCIe

standard. The evolution of USB (Universal Serial Bus) has

transformed the way we connect peripheral devices, offering a

standardized plug-and-play interface for everything from keyboards

and mice when was this difference of devices to external hard drives

and cameras. USB has gone through many generations, and USB 3.0

and USB 3.1 deliver far greater data transfer speeds than previous

iterations. These I/O operations can be leveraged as Shared Network

resources or shared disk network, while the development of wireless

technology, includes Wi-Fi, Bluetooth that enhance the connection of

I/O devices and also allows wireless data transfer. The industry

standard for wireless network connection is Wi-Fi, and Bluetooth is

used for connecting devices like headsets, speakers, and mobile

199
MATS Centre for Distance and Online Education, MATS University

Notes devices for short-range wireless connectivity. As a result, there has

been a growing need for multimedia applications, and therefore the

design of specialized I/O hardware, like a graphics processing unit

(GPU), a digital signal processor (DSP). For instance, GPUs are

specialized in accelerating graphics rendering and parallel processing

and DSPs are designed explicitly to process audio and video. As I/O

hardware gets integrated into embedded systems and the Internet of

Things (IoT), specialized interfaces and protocols have been

developed. IoT devices commonly use low-power wireless

technologies (such as Zigbee and LoRaWAN) to connect to the

network. All in all, the future of I/O hardware is expected to be

influenced by ongoing developments in high-speed connectivity,

wireless technologies, and dedicated processors, leading to more

immersive and interactive computing experiences.

Figure 15: I/O Hardware
[Source - https://www.tutorialspoint.com]

200
MATS Centre for Distance and Online Education, MATS University

Notes 4.3 Application of I/O Interface

Due to the versatility of I/O interfaces, they have been utilized in a

wide range of fields to facilitate communication between computing

systems and the rest of the world. One key component in the

architecture of a personal computer is the I/O subsystem that handles

input and output interactions between the user and multimedia. They

interact with software applications through the use of input devices

such as keyboards, mice, and touch screens. Visual output comes from

monitors and projectors, whereas audio output comes from speakers

and headphones. Which printers and scanners for

digitizing/uploading documents and printing output? Multimedia

applications have spawned specialized I/O interfaces like HDMI and

Display Port that render high-definition video (HDMI) and audio

(HDMI, Display Port) output. USB also comes with a variant of

formats various from regular A/B shaped USB plug and cable

connection for mobility or as compact as for on the motion like

portable solid-state driver, USB interface is anyhow most widely

interfaced connector amongst all peripheral devises from external

storage devices to cameras has now also become for connectivity in

mobiles and tablet. Networking I/O interfaces connect computers and

devices to both local area networks (LANs) and wide area networks

(WANs). Ethernet interface to translate the packet on a local area

network (LAN) and modems and/or routers to bridge between the user

and the internet. Examples of network applications especially web

browsing, email, and video conferencing depend heavily on the I/O

interfaces to transmit and receive data. You are specialized in IoT and

embedded systems ·Complete Input/ Output interfaces Typically,

however, serial interfaces like UART and SPI are used for

communication between embedded devices. Wireless interfaces,

including Bluetooth and Wi-Fi, provide wireless communication

capabilities for IoT devices, empowering them to connect to the

Internet. I/O interfaces play a critical role in industrial automation

systems to control and monitor machinery and processes. I/O

interfaces are used for data acquisition and control in PLCs and DCS.

I/O Interfaces: I/O interfaces play a vital role in the communication

between storage devices and computers/servers. Common interfaces

for hard drives and SSDs include SATA and NVMe, while Fibre

Channel and iSCSI are used for SANs. Storage: A bottleneck at scale

201
MATS Centre for Distance and Online Education, MATS University

Notes in Cloud Computing and Data Centers, which use I/O interfaces for

data transfer and storage management Cloud apps generate enormous

amounts of data, making high-speed network interfaces and storage

interfaces critical. I/O interfaces are also used in specialized areas,

including medical imaging, scientific research, and virtual reality. I/O

Interfaces are Required in Medical Imaging Devices Instrument and

scientific devices, famous are Spectrometers, Microscopes, etc.

Motion tracking and haptic feedback in virtual reality systems is

managed through I/O interfaces. The automobile and the smarting of

everything are modes of I/O interfaces that have piqued my interest

beyond abstraction in a display or monitor.

Security and Virtualization in I/O Operations

Such developments, alongside the traditionally more complicated

computing systems and the growing pervasiveness of virtualization

technologies, have created an environment of critical concerns of

security in I/O. The importance of securing input, output, and other

I/O operations cannot be overstated—from data breaches to system

compromises and even denial-of-service attacks, vulnerabilities found

in such interfaces could lead to disastrous consequences. Such

unauthorized access can lead to theft/corruption of sensitive data

from I/O devices. I/O drivers and firmware vulnerabilities can be

exploited by malware to control the system or attack. Secure I/O

operations: the procedures for protecting I/O devices and data from

unauthorized access and attacks This entails the use of robust

authentication and authorization mechanisms, encryption of all data in

transit and at rest, regular updating of I/O drivers and firmware to

rectify security vulnerabilities, etc. Implementing additional

hardware-based security elements, including Trusted Platform

Modules (TPMs) and secure boot, to further secure I/Os, the field of

virtualization is already well established, particularly for running

multiple often disparate operating systems on a single physical

machine to maximize utilization.

202
MATS Centre for Distance and Online Education, MATS University

Notes Unit 12: Disk Structures

4.4 Fundamentals of Disk Structures

Secondary storage, namely hard disk drives (HDDs) and solid-state

drives (SSDs), is the bedrock of virtually all computer systems today,

providing permanent data storage. Now, understanding the structure

of these disks becomes fundamental to comprehend how data is

organized, accessed and managed. Data organization HDD

Hierarchical structure Traditional HDDs use magnetic platters to store

data. Each platter is divided into concentric circles called tracks and

tracks are further divided into sectors. Sectors, which are usually 512

bytes or 4 kilobytes long, are the smallest amounts of data that can

easily be read or written. The read/write head is mounted on top of

the actuator arm and on the surface of the platters to access certain

tracks and sectors. A several platters stacked on an spindle, creating a

cylinder, which contains tracks at an equal radial distance on all

platters. The next method of addressing data is by means of cylinder,

head, and sector (CHS), though this has now been mostly replaced by

logical block addressing (LBA). LBA abstracts away these physical

details and presents the operating system with a linear sequence of

blocks. It abstracts over the disk management and enables faster data

access. In terms of components, HDD performance is impacted by the

seek time (the time it takes to move the read/write head to the correct

track), rotational latency (the time it takes for the target sector to come

into position by rotating under the head), and data transfer rate (the

rate at which data can be read or recorded to and from the disk).

HDDs use spinning disks to write data, SSDs use flash memory which

removes HDD mechanical components. Every solid-state drive (SSD)

stores data in the form of blocks and pages, where a page is the

smallest unit of a read/write operation and a block is a collection of

such pages. This is because SSDs don't suffer from seek time or rotate

latency like HDDs do, resulting in much faster access times. But

SSDs can write only a certain number of times (limited write cycles),

which is why wear-leveling techniques are used to ensure write

operations are spread across the memory cells evenly. On the disk, the

file system handles how files and directories are stored and retrieved.

It stores metadata with file names, sizes and timestamps, and

allocates disk space to files. The file system, including boot sector and

203
MATS Centre for Distance and Online Education, MATS University

Notes file allocation table (FAT), and directory structure, can be defined

differently based on the operating system and file system type (e.g.

FAT32, NTFS, ext4). The file system and the layout of various files

and directories on disk, for example.

Figure 16: Disk Structure

[Source - https://www.computersciencejunction.in]

204
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Disk Scheduling Algorithms

4.5 The Importance and Nuances of Disk Scheduling Algorithms

In a multitasking environment, typically multiple processes request

access to the disk at the same time, resulting in a queue of pending

I/O requests. Various disk scheduling algorithms are used to manage

the serving sequence of these requests, with the goal of reducing seek

time and thus enhancing overall disk performance. The floating-point

purposes of these algorithms have a significant impact on system

responsiveness and throughput. There are different algorithms to

detect and decrypt a given cipher text, with their own merits and

demerits. The first in, first out (FIFO) algorithm is the simplest it

services requests in the order they arrive. FCFS is fair, but seek times

can be large if requests are scattered all over the disk. Shortest Seek

Time First: For each incoming request, SSTF finds the one that has

the shortest distance from the current head position and fulfills that.

One drawback of SSTF is starvation, where requests too far from the

head get stalled indefinitely. Another simple method is the SCAN

algorithm (for "elevator"), in which the head moves in one direction,

servicing requests as it finds them, until it reaches the end of the disk

and then reverses direction. However, while SCAN is favorable for

fairness, it may still become detrimental to requests at the far side of

the disk, resulting in these requests having very long waiting times. C-

SCAN (Circular SCAN); A variant of SCAN where the disk arm

services requests in one direction only. C-SCAN offers more

consistent wait times than SCAN. Continued algorithm of SCAN

and C-SCAN are LOOK and C-LOOK respectively. They do not

move to the end of the disk but instead only the farthest request in the

current direction. Decreasing unnecessary head movement all the

while enhances performance. Depending on the workload and

performance requirement, different disk scheduling algorithms can be

chosen. The SSTF or LOOK algorithms may be used for applications

with large amounts of random workload. Instead, SCAN or C-SCAN

algorithms may be better for workloads that have sequential requests.

One such advanced disk scheduling algorithm is the Deadline

algorithm, which supports real-time guarantees based on the request

deadlines. In some cases, the OS may also employ hybrid strategies,

blending various algorithms to achieve the best performance over a

205
MATS Centre for Distance and Online Education, MATS University

Notes range of scenarios. Knowledge of the trade-offs between these

algorithms is critical in devising optimal disk management strategies.

4.6 Comprehensive Disk Management Techniques

Proper disk management is essential for keeping systems functioning

efficiently, ensuring that data remains intact, and that resources are

used in an optimal manner. It involves various methods such as disk

formatting, partitioning, file system management, and disk

defragmentation. Formatting a disk sets up a file system structure

that's required to use the disk. This relies on writing metadata to the

disk, like the boot sector, the file allocation table and the directory

structure. Disk partitioning is a technique by which we divide the

physical disk into logical partitions and use these partitions to run

multiple operating systems or file systems on a single disk. Partitions

are like separate disk drives and they help keep everything organized

and flexible. File systems manage how files are stored and retrieved

in storage systems. The file system maintains data structures (such as

inodes and file allocation tables) to track the location and metadata of

files. In this article, we will learn about disk cleanup, disk

defragmentation, how to disk defragmentation and why we need to

perform disk defragmentation? How fragmentation happens over

time, files can get fragmented. Defragmentation restacks these

fragments into cluster blocks minimizing seek time and thus file

retrieval. In GNU/Linux, Disk quotas are used to limits, or restrict the

amount of disk space that users or groups can consume, preventing

disk space exhaustion, and thus ensuring fair resource distribution.

RAID 1; Disk Mirroring RAID 1, or Disk Mirroring, creates a mirror

copy of the data across multiple disks for redundancy and flock

tolerance. In the event of failure of one disk, the system can still run

with the mirrored copy. With disk striping (RAID 0), data is spread

across many disks to accelerate read/write speeds. But RAID 0 does

not offer redundancy. RAID 5 and RAID 10, for instance, offer both

striping and mirroring to provide a balance between performance and

redundancy. Disk caching can save the data that is used very

frequently in the memory and avoids the excess work over the disk.

When the cache is full, you use some cache replacement algorithm

like LRU (least recently used) or LFU (least frequently used) to

decide which data to remove from the cache. Disk scheduling

algorithms are also an important aspect of disk management and they

206
MATS Centre for Distance and Online Education, MATS University

Notes are discussed before where a step is taken for how to optimize the

order of I/O requests. When merged, all of them form a potent and

operational disk management system.

Advanced Disk Management and Optimization

Also, advanced disk management encompasses more technical

strategies that enhance performance, reliability, and security. The

introduction of SSDs has brought both challenges and opportunities

for disk management. Wear leveling, garbage collection, and TRIM

commands are all functions designed to improve the performance and

longevity of the SSD. In order to avoid this premature wear the flash

controller needs to implement what is called wear leveling which

distributes the write operations among the memory cells. When blocks

are no longer needed, they will be freed up through garbage

collection, with this process helping to make writes faster. TRIM

Command Which Helps SSD to Recover Deleted Data It is

accomplished through disk encryption which secures sensitive data

by encrypting it prior to writing it to a disk. While full-disk encryption

(FDE) encrypts the entire disk, file-level encryption encrypts

individual files. When files get compressed, the amount of disk space

required to store data storage gets lessened. So that means you turn in

the no compression, -- no bzip2, -- and you run through the lossless

compression algorithms (gzip, zip). Disk snapshots → create point-

in-time versions of the disk. They are implemented using copy-on-

write and redirect-on-write and other techniques. Centralized storage

solutions, such as storage area networks (SANs) and network-

attached storage (NAS), support large environments. SANs use high-

speed fiber channel or iSCSI connections for block-level access to

storage, and NAS uses Ethernet connections for file-level access.

Logical Units (LUNs) for storage are created by these storage

virtualization solutions, which abstract their resources. and can create

virtual pools of storage to efficiently resize dynamically. Thin

provisioned - storage allocated on demand to avoid wasting space.

Using storage tiering, commonly used data is automatically placed to

faster tiers, like SSDs, while data that is accessed less frequently can

remain in slower tiers, like HDDs. AI/ML together is becoming as a

powerful method to focus on performance, reliability, and cost of

storage infrastructure in organizations.

207
MATS Centre for Distance and Online Education, MATS University

Notes Emerging Trends and Future Directions in Disk Storage and

Management

Constantly innovating itself and evolving with technologies and the

data storage needs. New paradigms, such as the adoption of NVMe

(Non-Volatile Memory Express) and NVMe-oF (NVMe over

Fabrics), persistent memory technology, and the increasing use of

cloud-based storage systems, represent the future of storage,

Branham added. What is NVMe: NVMe is an interface protocol

focused on high-performance SSDs and can achieve much higher

data transfer rates than other interfaces such as SATA and SAS.

NVMe-oF adds a layer of abstraction to NVMe, allowing NVMe

traffic to be sent over network fabrics like Ethernet and Fibre

Channel, facilitating high-speed remote storage access.

4.7 RAID Structure

RAID (Redundant Array of Independent Disks) is a technology that

uses multiple hard disk drives to achieve redundancy and/or

performance improvements. Essentially, RAID is designed to increase

the reliability and speed of data storage by spreading the data across

multiple disks in such a manner that the impact of a single disk failure

is minimized. It was first introduced during the late 1980s in an effort

to satisfy the demand for both fault-tolerant and high-performance

storage in increasingly complex computing environments. RAID

levels differ in terms of data distribution and protection. At its most

basic level, RAID 0 (striping) splits evenly or by segments of data

across two or more disks, allowing simultaneous access that

maximizes read and write speeds. That said, RAID 0 provides no

redundancy, so the failure of a single disk results in loss of all data.

RAID 1 (mirroring): Data is stored on two (or more) disks as a copy

for 100% redundancy. Whether you lose one disk, data is still

accessible from the other. RAID 1 is known for great fault tolerance,

but it halves the available storage capacity because every piece of

data is written twice. RAID 5, known as striping with distributed

parity, is a balance between RAID 0's speed and the redundancy of

having parity information spread across all of the disks. The parity

information can be used to reconstruct data in the event of failure of

any one disk, which gives a compromise between performance and

fault tolerance. RAID 6 (striping with double parity) is like RAID 5,

but includes two sets of parity data, meaning it can recover from two

208
MATS Centre for Distance and Online Education, MATS University

Notes simultaneous disk failures. RAID 10 (also known as RAID 1+0)

takes the mirroring and striping approach to combine both high

performance and high redundancy. Requires at least four disks, with

data mirrored across each of pairs of (2) disks and then striped across

the mirrored pairs. RAID 01 (or RAID 0+1) combines striping and

mirroring by striping data across disks and mirroring it to another

group of striped disks. The one significant difference between RAID

10 and RAID 01 is the order of operations: RAID 10 mirrors then

stripes, but RAID 01 stripes then mirrors. Different RAID levels cater

to varying applications based on the requirements of performance,

redundancy, and the cost. For instance, where database servers use

RAID 10 or RAID 5 for best performance and data protection, video

editing workstations may use RAID 0 for speed. Along with these

conventional RAID levels, there are also some proprietary RAID

implementations that provide additional features and capabilities.

These approaches might have different flavors of the standard levels,

or they might have completely new ways of distributing and

protecting data. There are primarily two types of RAID

implementations, software RAID, which is based on an

implementation from the operating system, and hardware RAID

which is based on dedicated, physical RAID controller. Hardware

RAID provides a higher level of performance and reliability because

the RAID processing is offloaded from the CPU, whereas software

RAID is more cost-effective and more flexible. Choosing a RAID

level is a decision that balances performance and cost from the

perspective of redundancy. Making the most appropriate selection

operates based on having a crystal clean insight of the particular non-

IT related demands of the usage, in addition to all of the high level

attributes of the RAID amounts on offer. Moreover, new RAID

formulations and optimization methods have emerged, due to

ongoing changes in storage technology like with solid-state drives

(SSDs) and NVMe. They provide far superior performance to legacy

hard disk drives (HDDs) and they need different techniques in order

to implement RAID. It is also leading to more and more RAID-animal

hybrids with SSD and HDD storage as writing in storage can be more

costly but would require only a fraction of the speed needed for a

read. RAID technology has been sold on many fronts, and the future

of RAID will most certainly lead to more seamless integration with

209
MATS Centre for Distance and Online Education, MATS University

Notes new storage methods and technologies and to more advanced data

protection solutions. This will encompass improvements on error

correction, prediction of possible failures and automated data recovery

systems. It aims at building intelligent storage systems which are

self-managed, fault free and performant.

4.8 Distributed System Structure

A distributed system is a system whose components are located on

different networked computers, which communicate and coordinate

their actions by passing messages to one another. Such computers (or

nodes) exchange messages over a network and coordinate their

actions. Distributed system’s main purpose is to share resources and

it achieves scalability, fault tolerance, and improved availability.

Distributed systems, in contrast to centralized systems (where a

single server processes and stores data), reduce the risk of failure and

increase system performance by distributing processing and storage

over multiple nodes. While they offer numerous benefits, distributed

systems can be challenging to implement and require careful design

and management to ensure reliability and efficiency. Distributed

systems and their architecture play a vital role in promoting

performance, scalability and fault-tolerance. A very common

architecture pattern is a client-server where there are clients sending

requests to the server in orders to get some services. This is a very

common model in web applications where web browsers (clients)

serve requests for web pages from web servers. Another architectural

pattern you can choose is P2P (peer-to-peer), where all nodes are

equal and have the same role and responsibility. Typically, P2P

networks are utilized for file sharing and distributed computing.

Another one is Layered Architecture, where the system is organized

into layers, where each layer provides a particular range of services.

As a result, it encourages modularity and results in a simpler system

design. Microkernel architecture, where the operating system kernel

provides the fewest number of services necessary and other services

run in user space. This architecture expands both flexibility and fault

tolerance. In this approach, the operating system itself is distributed

among multiple nodes, that is, a more integrated distributed operating

system. This alternative offers users a more transparent and seamless

experience. Of course there are things to consider when designing a

distributed system, such as communication, synchronization, fault

210
MATS Centre for Distance and Online Education, MATS University

Notes tolerance, and security. Nodes communicate with each other by

means of message passing, that can be either synchronous or

asynchronous. The former involves synchronous communication; the

sender must be willing to wait for a response from the receiver,

whereas with the latter, the sender can keep on doing their processing

without waiting for a response. Synchronization is vital to managing

the functionality of different nodes, so that they act in a coherent and

consistent way. This can be done using different mechanisms like

distributed locks and consensus algorithms. The tolerance of faults of

the system is the ability of the given system to keep working with the

failure of the nodes. Redundancy and replication is how this is

accomplished. As distributed systems are vulnerable to multiple types

of attacks, such as denial-of-service attacks and data breaches,

security is also a crucial issue in these systems. Protecting the system

and its data requires security measures such as encryption and

authentication. The scalability of a distributed system refers to its

capacity to manage higher workloads with the addition of nodes.

Horizontal scaling adding nodes to the system, or vertical scaling

upgrading the nodes' hardware, will allow those storage systems to

scale out and handle more traffic. The decision tree for whether to

scale horizontally vs. vertically is app-specific. And how do we define

the reliability of a distributed system? They do this by the use of

techniques such as redundancy, full copies of data, and error

correction and detection. Its ability to perform tasks efficiently and

effectively is the performance of a distributed system. Load

balancing, caching, and parallel processing are a few techniques that

will help- Distributed systems are set to witness advancements in the

realm of cloud computing, edge computing, and the Internet of

Things (IoT) in ongoing future. With data being the operative word,

fall of data sizes means the systems need to be adequately

sophisticated to manage such data internally or over the network only.

4.9 Distributed File Systems (Approx. 1900 words)

A distributed file system (DFS), is a file system that enables clients to

access and share files stored on multiple servers over a network as if

they are stored on a single, local file system. DFSs are critical for

supporting collaboration and sharing in distributed settings. They

offer a single namespace so that users can access files without

understanding the underlying location of the file. We can find very

211
MATS Centre for Distance and Online Education, MATS University

Notes interesting features of DFS which make it scalable, available, fault

tolerance and cover the performance maximally. Scalability The file

system's capacity to manage growing volumes of data and user

requests. This is done in two ways either adding more servers to the

system. Availability: It allows the file system to be still available in

the failure of the servers. This is done with replication and

redundancy. Fault tolerance refers to the ability of the file system to

tolerate errors or failures and continue operating correctly. Data

redundancy and error detection and correction mechanisms are

employed to achieve this. Performance defines how fast and

efficiently the file system can grant access to the files. It can be

performed with caching, load balancing, and parallel processing. A

common architecture of a DFS is a client/server model where the

client accesses files from the server. The metadata about the files,

including things like their names, permissions, and locations, are

stored on one or more metadata servers. This is where the actual file

data is stored which is on data servers. The metadata servers maintain

the namespace and information about where the file is contained,

while data servers store and access file data. Network File System

(NFS), Andrew File System (AFS) and Hadoop Distributed File

System (HDFS) are common DFS architectures. One of the most

popular examples of DFS is NFS (Network File System), which

enables clients to access files located on remote servers on the

network. It uses client-server architecture and provides an easy and

efficient way to share a file. AFS is a more advanced version of DFS

with added strength, security, scalability, and so forth. It employs a

distributed caching mechanism to boost performance. HDFS is a DFS

for large-scale data processing. It enhances the performance of the

Hadoop Framework and gives a high throughput as well as fault

tolerance. With that said, designing a DFS comes with many

challenges such as naming, caching, replication, and consistency.

4.10 Naming and Transparency Remote File Accesses

Naming and transparency are paramount themes in distributed

systems, especially for remote file accesses. These principles provide

a way for users and applications to behave as if they were working

with files on local disk, to speak with data located on remote servers.

At core, naming is about establishing a logical, human-friendly way

to identify and locate files in a distributed setting. This includes

https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive

212
MATS Centre for Distance and Online Education, MATS University

Notes creating a naming scheme which adds a layer of abstraction between

the physical location of the data and the logic used to access it,

permitting users to specify a file with a symbolic name, rather than a

complex network address. Transparency, in contrast, is the extent to

which a distributed nature of the system is hidden from users. A

distributed file system should fundamentally attempt to be as

transparent as possible, where accessing remote files should seem no

different from accessing a local file. This includes location

transparency (the user doesn't know where the file actually resides),

access transparency (the same access methods are employed for local

and remote files), and concurrency transparency (simultaneous access

to a shared file is together without interference from users). The

difficulties in working to implement these transparencies are

profound: they involve coordinating operations across a collection of

machines, isolating the impact of network latencies, and so on,

including reintegrating which nodes may fail. The nomenclature

schemes used have to be robust, scalable and be able to adapt to the

dynamic nature of a distributed environment. These higher-level

abstractions are often implemented using techniques such as

hierarchical naming (where names to files are organized into logical

structures through directories and subdirectories, and through physical

access paths) and attribute-based naming (where files are referenced

based on their attributes). Moreover, name resolution must also be

performed by the system, as symbolic names must translate to

physical addresses efficiently.

If you have to implement remote file access systems, I suggest you

think about the different design choices you make and the overall

performance, scalability, and reliability of the system that you end up

with. The right file access protocols is one key factor. They establish

the methods of communication between clients and servers, outlining

the process of file requests and data retrieval. In file sharing, protocols

like Network File System (NFS) and Server Message Block (SMB)

are prevalent, each with its unique benefits and trade-offs. For

example, NFSis known for its simplicity and platform independence;

SMBis frequently used in home windows environments and has

strong support for file sharing and printing. Caching strategy is

another important design consideration. Caching refers to holding

repeatedly accessed information on the machines of the client,

213
MATS Centre for Distance and Online Education, MATS University

Notes eliminating the need to resubmit requests over a network. This can

often improve performance markedly, but also brings cache

consistency challenges. When the same file is coached by multiple

clients, it must ensure that all clients have the latest version. To solve

this problem there are some techniques such as cache invalidation,

write through cache and others. And, the system needs to deal with

fault tolerance. In a distributed system, failures are not a bug; they are

a feature. Servers can crash, and networks can be disconnected, and

data can be corrupted. The files system needs to be built to endure

such failures and should guarantee that services are available and data

is not lost. This can include techniques such as data replication to

multiple servers, error detection and recovery mechanisms, and using

distributed consensus algorithms to ensure consistency in the presence

of failures. Another vital component of accessing files remotely is

security. The system will only allow authorized users to expose

sensitive data, and must implement access control mechanisms for

this purpose. For instance, you might implement authentication

protocols to confirm the identity of users, apply encryption to keep

data secure while it's being transmitted, and create access control lists

that limit what specific users and groups are allowed to do.

The rise of the internet and distributed computing has left an imprint

on the development of remote file access. The initial systems

emphasized simple file sharing in localized networks. With the

increasing prevalence of networks, there was demand for more

advanced systems able to operate in large-scale distributed settings.

Evolution in remote file access: From e-mails to cloud computing In

the 1990s, the use of e-mail grew exponentially. The level of scaling

and availability of these services is like never before with the ability

to access your data from virtually anywhere on the planet. But they

also bring mew risks concerning data security, privacy, and

compliance. With the rising data generation and storage, works on

efficient ways of data storage and retrieval have also increased.

Today’s distributed file systems are designed to store petabytes and

even exabytes of data, employing techniques such as data striping,

erasure coding and distributed hash tables. There are also file access

systems for mobile devices that are more adapted to low-bandwidth

and intermittent network connections. Offline caching and data

synchronization techniques are often employed to ensure that the data

214
MATS Centre for Distance and Online Education, MATS University

Notes served by the application is available even if the user is not connected

to the network. This trend toward edge computing, in which data

processing and storage are pushed closer to the edge of the network,

is also affecting how remote file access systems are designed. Edge

computing can help reduce network latency and improve

performance by processing data locally. These trends are expected to

shape the future of remote file access, which will determine how we

seamlessly, securely, and efficiently access data in increasingly

complex and distributed environments.

There are numerous, difficult trade-offs to make when you strive for

transparency in remote file access. Network latency Fixed by:

Implementing zero-trust principles One of the key obstacles is

network latency. Data network round trip latency degrades both the

network file access response time and the remote file system

performance. Many systems approach this through techniques like

caching and prefetching that try to predict your data and pull data on

your behalf before you actually ask for it. Yet, these techniques also

add additional complexity regarding cache consistency and data

staleness. The second issue is partial failure. In a distributed

environment, you can have failures in some components while the rest

are running. If this is not controlled properly it can lead to data

inconsistencies and corruption. To do this we use distributed

consensus algorithms (like Paxos and Raft) to make sure that all

replicas in the system of a file are in sync, even in the presence of

failures. These algorithms enable a set of machines to reach

consensus on a value, even if some fail. Yet, their implementation

may also be rather complex and can incur a performance overhead.

Another major concern is security. The remote file access systems

must protect the data from unauthorized access, modification, and

disclosure. This calls for strong authentication and authorization

mechanisms, together with encryption to secure data at rest and in

transit. This has led to a great focus towards security in distributed

file systems due to the rising frequency of cyber-attacks. Scalability is

another important factor to consider. File systems need to scale as

they scale to continue to feast on more users and more data. This

necessitates thoughtful design of data structures, algorithms and

protocols. Sharding (partitioning data across multiple machines) and

load balancing (distributing requests among servers) are applied to

215
MATS Centre for Distance and Online Education, MATS University

Notes achieve scalability. Another challenge is the variety of operating

systems and devices each client has. Client support: File systems

need to interact with a diverse set of clients, which may have varying

levels of capabilities and limitations. This may include platform-

independent protocols and data formats. the principles of naming and

transparency are central to the design and implementation of remote

file access systems. High levels of transparency in using Reveal

require overcoming many performances, consistency, fault tolerance,

security, and scalability challenges. The need for better remote file

access has emerged with the rise of distributed computing and the

internet and later cloud computing, which led to the development of

solutions for accessing data in new, massive and distributed

environments, given the necessary emphasis on access without

intervening systems on the data access process, while maintaining

security and efficiency in data transfer. It is probable that some of the

trends that will either directly or indirectly define the future of remote

file access will include edge computing, mobile computing, and the

growing volume of data, as there will be a need to build even more

intelligent and adaptive systems. The continued evolution of new

technologies and protocols will further enhance the performance,

reliability, and security of remote file access, allowing users to access

their data from anywhere and at any time.

Multiple-Choice Questions (MCQs)

1. Which of the following is NOT a disk scheduling algorithm?

a) First-Come, First-Served (FCFS)

b) Shortest Seek Time First (SSTF)

c) Round Robin (RR)

d) SCAN

(Answer: c)

2. Which component is responsible for managing input and

output operations in a computer?

a) CPU

b) I/O Controller

c) Cache Memory

d) Registers

(Answer: b)

216
MATS Centre for Distance and Online Education, MATS University

Notes 3. What is the purpose of an I/O interface?

a) To facilitate communication between the CPU and

storage devices

b) To execute user programs

c) To process high-priority interrupts

d) To store temporary data

(Answer: a)

4. Which of the following is a primary function of disk

management?

a) Process scheduling

b) Memory fragmentation

c) Formatting and partitioning disks

d) Program execution

(Answer: c)

5. Which RAID level uses striping without redundancy?

a) RAID 0

b) RAID 1

c) RAID 5

d) RAID 10

(Answer: a)

6. What is the key characteristic of a distributed system?

a) Centralized control over all processes

b) Multiple independent processors working together

c) Use of a single file system for all devices

d) Only local execution of processes

(Answer: b)

7. Which of the following is NOT an advantage of a distributed

file system?

a) Scalability

b) Data redundancy

c) Single point of failure

d) Remote file access

(Answer: c)

8. What is transparency in a distributed system?

a) The ability to hide implementation details from users

b) A mechanism for encrypting data

c) The process of data fragmentation

d) A technique for improving network latency

217
MATS Centre for Distance and Online Education, MATS University

Notes (Answer: a)

9. Remote file access allows users to:

a) Access files stored on a local disk only

b) Retrieve and modify files stored on another system

over a network

c) Use physical hard drives instead of cloud storage

d) Remove files permanently from all servers

(Answer: b)

10. Which disk scheduling algorithm favors the request closest to

the current head position?

a) FCFS

b) SSTF

c) LOOK

d) C-SCAN

(Answer: b)

Short Questions

1. What is the purpose of disk scheduling in an operating

system?

2. List two common disk scheduling algorithms and briefly

explain them.

3. What is an I/O interface, and why is it important?

4. Explain the basic structure of a hard disk.

5. What is the function of a RAID system, and why is it used?

6. Differentiate between RAID 0 and RAID 1.

7. What are distributed systems, and how do they improve

computing efficiency?

8. Define naming transparency in a distributed file system.

9. What is remote file access, and how does it benefit users?

10. How does a distributed file system differ from a traditional file

system?

Long Questions

1. Explain the need for disk scheduling and discuss different disk

scheduling algorithms.

2. What are the key components of I/O hardware, and how do

they function?

3. Discuss the applications of an I/O interface in operating

systems.

4. Explain the structure of a hard disk and its role in data storage.

218
MATS Centre for Distance and Online Education, MATS University

Notes 5. Compare different RAID levels and their advantages and

disadvantages.

6. What is a distributed system, and how does it improve

resource utilization?

7. Discuss the features and architecture of a distributed file

system.

8. Explain the concept of naming transparency and its

importance in distributed systems.

9. How does remote file access work, and what are the security

concerns associated with it?

10. Analyze the challenges in implementing distributed systems

and how they can be overcome.

219

MODULE 5

STATEFUL VERSUS STATELESS SERVICE AND

SHELL PROGRAMMING

LEARNING OUTCOMES

• To understand stateful and stateless services in OS.

• To explore different shell programming techniques.

• To study command execution processes and shell scripting.

• To analyze decision-making selections and function parameter

passing in shell scripts.

220
MATS Centre for Distance and Online Education, MATS University

Notes Unit14: Shell Programming & Introduction to Shell

Programming

5.1 Shell Programming & Introduction to Shell Programming

In the realm of operating systems, particularly Linux and Unix, the

shell is a crucial command-line interpreter, bridging the gap between

the user and the kernel, the core of the operating system. It allows

users to interact with the computer by executing commands,

managing files, and controlling system processes via a text-based

interface. Shell programming is simply writing the shell command

language scripts for repeating the tasks and is used to create powerful

utilities. Essentially, the shell is a command line interpreter which

takes commands from the user and translates them into instructions

that the kernel can comprehend and execute. This feature is not

limited just to running a single command; all in one and you can write

complex scripts to automate repetitive tasks, manage the system

configuration, and process data in a complex structure. By

combining, controlling execution, and calling various available

commands or built-in functionality, the shell is very powerful and

flexible. The basics of shell programming using various shells are

taught as an essential aspect of the concepts of operating system

development by undergraduate students, highlighting their

significance in system administration as well as automation. The shell

environment gives students a direct view into the inner workings of

the operating system: they can experiment with system commands

and see their effects firsthand, gaining a hands-on understanding of

how the operating system works. Students pursuing careers in

computer programming, software development, and systems

administration gain important hands-on experience. Users write shell

scripts that are a single file combining multiple commands,

automating complex workflows and eliminating manual steps. Tools

and Utilities: You can write shell scripts to create custom utilities and

tools that extend the OS's capabilities, enabling users to customize

their environment according to their specific requirements.

Additionally, shell scripting offers a programming environment with

access to variables, control flow (loops and if statements), and

functions, making it a powerful medium for writing complex

programs. With the help of variables, users can store and manipulate

221
MATS Centre for Distance and Online Education, MATS University

Notes data within scripts, and with control structures the flow of execution

can be controlled based on specific conditions. With functions, a user

can encapsulate reusable code blocks, promoting modularity and

facilitating code reuse. Shell also has a rich set of built-in commands

and utilities like file manipulation, references, and system

administration commands which you can use inside the scripts. All

these built-in functions, along with the shell's ability to use scripts,

make it a powerful platform for building all sorts of applications.

Shell programming is a skill set that is fundamental and a necessary

basic building skill for more advanced aspects of programming.

Learning to write shell scripts teaches students critical skills such as

the ability to solve problems, think through their logic, and break

complex tasks into smaller, more readable actions. Students aiming to

be proficient programmers and system administrators require this

hands-on learning.

Shell programming is the foundation of understanding how to use

commands. The command language of the shell is made to be

predictable and simple to Joomla, its key strengths being simplicity

and versatility. Commands are usually specified as a command name,

its options, and its arguments. If options customize how a command

runs, arguments define what data or files the command manipulates.

The -l option lists the contents in a long format; so, for one example,

ls lists the contents of a directory. Structured... Shell scripts are

usually written in some text editor and saved with a. sh extension.

The first line of a shell script contains a command that indicates

which shell interpreter to use to execute the script, usually #!

/bin/bash for the Bash shell. This is called the shebang, it informs the

operating system that the script uses the interpreter that follows it.

The shell script you can call with a simple command like

shellscriptname, and it will execute commands sequentially, and any

command can take the output of another command using pipes and

redirection. Pipes enable the output of one command to be passed as

input for another, while redirection enables you to redirect the input

and output of a command to files or other devices. Shell

programming variables: Variables are used to store data in a shell

programming script. Values are assigned to variables using the =

operator, while values can be accessed using the $ symbol. Built-in

Shell Variables: The shell also has a set of built-in variables that

222
MATS Centre for Distance and Online Education, MATS University

Notes provide information about the shell environment, such as the current

working directory, and the user's login name. Control structures, (if

statements, for loops, etc.) these are used by users to execute flow

control in scripts. If statements are used to execute different

commands based on specific conditions, and for loops that enable

users to iterate over a set of values or files. Functions allow users to

wrap reusable code sections, fostering modularity and code reuse.

Undergraduate students, within their learning and understanding of

these basic concepts can also start building their own shell scripts to

automate some of their tasks and processes. The big power of shell

programming being able to connect all other programming languages

and tools together. Some of the programs could be written in other

languages, such as C, Python, and Perl, and shell scripts could invoke

these programs and also pass data from one program to the other.

Since shell can integrate other utilities, it is suitable for building

complicated applications/systems. A shell script, for example, can be

used to compile and run a C program, or to manipulate data produced

by a Python script. Shell scripts can mix in with other UNIX and

Linux commands to carry out basic tasks or perform more complex

actions. Shell Environment for Debugging and Troubleshooting

(ShellNamespaces.com) The set command will enable debugging

options such as command execution tracing and variable value output.

Here at SCRIPT execution the value of the messages and the value of

the variables get displayed with the help of echo command, these are

very helpful to understand errors and find the bugs. Command-line

debuggers, like bashdb, are also supported with shell programming

and offer advanced debugging capabilities, including but not limited

to breakpoints, stepping, and variable inspection. These debugging

tools help undergraduate students to learn how to write solid and

dependable shell scripts. System administrators also benefit from

shell programming since they use shell scripts to automate routine

tasks such as system maintenance, managing user accounts, and

monitoring system performance. Shell scripts also enable

administrators to build custom tools and utilities that can be used for

system administration tasks, making it easier for them to work

efficiently. As I mentioned earlier, a shell script can be used to

automate some tasks such as creating user accounts, installing

software packages, or copying system files. Finally, the study of shell

223
MATS Centre for Distance and Online Education, MATS University

Notes programming is important for undergraduate students aspiring to build

careers in computer science and its allied fields. It is a command line

shell that serves as a powerful and flexible environment to automate

tasks, to customize the operating system and to integrate with other

programming languages and tools. Students learn the command line

and write their first shell program, without any knowledge, become

the groundwork for learning about operating systems and basic

building blocks of sysadmin and automation. If you don’t know how

shell scripting sessions work, that’s fine but you should, because

writing scripts isn’t enough to be a good shell programmer. The shell

is a command line interpreter which allows the user to input

command to manage the processes, files and configurations on the

system. Shell programming is an important tool for both system

administrators and developers as it has a close link with the operating

system. Moreover, the shell provides advanced scripting features that

allow you to combine multiple commands into a sequence of actions.

The versatility of the shell comes from its ability to compose existing

commands, control the flow of the program, and to leverage its rich

set of built-in capabilities to manipulate data. Shell programming also

exposes students (primarily in their undergraduate curriculum) to a

programming paradigm which they can extend into other languages as

they learn them. These types of programming quizzes can help

students practice their problem-solving skills, as shell scripting

requires not only knowledge and skills IT but they know how to put it

to use. This hands-on experience is critical for students who want to

become competent programmers and system administrators. The Shell

Shells are essential because they enter every organization with X

applications. Shell programming allows for building complex

systems, from automating software product development workflows

via web servers and databases. With the advancement of technology,

the need for skilled shell programmers will only rise; it is an essential

skill for students to learn.

5.2 Various Types of Shells and Their Comparisons

Many more shell implementations were developed over the years,

each featuring different syntax and capabilities, targeting various user

bases and needs. These different types of shells play a significant role

in system administration and software development. Purely

repercussive shells including the Bourne shell (sh) were the very

224
MATS Centre for Distance and Online Education, MATS University

Notes early shells whilst targeting simplicity and efficiency, looking only

towards basic command execution and scripting functionality. The

syntax of the Bourne shell, while perhaps not as powerful as its

successors, served as the blueprint for the development of future

shells. With advancements in computing, users began to have

different needs, and thus, more advanced shells were created that had

better features and functionalities. You might also implement a more

interactive feature such as command history, job control, and aliases

with csh, etc. Its C-like syntax attracted C users, though the C shell's

scripting capabilities had received complaints as inconsistent and

limited. David Korn wrote the Korn shell (ksh), which attempted to

merge the best features of the Bourne and C shells in an interactive

and scripting environment. It also added command-line editing, job

control improvements and many other features that made it popular

among system administrators. The Bourne-Again shell (bash) is an

improved version of the original Bourne shell that adds many features

from the Korn shell and C shell and is the default shell for most

Linux distributions. Bash has numerous more advantages and options

for the interactive user and the script writer, together with command-

line completion, history growth, and plenty of scriping choices. This

popularity is due to its ability to run Bourne shell scripts, as well as

its extensive feature set and availability. In addition, yet another

popular shell is the Z shell (zsh), which is built on top of bash to

provide advanced features like advanced command-line completion,

spell correction, and plugin support. Make Zsh Your Own (and Others

Again) Zsh is highly customizable and extensible, which is why it is

loved by power users and developers. Now when it comes to

comparing these shells, things like syntax, scripting capabilities,

interactive features, and customization options come into play. With

simplicity and efficiency, the Bourne shell didn't offer many user-

friendly features introduced in later shells. While the C shell is

interactive, it isn't that great for scripting. The Korn shell strikes a

good balance between interactive and scripting features, while bash

and zsh have plenty of features aimed more at interactive use with the

script features there too. The normal shell to use is a matter of

preference this leads to bash and zsh being the most popular and

recommended for use due to the large set of features.

5.3 Command Execution

225
MATS Centre for Distance and Online Education, MATS University

Notes Here are the steps of command execution in a shell: parsing the

command line, executing the corresponding command, collecting the

result. The shell is the command-line interface that is responsible for

processing user input. It expands. The shell makes lots of expansions

variable expansion, tilde expansion, wildcard expansion, and so on to

fix any special characters or variables in the command line. Variable

expansion will put the value of variables instead of the variables in

command, which allows us to build a command dynamically. Tilde

expansion refers to the opening of a user account in this directory

using the tilde character (~) for ease of use, so that users do not have

to write out the full path to the user's home directory when the file or

directory is in the home directory. Using Wildcard expansion means

expanding the patterns using Wildcards like and?, thus allowing a

user to perform operations and actions on multiple files with a single

command. Then, after the parsing and argument expansion the shell

checks whether the command executed is a built-in command or an

external command Built-in commands include the commands that are

implemented in shell itself, eg commands like cd, echo, exit etc. The

commands here are run in the shell itself without invoking a new sub

process. External commands refer to program residing on a file

system like ls, grep, and gcc. When an external command is executed,

the shell forks a new process calling fork system call and the image of

the new process is then replaced with the specified program using the

exec system call. Creating a child process through the fork system call

including a new process replacing its memory through the exec

system call The shell also waits for the process to terminate by using

the wait system call once the program executes. Next, the shell

collects the exit status of the process, which tells it if the command

successfully executed or if an error occurred. Input Output

Redirection (Using and) Shell uses special characters like and to

redirect input and output. The input is read from a file using input

redirection Used to send the output from one command to another

command as input, which gives the user the ability to elaborate

commands and create complex operations. Another topic which is

essential to command execution is job control, allowing users to run

multiple processes at one time. The shell has commands like bg, fg,

and jobs to manage the transitions between foreground and

background processes, and to list background jobs that are currently

226
MATS Centre for Distance and Online Education, MATS University

Notes running. In addition to handling separate processes, the shell also

handles signals, which are messages sent to any process to notify it of

asynchronous actions like interrupts, termination requests, and errors.

The shell includes commands such as kill that are used to send

signals to processes, enabling the user to kill or otherwise control their

behavior. The understanding of these steps and functionalities is

required to work with command line in an efficient manner as well as

scripting.

5.4 Detailed Breakdown of Command Execution Processes

In order to do more details about command execution, we need

discuss what happens behind the scene. The shell’s parser goes to

work as soon as a command is typed; breaking down the input into its

parts: the command name, any arguments, and options. Parsing is a

critical stage for the shell to know the user's intention. After parsing,

the shell begins a sequence of expansions to convert the command

line to its equivalent executable form. The heart of Bash, variable

expansion replaces variables with their assigned values, enabling the

flexible crafting of commands. Variable DIR is set to

/home/user/documents so when command cd $DIR runs it is

substituted into of cd /home/user/documents before executing. Tilde

expansion is a shortcut for navigating and designating files,

converting ~ to the user's home directory. Another powerful feature of

the shell is wildcard expansion, which lets you apply operations to

multiple files based on a pattern. For instance, ls. Txt will show the

output of all files with. in the current directory. Hash table or after

expansions, the shell determines whether the command is built-in

Unix like operating system command execution is an essential

concept that enables all user interactions and system activities. Once

a user provides a command to the shell, it goes through a complex

sequence of processes that converts the command to actions that can

be executed. First, the shell parses the command line, splitting it into

separate tokens, like the command name and its arguments. This

parsing includes anything from interpreting special characters, to

quote-handling to wildcard expansion. The shell also aliases, allowing

users to define custom command line shortcuts to possible forward to

common command lines. After that, the shell looks for built-ins,

commands that are built into the shell itself, like cd, echo, or exit. In

case the command is built-in, the shell executes the command itself,

227
MATS Centre for Distance and Online Education, MATS University

Notes so no new process needs to be created. Then if the command is not a

built-in, the shell searches the directories in the PATH environment

variable for an executable file of this name. PATH is a colon-

separated list of directories that the shell looks through, in turns. The

shell forks a new process using the fork system call when it has

located the executable file. The child process subsequently invokes

the exec set of system calls to overlay its image with the executable

file of its command. The parent shell process, on the other hand,

invokes the wait() system call to block whilst the child process

executes. The input and output streams are controlled via file

descriptors when the command is executed. Standard input (stdin),

standard output(stouts)and standard error(stderr) are usually attached

to the terminal, but they can be redirected to files or passed to other

commands. The shell also handles environment variables (key-value

pairs that hold relevant information to processes). These variables can

affect the way commands execute and are passed through to sub

processes. After executing the command, the child process exits,

providing an exit status reflecting success with zero or an error with a

positive integer. The parent then displays its prompt, awaiting the

next command. From parsing the command line to managing

input/output and environment variables, the shell orchestrates this

entire process, and acts as the main interface between the user and the

kernel of the operating system. Therefore, for the effective fulfillment

of tasks of a system administrator and shell programmer, it is

important to have knowledge of this process to understand the very

process of command execution and control over it. In this context,

shell programming, the act of developing scripts that automate and

enhance the capabilities of the command-line interface, is an

incredibly powerful tool for both system administrators and

developers. Different shells, like Bash, Zsh, and Ksh, offer different

levels of features and syntax, with their respective strengths and

weaknesses. Bash (Bourne Again SHell) is a widely used Linux shell

that is the default shell in many distributions, and it is also the most

commonly used shell for writing scripts. You can use variables,

conditional statements, loops, and functions within Bash scripts to

create complex automation routines. Bash variables are dynamically

typed and can hold strings, numbers, or arrays. Flow Control; Uses

conditional statements for decision making (if, elif, else) Sequence,

228
MATS Centre for Distance and Online Education, MATS University

Notes selection, and repetition: The sequence section specifies a list of

commands to execute one after the other, while conditional execution

(via an if statement) allows for decisions to be made in the flow of

code, and for loops, such as for and while, permit commands to be

executed in repeat for a number of times, automating tasks that would

otherwise require manual intervention. Bash functions help in making

the scripts modular, organized, and reusable. Another popular shell is

Zsh (Z Shell), which extends many of the features found in Bash and

also offers better tab completion, spell checking, and theming. Zsh is

highly customizable and configurable, making it great for users that

want to make their shell environment suited to their specific

freedoms. Enter Ksh (Korn Shell) a shell that merges the best of

Bourne shell and C shell, providing an efficient and powerful

scripting environment. These two features make ksh widely used in

terms of performance while retaining compatibility for older shell

scripts. Another thing to keep into consideration when writing shell

scripts is that there are best practices—using comments to explain

what the code is doing, using proper variable names, error handling,

and so on. Error handling is done by conditional statements and the

trap command, which enables the execution of certain commands on

receiving certain signals. Shell also communicates with the operating

system by making system calls or executing any external commands.

229
MATS Centre for Distance and Online Education, MATS University

Notes Unit 15: Shell Programming in Different Shells

5.5 Shell Programming in Different Shells

The script uses grep to search for pattern(s) in files, or use sed to

perform basic text transformations. Automation alone is just a small

part of writing shell scripts, but to add more utilities that help within

the command-line interface. Learning shell programming can help

users automate tasks, understand the inner workings of the shell, and

improve their productivity. Now a further look into shell

programming in one of the most popular shell, Bash shows a lot of

rich functionality for automating complex tasks. A bash script starts

with a shebang line, Already, the first line starts with /bin/bash, which

refers to the interpreter that is used to run the script. Bash does not

require explicit types when declaring variables, which are referenced

using the prefix. syntax is used for arithmetic operations, and various

built-in commands or parameter expansions are used for string

manipulations. Conditional statements including if, elif, and else are

used to make decisions based on whether an expression evaluates true

or false in Bash. These may be comparisons of strings, numbers, or

file properties. Bash loops: for, while and until loop in Bash allow

you to run the same command multiple times. The for loop is

especially handy to iterate over collections of items; whereas while

and until loops are used to iterate conditionally. In Bash, you define

a function by writing the keyword function, or by writing the function

name followed by parentheses. Makes up the arched arguments and

return values that enable modular and reusable code. One of the core

parts of bash scripting is the input and output redirection. The

operator writes standard output to a file, and the operator appends

standard output to a file. Pipes Let’s us link commands together so

that the output from one command is the input to the next command.

Bash error handling can be done using conditional statements and

trap command. The command trap enables us to execute some specific

commands whenever we receive some signals such as, SIGINT

(interrupt), SIGTERM (terminate) etc. It offers several built-in

commands like grep, sed, awk, and cut for text processing and data

manipulation. Together with its scripting capabilities, Bash can easily

be one of the most powerful tools in automating work and managing

systems. Learning what Bash scripts are and why they matter are key

230
MATS Centre for Distance and Online Education, MATS University

Notes for any Linux or Unix-like operating systems user looking to write

automation that is as efficient and effective as possible.

While Bash has wide availability, features unique to Zsh and Ksh

showcase the variety of shell programming. Zsh provides more

powerful interactive features like improved tab-completion, spelling

correction and a powerful theming system. That is not all, the tab

completion in Zsh is context-sensitive, suggesting commands

depending upon the type of command and the arguments being passed

against them. Say goodbye to typing long command names and file

paths, this feature improves our productivity considerably. So, user's

after most time are looking for more spelling verification, Zsh

automatic corrects typos for command names and file paths, making

the interactive experience better. Zsh theming feature provides

customizing functionality to alter the look and feel of the shell prompt

and surrounding components. In addition to this, Zsh offers advanced

scripting features like arrays and associative arrays alongside regular

expressions, which makes it an excellent tool for automating complex

tasks. Another powerful shell that combines features of a Bourne shell

and a C shell is Ksh, the Korn Shell. Ksh does, however, have great

performance and compatibility with older shell scripts. Ksh supports

functions, arrays, arithmetic operations and all the other bells and

whistles a programming language would have. Ksh also supports

powerful features like co-processes, enabling commands to run

simultaneously. This is Ksh as it plays along with legacy Bourne shell

scripts popular with many system admin type users. Shell is broadly

categorized into two different ways, which is, one is Zsh and Ksh that

have some syntax and file features. Hope this answers your question

while most of the fundamental features and syntax (for example:

variables, conditional branching statements, looping constructs) are

similar albeit with minor variations in all of these shells, the

differences can be subtle enough to mess up the behaviour of your

scripts. For instance, Bash's syntax for arithmetic operations, or array

manipulations, is different from Ksh and Zsh. The aim of this article

is to explore these differences and ultimately to write portable and

compatible shell scripts, Zsh has many interactive features that make

it a better choice for interactive work, while Ksh may perform better

for system administration tasks. This can help users to expand their

shell programming toolkit and pick the individual shell that may serve

231
MATS Centre for Distance and Online Education, MATS University

Notes them best. To summarize, command execution process and shell

programming are the integral concepts of Unix and Unix-like

operating systems. The shell remains the primary interface between

the user and the kernel, handling the actual execution of commands

and overseeing input/output and environment variables. Shell

programming, the art of writing scripts that automate tasks and

extend the utility of the command-line interface, is a powerful weapon

in the arsenal of any system administrator or developer. There are

different shells like Bash, Zsh, and Ksh with different levels of both

features and syntax. Here we will focus on "Bash" the popular default

shell used on many Linux distributions. The parameter passing is the

mechanism in which the values are sent from a function to its caller.

When a function is invoked, its caller has to provide the values that

will be passed as arguments to the function to perform its operation.

The two main forms of parameter passing are pass-by-value and pass-

by-reference. Pass by value is when you pass a copy of the value of

the argument to the function. The parameter is a local variable within

the function that refers to the same object in memory as the argument

passed when the function is called. This approach is used when the

function needs a copy of the data to work with and is not going to

modify the original. This gives the caller more control over their data,

providing a degree of safety by preventing unplanned side effects,

since the callee never has access to the original data. Instead, pass-

by-reference passes the address in memory of the argument being

passed to the function. Any modification to the parameter inside the

body of the function modifies the argument in the caller. This is

required when the function may need to update the data inside caller

or typically used for large data structures where copying it would be

costly. Pass-by-reference enables functions to alter multiple values

and to produce results via their parameters. But it also has the

potential for unintended side effects: If the function changes the

caller’s data in an unexpected way. Pass-by-constant-reference is a

similar variation some programming languages do offer this is when

the function can access the caller's data, but there is no ability to

modify it. This gives the performance of pass-by-reference, but the

data protection of pass-by-value. Many times, you need to decide if

you want to pass-by-value or pass-by-reference. If you want a

function to be able to change the data from the caller, then pass-by-

232
MATS Centre for Distance and Online Education, MATS University

Notes reference is the way to go. If the function only needs to work with a

copy of the data (for example, if it is going to mutate it), then you

should use pass-by-value as it is a lot to pass the data structure as a

reference. It is really important to know how args are passed because

it matters for writing efficient and correct code passing a parameter

incorrectly causes obfuscated bugs which are hard to find and correct.

For instance, passing a complex data structure by value incurs an

overhead in performance because of the copying process. Just as we

can accidentally modify the caller's data by passing the variable by

reference manually, we can do this just as easily by passing it by a

default value. Parameter passing is not confined to primitive data

types; it is also relevant for complex data structures, including arrays,

objects, and pointers. Similar rules apply for when passing arrays or

objects, however may differ from language to language. Some

programming languages may pass arrays by reference, while others

may use relinquish via value by default. Details of our parameter

passing are also important in function interface designs Developers

can write flexible and robust functions by carefully selecting the

correct parameter passing strategy. They are able to design reusable

components that can be easily integrated into different parts of a

program. Long story short, parameter passing is a fundamental

concept in programming that enables functions to communicate with

their callers.

5.6 Comparison of Shell Features in Detail

Building on the above shell comparisons, the unique set of features of

each opens them up for specific use cases and a dedicated user base.

The Bourne shell is the most basic (the original) and most portable.

Its syntax, although bleak compared to shells in widespread use today,

is extremely consistent, meaning it’s great for writing scripts that

need to work on a huge number of systems. Its main purpose is to

execute commands and handle simple scripting tasks. But it does not

implement any of the interactive features like command history, job

control, aliases or things that modern interactive usage relies upon.

The C shell (csh), aimed at a more casual user base, brought many

virtual machine-like features that fundamentally changed how users

interacted with commands and their arguments. It was much more

convenient for interactive use due to its command history, aliases, and

job control. Yet, the scripting functionalities were often mocked for

233
MATS Centre for Distance and Online Education, MATS University

Notes their inconsistencies and non-standard syntax. Things like its

handling of control structures and variables were seen as clunky and

error-prone. To overcome the limitations of both Bourne and C shell,

the Korn shell (ksh) was introduced which provided a powerful

versatile environment for interactive use as well as scripting. It

combined features from shells, including command-line editing,

improved job control, and better scripting features. Its scripting

syntax, for instance, was bolder and more consistent than that of the C

shell, which made it a favorite of systems administrators and

developers alike. The Bourne-Again shell (bash) is one of the most

popular it is compatible with Bourne shell scripts, comes with many

powerful features, and is very commonly available. Bash is as

customizable as it gets and has tons of features under the hood for

interactive use as well as for scripting. Its powerful command-line

completion, history expansion, and rich scripting capabilities make it

popular with both casual users and advanced developers. Bash is an

acronym for the Bourne Again Shell, signaling that its scripting

syntax is from the Bourne shell, but with many improvements and

extensions that deliver much more power and flexibility. Fast forward

to zsh, which adds even more advanced features on top of bash.

Power users and developers love it for its enhanced command-line

completion, spelling correction, and its support for plugins. Zsh is

customizable and extensible, enabling users to customize their shell

environment according to their needs. Oh My Zsh, its plugin system,

offers a large library of plugins and themes, so you can easily extend

the shell's functionality and appearance. All shells have their own

unique strengths and weaknesses, so users should evaluate based on

individual requirements. The Bourne shell might be enough for some

simple scripting tasks. The C shell or Korn shell might be good for

writing the shell scripts interactively. For a robust and flexible shell

that works great interactively and can be scriptable faster than you can

say "reverse-timestamp-auto complete", bash or zsh is the way to go.

If you prefer a command-line shell that is compatible with most Unix

systems, Bash would be a good option, whereas if you want extensive

customizability, zsh would be preferable.

Multiple-Choice Questions (MCQs)

1. Which of the following is NOT a type of shell in Unix/Linux?

234
MATS Centre for Distance and Online Education, MATS University

Notes a) Bourne Shell (sh)

b) Korn Shell (ksh)

c) Python Shell (pysh)

d) C Shell (csh)

(Answer: c)

2. Which shell is the default for most Linux distributions?

a) C Shell (csh)

b) Korn Shell (ksh)

c) Bash (Bourne Again Shell)

d) Z Shell (zsh)

(Answer: c)

3. In a shell script, which symbol is used for comments?

a) //

b) #

c) /* */

d) $

(Answer: b)

4. Which command is used to make a shell script executable?

a) chmod +x script.sh

b) execute script.sh

c) run script.sh

d) compile script.sh

(Answer: a)

5. What is the correct syntax for an if statement in a shell script?

a) if (condition) then ... fi

b) if [condition]; then ... fi

c) if condition { ... }

d) if: condition -> ... fi

(Answer: b)

6. Which command is used to display the currently running

processes in Linux?

a) ps

b) ls

c) pwd

d) kill

(Answer: a)

7. What is the purpose of the read command in shell scripting?

a) To print text on the screen

235
MATS Centre for Distance and Online Education, MATS University

Notes b) To read input from the user

c) To delete a file

d) To execute another script

(Answer: b)

8. Which loop structure is used in shell scripting to repeat

commands?

a) while

b) do-while

c) until

d) Both a and c

(Answer: d)

9. Which symbol is used for passing parameters to a shell script?

a) &

b) %

c) $

d) #

(Answer: c)

10. What is the function of the grep command in shell scripting?

a) To search for a pattern in a file

b) To copy a file

c) To move files

d) To delete files

(Answer: a)

Short Questions

1. What is shell programming, and why is it used?

2. List and explain three types of shells in Unix/Linux.

3. What is the difference between interactive and non-interactive

shells?

4. How does command execution work in a shell?

5. What is the purpose of the shebang (#!) line in shell scripts?

6. How does decision-making work in shell programming?

Provide an example.

7. What is a function in shell scripting, and why is it useful?

8. How can parameters be passed to a shell script? Provide an

example.

9. Explain the use of filters like grep, awk, and sed in shell

programming.

236
MATS Centre for Distance and Online Education, MATS University

Notes 10. What is the difference between $1, $2, and $@ in shell

scripting?

Long Questions

1. Explain the concept of shell programming, its importance, and

common applications.

2. Compare various types of shells (sh, bash, csh, ksh, zsh) and

their differences.

3. Discuss the command execution process in Linux, from user

input to execution.

4. Write a shell script to check if a given number is even or odd.

Explain the script.

5. What is decision-making in shell scripting? Provide examples

of if, case, and for loops.

6. Explain functions in shell scripting, how they work, and their

advantages.

7. How does parameter pass and argument handling work in shell

scripting? Provide examples.

8. Describe how filtering commands like grep, sed, and awk are

used in shell programming.

9. Explain error handling and debugging techniques in shell

scripting.

10. Write a shell script that accepts a filename as an argument and

checks whether it exists and is readable. Explain the script.

237
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Introduction to Operating System

1. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley.

2. Tanenbaum, A. S., & Bos, H. (2022). Modern Operating

Systems (5th ed.). Pearson.

3. Stallings, W. (2023). Operating Systems: Internals and Design

Principles (10th ed.). Pearson.

4. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2018).

Operating Systems: Three Easy Pieces. Arpaci-Dusseau

Books. (Available online at:

https://pages.cs.wisc.edu/~remzi/OSTEP/)

5. Anderson, T., & Dahlin, M. (2014). Operating Systems:

Principles and Practice (2nd ed.). Recursive Books.

Chapter 2: Process Management and Synchronization

1. Tanenbaum, A. S., & Bos, H. (2022). Modern Operating

Systems (5th ed.). Pearson. (Chapters on Process

Management)

2. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley. (Chapters on Process

Synchronization)

3. Dijkstra, E. W. (1968). Cooperating Sequential Processes. In F.

Genuys (Ed.), Programming Languages (pp. 43-112).

Academic Press.

4. Deitel, H. M., Deitel, P. J., & Choffnes, D. R. (2015).

Operating Systems (3rd ed.). Pearson.

5. Liu, J. W. S. (2000). Real-Time Systems. Prentice Hall.

(Sections on Process Scheduling)

Chapter 3: Storage Management

1. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley. (Chapters on Memory

Management)

2. Denning, P. J. (1970). Virtual Memory. ACM Computing

Surveys, 2(3), 153-189.

238
MATS Centre for Distance and Online Education, MATS University

Notes 3. McKusick, M. K., Neville-Neil, G. V., & Watson, R. N. M.

(2014). The Design and Implementation of the FreeBSD

Operating System (2nd ed.). Addison-Wesley Professional.

4. Love, R. (2010). Linux Kernel Development (3rd ed.).

Addison-Wesley Professional. (Chapters on Memory

Management)

5. Gorman, M. (2004). Understanding the Linux Virtual Memory

Manager. Prentice Hall.

Chapter 4: Disk Scheduling and Distributed Systems

1. Tanenbaum, A. S., & Van Steen, M. (2016). Distributed

Systems: Principles and Paradigms (3rd ed.). Pearson.

2. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley. (Chapters on I/O Systems)

3. Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., &

Patterson, D. A. (1994). RAID: High-Performance, Reliable

Secondary Storage. ACM Computing Surveys, 26(2), 145-185.

4. Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2022).

Distributed Systems: Concepts and Design (6th ed.). Pearson.

5. Hennessy, J. L., & Patterson, D. A. (2017). Computer

Architecture: A Quantitative Approach (6th ed.). Morgan

Kaufmann. (Chapters on Storage Systems)

Chapter 5: Stateful Versus Stateless Service and Shell

Programming

1. Robbins, A., & Beebe, N. H. F. (2005). Classic Shell Scripting.

O'Reilly Media.

2. Blum, R., & Bresnahan, C. (2021). Linux Command Line and

Shell Scripting Bible (4th ed.). Wiley.

3. Cooper, M. (2021). Advanced Bash Scripting Guide. Linux

Documentation Project. (Available online at:

https://tldp.org/LDP/abs/html/)

4. Powers, S., Peek, J., O'Reilly, T., & Loukides, M. (2002). Unix

Power Tools (3rd ed.). O'Reilly Media.

5. Sobell, M. G., & Helmke, C. (2018). A Practical Guide to

Linux Commands, Editors, and Shell Programming (4th ed.).

Addison-Wesley Professional.

239

	Page 5

