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COURSE INTRODUCTION 

 

Operating systems (OS) are essential for managing computer 

hardware and software resources, ensuring efficient execution of 

applications. This course provides a comprehensive understanding of 

operating system fundamentals, including process and memory 

management, file systems, I/O handling, and shell programming. 

Students will gain both theoretical knowledge and practical skills 

necessary for OS administration and system-level programming. 

Module 1: Operating System Basic Concepts – Overview 

An operating system serves as a bridge between users and 

computer hardware, providing essential functionalities such as 

resource management, multitasking, and security. This Unit 

introduces the fundamental concepts, architecture, and types of 

operating systems, highlighting their role in modern 

computing environments. 

Module2: Process Management and Process 

Synchronization 

Processes are the basic units of execution in an OS. This Unit 

covers process creation, scheduling algorithms, inter-process 

communication (IPC), and synchronization techniques. 

Students will explore concurrency control, deadlock handling, 

and techniques for efficient process execution in multi-tasking 

systems. 

Module 3: Memory Management 

Efficient memory management is crucial for system 

performance and resource optimization. This Unit explores 

memory allocation techniques, paging, segmentation, virtual 

memory, and memory swapping. Students will learn how 

operating systems manage RAM efficiently to ensure smooth 

application execution. 

Module 4: File Systems and I/O Management 

File systems organize and store data systematically in an OS. 

This Unit covers file system structures, file access methods, 

disk scheduling algorithms, and I/O management techniques. 

Students will gain an understanding of how OS handles file 

storage, retrieval, and peripheral device management. 
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Module 5: Basics of Shell Programming 

Shell programming allows users to automate tasks and interact 

with the OS using command-line scripts. This Unit introduces 

shell scripting fundamentals, basic commands, control 

structures, and script execution. Students will learn how to 

write shell scripts for system automation and administration. 
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MODULE 1 

INTRODUCTION TO OPERATING SYSTEM 

 

LEARNING OUTCOMES 

• To understand the basic concepts of an operating system (OS). 

• To explore the need and functions of an OS. 

• To analyze different types of operating systems. 

• To study OS services and system calls. 

• To examine OS structure and design goals. 
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Notes Unit 1: Introduction to Operating Systems 

 

1.1 Introduction to Operating Systems 

Operating systems are one of the most essential classes of software in 

computing technology. An operating system (commonly referred to as 

an OS), on the other hand, is a critical bridge between the computer's 

physical machinery and the software applications you use on a day-to-

day basis. Because modern computing devices possess complex 

hardware elements from execrable powerful central processing units 

to astounding memory hierarchies to endless I / O devices, without an 

operating system, they would remain ha tocd, uncoordinated organs 

that cannot perform useful work. For example, the operating system is 

the critical interface that turns hardware into a cohesive, working 

computing machine, coordinating the myriad interactions between 

physical resources and software requirements. Operating system is 

fundamental, it manages computer hardware, provides common 

services for computer programs, and provide user with an user 

interface to computer system. They have grown from simple program 

loaders and memory managers on early mainframe computers into 

complex working environments, supporting multitasking, multi-user 

operations and distributed computing over networks. Modern 

operating systems, from supercomputers to personal desktop 

machines to mobile devices and even embedded systems in everyday 

objects, all share core design and implementation utility principles, 

while also tailoring their designs to meet the needs of the hardware 

environments and use cases they were chosen to serve. The detailed 

exploration of operating systems provides us not just with the 

practical knowledge of how computers work at a fundamental level, 

but also the philosophical considerations concerning resource 

allocation, security paradigms, and user interface design that have 

influenced the evolution of computers and continue to shape its path 

forward. This course will introduce you to the core concepts, 

components, and design principles that require the powerful software 

systems we call operating systems by providing a foundation upon 

which later study of the specifics of implementations of operating 

systems and the theoretical underpinnings of those implementations 

will be built. Operating systems have evolved in much the same way 

as the computers they serve, progressing in phases that respond to 
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Notes new hardware and new applications. However, the earliest electronic 

computers of the 1940s and 1950s had no components we'd recognize 

as an operating system today; these machines had to be run directly by 

their users, who physically inputted programs and data with the help 

of switches, punch cards or paper tape. Programs were fully in charge 

of the machine while executing, and writing programs required 

intimate knowledge of the hardware architecture. In the late 1950s, 

the emergence of batch processing systems marked the beginning of 

the actual operating system, which automated the loading and 

execution of series of programs in the background, making use of 

costly and scarce computing resources by reducing idle time between 

jobs. Operating systems It was too complex to trust a single program 

directly to the hardware, and it generally controlled the execution of 

one or more workloads, and executed with the allocation of hardware 

resources in memory and CPUs, and also allowed multiple users to 

communicate interactively with the computing environment (time 

sharing). Personal computing rose in the 1980s, still relying on 

command-line interfaces but making operating systems like MS-DOS, 

the Macintosh System Software, and various implementations of 

UNIX available for individual computers, and user interfaces matured 

into graphical user interfaces as the standard for human/machine 

interaction in the 1990s, including Microsoft Windows, the Macintosh 

operating system, and various Linux distributions with desktop 

environments. The 21st century saw the rise of the networked 

operating system with focus on internal security and multimedia, as 

then the mobile explosion of the 2010s saw the birth of new models 

altogether around touch, battery and connection optimised operating 

systems like Android and iOS. Cloud computing, virtualization, and 

containerization take this even further - they extend the operating 

system to a distributed computing environment where many devices 

serve as part of a dynamic resource allocation and management pool 

across a vast web of connected server infrastructure. Across this 

evolution, operating systems have always been dealing with basic 

problems: effectively managing hardware resources, providing 

developers with layers of abstraction to simplify application 

development, ensuring the security and stability of the system, and 

building a user experience that is more convenient points that are still 
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Notes valid no matter the specific implementation or hardware platform 

used.  

You learn from a variety of sources and specialization; however, the 

definition and understanding of the architecture of an operating 

system is often vague and can come across confusing to the common 

reader. At the lowest level, the kernel is the heart of the operating 

system, running in privileged mode with hardware access and 

handling essential functions such as process and memory 

management, file systems, device drivers, and interprocess 

communication. So, amongst these processes, managing their access 

to the CPU is process management (including process scheduling to 

give the illusion of concurrency, process creation and termination, 

process synchronization and communication and context switching on 

single core systems). Memory management involves mapping virtual 

addresses to physical memory addresses, allocating and deal locating 

chunks of memory, maintaining a page or segment table, and 

providing memory protection against unwanted access. Device 

Management Device management is process of controlling a hardware 

peripheral through device drivers that abstract device-specific details 

and present standardized interfaces, allocate device to competing 

processes, service interrupts from hardware components. The 

networking stack is at the core of modern operating systems: it 

implements communication protocols, manages local network 

interfaces, provides socket abstractions for network programming, and 

handles routing and packet filtering. Security elements are woven 

throughout the operating system, providing user authentication and 

user authorization, enforcing access to resources, giving encryption 

services, and protecting against malware and other security threats. 

On top of these basic services, modern operating systems provide 

application programming interfaces (APIs) i.e., methods for 

applications to request standard services from an OS as well as 

graphical subsystems to allocate display resources and act as a 

windowing system, and user interface frameworks to abstract away 

some of the complexities of building interactive applications. The 

operating systems have intricately layered architecture demonstrating 

several design principles: modularity (capability of constructing 

components independently and modifying them without having an 

effect on other components), abstraction (the ability of an operation to 
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Notes hide details of implementation behind the sorts of interfaces that are 

less complicated) protection (which prevents unauthorized access to 

resources) and extensibility (refers to the capability of the system to 

adapt to the ever-changing hardware and software capabilities). This 

is a crucial aspect of operating system functionality, and is used 

heavily in system performance and resource utilization, as well as the 

overall user experience. A process, from the operating system's 

perspective, represents a single task of a running program and 

includes information not just about the program code, but also the 

state of the work in progress, including the program counter, register 

values, values of the program variables, files currently open, and the 

program's memory allocations. When a new process is being created--

from a user request, an existing process request, or at boot time by the 

system itself--the operating system allocates all of the necessary 

resources, sets up data structures to keep track of the state of the 

process, and loads the program code into memory. A process goes 

through several states during its lifecycle: running (actively executing 

on some CPU), ready (waiting to be allocated to a CPU), blocked 

(waiting for some event, such as I/O completion), and terminated 

(execution has finished or has been aborted). The operating system's 

scheduler must decide which ready process to run next according to 

algorithms that balance competing objectives such as fairness, 

priority enforcement, response time, throughput, and resource 

utilization. Threads are the basic units of execution that share the 

address space within a process, making it a lightweight alternative to 

concurrent programming that avoids the cost of a full process 

creation. Similarly in thread management, but with the added 

challenge of developing concurrency control and synchronization to 

avoid race condition and provide safety in data access to shared 

resources. To enable cooperating processes to coordinate their action 

and exchange data, modern operating systems provide several 

interposes communication and synchronization mechanisms, such as 

pipes, message queues, shared memory, semaphores, and mutexes. 

Multiprocessor and multicore systems further complicate process 

management, as they must also consider processor affinity (keeping 

certain work units on certain processors in order to make the best use 

of local caches), balancing the load between multiple processing 

units, and parallel execution models that take into account the 
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Notes multiple sources of hardware parallelism. These have been developed 

over years of research, leading to advanced operating system features 

such as migrating processes between computational nodes in 

distributed systems, check pointing processes to allow recovery from 

faults, and dynamic scheduling algorithms that optimize resource 

allocation according to varying uses of workload and environmental 

conditions. Process and thread management is critical for the overall 

performance, responsiveness, scalability and optimal utilization of 

hardware resources while preserving system stability under different 

loads.  

An underlying OS feature that has wide-reaching effects for the 

performance of the system and the programs running on it, as well as 

the hardware being used, is Memory management. Perhaps the main 

issue of memory management is to allocate the available physical 

memory resources among the various competing processes in a way 

that users know that their sensitive data is protected and are running in 

their own “large” address space. Virtual memory: Modern operating 

systems implement virtual memory systems, which provide an address 

space for a program that is separate from the physical memory the 

program runs in. Programs can use this space directly instead of the 

physical memory they will actually occupy, allowing each program to 

think it has more memory than what is available and that it has access 

to the complete memory space. This conversion from virtual to 

physical memory is generally performed by dedicated hardware (the 

Memory Management Unit, MMU) under the direction of operating 

system data structures such as page tables. Paging, which is the most 

commonly used virtual memory implementation technique, splits 

virtual memory into equally sized blocks of memory, or pages, and 

splits physical memory into frames, paving the way for fine-grained 

memory allocation and efficient allocation of infrequently (but 

potentially) used pages to secondary storage when physical memory 

rack is full. Page replacement algorithms, such as Least Recently 

Used (LRU), First-In-First-Out (FIFO), and Clock algorithms, decide 

which pages to evict and when, balancing access frequency, regency, 

and page fault costs. More advanced memory management strategies 

include demand paging (paging in memory pages on access), copy-

on-write (sharing read-only pages across processes until one of them 

writes to the page), memory-mapped files (which map file contents 
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Notes directly into a specified portion of the process address space), and 

large page support (using variable size memory pages so that at least 

some applications can reduce the translation of pages and 

fragmentation). Memory protection mechanisms enforce access 

restrictions to prevent processes from reading or writing to the 

memory allocated to other processes or (in most cases) the operating 

system kernel itself, implemented through protection bits in the page 

tables that are checked by the MMU during address translation. 

Address space layout randomization (ASLR) is also a technique 

employed by modern systems that adds another layer of security of 

randomly reordering important locations where the program is 

occupying memory, making it harder for attackers to guess addresses. 

Advanced memory management features include working set models 

that attempt to keep a process's most actively used pages in physical 

memory, non-uniform memory access (NUMA) in multiprocessor 

systems, where access time to memory varies by distance to memory 

module, and transparent huge pages that use larger page sizes to 

reduce overhead for applications with contiguous memory access 

patterns. Memory management is a critical part of an operating system 

design and implementation because it affects not only the speed of 

program execution, but also the responsiveness of the system, energy 

consumption, and concurrency in terms of the number of applications 

that can run without the overhead of pages being constantly made. 

The organization of I/O devices and decoupling between software and 

hardware capabilities and resources is provided by file systems and 

I/O management systems, which represent one of the most significant 

parts of an Operating System. I/O management handles the classic 

problem of presenting abstract, uniform, high-level interfaces to 

extremely heterogeneous hardware devices ranging from disk drives 

and network cards to keyboards, display units, and application-

specific sensors each with its own timing behaviors, data formats, and 

control interfaces. Structured to separate and abstract various aspects 

of I/O, the operating system adopts a layered design approach: the 

lowest level contains device drivers, which are hardware-dependent 

code responsible for interfacing with devices; above that there is a 

device-independent I/O layer that standardizes the common I/O 

operations of the same class of devices; and ultimately higher up are 

high-level interfaces that provide simple abstractions to applications. 
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Notes Depending on the specific implementation, input and output can be 

either synchronous, where the calling process gets suspended until the 

operation is complete, or asynchronous, where the process continues 

executing while the I/O operation completes in the background, and 

most new systems use an asynchronous model improving system 

responsiveness and throughput. The OS uses a number of techniques 

to improve I/O performance, these include buffering (storing a subset 

of data in memory temporarily to help speed differences between 

devices and reducing batch operation timings), caching (storing a 

copy of recently requested data in memory to quickly access again, 

reducing access time), scheduling (rescheduling I/O requests in their 

order to minimize mechanical movements between devices), direct 

memory access (or DMA, which eliminates the need of the CPU in 

facilitating the transfer process between certain devices and memory 

locations). At the larger scale of I/O, file systems probably offer the 

most prevalent abstraction: the structuring of persistent storage as 

named files grouped in hierarchically arranged directory structures. 

Some more regarding the functionality of file systems they perform 

one of the most important jobs, map the logical file operations to the 

storage locations, keep track of what space is occupied, manage free 

space, record the metadata for the files (such as creation dates, 

permission), maintain access control, and ensure data integrity as well 

through journaling or copy-on-write techniques that protect them from 

corruption even in case of the system crashing. All modern operating 

systems support multiple types of file systems, from general-purpose 

systems (e.g., NTFS, ext4, and APFS) to specialized systems that are 

better optimized for specific use cases (e.g., high-performance 

computing, network-attached storage, or even solid-state drives which 

wear out differently than conventional magnetic media). Some 

advanced file system features include snapshots (point-in-time 

captures of file system state), transparent compression and 

deduplication to maximize storage efficiency, and encryption to 

protect sensitive data, as well as distributed designs that span multiple 

physical storage devices or network nodes. I/O management and file 

systems, taken together, allow applications to communicate with the 

physical world via a multitude of devices and discreetly store and 

retrieve data without needing to worry about the intricacies of the 

hardware implementation, making them one of the most useful 
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Notes services provided by the operating system from user and programmer 

points of view. Security and protection mechanisms pervade modern 

operating systems, a reflection of the evolution of computing from 

isolated, single-user systems to interconnected devices containing 

sensitive information and operating in possibly hostile networked 

environments. In terms of operating system security, the most 

fundamental aspect is the separation between user mode and kernel 

mode (or supervisor mode) of operation, which establishes a privilege 

boundary, restricting applications from directly accessing hardware 

resources or manipulating memory regions not assigned to them, 

ensuring that transitions between modes are made safe by means of 

system calls. Users are authenticated by passwords, who they are as 

the person, biometric factors, and cryptographic tokens, and 

authorization mechanisms then allow or restrict what resources they 

can access (typically implemented by ACLs or capability-based 

security models that associate permissions with objects or subjects, 

respectively). Process isolation ensures that one process cannot 

access the memory or resources of another process unless explicitly 

allowed to do so, and achieves this through mechanisms such as 

virtual memory and hardware aids like protection rings or privilege 

levels. Memory protection takes that isolation even further by 

applying permissions on these memory regions and marking them 

either as readable, writable, or executable, while the hardware itself 

does not allow any operations that bypass these rules, catching a lot 

of potential attacks at the hardware level itself, before they get a 

chance to cause damage. File system security ensures access to 

persistent data is restricted by ownership attributes and permission 

bits, or through more sophisticated mandatory access control 

frameworks that enforce system-wide security policies regardless of 

file ownership. Modern operating systems have also added many 

more layers of security: address space layout randomization (ASLR) 

to randomize targets of attacks and avoid predictability in the memory 

addresses to which attack targets can be trained by the attacker; data 

execution prevention (DEP) to prevent code from executing on data 

pages; secure boot mechanisms to ensure integrity maintains from 

system boot until shutdown; mandatory integrity control to prevent 

processes running with lower integrity from changing the state of 

processes running with a higher integrity; sandboxing which isolates 
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Notes an application’s execution in a restricted environment and with 

limited privileges; or specialized enclaves or secure execution 

technologies that allow sensitive computation to be protected even 

against privileged system software. These include host-based firewalls 

to control incoming and outgoing connections, and intrusion 

detection systems that detect suspicious behavioral patterns, and 

encrypted communication channels that protect data in transit. 

Security encompasses more than just technical mechanisms; there are 

system policies, security-sensitive defaults in configuration, 

automated update systems which reclaim the latest vulnerability in 

patching them as quickly as possible, and audit logging shoals with 

security-relevant events in the system for subsequent analysis. Given 

these layering of protections, and how virtualization secures the OS 

itself, and system call white listing further isolates user processes, one 

might think that the OS is a relatively safe place to run user code 

unfortunately, OS security is a difficult problem, and will likely 

become harder with time thanks to system complexity, the discovery 

of new vulnerability classes, and the fundamental tradeoff between 

security and usability every new security mechanism adds friction to 

legitimate user activities. I should add that the best strategies combine 

technology-based controls with practical threat modeling that 

introduces the idea that there is no perfect security, creating defense-

in-depth models that construct layer-after-layer of protection where 

the failure of one or more layers can be mitigated by the others, 

conducting fail-secure design, in which the failure of components 

defaults to protected instead of unprotected states. 

Modern operating systems are not statically defined but are tailored to 

adapt to the hardware, and use case, and user when the environments 

evolve, even if not always in a progressive manner, with at least a few 

of the following trends becoming dominant to each new release within 

current deployment matrices. Cloud-native OS are a radical break 

with their predecessors, optimized for the deployment of workloads in 

virtualized or containerized environments where resources are 

elastically allocated, workloads are assumed to be distributed over a 

number of nodes, and system services are accessed through standard 

APIs to the resources instead of hardware interfaces. On the system 

design front, containerization and micro services architectures have 

driven operating system implementation toward a more modular, 
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Notes lightweight style, in which system components are compostable on 

demand rather than deployed as monolithic images, generating 

resource overhead and reducing the flexibility to deploy distinct parts 

of the system independently. Time-sensitive workloads driven by 

requirements for deterministic performance guarantees and 

predictable latency even under changing load conditions such as 

control of autonomous vehicles, industrial automation and augmented 

reality, have propelled real-time operating systems (RTOS) into more 

than just traditional embedded applications. From the design of 

operating systems, where security in enforcing compatibility has 

taken precedence over optimizations to rack mount servers behind 

firewalls in grey rooms, displaying cold metrics in measured 

temperatures, even to now newer patterns that incorporate validated 

modules of the OS through axioms or providing remote attestation 

methods as always verifying your mass surveillance hardware that 

forces your components on hardware to trust no device only its 

configurations, all areas throughout computing have been revised and 

are undergoing a much more rigid recliner to minimize surfaces and 

reducing injury narratives. At the same time, advances in aggressive 

power management, workload-aware scheduling, and heterogeneous 

computing models that partition workloads among the most energy-

appropriate processing units are now routine even on cloud 

computing platforms since user experiences over this wide range of 

computing have moved now from purely performance-driven to 

considering price and environmental footprint as primary design 

considerations. To further mitigate this gap, where CPU throughput is 

orders of magnitude greater than that of memory, these advanced 

memory management techniques also permeate both the multi-layer 

memory hierarchies of DRAM, persistent memory and storage-class 

memory due to their varying performance characteristics along with 

sophisticated perfecting and migration policies that predict memory 

access patterns. Even when it comes to interface paradigms, they are 

evolving away from solely pointing to desktop metaphors and 

branching further out into the world with conversational interfaces 

powered by natural language processing, ambient computing models 

where the interaction takes place through environmental sensors 

instead of explicit commands, or cross-device experiences where 

applications and workflows cross-pollinate various hardware form 
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Notes factors. The era of specialized hardware accelerators—Graphics 

Processing Units (GPUs), Tensor Processing Units (TPUs), Field-

Programmable Gate Arrays (FPGAs), and custom Application-

Specific Integrated Circuits (ASICs) for specific workloads such as 

machine learning, cryptography, or video processing—has forced 

operating systems to create more complex models of resource 

abstraction and scheduling systems to manage the diversity of 

computing resources. With the advent of quantum technologies such 

as quantum-randomness and quantum-superposition, we will witness 

the need for new programming models, different resource 

management strategies, fundamentally different operating systems, 

and error correction techniques that are going to shape this field for 

years to come and which need to be explored. Far from converging to 

a single dominant fruit-of-the-meeting-of-the-twain OS model, these 

diverse trends point to a continuing diversification of specialized 

systems, optimized for specific hardware environments, workload 

characteristics, and usage scenarios, around common theoretical 

foundations but increasingly differentiated in their implementation 

details and optimization priorities. 

 

  

Figure 1: Operating System 
[Source - https://medium.com/] 
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Notes Unit 2: Need and Functions of Operating Systems 

 

1.2 Need and Functions of Operating Systems 

The world of computing we experience today is built on a foundation 

of ever-evolving hardware and software, all doing its job in concert. 

Central to this ecosystem is the operating system (OS) a complex 

piece of software that acts as the vital bridge between computer 

hardware and the applications that operate on top of it. Operating 

systems are everywhere, running everything from the smart phones in 

our pocket to the supercomputer that are behind scientific 

breakthroughs. But at that same time, operating systems are deeply 

complex and critical and many users are shaped by their interactions 

with them without ever fully contemplating the bedrock of their 

complexity and criticality. Simply put, the operating system is a 

complex resource mediator and service implementer that exposes a 

simpler and safer way to run applications on top of real-world 

hardware. Without the layers of abstraction an operating system 

provides, any application would have to be responsible for directly 

manipulating hardware components from managing memory and 

processing resources to managing input/output operations to 

peripherals like keyboards, displays, and storage devices. This would 

result in insane redundancy, bloat, and security holes and would 

make the application development process a thousand times harder. 

Operating system development has run side by side with the progress 

of computing hardware, each generation responding to progressively 

more intricate problems. Some early computing systems were without 

operating systems or had very little system software, and so operators 

had to run the machine and manage the timing of operations 

manually. As computing power and other capabilities grew, operating 

systems integrated to manage and protect the more complex 

resources, becoming the multi-user, multi-tasking familial that they 

are today and running across everything from embedded micro-

controllers to distributed cloud infrastructures. 

The Need for Operating Systems: Bridging Hardware and 

Software 

We can also note that modern computing hardware includes many 

different types of components multi-core, multi-threaded CPUs with 

multiple, complex version processors in overall instruction set, a 
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Notes multi-level hierarchy of memory systems (registers, caches, RAM, 

disk), graphics processing units, networking interfaces, different 

input/output devices, etc. Each chunk operates on its own protocols 

and clocks: it's a nightmare of complexity. Without any abstraction, 

they would have to know all the details of the hardware: its 

specifications, its operational characteristics, and so on, making it 

extremely difficult to write software, and making that software only 

hardware specific. This basic missing piece is supplemented by 

operating system which provides abstraction layers over the hardware. 

Training makes a native operating environment by hiding the 

complexity of the underlying hardware and presents standardized 

interfaces. The abstraction allows application developers to 

implement functionality directly as opposed to worrying about the 

details of the actual hardware. For instance, when an application 

wants to persist its data, it can use high-level file system calls offered 

by the OS instead of accessing directly the disk controllers, managing 

sector allocations or creating error correction protocols. 

Resource Sharing and Protection 

Contemporary computing environments generally have multiple 

applications vying for limited system resources processor time, 

memory space, I/O bandwidth, and storage capacity. To avoid these 

conflicts, a mediating system stands between the applications running 

within the OS. Imagine two different applications wanting to access 

the same memory region or the same storage space at the same time or 

one application wants to capture the processor and not allow other 

applications to run. 

The operating system implements mechanisms for resource allocation, 

scheduling, and protection to ensure: 

1. Fair access to resources: Through sophisticated scheduling 

algorithms, the OS ensures that all applications receive 

appropriate access to the CPU and other resources. 

2. Memory protection: Modern operating systems implement 

virtual memory systems that provide each process with its own 

address space, preventing unauthorized access to memory 

regions belonging to other processes or the OS itself. 

3. I/O management: By centralizing control of input/output 

operations, the OS prevents conflicts in device usage and 
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Notes ensures that all applications can access peripherals in a 

controlled manner. 

4. File system management: The OS provides a structured way 

to store and access data, preventing applications from directly 

manipulating storage devices and potentially corrupting data. 

 

Hardware Independence and Portability 

Operating systems are one of the most valuable software in the 

information technology world, as they allow portability for software 

across hardware platforms. Without this layer of abstraction, 

programs would have to be rewritten for every hardware 

configuration or platform. The operating system provides 

standardized interfaces (APIs) which are (for the most part) 

consistent between different hardware implementations; this enables 

applications to run on various systems with little or no change. The 

reason the OS can insulate its applications from the actual hardware of 

the computer is by taking generic requests made by the application 

and translating those requests into specific operations on the 

hardware. As an example, when an application wants to print 

something, the OS converts that into the printer specific protocol that 

the connected printer supports. When an application requests memory 

to be allocated, for example, the OS knows how to abstract the 

complexity behind managing physical memory resources, including 

virtual memory systems, paging and address translation. 

Security and Access Control 

In multi-user and networked computing environments, security 

concerns become paramount. The operating system plays a crucial 

role in implementing security mechanisms that protect: 

1. System integrity: Preventing unauthorized modifications to 

the system itself. 

2. Data confidentiality: Ensuring that sensitive information is 

accessible only to authorized users. 

3. User authentication: Verifying the identity of users before 

granting access to resources. 

4. Access control: Enforcing policies that determine which users 

can access which resources and in what ways. 

5. Isolation: Containing potential damage from malicious or 

malfunctioning applications. 
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Notes Applications and widespread vulnerabilities. If these protections were 

not implemented at the level of the operating system, each application 

would have been responsible for implementing its own security 

features, which would have had the result of inconsistent protection 

among Systems, file sandboxing for applications to limit inter-process 

cooperation, and walking-talking real-time attack monitoring. With 

computing systems becoming more networked and subject to a greater 

variety of attacks, operating system security functions became more 

advanced, adding secure boot procedures, encrypted file 

Core Functions of Operating Systems: Process Management 

Process Concept and Implementation 

A process is the execution of a program, which contains the program 

code as well as its current activity (it is a unit of work). We focus on 

processes, one of the most basic abstractions provided by modern 

operating systems, which enable multi-tasking and a fundamental unit 

of isolation between executing software. 

Each process includes several components: 

1. Program code: The executable instructions of the program. 

2. Data: The variables and data structures used by the process. 

3. Process stack: Containing temporary data such as function 

parameters return addresses, and local variables. 

4. Process heap: Dynamically allocated memory during process 

runtime. 

5. Process control block (PCB): A data structure maintained by 

the OS containing process identification, state information, 

scheduling information, memory management information, 

accounting information, and I/O status information. 

The operating system is responsible for creating processes when 

programs are initiated, managing their lifecycle, and eventually 

terminating them. This lifecycle typically follows transitions between 

several states: 

1. New: The process is being created. 

2. Ready: The process is waiting to be assigned to a processor. 

3. Running: Instructions are being executed. 

4. Waiting/Blocked: The process is waiting for some event to 

occur (such as an I/O completion). 

5. Terminated: The process has finished execution. 
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Notes Process Scheduling 

Process scheduling is one of the most complex functions performed 

by operating systems, directly influencing system performance, 

responsiveness, and resource utilization. The scheduler determines 

which processes run when and for how long, based on scheduling 

algorithms designed to meet specific system goals such as: 

1. Maximizing CPU utilization: Keeping the processor as busy 

as possible. 

2. Maximizing throughput: Completing as many processes as 

possible per unit time. 

3. Minimizing turnaround time: Reducing the time between 

process submission and completion. 

4. Minimizing waiting time: Reducing the time processes spend 

waiting in the ready queue. 

5. Minimizing response time: Providing quick initial responses 

to interactive users. 

Operating systems implement various scheduling algorithms to 

balance these often-conflicting goals: 

• First-Come, First-Served (FCFS): Processes are executed in 

the order they arrive. 

• Shortest Job First (SJF): Prioritizes processes with the 

shortest expected execution time. 

• Priority Scheduling: Assigns priorities to processes and 

executes the highest-priority process first. 

• Round Robin (RR): Allocates a fixed time slice (quantum) to 

each process in a circular queue. 

• Multilevel Queue Scheduling: Partitions the ready queue into 

separate queues for different process types. 

• Multilevel Feedback Queue: Similar to multilevel queue but 

allows processes to move between queues based on their 

behavior. 

Modern operating systems often implement complex hybrid 

approaches that consider factors such as process priority, execution 

history, and system load to make scheduling decisions. 

Process Synchronization and Communication 

In contemporary computing environments, processes rarely operate in 

isolation. Instead, they frequently need to coordinate their activities 



 

19 
MATS Centre for Distance and Online Education, MATS University 

 

Notes and share data. This necessity introduces two critical challenges that 

operating systems must address: 

1. Race conditions: When multiple processes access and 

manipulate shared data concurrently, the outcome can depend 

on the particular order in which the accesses occur, potentially 

leading to inconsistent or corrupt data. 

2. Deadlocks: A situation where two or more processes are 

unable to proceed because each is waiting for resources held 

by another process. 

Operating systems provide synchronization mechanisms to address 

these challenges: 

• Mutual exclusion: Ensuring that only one process at a time 

can access shared resources or critical sections of code. 

• Semaphores: Synchronization variables that control access to 

a common resource in a multi-processing environment. 

• Monitors: High-level synchronization constructs that 

encapsulate both the shared data and the operations that 

manipulate it. 

• Message passing: Allowing processes to communicate and 

synchronize by exchanging messages. 

• Deadlock prevention, avoidance, detection, and recovery: 

Strategies to handle the deadlock problem. 

Inter-process communication (IPC) mechanisms enable processes to 

exchange information and coordinate their activities: 

• Shared memory: Allows processes to communicate by 

reading and writing to a common memory region. 

• Pipes: Provide a unidirectional communication channel. 

• Named pipes (FIFOs): Similar to pipes but with a name in the 

file system, allowing unrelated processes to communicate. 

• Message queues: Allow processes to exchange messages 

through system-provided queue structures. 

• Sockets: Enable communication between processes running 

on different machines across a network. 

These synchronization and communication mechanisms are essential 

for building complex, cooperative software systems where multiple 

processes work together to accomplish tasks. 
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Notes Memory Management: Optimizing a Critical Resource 

Memory Hierarchy and Management Challenges 

Many computer memory systems have a hierarchy from fast, but more 

costly, limited capacity (registers and cache memory) to slower but 

larger and cheaper (main memory and secondary storage). Memory is 

a critical resource, and managing its use is paramount to system 

performance, as access times can vary by orders of magnitude across 

this hierarchy. 

The operating system faces several key challenges in memory 

management: 

1. Allocation: Determining how to assign available memory to 

processes as they are created and as they request additional 

memory during execution. 

2. Deal location: Reclaiming memory when processes terminate 

or explicitly release memory. 

3. Protection: Ensuring that processes can only access memory 

allocated to them, preventing unauthorized access to memory 

regions belonging to other processes or the operating system. 

4. Sharing: Allowing controlled sharing of memory regions 

between processes when appropriate. 

5. Physical organization: Managing the physical arrangement of 

data in memory to optimize access patterns and utilize 

memory hierarchy effectively. 

Memory Management Techniques 

Operating systems employ various techniques to address these 

challenges: 

1. Contiguous Memory Allocation: In early systems, each 

process was allocated a single contiguous block of memory. 

While simple to implement, this approach led to fragmentation 

issues and inefficient memory utilization. 

2. Paging: A memory management scheme that eliminates the 

need for contiguous allocation by dividing physical memory 

into fixed-sized blocks called frames and logical memory into 

blocks of the same size called pages. This allows the physical 

address space of a process to be non-contiguous, with the 

operating system maintaining a page table to map logical 

addresses to physical addresses. 
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Notes 3. Segmentation: Divides memory into variable-sized segments, 

each corresponding to a logical unit of the program such as the 

code segment, data segment, or stack segment. This approach 

aligns more naturally with how programmers think about 

memory but can lead to fragmentation. 

4. Virtual Memory: An extension of the paging system that 

allows programs to execute even when they are only partially 

loaded in memory. The operating system keeps active portions 

of the program in main memory and transfers other portions 

between main memory and secondary storage as needed. 

5. Page Replacement Algorithms: When implementing virtual 

memory, the operating system must decide which pages to 

remove from memory when space is needed. Algorithms such 

as Least Recently Used (LRU), First-In-First-Out (FIFO), and 

Clock algorithm help make these decisions to minimize page 

faults. 

6. Memory Compression: Some modern operating systems 

compress infrequently used memory pages rather than writing 

them to disk, reducing the performance penalty associated 

with page swapping. 

Virtual Memory Implementation 

Multiple significant advantages: way memory management work. It 

offers One of the groundbreaking innovations of any operating 

system design is virtual memory, which changed the whole 

1. Programs can be larger than physical memory: By keeping 

only portions of programs in memory, the system can execute 

programs that are larger than the available physical memory. 

2. Higher degree of multiprogramming: More programs can 

run concurrently since each only needs part of its address 

space in physical memory. 

3. Less I/O for loading and swapping: Programs can start 

execution after loading just their initial pages, rather than 

waiting for the entire program to load. 

4. More efficient use of memory: Memory is allocated only 

when needed, not based on worst-case estimates. 

The implementation of virtual memory involves several components: 

1. Page tables: Data structures that map virtual addresses to 

physical addresses. 
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Notes 2. Translation Look aside Buffer (TLB): A special cache that 

stores recent address translations to improve performance. 

3. Page fault handling: When a program accesses a page that is 

not in memory, a page fault occurs, and the operating system 

must load the required page from secondary storage. 

4. Swapping mechanism: The component responsible for 

transferring pages between main memory and secondary 

storage. 

5. Working set management: Tracking the set of pages a 

process is actively using to make intelligent decisions about 

which pages to keep in memory. 

(loading pages only when accessed), copy-on-write (initially sharing 

pages until they are modified), and memory-mapped files (mapping 

file contents directly into virtual memory). For example, modern 

virtual memory systems tend to contain advanced optimizations like 

demand paging 

File Systems and Storage Management 

File Concepts and Organization 

Files are the basic building blocks of permanent storage in the 

computing world. We introduce the core function of the operating 

system for file management, which provides an essential layer of 

abstraction that protects applications from handling the details of 

physical storage devices. 

Key file concepts managed by operating systems include: 

1. File attributes: Information about files, including name, type, 

size, location, protection settings, creation time, last 

modification time, and access permissions. 

2. File operations: Functions such as create, delete, open, close, 

read, write, append, seek, and get/set attributes. 

3. File types: Regular files (containing user data or program 

data), directories (catalogs that organize files), special files 

(representing devices in UNIX-like systems), and other 

system-specific types. 

4. File access methods: Sequential access (reading/writing 

records in order), direct access (random access to any block), 

and indexed access (using an index to locate records). 
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Notes Operating systems organize files using directory structures, which 

have evolved from simple single-level directories to sophisticated 

hierarchical structures. Modern file systems implement: 

1. Hierarchical directory structures: Organized as tree 

structures with directories containing files and subdirectories. 

2. Path names: Absolute paths (from the root directory) and 

relative paths (from the current directory). 

3. Directory operations: Creating, deleting, opening, closing, 

and traversing directories. 

File System Implementation 

The implementation of file systems involves several layers of 

abstraction: 

1. Logical file system: Manages metadata information, directory 

structures, and file control blocks (inodes in UNIX-based 

systems). 

2. File organization module: Maps logical blocks to physical 

blocks, manages free space, and allocates storage. 

3. Basic file system: Issues commands to device drivers to 

read/write physical blocks. 

4. I/O control: Device drivers that communicate directly with 

storage hardware. 

File systems must address several implementation challenges: 

1. Allocation methods: How to allocate disk space to files: 

• Contiguous allocation: Allocates consecutive blocks, 

providing excellent performance for sequential access 

but leading to fragmentation. 

• Linked allocation: Each block contains a pointer to the 

next block, eliminating external fragmentation but 

complicating random access. 

• Indexed allocation: Uses an index block containing 

pointers to data blocks, supporting efficient random 

access at the cost of additional overhead. 

2. Free space management: Tracking available storage space 

using techniques such as bit maps or linked lists of free blocks. 

3. Directory implementation: Typically implemented as files 

containing entries that map file names to their metadata. 
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Notes 4. Efficiency and performance: Using techniques like block 

caching, read-ahead, and delayed writes to improve 

performance. 

5. Recovery mechanisms: Implementing journaling or other 

techniques to maintain file system consistency after system 

crashes. 

Advanced File System Features 

Modern operating systems implement sophisticated file system 

features to address evolving needs: 

1. Journaling: Records changes in a journal before applying 

them to the main file system, ensuring consistency after 

crashes or power failures. 

2. Copy-on-write file systems: Never overwrite existing data, 

instead writing modified data to new locations and updating 

pointers, providing snapshots and simplified backup. 

3. Logical Volume Management: Abstracts physical storage 

into logical volumes that can span multiple disks and be 

resized dynamically. 

4. Encryption: Protecting file contents through transparent 

encryption/decryption. 

5. Compression: Reducing storage requirements by compressing 

file contents. 

6. Deduplication: Eliminating redundant data to save storage 

space. 

7. Distributed file systems: Allowing access to files from 

multiple hosts over a network. 

8. Object-based storage: Managing data as objects rather than 

files or blocks, often incorporating metadata and access 

methods. 

The choice of file system significantly impacts performance, 

reliability, and functionality. Modern operating systems typically 

support multiple file system types to accommodate different needs, 

such as NTFS and ReFS in Windows, ext4 and Btrfs in Linux, and 

APFS and HFS+ in macOS. 

Input/output Systems and Device Management 

O Hardware and Challenges 

Input/output (I/O) operations are fundamental to computing systems, 

enabling interaction with users and the external world. I/O devices 
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Notes vary tremendously in their characteristics, presenting significant 

challenges for operating system design: 

1. Diversity of devices: I/O devices range from simple character-

oriented devices like keyboards to complex block-oriented 

devices like disk drives, each with different data rates, data 

formats, and control requirements. 

2. Varied data transfer modes: 

• Programmed I/O: The CPU executes instructions that 

directly control I/O operations. 

• Interrupt-driven I/O: Devices signal the CPU via 

interrupts when they complete operations. 

• Direct Memory Access (DMA): Hardware controllers 

transfer data directly between devices and memory 

without CPU intervention. 

3. Performance disparities: The speed gap between CPU 

processing and I/O operations (particularly mechanical 

devices) can be orders of magnitude, requiring sophisticated 

buffering and scheduling. 

4. Error handling: I/O operations are prone to various errors 

(media failures, transmission errors, device unavailability) 

requiring detection and recovery mechanisms. 

Subsystem Architecture 

Operating systems implement layered I/O subsystems to manage 

complexity: 

1. User-level I/O interfaces: High-level libraries and system 

calls that provide device-independent interfaces for 

applications. 

2. Device-independent I/O software: Performs common 

functions such as buffering, error handling, and managing 

device-independent naming. 

3. Device drivers: Software modules that understand the 

specifics of particular devices and translate generic I/O 

requests into device-specific commands. 

4. Interrupt handlers: Manage device interrupts, 

acknowledging completion of I/O operations and initiating 

next steps. 

5. Hardware: The actual I/O devices and their controllers. 

This layered approach provides several benefits: 
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Notes 1. Device independence: Applications can use generic I/O 

operations without concerning themselves with device 

specifics. 

2. Uniform naming: Devices can be accessed through a 

consistent naming convention, regardless of their physical 

characteristics. 

3. Error handling: Errors can be managed at appropriate levels 

of the hierarchy. 

4. Synchronous and asynchronous I/O: Support for both 

blocking operations (where the process waits for completion) 

and non-blocking operations (where the process continues 

execution while I/O proceeds). 

5. Buffering: Managing data transfer rate mismatches between 

devices and processes. 

6. Spooling: Handling devices that can serve only one process at 

a time, such as printers. 

I/O Performance Optimization 

Operating systems employ numerous techniques to optimize I/O 

performance: 

• Caching: Keeping recently accessed disk data in memory 

to reduce access times for subsequent requests. 

• Buffering: Using memory areas to temporarily hold data 

during transfers, accommodating speed mismatches and 

allowing for more efficient batch processing. 

• Scheduling: Reordering I/O requests to minimize 

movement in devices with mechanical components (such 

as disk head scheduling in hard drives). 

• Request merging: Combining adjacent requests to reduce 

the number of separate I/O operations. 

• Anticipatory I/O: Predicting future I/O requests based on 

observed patterns and prefetching data. 

• I/O parallelism: Using techniques like RAID (Redundant 

Array of Independent Disks) to spread I/O operations 

across multiple devices. 

1. Quality of Service (QoS): Ensuring that critical I/O 

operations receive priority treatment. 

of modern operating systems evolves to support new hardware types 

and connection types. The I/O subsystem 
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Notes Security, Protection, and Advanced OS Functions 

Security Fundamentals and Implementation 

Functions will be implemented at several levels by modern operating 

systems: have become increasingly inter-connected and they store 

and process sensitive information, the security of the operating system 

has become even more important. Security As computing systems 

1. Authentication: Verifying the identity of users through 

methods such as: 

• Password-based authentication 

• Multi-factor authentication 

• Biometric authentication 

• Token-based authentication 

• Certificate-based authentication 

2. Authorization: Determining what authenticated users are 

permitted to do, typically implemented through: 

• Access control lists (ACLs) 

• Role-based access control (RBAC) 

• Mandatory access control (MAC) 

• Capability-based security models 

3. Cryptographic services: Providing encryption, decryption, 

and cryptographic hashing functions to: 

• Protect data confidentiality 

• Ensure data integrity 

• Verify the authenticity of software and 

communications 

4. Process isolation: Preventing processes from interfering with 

each other or with the operating system itself through: 

• Memory protection mechanisms 

• Hardware-supported privilege levels 

• Containerization 

• Virtual machine isolation 

5. Security monitoring and auditing: Detecting and logging 

security-relevant events to: 

• Identify attempted breaches 

• Support forensic analysis after security incidents 

• Provide accountability and non-repudiation 
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Notes 6. Secure boot processes: Ensuring that only authenticated and 

unmodified operating system components are loaded during 

system startup. 

Deployment environment. These security mechanisms need to find a 

trade-off between protection, usability, performance, and 

manageability, which often leads to complex trade-offs depending on 

the security needs of the 

Virtualization and Containerization 

Virtualization has transformed modern computing by allowing 

multiple operating systems to execute simultaneously on a single 

physical machine, while containerization offers lightweight 

abstraction for applications running in the same operating system 

instance. 

Virtualization refers to the creation of virtual (rather than actual) 

versions of computing resources, implemented through: 

1. Hardware virtualization: Using a hypervisor that: 

• Presents virtual hardware interfaces to guest operating 

systems 

• Manages resource allocation between virtual machines 

• Provides isolation between virtual environments 

• Types include: 

▪ Type 1 (bare-metal) hypervisors that run 

directly on hardware 

▪ Type 2 hypervisors that run on top of a host 

operating system 

2. Para virtualization: Where guest operating systems are 

modified to use special APIs for improved performance. 

3. Memory virtualization: Techniques such as shadow page 

tables or hardware-assisted memory virtualization that manage 

the mapping between guest physical addresses and host 

physical addresses. 

4. I/O virtualization: Methods for sharing physical I/O devices 

among multiple virtual machines. 

Containerization provides application isolation without the overhead 

of full virtualization by: 

1. Sharing the host operating system kernel while providing 

isolated userspace environments. 
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Notes 2. Using namespace isolation to separate container process 

trees, network interfaces, mount points, and user IDs. 

3. Employing resource control mechanisms like cgroups to 

limit and account for resource usage. 

4. Providing standardized image formats and deployment 

mechanisms. 

Both virtualization and containerization have become fundamental 

technologies in cloud computing and modern application deployment 

strategies, enabling more efficient resource utilization, improved 

isolation, and greater flexibility in application hosting. 

Distributed Operating Systems and Cloud Infrastructure 

Contemporary computing increasingly spans multiple physical 

systems, leading to the development of distributed operating system 

concepts and cloud computing infrastructures: 

1. Distributed operating systems extend operating system 

functions across multiple physical machines: 

• Transparency: Hiding the distributed nature of the 

system from users and applications 

• Communication: Low-level message passing and 

higher-level remote procedure calls 

• Process migration: Moving processes between nodes 

for load balancing 

• Distributed file systems: Providing a unified file 

namespace across machines 

• Distributed synchronization: Mechanisms for 

coordinating activities across nodes 

• Fault tolerance: Handling node failures gracefully 

2. Cloud computing infrastructure builds on virtualization and 

distributed systems concepts to provide: 

• Infrastructure as a Service (IaaS): Virtualized 

computing resources 

• Platform as a Service (PaaS): Runtime environments 

for applications 

• Software as a Service (SaaS): Complete applications 

delivered over the network 

• Elasticity: Dynamic scaling of resources based on 

demand 
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Notes • Resource pooling: Sharing physical resources among 

multiple tenants 

• Measured service: Tracking resource usage for billing 

and optimization 

3. Emerging operating system paradigms adapt to these 

distributed environments: 

• Microkernel architectures: Minimizing kernel code 

and moving functionality to user space 

• Unikernel approaches: Creating specialized single-

purpose applications that include only the OS 

functionality they need 

• Server less computing: Further abstracting 

infrastructure management away from application 

developers 

Operating systems advanced to support more complex applications, 

requiring features like these to support interconnected and 

orchestrated systems over the networks built up around computers as 

they became pervasive. This is an example of how want to 

understand modern computing systems and/or build software that 

interacts with them in a meaningful way. Providing abstractions to 

simplify writing applications, mechanisms that guarantee your 

applications utilize resources as required, and protections to enable 

safe and reliable computing; as we have discussed throughout this 

book. It is vital to understand these basics and their functions if you 

the operating systems are the ultimate base on which all other 

software. 

 

  



 

31 
MATS Centre for Distance and Online Education, MATS University 

 

Notes Unit 3: Computer System Operations 

 

1.3 Computer System Operations 

At the core of contemporary computing lies a complex choreography 

involving the cooperation of myriad hardware and software elements, 

working in unison to perform tasks from basic arithmetic to 

sophisticated data processing. Computer system operations involve 

how computers organization works under the guidance of standard 

processes that describe the operational condition of the system which 

is well defined by the standards represented through several protocols 

and architectures A computer system is built on top of four main 

layers: hardware, software, data, and users, with components of each 

layer communicating via designed interfaces and communication 

channels. These pieces of hardware share different characteristics and 

performance specifications the CPU, memory, hard drives, I/O 

interfaces, network devices etc. Hardware resources, user 

applications, operating system, utility programs, development tools, 

and application software to carry out certain tasks. Data lives in 

different states (input, information, layout tables, files, streams) 

across a variety of protected boundaries and access patterns within 

computer systems. Interfaces facilitate interaction between users, be 

they human operators or automated systems, and the individual 

components, translating intentions into actionable commands. The 

details of how these bits and pieces cooperate are the domain of the 

science of computer system operation: processor scheduling 

algorithms, methods of memory management, input/output operations, 

file system organization, network communications protocols, all of 

the moving parts of physical computers at the core of these systems. 

System architects, software developers, IT administrators, and 

computer scientists use this information regarding operational 

frameworks to improve performance, security, reliability, and design 

new computing paradigms. By now, the paradigm of present-day 

computational environments has significantly changed from 

independent, self-sufficient computing units to interrelated, 

systematized infrastructures, that consist of cloud computing, 

virtualization, containerization, edge computing, and several 

challenges that come with them all. With computers increasingly 

dominating all facets of society, whether that is through corporate 
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Notes processes, scientific investigation, social connection, or 

entertainment, the importance of fast, secure, and reliable computation 

is further amplified. Inhabiting a singular text but spanning through 

many disciplines, this textbook explores what makes computer 

systems operate; it analyzes not only the theory behind it, but also the 

practical considerations and approaches to ensure that our computing 

systems operate as intended. Learning about how a computer system 

works at the low level enables students and professionals to create 

more efficient systems as well as solve complex problems, design new 

solutions, and help to push computing technology forward to meet 

the demands of modern society in ways that were previously 

unimaginable or impossible. 

Processor Management and Scheduling 

Processor management is the kernel of computer system operations a 

complex system of mechanisms that control the execution of 

instructions on a system's central processing units. The architectures 

of modern CPUs involve multiple cores, instruction pipelines, branch 

prediction, speculative execution, and multiple levels of cache. For 

this purpose, a CPU operates on a loop: fetches instructions from 

memory, decodes what the instruction means and executes operations 

on data as per the instruction. The control unit attempts to 

synchronize the time of operations and make sure the instructions 

executed through the arithmetic logic unit and registers inside the 

processor. Operating systems use processor scheduling algorithms to 

decide which processes get CPU time and in what order, essentially 

juggling multiple requests for this scarce resource. Basic scheduling is 

about what to run processes, which are instances of programs that are 

in execution, along with the state for the execution of that process, 

such as the value of the program counter, the registers, stack, and 

memory that those processes have allocated, and the resources that 

such processes are utilizing. A process has different states in its life 

cycle: new (has been created), ready (waiting for CPU time), running 

(currently executing), waiting (waiting for an event or resource), and 

terminated (finished executing). The operating system kernel includes 

a scheduler that decides which processes get to execute using an 

advanced algorithm that strives to optimize a particular metric for the 

system. The simplest scheduling algorithm, First-Come-First-Served 

(FCFS), executes processes in the order they arrive in the ready state, 
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Notes assuring fairness but allowing short processes to be delayed by long-

running ones, a problem called the convoy effect. The Shortest Job 

First (SJF) policy, which minimizes the average waiting time by 

executing the process that will finish the quickest (predicted), but it 

requires you to have the ability to make predictions, and it might 

starve some of the processes. Round Robin scheduling assigns each 

process a small time slice or quantum, and processes are served in a 

rotating order, preserving the doctrine of fairness and responsiveness 

while preventing a single process from dominating the CPU, although 

it does incur context switching overhead. A priority-based scheduling 

scheme marks every process with a priority level and only executes 

those with the highest priority before others, with preemptive policies 

(suspending tasks with lower priority) or non-preemptive methods 

(waiting for task completion or voluntary release). It achieves this 

through the use of meta data, and real-time file systems use specific 

algorithms like Rate Monotonic Scheduling (RMS) or Earliest 

Deadline First (EDF) to provide timing guarantees for real-time 

applications like medical devices, automotive systems, or industrial 

control systems. With the advent of modern multi-core processors, 

this has changed again; scheduling becomes much more complex, as it 

must be able to deal with the affinities between the cores, the cache 

coherence, and their ability to be executed in parallel. Thread 

scheduling (finer-grained) handles scheduling at the level of threads, 

allowing multiple threads to execute in the same process 

concurrently, sharing the same memory space and resource. The 

sophisticated scheduling methods include multilevel feedback queues 

that increase or decrease the priority of processes based on their 

execution history; affinity-aware scheduling that keeps workloads on 

the same processors to take advantage of cache reuse; and 

heterogeneous computing scheduling that allocates concurrent 

workloads to specialized processing units such as graphics processing 

units (GPUs), field programmable gate arrays (FPGAs) or artificial 

intelligence (AI) accelerators. Load balancing algorithms balance the 

amount of computational work taking place at any given time, by 

distributing the processes that execute across multiple systems or 

processors, to maximize throughput & minimize response times. 

There has been a growing need for energy-aware scheduling in 

mobile devices as well as in data centers to perform intelligent trade-
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Notes offs between performance and power consumption through 

mechanisms like dynamic voltage and frequency scaling (DVFS), 

core parking, workload consolidation, etc. Practical implementations 

of scheduling must also deal with cases of priority inversion (a high-

priority process is waiting on (a resource controlled by) a low-priority 

process), which can be managed with protocols such as priority 

inheritance or priority ceiling. Processor management also includes 

interrupt handling—the method used by external events to notify the 

CPU that it should temporarily stop normal execution in order to 

address time-critical tasks, such as state changes in hardware, the 

completion of an I/O operation or error conditions. The enhanced 

sophistication of modern processor management systems is a direct 

result of these challenges, as a diverse set of workloads with widely 

differing requirements from background batch processing to 

interactive user applications to time-critical control systems must be 

able to be run and execute efficiently in the same environment on 

common hardware resources. 

Memory Management Systems 

Memory management represents an essential component of 

computational system functionality, involving the various methods 

and processes operating systems utilize to oversee, distribute, and 

structure the primary memory resources of a computer. Tiers of the 

memory hierarchy: registers, cache memory, main memory (RAM), 

and virtual memory (in secondary storage devices). To effectively do 

this, it needs to address some basic issues: how to allocate memory to 

processes when they need it, how to free the memory when it no 

longer needs it, track usage to ensure performance, prevent 

unauthorized access and maintain memory coherency in a multi-

processor system. Virtual memory is at the heart of modern memory 

management an abstraction that gives to every process the illusion of 

owning its own large, contiguous space of addresses without regard 

for available memory or competing processes. The logical 

representation of memory allows developers to get a finer-grained 

view of hardware, flexibility in memory allocation, access protection 

between processes, and the ability to run programs independent of 

physical memory (e.g. if an executing program size exceeds physical 

memory). Virtual and Physical Addresses the translation between 

virtual and physical addresses is done through a mix of hardware and 
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Notes software mechanisms, where address translation is performed through 

memory management units (MMUs), with the help of operating 

system-maintained page tables. The most common implementation of 

virtual memory is called paging, where both physical and virtual 

memory are divided into fixed-sized units called blocks or pages 

(usually between four and sixty-four kilobytes in modern systems). 

Access to a virtual address by a process would translate to a 

corresponding physical location using a page table that stores a 

mapping between a virtual page number to a physical frame number. 

When the page requested isn't present in physical memory (page 

fault), the operating system suspends the process, retrieves the page 

from the secondary storage (women's clothing warehouse or hard 

disk), updates the page table, and resumes execution, but these details 

are invisible to the application; even so, it's key to extending memory. 

Page replacement algorithms decide which pages to evict when 

physical memory is full, with popular approaches being Least 

Recently Used (LRU), which evicts pages that have not been accessed 

for the longest time; First-In-First-Out (FIFO), which evicts pages in 

the order they were loaded; and Clock algorithm, which approximates 

LRU without the high overhead by maintaining a circular list of pages 

with reference bits. Its advanced forms are approximations (e.g., 

CLOCK) and improvements (e.g., CLOCK-Pro) which both try to get 

the simplicity from FIFO but the performance from more advanced 

caching algorithms. Paging divides physical memory into fixed-size 

units, typically 4 or 8 KB pages, and maps logical address space pages 

to physical pages without considering the program structure. 

Segmentation is an alternative or complementary method of memory 

management; it organizes memory according to the logical structure 

of programs (procedures, data structures, etc.) rather than fixed-size 

space. It allows more granular protection and sharing mechanisms as 

each segment is a logical unit with attributes such as read only or 

executable. Most modern systems use a combination of segmentation 

to provide logical organization and paging for physical memory. 

Processes manage their own memory allocation in ways that can 

range from basic contiguous allocation to complex dynamic memory 

management. A part of memory known as the heap is devoted to 

runtime allocation, and algorithms are required to process requests 

for variable shaped allocations without causing fragmentation. These 
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Notes strategies include first-fit (using the first sufficiently large free block), 

best-fit (choosing the smallest block that still satisfies the request), 

and buddy system allocation (dividing memory into contiguous 

power-of-two sized blocks to simplify coalescing of free space). For 

instance, advanced memory managers use either segregated fits (two 

or more free lists for various classes of sizes, which keeps the 

fragmentation of memory in check), or generational garbage 

collection in managed-language settings, which keeps track of the 

time-to-die, since the majority of objects exist for a short time only. 

Memory protection mechanisms use hardware features such as 

protection bits in page tables and memory protection keys to prevent 

processes from accessing or modifying memory allocated to other 

processes, or the operating system. Modern systems also use Address 

Space Layout Randomization (ASLR) to protect against security 

vulnerabilities by randomizing the locations in memory of program 

components. (Cache management is almost always implemented in 

hardware, but it has a lot to do with what the operating system does 

regarding memory policies.) By influencing the manner in which 

virtual pages map to cache lines, techniques such as cache coloring 

aim to improve cache usage. Memory compression is a new paradigm 

for adding effective memory capacity by compressing infrequently 

touched pages instead of writing them to disk and later reading them 

back from disk to reduce latencies for future accesses. Multi-

processor systems with Non-Uniform Memory Access (NUMA) 

architectures add further complexity by making memory access times 

dependent on the processor's proximity to the memory location, thus 

necessitating the use of NUMA-aware allocation policies. To address 

this fragmentation, heterogeneous memory management systems that 

take advantage of the characteristics of different types of memory 

have been implemented, such as placing data intelligently into 

different memory regions as a function of access frequency and 

performance needs. Despite these advances, effective memory 

management is still critical to system performance and stability, with 

contemporary operating systems continuing to develop increasingly 

sophisticated memory management techniques, managing the 

conflicting requirements of capacity, performance, protection and 

power efficiency across a complex and ever evolving hardware 

architecture. 
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Notes Storage Systems and File Management 

Storage systems are crucial for saving data after the computer is 

turned off, transforming it into persistent data, whereas the file 

management framework allows you to save that persistent data within 

the storage system. The storage hierarchy ranges from fast, costly, and 

low-capacity storage technologies (like solid-state drives (SSDs)) to 

slower, cheaper, and larger-capacity technologies (such as hard disk 

drives (HDDs), optical drives, and tape drives), each offering distinct 

trade-offs in terms of performance, cost, and longevity. We rely on 

file systems to offer this fundamental abstraction layer that turns raw 

storage trafficking capabilities into structured, well-defined 

hierarchies of organized blocks that users and applications can easily 

traverse and maneuver in. At the hardware layer, storage devices use 

different principles; HDDs rely on magnetic recording stored on 

spinning platters and accessed by mechanical read/write heads so 

performance is dependent on rotational latency, seek time, and 

transfer rates; SSDs with no moving parts leverage flash memory cells 

laid out in pages and blocks with rapid random access times, though 

introduce complications like write amplification, wear leveling, and 

garbage collection; emerging technologies such as 3D XPoint (Intel 

Optane) bridge the gap between memory and storage with their own 

performance metrics. Storage device drivers and I/O subsystems in 

the operating system interact with the devices, abstracting hardware-

specific details and providing a standardized interface for higher-

level components. RAID (Redundant Array of Independent Disks) 

configurations that use multiple physical drives as a single logical unit 

(potentially for performance, capacity, and/or redundancy via striping 

(RAID 0), mirroring (RAID 1), or parity-based redundancy (RAID 5, 

RAID 10), are common in modern storage architectures. Block-level 

storage virtualization abstracts physical devices in blocks, presenting 

logical volumes that span multiple physical devices and process thin 

provisioning, snapshots and replication, while storage area networks 

(SANs) and network-attached storage (NAS) extend those capabilities 

over a networked spaces. File systems abstract these block-level 

capabilities into the hierarchical realm of files and directories, which 

serve as the main interface for organizing and accessing the data. And 

different file systems, based on the type used by the computer, could 

take different approaches to primary problems like space allocation, 
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Notes metadata, directory structure and crash recovery (for example FAT 

File Allocation Table, ext4 Fourth Extended File System, NTFS New 

Technology File System, and HFS+ — Hierarchical File System 

Plus). You will need to retain critical metadata about the files, such as 

names, timestamps, ownership, permissions, and the mapping of 

logical file structures to physical storage locations. Modern file 

systems have developed such sophisticated capabilities to meet new 

needs: logging file systems such as ext4, XFS, and NTFS write 

metadata about data changes in addition to the data itself, ensuring 

consistent operations during catastrophic failures; copy-on-write file 

systems such as ZFS and Btrfs never overwrite existing data locations, 

they write updates to new locations and atomically update pointers in 

metadata, allowing features like snapshots and providing protection 

from corruption after unexpected power failures; log-structured file 

systems such as F2FS map random writes to sequential writes to 

maximize performance for SSD and other flash-based file systems, 

thereby improving write performance and reducing write 

amplification. Obtaining knowledge and status: File management 

activities encompass the file's entire lifecycle, including creation, 

naming, access control, modification, backup, and finally deletion or 

archiving. Each file can vary widely in characteristics: Executable 

binaries require specific formats and alignment; Databases often use 

their own internal storage structures optimized for access patterns; 

Multimedia files utilize various compression algorithms; and text 

files require character encoding support. Different ways of access 

provide optimization opportunities as well as challenges (sequential 

processing versus random access patterns). Virtual File Systems 

(VFS) play an essential role in modern operating systems by exposing 

a uniform interface to applications while supporting a wide variety of 

underlying file system implementations alike the network file systems 

and the local ones having extremely diverse internal structures. When 

the same file is accessed frequently, file caching improves 

performance by keeping data and metadata in memory, using 

sophisticated algorithms that attempt to hold on to data that is useful 

without exceeding available memory. Modern file systems support 

advanced features such as encryption which secures sensitive data 

even if the physical storage is compromised, deduplication which 

minimizes the storage of identical data blocks, the ability to compress 
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Notes data to save space, and specification of quotas to restrict the amount 

of resources consumed by users or groups thereof. With the arrival of 

cloud storage, whole new paradigms for files arose, with object 

storage systems like Amazon S3, Google Cloud Storage, and Azure 

Blob Storage employing flat namespaces of objects and (meta)data 

associated with them instead of hierarchical file structures, along 

geared for scale, durability and while being easily accessible over 

distributed environments. These systems include well-known 

distributed file systems (e.g., Google File System (GFS), Hadoop 

Distributed File System (HDFS), and Ceph ), which take the concepts 

of traditional file systems and apply them over clusters of machines, 

using replication, fault tolerance, and parallel access mechanisms to 

achieve scalability and performance impractical with single-system 

approaches. Emerging storage technologies further obfuscate 

traditional categories: persistent memory provides byte-addressable 

access with durability; storage-class memory delivers near-DRAM 

performance with non-volatility; and computational storage moves 

processing closer to data to mitigate data movement and improve 

efficiency for select workloads. As workloads change, as hardware 

capabilities and reliability requirements shift, so must file and storage 

management systems, and researchers are focusing efforts in areas 

such as improved performance for emerging non-volatile memory 

technologies, secure transparent encryption for enhanced security, low 

power consumption for massive storage arrays, and self-healing 

mechanisms to maintain data integrity when hardware fails or is 

victimized by a cyber attack. 

Input/Output Systems and Device Management 

Input/output (I/O) systems and Strategies for effective Device 

management antigen are the vital intermediary link between 

computing systems and the outside environment, including the 

hardware components, software subsystems and operational protocols 

that allow computers to interact with peripheral devices, sensors, 

networks and storage systems. I/O devices are the most diverse class 

of peripherals and can be as simple as human interface peripherals 

such as keyboards and mice or as complex as communication 

equipment, graphics processors, and special purpose controllers used 

in industrial control; thus providing standard interfaces while 

attempting to provide some range of performance characteristics, 
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Notes communication mechanisms, and functionality can prove to be quite a 

challenge for the system designer. In the context of hardware-level I/O 

communication architectures, these authors describe four common 

modes: programmed I/O where the CPU explicitly instructs devices to 

transfer blocks of data, interrupt-driven I/O where devices can 

interrupt in the event of needing the processor's attention, freeing up 

the CPU; DMA (Direct Memory Access) which leads to devices 

pulling or pushing data from memory without requiring the CPU to 

watch over; and channel I/O commonly used in mainframe systems, 

where entire I/O programs can be sent to special processors to be 

executed without the requirement of the attention of the main CPU. 

Wired connections for devices and computer systems have 

transitioned from parallel buses like ISA and PCI to serial connections 

such as USB, PCIe, and Thunderbolt delivering higher speeds, fewer 

pins, and even the ability to hot-plug the devices. Such connections 

are made via controllers, hardware that can translate between the 

internal signals of a computer and the specialized protocols of the 

devices, usually with some form of buffers to account for differences 

in timing between CPUs and slower devices. Through a layered 

system of device drivers, software components that allow devices to 

communicate with the operating system and abstract away device-

specific implementation, this hardware is managed by the operating 

system. There are driver frameworks built into modern operating 

systems that describe application development patterns that third 

parties can use to implement drivers that will be compatible without 

needing to learn about the internal architecture of the system. Such 

frameworks generally provide interrupt handling, memory 

management, power management, error recovery, and other low-level 

services so that driver developers can concentrate on device-specific 

details. Purpose: ACPI, UEFI, PnP  Device discovery and 

configuration mechanisms that help in automatic detection, 

configuration and allocation of resources for devices without any 

manual intervention. From the application perspective, OSes expose 

devices through abstraction layers that make interaction simple: 

character devices (like keyboards and serial ports) transfer data byte 

by byte in streams; block devices (like disk drives) transfer fixed size 

blocks of data; and network devices with their own interfaces for 

packet-based communication. Even higher-level abstractions reduce 
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Notes development complexity file system interfaces for storage devices, 

graphical frameworks for display devices, and audio subsystems for 

sound equipment expose active APIs that abstract applications from 

hardware specifics. Particularly for devices such as disk drives, where 

the physical characteristics are a major factor in their performance, 

I/O scheduling is an important component of device management. 

Reordering requests based on physical location using elevator 

algorithms (SCAN) and its derivatives helps to keep mechanical 

movement to a minimum; anticipatory scheduling has been shown to 

be useful in predicting future requests based on previous patterns; and 

completely fair queuing ensures that bandwidth is allocated fairly 

across processes. Most recent systems employ a deadline-based 

mechanism that optimizes throughput while providing service 

guarantees at a predefined level to time-sensitive operations. 

Buffering and caching layers exist all throughout the I/O stack to 

handle timing discrepancies between the various components that all 

operate at different speeds: device controllers have hardware buffers; 

OSes have buffer caches for block devices and network stacks; and 

applications have their own buffering schemes. By using double-

buffering approaches, you can read and write to different buffers, such 

that one can be used to write data while another is rendered or 

transmitted, making them suitable for streaming like video playing or 

audio recording. With the advent of virtual machines, containerized 

applications, and other forms of system virtualization, the need for a 

different approach for virtualized devices was created, including 

device emulation (where hardware behavior is simulated through 

software), par virtualization (modified drivers in guest systems 

interact with the hypervisor) and direct device assignment (allowing 

virtual machines to have direct, exclusive access to physical devices). 

You are familiar with virtualized environments, where one physical 

device can be seen by one or more guests; SR-IOV (Single Root I/O 

Virtualization) allows a single physical device to advertise up to n 

virtual devices with dedicated resources. However, the increasing 

adoption of mobile and energy efficient systems has led to the advent 

of device power management. Examples include selectively powering 

down unused hardware components, dynamically adjusting its 

performance to match current needs, and aligning device states with 

global power management policies. USB Power Delivery is one 
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Notes example of a standards-based specification that allows for intelligent 

negotiation of power requirements between devices and hosts. 

Domain-specific I/O subsystems are designed for their specific type of 

needs, e.g. cameras and graphics use APIs like DirectX, Vulkan, and 

Metal with increasingly complex rendering pipelines, audio 

subsystems mix, convert formats, and align playback across many 

channels, and human interface device frameworks (HIDs) manage 

arbitrary input from many sources with accessibility and 

internationalization considerations. The two main differentiating 

features of true real-time I/O are deterministic response time which is 

critical in industrial control systems, medical devices, and automotive 

systems. As such, real-time systems use dedicated I/O stacks with 

bounded latency guarantees, priority-based IRQ servicing, and very 

little jitter. As IoT devices suitable for various purposes can be very 

light-weight, I/O management has always been crucial for those 

devices with bandwidth constrained protocols, energy-efficient 

communication patterns, etc. Edge computing architectures allow the 

processing of data at or near the source, decreasing latency and 

bandwidth consumption but also introducing new challenges for 

device management across distributed environments. Security touches 

every part of modern I/O systems: device attestation ensures the 

hardware is what we expect; secure boot verifies device firmware; 

access control restricts which processes may interact with sensitive 

devices; and encryption protects data in flight. As computation 

expands into new spheres, I/O systems evolve further, with 

technologies such as neuromorphic interfaces directly wired into 

biology; quantum I/O enveloping the extreme environmental needs of 

quantum processors; and brain-computer interfaces (BCI) 

transforming neural activity into computational input, all presenting 

new levels of difficulty for device management systems on which I/O 

profiled devices depend. 
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Notes Network Operations and Distributed Systems 

Network operations and distributed systems are the fundamental 

threads that connect the fabric of computing today, facilitating 

communication, resource sharing, and collaborative processing across 

components that are geographically or physically separated, whether 

they be local clusters or global-scale infrastructure that spans 

continents. A layered architectural view is essentially the foundation 

of computer networking and the most common manifestation of that is 

the TCP/IP model: A link layer, which provides a similar physical 

connection and media access to the alternate layer, a layer responsible 

for addressing and routing between networks (Internet Layer), a 

transport layer for reliable delivery and flow control of data, and 

finally activated by a layer for user applications and network services 

(Application Layer). Disparate physical characteristics of the 

transmission mediums make a big difference in terms of bandwidth, 

propagation delays, fault tolerance, etc. For these physical media, we 

need some data encoding techniques to take our digital information 

and convert it into signals suitable for those types of media, such as 

using a scheme to enable the appropiate type of encoding like 

Manchester, PAM-4 and QAM modulation, maximizing the density of 

the data and minimizing errors. Media access control (MAC) 

mechanisms organize when shared channels can be used, from 

deterministic techniques like time-division multiplexing, to 

contention-based schemes such as CSMA/CD (Carrier Sense 

Multiple Access with Collision Detection) in classical Ethernet or 

CSMA/CA (Collision Avoidance) in wireless. Network addressing 

schemes form the backbone on the way to the identification and 

location of devices: MAC addresses uniquely identify physical 

network interfaces on the link layer; IP addresses (both IPv4 and 

growing IPv6) allow global routing in the internet layer; and finally, 

domain names create human-readable identifiers (resolved into IP 

addresses by the Domain Name System or DNS). Routing works as a 

process of establishing routes and data transmission across the 

interconnected networks through paths that are determined by using a 

set of algorithms that strike a balance between the distances, 

reliability, heaps and administrative policies. Routing protocols such 

as RIP (Routing Information Protocol), OSPF (Open Shortest Path 

First), BGP (Border Gateway Protocol) employ distinct 



  

44 
MATS Centre for Distance and Online Education, MATS University 

 

Notes methodologies for exploring and administering routes; interior 

gateway protocols concentrate on routing within organizations, while 

exterior gateway protocols control routing across the internet between 

diverse autonomous systems. The transport layer provides essential 

functionalities such as connection management, reliable delivery, flow 

control, and congestion avoidance. The Transmission Control 

Protocol (TCP) uses connection-oriented transmission with reliable, 

ordered service with mechanisms for acknowledgments of received 

data, retransmissions of lost packets, and dynamic adjustments of 

transmission rates to conditions on the network. UDP (User 

Datagram Protocol) is a connectionless protocol that provides 

communication without the overhead of establishing a connection and 

is often used when low latency is more important than reliability, such 

as for real-time streaming and DNS lookups. Newer protocols like 

QUIC merge elements from both strategies, offering reliability and 

security from the application layer above UDP layers to minimize 

connection creation latency and optimize performance across difficult 

link conditions. Network security involves many specialized 

processes: encryption preserves the confidentiality of information via 

protocols such as TLS (Transport Layer Security); authentication 

validates communicating endpoints through certificates, pre-shared 

keys, or multi-factor systems; access control mechanisms like 

firewalls and segmentation ensure communication routes are restricted 

according to rulesets and policies; intrusion detection/prevention 

systems inspect traffic patterns for the presence of malevolent 

behaviours. DDoS protection uses traffic analysis, rate limiting and 

traffic spreading to keep service available in the face of an attack. 

Quality of Service (QoS) involves mechanisms that would allow 

traffic to be prioritized based on type, source, or requirements of the 

application, and it works by implementing techniques like packet 

classification, queue management, traffic shaping, and reservation of 

resources to make sure that critical communications are properly 

treated even when the network is congested. The SDN is a new 

networking architecture that separates the control and data planes, 

allowing for centralized control, programmability, and more efficient 

resource allocation (most commonly used with the Open Flow 

Protocol). Network virtualization, then, takes these concepts and 

applies them at the network level, allowing logical network 
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Notes abstractions of sufficient complexity to exist independently of the 

physical infrastructure beneath them, facilitating multiple isolated 

networks to share hardware concurrently. Different flavours of this 

are radiating out in the form of virtual LANs (VLANs), Virtual 

eXtensible LANs (VXLANs), and Network Function Virtualization 

(NFV) which virtualizes hardware appliances (e.g., a router) and 

firewalls and load balancers that are implemented as virtualized 

software rather than hardware. Writing detailed networking code does 

not usually lead to success; instead, distributed systems are built on 

top of these foundations for networking to create coherent 

programming environments over multiple physical machines, using 

middleware, protocols, and architectural structures to overcome the 

inherent problems in distributed computing: heterogeneity of 

components, open-ness to extension, security across trust boundaries, 

scalability to increasing demand, failure  handling, concurrency 

enabling, and transparency that hides distribution from the 

programmer 

Complexity of users and applications inside. There are varying 

designs of distributed system architectures; client-server architecture 

separates service providers from consumers, peer-to-peer distributes 

services among participating nodes, hybrid architectures like edge 

computing position processing at the edge of the network close to the 

sources of data, and cloud computing offers resources that are 

virtualized and accessible through standard interfaces. Distributed 

systems communicate in multiple ways: remote procedure calls 

(RPCs) with their object-oriented variant allow remote procedures to 

be invoked as if they were local; message-oriented middleware’s 

implement queuing, routing and transformation services to enable 

asynchronous communication; publish-subscribe systems allow for 

many-to-many communication with loose coupling between 

participants; streaming platforms process continuous data flows across 

distributed components. Consistency models govern what to expect 

around visibility and order of data across other distributed 

components; they stretch from strong consistency (all nodes see the 

same thing at the same time) through eventual consistency (the data 

will converge with time but does not require synchronization in the 

moment). The CAP theorem presents absolute trade-offs for 

distributed systems by saying that they can only offer two of three 
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Notes guarantees: consistency (all nodes see the same data), availability (the 

system responds to requests) and partition tolerance (the system still 

operates even when networks do not). Modern distributed databases 

all implement different consistency models depending on applications 

requirements: classical relational databases tend to enforce ACID 

properties (Atomicity, Consistency, Isolation, Durability) through 

two-phase commit protocols and distributed transactions; NoSQL 

systems often embrace BASE properties (Basically Available, Soft 

state, Eventually consistent) for improving partition tolerance and 

scalability; and NewSQL approaches try to combine ACID guarantees 

with horizontal scalability. Distributed coordination services such as 

Apache ZooKeeper, etcd, Consul, etc provide primitives for leader 

election, configuration management, service discovery, distributed 

locking that make it easy to build reliable distributed applications. 

Container orchestration platforms (like Kubernetes) automate the 

deployment, scaling, and management of containerized applications 

across a cluster of servers with advanced scheduling, load balancing, 

service discovery, and self-healing capabilities. Distributed file 

systems and object stores, such as Hadoop HDFS, Ceph, Amazon S3, 

and Google Cloud Storage, offer storage services that span machine 

boundaries with replication, fault tolerance, and scalability. Block 

chain technologies are a specialized subclass of distributed system 

that enables decentralized consensus protocols to have consistent state 

without a trusted central authority, leading to applications from 

crypto currency to supply chain tracking to digital identity 

management. Fundamental challenges in connecting and coordinating 

computational resources across physical, organizational, and trust 

boundaries continue to be tackled by evolving practices of network 

operations and distributed systems underlying the operation 

paradigms that have emerged; server less computing abstracts away 

(even managing) the infrastructure; 5G and beyond wireless 

technologies enable new classes of distributed applications; zero-trust 

security eliminates implicit trust due to network location; edge 

computing pushes the processing closer to the data source. 

Security, Performance Optimization, and System Reliability 

Security, performance optimization, and system reliability are critical 

dimensions of computer system operations they define how well 

systems protect sensitive assets, provide timely service, and continue 
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Notes to operate consistently under stressful conditions. These three form a 

triad of operational concerns that intersect in many complex ways 

security practices can impact performance, performance 

improvements can add reliability compromises, and reliability 

mechanisms can influence both security posture and performance 

efficiency. Systematic approaches that balance competing priorities, 

such as institutional, macroeconomic, sectoral, and organizational 

factors, to robustly implement practices across all three dimensions in 

specific operational settings. Computer security involves the securing 

of hardware, software, data, and communications of system assets 

from unintended access, use, disclosure, disruption, modification, or 

destruction. Fundamentally, security enforces the CIA triad; 

Confidentiality ensures that no one accesses sensitive information; 

integrity preserves information integrity from intentional or accidental 

tampering; and availability ensures authorized users can reach their 

resources when needed. These objectives are accomplished through 

various defensive mechanisms targeting distinct facets of the security 

dilemma: cryptographic schemes that safeguard data utilizing 

encryption ciphers, such as AES, RSA, and elliptic curve 

cryptography, alongside hashing algorithms like SHA-256 that ensure 

data integrity(ies); authentication systems that validate claims of 

identity through knowledge factors (passwords, security questions), 

possession factors (hardware tokens, mobile devices), and inherence 

factors (biometrics like fingerprints, facial recognition); authorization 

schemes that delineate action permissions for authenticated subjects 

through models such as discretionary access control (DAC), 

mandatory access control (MAC), role-based access control (RBAC), 

and attribute-based access control (ABAC); secure communication 

protocols like TLS/SSL that establish encrypted channels impervious 

to interception and modification; and network security mechanisms 

encompassing firewalls, intrusion detection/prevention units, and 

VPNs that confine communication pathways to legitimate channels. 

Vulnerability management processes are designed to identify, assess, 

and remediate security weaknesses in a software application, often 

through activities such as static and dynamic code analysis, 

penetration testing, and regular patching. Security monitoring and 

incident response abilities that recognize and respond to security 

occurrences (through log analysis, behavior monitoring, and 
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Notes established threat-handling procedures). Zero-trust architecture and 

similar approaches move away from perimeter-based security models 

and instead analyze each access request, wherever it originates from 

or however attached to a network, to verify that it’s still valid. 

Optimizations improve overall performance as measured by multiple 

metrics: throughput (amount of work done per unit time), latency 

(time taken to finish given operations), resource utilization (helping 

make use of relevant points of computing resources), energy 

efficiency (amount of work accomplished per amount of energy 

consumed). Optimization exists at all levels of the system from 

hardware choices and configurations balancing compute resources 

with workload needs, to processor optimizations (instruction 

pipelines, branch predictors, speculative execution, and 

synchronization of work across cores), memory hierarchy tuning 

(including cache sizes, memory alignment, perfecting and NUMA 

awareness), I/O (effective buffering, asynchronous I/O, and device 

selection), and networking performance (protocol, buffering and 

topology). Software-level improvements involve the implementation 

of more efficient algorithms to minimize computational complexity, 

optimizing compilers for specific target architectures to high-quality 

machine code, improvements on databases with indexing, query 

rewriting, and execution plan selection, and application-specific 

improvements that focus on the hot paths in the code graph. Load 

Balancing and Capacity Planning Techniques; Load balancing 

techniques distribute work across multiple resources to prevent 

bottlenecks, while capacity planning processes ensure sufficient 

resources for anticipated demands. Performance monitoring and 

analysis tools help improve data-driven optimizations by performing 

profiling, tracing, and benchmarking for locating a performance 

bottleneck and validating the impact of improvements. The system is 

reliable if, under typical operation, it ensures consistent, correct 

operation regardless of the failures, flaws, or environmental stresses 

that might occur in components. At a high level, reliability 

engineering encompasses a few broad elements: defect prevention 

avoids the introduction of defects through strict design practices, 

formal verification, and quality methods; fault tolerance enables 

continued operation in the face of component failures with 

redundancy (keeping duplicate components to take over when 
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implementations of the same solution to avoid common failure 

modes), isolation (restricting the failure propagation to a limited 

scope), and graceful degradation (maintaining the best possible level 

of service during partial failures); fault detection finds problems 

through health monitors, watchdog timers, checksums or error 

detection codes; and fault recovery restores normal operations post-

failure with techniques like rolling back to known-good states, failing 

over to backups, and self-healing where certain failure classes are 

automatically repaired. Reliability metrics measure how dependable a 

system is: Mean Time Between Failures (MTBF) indicates the 

average amount of operational time between one failure and the next; 

Mean Time To Repair (MTTR) measures the average time taken to 

return a system to an operational state after a failure; availability 

communicates the percent amount of time a system is functioning; 

and durability represents the percentage chance that data will remain 

intact over a certain period. High-strength structures use active-

passive or active-active setups between dispersed geographical areas 

to keep the service running, regardless of localized failures or such 

disasters. Chaos engineering tests reliability proactively by sneaking 

in controlled failures into production systems and checking to see if 

recovery mechanisms kick in, as expected. Approaches to security, 

performance, and reliability are traditionally developed in isolation, as 

though the three are independent; this plain non-sense. Performance 

optimizations that avoid safety checks or reliability mechanisms that 

leak diagnostic information are common sources of security 

vulnerabilities. Security controls which add more processing steps or 

reliability features that keep redundant state can cause performance 

bottlenecks. Security mechanisms that raise the complexity of the 

system or performance optimizations that narrow the tolerable fault 

margins may lead to reliability challenges. In practice, systems must 

be oriented to meet varying criteria across these dimensions 

depending upon use case requirements—system must balance security 

and reliability against raw performance (i.e. mission critical systems 

will typically favor non-performant options over less reliable 

systems); systems must maintain performance guarantees whilst 

ensuring adequate security and reliability (e.g. real time systems); or, 

systems must maintain optimal performance while maintaining 
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evolution of computer systems continues to fundamentally alter the 

operations landscape(s): Cloud introduces shared responsibility 

models for security, performance, and reliability, where some level of 

responsibility is managed by a service provider with others 

maintained by the customer; containerization and micro services 

architectures divide these concerns into smaller, more manageable 

modules; DevSecOps incorporates security into the development 

lifecycle (i.e. not an afterthought); site reliability engineering (SRE) 

applies software engineering paradigms to operationalise problems; 

and artificial intelligence increasingly encroaches to help humans 

identify and profile security threats, performance parameters, and 

reliability components that pose a risk to service and product 

offerings. As systems grow more complex and interconnected, the 

strategic orchestration of the management of security, performance, 

and reliability operations is becoming a core function for delivering 

systems to support the increasing expectations of both organizations 

and individuals in our digital society. 

Emerging Trends and Future Directions in Computer Systems 

The operations of computer systems are evolving at an unprecedented 

pace, highlighting the importance of writing semantics in the 

continuous integration and deployment process. At the same time, 

several disruptive trends are reformulating the very fabric of computer 

systems, heralding a new realm of capabilities and new operation 

challenges that will characterize the next generation of computing 

infrastructure. Quantum computing is perhaps the most disruptive 

change on the horizon, as it computes fundamentally differently than 

classical computation, by utilizing quantum mechanical effects like 

superposition and entanglement. In contrast to conventional bits with 

distinguished states of 0 or 1, quantum bits or “qubits” can be in 

superposition with multiple possible states at once, potentially 

allowing for exponential parallelism on certain problems. Go to any 

specialized quantum system from companies like IBM or Google or 

D-Wave or other new starts, and you can find ways in which these 

experimental systems demonstrate capabilities in areas such as 

cryptography, optimization, simulation of quantum systems, and even 

some machine learning functions. Modules. Operationally, quantum 

computing has enormous implications: quantum algorithms need 
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Notes completely novel ways of programming; quantum decoherence 

makes error correction exponentially harder; dedicated environments 

with extremely low temperature requirements lead to new types of 

infrastructure problems; hybrid architectures with classical and 

quantum processors need new interface paradigms. Although general-

purpose quantum computers are many years away from practical use, 

the security consequences are already causing changes to quantum-

resistant cryptographic algorithms that would be safe against future 

quantum systems. Neuromorphic computing mimics biological neural 

systems using hardware architectures that more closely mirror the 

structures in the brain, in contrast to traditional von Neumann 

architectures. Such systems use massively parallel processing 

elements that integrate memory and computation and provide large 

performance improvements for pattern reorganization, sens 

1.4 Types of Operating Systems: Batch Processing, Multi-

Programming, Time Sharing 

An operating system (OS) is a crucial software layer that acts as a 

bridge between computer hardware and its users, on top of which 

users can conveniently and efficiently run programs. Operating 

systems have come a long way since the birth of electronic 

computers, continuously adapting to new hardware capabilities 

and user needs. It represents a basic shift from primitive, single-

function applications to advanced, multi-feature settings that can 

run several simultaneous processes in a resource-efficient manner. 

The earliest computers didn’t contain anything that resembled an 

operating system, as we understand the term today; they required 

programmers to talk directly to the machine hardware through 

physical switches and lights. This hands-on approach proved 

insufficient with the increasing complexity behind our computing 

hardware and the increasing expectations users had of their 

applications. The ever-increasing sophistication of operating 

system designs was driven by the need for more efficient resource 

utilization and improved user experience. This Unit provides 

insight into three base operating system paradigms that 

approximate significant evolutionary stages in computer history: 

batch processing systems, multiprogramming systems, and time-

sharing systems. These systems all addressed the shortcomings of 

their predecessors and provided new abstractions that still shape 
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fundamental operating system types help us appreciate the 

principles that underlie many of the modern computing 

environments we use today and the historical context that drove 

their evolution. Batch processing, multiprogramming, and time-

sharing represent not just an evolution in technology but also a 

shift in computing priorities; in other words, from maximizing the 

usage of hardware to maximizing the matched interactivity of the 

system. In this article, we will delve into each of these types of 

operating systems individually, highlighting what defines each 

one, their main architectural components, advantages, 

disadvantages, and historical significance to give you an all 

encompassing perspective on how the evolution of operating 

system design has catered towards the complex needs of 

computing in modern times. 

Batch Processing Operating Systems 

Batch processing represents the earliest systematic approach to 

operating system design, emerging in the 1950s and early 1960s as a 

response to the limitations of manual program loading. In a batch 

processing operating system, similar jobs are grouped together into 

"batches" and executed sequentially without user interaction during 

processing. This revolutionary approach addressed significant 

inefficiencies in early computing environments, where computer 

operators had to manually load and unload programs and data, 

resulting in considerable idle time for expensive hardware resources. 

The fundamental architecture of a batch processing system consists of 

several key components. First, the job scheduler maintains a queue of 

submitted jobs, determining their execution order based on predefined 

criteria such as priority or resource requirements. Second, the batch 

monitor supervises job execution, loading the appropriate program 

into memory, allocating necessary resources, and collecting output for 

later retrieval. Third, job control language (JCL) provides a 

standardized mechanism for users to specify job requirements and 

execution parameters. The operational workflow typically begins with 

users submitting programs and associated data (often on punch cards 

or magnetic tape) to computer operators. These jobs are then grouped 

by operators into batches with similar resource requirements. The 

batched jobs are loaded onto input devices, and the batch processing 
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that is subsequently distributed to the appropriate users. This approach 

offered several significant advantages over manual program loading. 

Primarily, it improved throughput by reducing transition time between 

jobs and eliminating the need for human intervention during 

execution. It also enhanced resource utilization by keeping expensive 

computing hardware operational for longer periods. Additionally, 

batch systems introduced the concept of accounting and resource 

allocation, enabling organizations to track and manage computing 

resources more effectively. Despite these benefits, batch processing 

systems suffered from notable limitations. The lack of interaction 

during program execution meant that debugging was cumbersome, 

often requiring multiple submission-execution cycles to identify and 

correct errors. Furthermore, turnaround time the interval between job 

submission and result delivery could be substantial, ranging from 

hours to days depending on system load and job priority. These 

systems also typically operated with a "first-in, first-out" (FIFO) 

scheduling approach or simple priority schemes, which could lead to 

inefficient resource allocation. Historical examples of influential 

batch processing systems include the IBM 7094 with its Fortran 

Monitor System (FMS) and the IBM System/360 running OS/360. 

These systems demonstrated the viability of automated job processing 

and established fundamental concepts in operating system design, 

including job scheduling, resource allocation, and system monitoring. 

Although pure batch processing systems are rarely used in 

contemporary computing environments, their core principles continue 

to influence modern computing, particularly in high-performance 

computing centers, scientific computing applications, and financial 

processing systems where large volumes of data must be processed 

without user interaction. 
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Multiprogramming Operating Systems 

Multiprogramming was introduced in 1960s which was a leap over 

batch processing systems, as it addressed one of the hot topics of 

CPU underutilization. Batch systems ran jobs one at a time, but 

multiprogramming brought the radical idea of having multiple 

programs in memory together at once and transforming numbers 

between jobs in a process that the OS could switch back and forth 

among and save CPU cycles lost to I/O. This core adjustment 

increased system throughput and resource usage dramatically. 

Multiprogramming systems have many more features in their 

architecture than batch systems. Managing memory becomes a lot 

harder, we need to make sure branches marked with load instructions 

are protected against being scratched by other programs that are in 

memory at the same time. Process management systems maintain the 

state of each loaded program and coordinate transitions between 

them. In advanced CPU scheduling algorithms meaning which ready 

process should get processor time depending on factors such as 

priority, resource needs, and fairness. System level types of operations 

that allow for I/O requests and refinement. And complex I/O 

management systems that allow for multiple active programs. From 

the operating system perspective, when a program initiates an I/O 

operation, the multiprogramming operating system will do a context 

switch, saving the current program state and handing control to a 

different program that is ready to execute. This context switching 

operation means saving the contents of registers, program counters, 

and other relevant information about the execution states of the 

blocked program and loading that of the other program to be 

Figure 2: Batch Operating System 
[Source - https://www.geeksforgeeks.org/] 
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Notes executed. When the I/O completes, the first program is re-eligible for 

execution, enabling the operating system to return control to it at an 

appropriate time. This was a great improvement over simple batch 

processing. Most importantly, it greatly enhanced CPU utilization 

because with this way the processor never visited the idle state if 

programs were blocked waiting on an I/O operation. More jobs could 

be completed in the same amount of time, thus increasing system 

throughput accordingly. It also offered more complex mechanisms 

for allocating resources such as: memory, peripheral or even 

processor time among different workloads running in parallel. These 

developments were in addition to the challenges and limitations using 

multiprogramming systems. Memory limits became especially real, 

since you needed enough physical memory to run multiple programs 

at once. Now, with multiple processes running on the system, there 

was contention for the various resources that a process could use, 

such as I/O devices. Fairness, priority, and throughput considerations 

required more complex scheduling algorithms. They also introduced 

the possibility of deadlock, where two or more programs each had 

resources that the others needed, creating a standstill. Notable 

example of multiprogramming systems are IBM's OS/360 MFT 

(Multiprogramming with a Fixed number of Tasks) and MVT 

(Multiprogramming with a Variable number of Tasks), UNIVAC's 

EXEC 8, and derivatives of Unix. These systems introduced essential 

concepts that would become the basis for contemporary operating 

systems, such as process management, memory protection, and 

resource allocation. Multiprogramming is still a basic paradigm of 

modern computing and is built into the core principles of almost 

every operating system in use today. Multiprogramming laid the 

groundwork for concurrent computing, which would be further 

realized in the form of time-sharing systems, a subsequent category 

of operating system specifically designed to support interactive 

computing experiences. 
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Time-Sharing Operating Systems 

Time-sharing operating systems, which developed in the mid-1960s, 

were a significant paradigm shift in computing. They overcame a 

fundamental constraint of batch and early multiprogramming systems: 

they did not offer interactive computing capabilities. 

Multiprogramming only increased the needs of the hardware, and 

time-sharing systems changed this by creating an illusion of exclusive 

accessibility of the system by each user. This development 

fundamentally changed human-computer interactions, allowing 

people to directly and interactively utilize computers in ways that 

vastly broadened computing use cases and made computing accessible 

to many more people. The interactive nature of time-sharing comes 

from its implementation method—context switch at a high rate 

between several programs that belong to users. Using time-slicing 

(usually in milliseconds) this creates the illusion that programs are 

being executed in parallel (this does not mirror the underlying 

hardware, which is inherently sequential). This methodology is 

distinctly differentiated from multiprogramming through its primary 

intent as opposed to multiprogramming, which focuses on maximizing 

CPU utilization by swapping control between programs during I/O 

tasks, time sharing switches programs based on the time that has been 

allotted to them versus the waiting on I/O process the architecture of 

a time-sharing operating system boasts numerous enhancements over 

multiprogramming executing systems. It needs better CPU scheduling 

algorithms that balance responsiveness and fairness among many 

Figure 3: Multiprogramming Operating System 
[Source - https://www.geeksforgeeks.org] 
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Notes interactive users. In such cases, virtual memory systems become 

vital, enabling the aggregate memory requirements of all users in 

active status to be larger than available system memory. Terminal 

handling subsystems are responsible for interfacing with possibly 

hundreds of attached user terminals. The file systems of time-sharing 

environments also utilize concurrency controls to allow multiple users 

to access shared files at the same time without causing conflicts. The 

actual time-sharing works with slightly different processes. When a 

user starts a session, a process is created to represent that user's 

environment. The system grants short processor time slices to the 

corresponding process, as the user inputs commands. A process is 

allowed to run in the CPU until its time slice expires, and if it does not 

finish its work in the time slice, the process is forcibly suspended and 

the operating system saves its state and switches to the next one in the 

ready queue. This is how preemptive multitasking works to prevent a 

single user from hogging the system. Compared to its predecessors, 

the time-sharing delivered revolutionary benefits. It pioneered 

interactive computing, providing a means for users to enter commands 

and receive immediate feedback. This interactivity made possible new 

classes of applications, including real-time communication, 

interactive programming environments and early computer-aided 

design systems. In addition, time-sharing democratized access to 

computing resources by enabling multiple users to share expensive 

hardware simultaneously, making it feasible for many users who 

could not afford dedicated use. In addition, it allowed many users to 

work on related tasks in a cooperative manner, sharing both data and 

resources. Early time-sharing systems did face considerable 

challenges, however, despite these advantages. Context switches do 

incur overhead, so if they become too frequent, they could impact 

overall system performance and should be avoided at large numbers 

of active users. These systems needed many megabytes of memory 

and megahertz worth of processing power to even approach 

acceptable response times compared to their counterparts. Moreover, 

the prominence of security concerns added another layer, as the 

system needed to defend users from unauthorized access to each 

other's data and processes. Some of the pioneering time-sharing 

systems include the Compatible Time-Sharing System (CTSS) at 

MIT, Dartmouth Time Sharing System (DTSS), which introduced the 
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Information and Computing Service), which served as the model for 

many future operating system designs, especially Unix. In addition to 

its broad applicability to modern computing, these systems 

introduced basic ideas such as interactive user interfaces, preemptive 

multitasking, and user-oriented computing environments. The concept 

of time-sharing was a profound leap forward in making computers 

accessible to a wider audience and more useful, paving the way for 

principles that still undergird modern operating systems and their 

interaction with users. 

 

 

Comparative Analysis: Evolution and Trade-offs 

This evolution from batch processing to multiprogramming, and then 

to time-sharing systems, represents a fundamental shift in computing 

philosophy and capability, as each technique built on its predecessors 

to overcome their limitations while adding new capabilities and 

challenges. Plotting out the evolution of operating system design 

reveals how balancing competing objectives such as hardware 

utilization versus system throughput versus response time versus user 

experience have continued to drive optimization. One dimension to 

compare these operating system paradigms is resource utilization. 

Batch processing systems were designed to maximize resource 

utilization on expensive computing hardware by minimizing idle time 

between jobs, but at the expense of interactive capabilities. 

Multiprogramming systems took this one step further by overlapping 

Figure 4: Time-Sharing Operating System 
 

[Source - https://www.geeksforgeeks.org/] 
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Notes I/O operations with CPU activity, thereby minimizing idle time for 

the processor. While time-sharing systems managed to use their 

resources fairly well on average, it did require some sacrifice of the 

raw efficiency of the hardware in favor of interactive capabilities, 

accepting the overhead of switching contexts often to remain 

responsive. Another important difference between these operating 

system types is their treatment of users. Batch processing systems 

created a great separation between users and the computing 

environment, with operators acting as intermediaries and users 

typically getting results hours or days after their submission. 

Multiprogramming may have alleviated this separation to an extent 

but still required limited direct intervention. Before the arrival of 

time-sharing systems, this relationship was what I would call sort of a 

batch processing thing, where there wasn't a lot of interaction on 

demand because there were two degrees of separation between the 

human and the resources available. These paradigms also differed 

considerably in their performance metrics. Batch systems optimized 

for throughput the number of jobs completed per unit time and of 

necessity, low overhead processing of batch jobs, preferring high-

volume processing over minimizing per-job completion time. 

Multiprogramming had already improved throughput but added a 

new metric, device utilization. The emphasis of time-sharing systems 

moved sharply toward response time the elapsed time from the user 

request until the system response even when this sometimes had a 

negative effect on overall throughput. These changing priorities are 

reflected in the evolution of scheduling algorithms. Batch systems 

mostly used either basic first-come-first-served or simple priority 

types. This led to scheduling techniques such as shortest-job-first, 

priority-based preemptive scheduling, and so forth in 

multiprogramming in order to maximize throughput and CPU 

utilization. Time-sharing systems implemented round robin 

scheduling with preemption and complex priority aging mechanisms. 

Therefore memory management techniques naturally evolved among 

these paradigms. Batch systems usually handled a single program at a 

time with primitive memory management. Multiprogramming 

required memory protection facilities and introduced partitioned 

allocation strategies. Time-sharing systems introduced virtual memory 

techniques that allowed programs to run as if they had access to more 
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Notes memory than (actually) existed, and facilitated new strategies to 

allocate memory in a more flexible way. This evolution persists with 

modern operating system designs. Modern systems are designed 

according to aspects of all three paradigms: batch processing (for 

background tasks and processing of high-volume data) and 

multiprogramming (to increase resource use efficiency) and time 

sharing (for interactive users). Familiarity with these historical 

paradigms exposes the origins of how contemporary operating 

systems balance competing goals and make explicit tradeoffs 

necessary to enable a wide range of computing applications. And as 

batch went to multiprogramming to time-sharing, one didn't the other, 

but expanded capabilities that enabled the operating system to handle 

an increasingly wide variety of computing needs onto increasingly 

complex hardware environments. 

Modern Implementations and Legacies 

Modern operating systems are characterized by some combination of 

batch, multiprogramming and time sharing, and many aspects of 

these historical models have adapted and carry through to their 

modern counterparts. Rather than discarding such approaches to 

innovate these paradigms, modern systems seamlessly incorporate 

these in a single unifying architecture capable of addressing a broad 

variety of computing demands, from high-throughput processing for 

background jobs all the way to highly interactive applications for end-

users. Aspects of modern operating systems are still reminiscent of 

batch processing. It's the background processing capabilities, which 

let resource-hungry work happen in the background at the system 

level, usually when the system is idle. In larger environments, job 

scheduling components orchestrate the execution of batch 

administrative work, data processing jobs, and systems maintenance 

functions. Print spooling systems gather document printing requests 

and process them in the order in which they were received or as 

resources allow, without user intervention. These batch-oriented 

capabilities are still critical for operational efficiency in enterprise 

computing environments, illustrating how ideas presented in early 

batch processing systems have proved very useful and in-play even 

today. Multiprogramming principles are pervasive throughout the 

design of almost every modern operating system. Modern process 

management subsystems build on this foundation of 
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concurrent processes, sophisticated scheduling algorithms were 

introduced that allow balancing of throughput, fairness, and 

responsiveness. Hardware virtualization techniques allow memory 

management systems to contain such advanced protection 

mechanisms which lets multiple processes run in parallel without one 

process's data being affected by the other. I/O subsystems manage 

shared devices by multiple processes, using techniques like buffering, 

caching, and asynchronous I/O to balance throughput against wait 

time. These functionalities are a natural extension of the fundamental 

ideas developed in early multiprogramming systems but are also 

designed to scale parallelism up to the broader parallelism required in 

contemporary computing environments. Modern computing is a 

highly interactive affair and so time-sharing principles have evolved 

to support them. The use of dynamic sections and immediate 

usability, for example, allows modern user interfaces to give a sense 

of almost dedicated responsiveness due to always having blocks of 

resources seemingly available regardless of underlying contexts. 

Preemptive multitasking allows interactive applications to remain 

usable even under resource strain from background actions. The 

advanced scheduling paradigms incorporate ideas such as multilevel 

feedback queues that shall dynamically change priorities in response 

to process behavior and tend to favor interactive processes while 

ensuring progress in compute-intensive background processes. These 

features also represent the direct descendants of early time-sharing 

systems, mapped into the context of personal computing, and 

extended to nurture a wide set of interaction models, across devices 

and form factors. In the present day, many operating system types 

illustrate the evolution and convergence of these paradigms. General-

purpose operating systems (OSes) such as Windows, macOS, and 

desktop Linux distributions provide both interactive components and 

significant background processing by supporting both end-user 

applications (e.g., browsers, editors) and system services (e.g., 

drivers). Deterministic response times are extended to time-critical 

applications through the use of real-time operating systems, in which 

many of the scheduling concepts from the three paradigms are 

extended, and they continue to be used in industrial control, aviation, 

and medical devices. Concepts such as these are further expanded in 
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computers and control processes that may exist on multiple physical 

machines, providing a single image for users and applications. Cloud 

operating systems take these ideas a step further, managing resources 

across entire data centers and dynamically allocating computing 

capacity to serve variable workloads while ensuring tenants can’t 

interfere with one another. Batch processing was the earliest method 

of running programs and subsequently evolved into 

multiprogramming and more recently, time-sharing, providing a 

foundation for emerging technologies and future trends in operating 

systems development. In multiprogramming systems, the concepts of 

process isolation were first introduced, from which containerization 

and micro service architectures extend. Server less computing 

platforms combine elements of all three paradigms, delivering 

responsiveness in an interactive style but managing background 

processing over shared infrastructure with efficiency. It also helps 

improve the responsiveness of edge computing systems, which 

leverage time-sharing principles to partition computing resources 

closer to users, subject to resource limitations. Though quantum 

computing environments will need to implement aspects of these 

classical paradigms likely augmented with new mechanisms to handle 

the inherent properties of quantum processing. The evolution of 

operating system paradigms over the years has laid the groundwork 

for the sophisticated systems we enjoy today, and offers insight into 

the trends that will define the future of computing, as software must 

contend with an increasingly complex interplay between technology 

and human interaction to deliver seamless user experiences. 

Conclusion and Future Directions 

From the historical perspective of operating systems, the evolution of 

computing systems from batch-processing to multiprogramming to 

time-sharing gives us a broad sense of where computing priorities 

were focused, from hardware maximization to CPU utilization 

efficiency to interactive-responsiveness. This evolutionary path 

reflects not only progress in technology, but also changes in views 

regarding the purpose of computing and how computing resources 

should be made available. This next paradigm was born out of the 

limitations of its predecessors, providing innovative solutions that 

extended the power of computation at the expense of other priorities. 
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abstraction and coordination of resources — the core operating system 

functions. The advent of batch processing brought about the notion of 

program automation and job management, positioning the operating 

system as an intermediary or mediator between users and hardware. 

Multiprogramming extended this mediating role to manage multiple 

overlapping activities, introducing features of process management 

and protection that are still core to modern computing. Then came 

time-sharing that built even further on this foundation; computers 

engaged users directly and human-computer interaction established 

patterns (which survive today) in how we interact with a computer. 

As this evolution surfaced, principles stood out that continue to be 

surprisingly relevant and well-suited to the future. Operating systems 

became more composed of and layered upon these initial building 

blocks and abstractions, which have yet to be challenged by 

fundamentally better alternatives (excepting certain resource-

constrained or bare-metal use cases). These fundamental abstractions 

have not only persisted since its inception, but have continued to 

remain relevant even as computing hardware evolved from 

mainframes to personal computers to distributed systems, proving to 

be both conceptually powerful and flexible. One can look into the 

future where operating system design attempts to solve new problems 

while following the principles laid in the past. The increasing need 

for security and privacy protection is a result of widespread awareness 

of the vulnerability of computing systems and the critical nature of the 

data that they process. The explosive growth of networked and 

distributed computing environments caused the focus of the operating 

system be extended from individual machines, to communication, 

coordination, and resource sharing among complex networks. As new 

computational paradigms such as quantum computing, neuromorphic 

systems and ambient computing emerge, they will introduce new 

operating system requirements while still leveraging the core 

principles created by the historical evolution of classical systems. 

Operating systems are evolving as a process and not a product. As 

technology capabilities grow and user needs change, operating 

systems have to evolve alongside them, walking a tightrope between 

efficiency, security, usability and other competing priorities. The need 

to evolved from batch processing to multiprogramming to time-
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evolving need gained is more appreciation of the existing structure, 

which always has core functionalities then addressed under such 

needs. That historical view provides useful lessons for making sense 

of existing systems and predicting future ones. Exploring how 

operating systems have adapted to competing priorities and 

responded to emerging needs is revealing of perennial principles 

likely to inform the design of operating systems across future 

technology transitions. The evolution from batch processing to 

multiprogramming to time-sharing is not solely a matter of historical 

interest but rather, is living history whose effects continue in the form 

of computing environments, and by extension, modern society’s 

interaction with information technology. 

1.5 Operating-System Services 

An Operating System (OS) is vital software that sits between the 

hardware of a computer and a user, enabling the user to effectively 

run programs in a user-friendly environment. It is a software that 

manages the computer's hardware resources, including the processors, 

memory, storage devices, and input/output devices, and provides 

them to all users and tasks. It has to reconcile the often conflicting 

objectives of user convenience and efficient utilization of the 

computer system’s resources. Over the years, operating systems have 

evolved and adapted to new hardware technologies, materials and 

processing environments, giving birth to specialized operating system 

designs to meet the diverse needs of different computing scenarios. 

Operating systems have grown increasingly complex in order to be 

expanded functionality-wise, security-wise, and providing a support 

framework for cutting-edge applications, ranging from the first batch 

systems that processed jobs in a serial way without user-extent to the 

multi-user, multitasking operating systems of today. Operating 

systems also have to provide a user interface through which people 

interact with the computer, and a set of services that programs can 

utilize. These services are the more technical, lower-level functions 

that most users never directly use that are necessary for the system 

and the programs that run on it to operate correctly. Teaching some 

of the different types of operating systems and their respective 

services is a staple in the computer science curriculum as it illustrates 

the interactions between software and hardware and provides insight 
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important for those who will design or maintain computer systems, 

develop applications or make decisions about computing 

infrastructure in an organizational context. 

Types of Operating Systems 

A range of operating system has evolved over time to cater to specific 

computing requirements and environments. The first historical type of 

operating system is a batch operating system, which takes jobs that 

are similar to one another and minimizes user interaction in order to 

keep the processor as busy as possible and minimize idle time 

between jobs; the modern equivalent and still very relevant to any 

environment where repetitive processing is needed in volume can be 

found in batch systems of early mainframe systems (e.g. OS/360 from 

IBM) that keep jobs running through job queues in environments like 

payroll systems or an environment where something like a scientific 

batch computation is needed. However, Multi-user operating systems 

are based upon the idea of time-sharing systems where multiple 

processes from multiple users can be run on a single computer more 

or less simultaneously as the processor can switch among user 

programs extremely fast thereby giving the impression that each user 

has an exclusive access to the system, it was first implemented in 

CTSS (Compatible Time Sharing System) in 1960s, streamlining 

multi-user access in the computer system, this success led to the 

development of multics system. For single-user operating systems, the 

complexity lies in creating user-friendly interfaces and maximizing 

responsiveness without compromising too much on performance, 

examples include Microsoft Windows, macOS, and many Linux 

distros, which cater to individual users (but might not be as optimized 

as possible for resource utilization). Multi-processor operating system 

types handle systems with more than one standalone processors or 

with multi-core processors by utilizing higher algorithms to execute 

multiple processes over the processing units, while sustaining the 

system order and stability, which becomes much tougher with every 

additional processor because it needs to synchronize and allocate 

simultaneously different resources. RTOS (real time operating 

systems) provide guarantee that something will happen within a 

specific period of time; timing is critical in some applications like 

industrial control systems, medical devices or avionics; RTOS focuses 
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performance metrics with examples such as VxWorks, QNX, or 

RTLinux. Distributed operating systems, e.g., Amoeba, Mach, and 

recent cloud operating environments manage resources spread over 

several physically separate computers to create the illusion of single, 

unified system, no matter the complexity of anthropogenic cally 

relevant inter-computer (networks of computers) valid operations. 

Embedded operating systems are tailored for dedicated systems with 

limited resources, like smart appliances, automotive networks, and 

Internet of Things (IoT) devices; these systems are optimized for 

resource-constrained environments and emphasize simplicity and 

reliability over complex feature sets, with examples like embedded 

Linux distributions, ThreadX, and FreeRTOS. Network operating 

systems. Network operating systems (NOS) are primarily concerned 

with managing network resources and providing connectivity services 

such as file sharing, printer sharing, user authentication, and network 

traffic management; e.g., early Novell NetWare, Microsoft Windows 

Server, and portions of various Unix/Linux distributions configured as 

network servers. 

Core Operating System Services 

OS Core Services Overview Every operating system consists of a 

core services layer. Process management is central to multitasking 

environments, where the operating system needs to create, schedule, 

synchronize, communicate between and terminate processes while 

maintaining a balanced allocation of resources and system stability; 

this process juggle involves a harmonius process of scheduling 

algorithms that ascertain which process runs when, by priority, its 

execution time, requirements for resources, etc. Memory management 

services allocate and deallocate portions of memory as needed by 

processes and implement mechanisms such as paging and 

segmentation to provide virtual memory which gives the illusion to 

the user that they have more space of available memory than the 

physical memory present in the system; now to further ensure that 

processes read only from their own memory, memory protection 

mechanisms are in place that prevents processes from accessing other 

processes' memory or the memory of the kernel. Specifically, file 

system management introduces an important layer of abstraction 

whereby a user interacts with files and directories, instead of with the 
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drive, solid-state drive, or network storage device) it is responsible for 

managing entities, maintaining the file metadata required and 

enforcing access control and sharing across users and processes. 

Device drivers allow applications to interact with different types of 

hardware components by providing a consistent interface, which 

reduces the need for applications and the operating system to know 

the intricate specifics of each device; this abstraction helps operating 

systems support a wide range of devices, while also shielding 

software developers from needing to manage each devices unique 

features. Input/output (I/O) management is the process of handling the 

transfer of data between the system memory and peripheral devices, 

through the use of buffering, caching and spooling mechanisms to 

maximize the performance of the system when the I/O is performed, 

reconciling the speed discrepancy between the CPU and slower 

external devices; the efficiency of I/O significantly affects overall 

system performance, especially in applications that rely heavily on 

data. They secure the system, the applications, and the data from 

unauthorized access or modification by means of verifying user 

identity, with authorization mechanisms that decide what 

authenticated users can do, and audit logging that records security-

relevant events for later examination; in addition to this modern 

operating systems incorporates several other isolation mechanisms, 

such as process sandboxing, to mitigate potential security breaches. 

Error detection and handling mechanisms detect hardware and 

software faults and trigger recovery procedures if possible or 

terminate the faulty component so it cannot bring down the whole 

system (which also applies to exceptional conditions such as division 

by zero or invalid memory access that would otherwise crash an 

application or system). 

User Interface and Interaction Services 

Interface Operating systems offer many interfaces from the command 

line to complex GUI. CLIs refer to text-based interaction using shells 

like Bash in Unix/Linux environments, Power Shell in Windows or 

Zsh in macOS by which users enter predefined commands that the OS 

knows how to interpret and execute; typically not as user-friendly for 

novices as graphical interfaces, CLIs give you exactness, script 

ability, and often speed for seasoned users, thus especially useful for 
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a framework of visual components such as windows, icons, menus, 

and pointers, permitting intuitive interaction with pointing devices 

while abstracting away underlying technical complexities and making 

computers more accessible to non-technical users; notable GUI 

environments include Microsoft Windows Desktop Environment, 

Apple's Aqua interface in macOS, and diverse Linux desktop 

environments such as GNOME, and KDE. Modern operating systems 

have incorporated voice user interfaces (VUIs) and natural language 

processing capabilities, enabling users to provide spoken commands 

and queries by means of assistants like Microsoft's Cortana, Apple's 

Siri, or Google Assistant in Android; there are advantages to this 

hands-free operation in certain scenarios, but these interfaces 

continue to be refined with respect to their accuracy and capabilities. 

Features that make sure operating systems remain usable by people 

with a variety of disabilities — screen readers for people with no 

sight, keyboard-only access for those with motion limitations, closed 

captioning for people who are hard of hearing, visual modes that help 

people with low or high contrast sensitivity rely on accessibility 

services, whether that be Microsoft's Narrator, Apple's Voiceover, or 

the Orca screen reader for Linux; accessibility services implement 

frameworks on top of which applications can build to ensure a high 

level of usability for their software. These include help systems and 

documentation, which provide contextual assistance, tutorials, and 

references to help users understand system functionality and 

troubleshoot problems; these resources have evolved from 

rudimentary manual pages to interactive, searchable knowledge bases 

integrated directly into the operating system. Notification services let 

users know about events in the system, application updates, new 

communications, or situations that might need attention; these 

systems have become progressively more elaborate, with fine-grained 

user control over the notifications that are displayed, and the means 

by which they're delivered to limit disruption while filtering in 

important information that the user needs. Configuration and 

customization services let users change how systems work, how they 

look, and which applications are default; these systems may include 

control panels, settings applications, and profile management, which 
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on shared systems. 

Resource Management and System Performance 

Operating system is tested on a very large and hefty The CPU 

scheduling algorithms decide which process receives CPU service and 

how long it does, consequently applying complex policies balancing 

delivery of throughput, response time, fairness, and prioritizing these 

requirements; and include round-robin access to each process at 

everything fixed time quantum, priority-based scheduling where 

higher-priority processes are favored, and various hybrid methods 

when workloads are known in advance. Virtual memory and memory 

allocation virtually expands limited physical memory by effectively 

treating portions of disk space as an external cache area for running 

processes and applying page replacement algorithms like Least 

Recently Used (LRU) or Clock to systematically decide which 

memory pages to trade out of RAM when the physical-memory is 

over-allocated; efficient memory management needs to facilitate 

keeping frequently accessible data in faster physical memory while 

keeping costly disk operations as low as possible. Storage 

management services manage the allocation and location of disk 

space, building file system structures (for example, NTFS on 

Windows, ext4 on Linux, APFS on macOS) to optimally organize 

data for storage and retrieval, and may offer advanced data protection 

features such as journaling to help prevent data corruption in the event 

of system crashes, as well as volume management to allow multiple 

physical devices to be combined into a single logical storage unit, and 

transparent compression or deduplication to optimize and maximize 

available space. In more detail, energy management services create a 

profile of components in a system to monitor and control their power 

consumption by dynamically scaling back processor speed, for 

example, dimming displays, suspending inactive devices, and 

employing advanced sleep states; energy management services 

maintain a balance between performance requirements and battery life 

issues, frequently tuning themselves to the idiosyncrasies of active 

workloads as well as available energy. Load balancing, state and 

memory monitors are tracking the actual utilization of CPU cores, 

memory and swap utilization, disk I/O and network resource usage, 

redistributing workloads to prevent bottlenecks as well as visibility to 
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command under Linux or Activity monitor on Macs. QoS 

mechanisms are implemented to ensure that certain applications or 

services are prioritized, guaranteeing that important functions receive 

the necessary resources even when the system is heavily loaded; for 

instance, a video conferencing application could be assured of 

sufficient bandwidth and processing priority, avoiding disrupted 

communication even when other heavy applications may be running 

on the system. Caching services keep and serve frequently accessed 

data from their faster memory layers, greatly improving performance 

by minimizing fetches from slower storage devices, with sophisticated 

tracking that discriminates not only between processor caches and 

disk buffer caches, but can also implement sophisticated algorithms 

that predict what will be needed next based on access patterns and 

program state. 

Networking and Communication Services 

Like (or worse than) host rewriting fun, it's well defined by modern 

Operating systems with a stack of services up to local networks and 

the world. At the higher level, network protocol support provides the 

necessary foundation for communication standards such as TCP and 

IP, ensuring that data transmission across different networks occurs 

uniformly, irrespective of the underlying hardware differences; most 

operating systems contain a protocol stack responsible for 

encapsulating data, directing it toward the appropriate destination, 

and ensuring reliable delivery despite issues such as network failure 

or congestion. Network configuration and management services are 

responsible for other networking tasks such as assigning an IP 

address (either statically or through DHCP), subnet mask 

configuration, gateway settings, and DNS server settings; they may 

also include diagnostic tools responsible for finding and fix 

connectivity issues through programs like ping, traceroute, or network 

configuration panels. Remote access services enable users to log into 

a system from far away and run commands or access files supposedly 

as though they were in person; they include terminal services (such as 

SSH in Unix/Linux systems), remote desktop protocols (such as 

Microsoft’s RDP or VNC in cross-platform environments), and 

Enable secure connections between the user and the system across the 

public infrastructure, called the virtual private network (VPN) 
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files stored on remote computers available as though they were on the 

user's local machine, typically supporting devices running the 

SMB/CIFS and NFS protocols in Windows and Unix/Linux 

environments, respectively, or AFP, previously, in Apple 

environments, such services handle the complexities of performing 

file operations on remote storage, caching, and managing consistency 

with regard to shared files and multiple users. Network security 

services safeguard systems against unauthorized access and malicious 

activities by introducing the likes of firewalls to filter incoming and 

outgoing network traffic according to a system of predefined rules, 

intrusion detection systems to monitor for suspicious patterns, 

encryption services to maintain the confidentiality of data during 

transit, and other mechanisms; these defenses have evolved in 

sophistication as network threats have grown more complex. 

Directory Services allow you to authenticate users in a centralized 

location and also allow users to search for resources; these 

authentication systems include items such as Microsoft Active 

Directory, Open DAP, and Apple Open Directory, which maintain 

large databases of user accounts, group memberships, and callable 

resources on the network. Internet and web services integrate browser 

and related applications and tools into the operating system, 

providing API for applications to access internet resources; most new 

operating systems ship with libraries to common internet protocols 

like HTTP, FTP, and email to facilitate application development and 

promote consistency of network behavior. 

Advanced and Specialized Operating System Services 

Beyond essential functionality, modern OS provide advanced services 

that accommodate specialized requirements and emerging 

technologies. Hypervisors (such as those used in Microsoft's Hyper-V, 

VMware, or KVM on Linux) allow multiple operating systems to run 

at the same time on a single piece of hardware by creating isolated 

virtual machines with their own allocated resources—leading to 

server consolidation, testing environments and improved system 

utilization. Container support, as evidenced by Docker support in 

many server OSs, provides a lightweight application isolation 

approach without the performance overhead of full virtualization; 

alongside, container services manage namespace isolation, resource 
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yielding deployment consistency between development and 

production setups. Cloud integration is the integration of local 

operating systems with remote cloud resources, which includes 

synchronizing files across devices, offering backup services, and even 

hybrid computing since processing can occur between local 

environments and the cloud; examples include Microsoft's Azure 

integration with Windows, Apple's iCloud services within macOS and 

iOS, and multiple forms of cloud connectivity within Linux 

distributions. Modern operating systems increasingly include artificial 

intelligence and machine learning services, which provide application 

programming interfaces and frameworks that applications can take 

advantage of for speech recognition, analysis of images, natural 

language processing, and predictive functionality; these services often 

include a combination of on-device processing for privacy and 

responsiveness and reliance on the cloud for more compute-intensive 

tasks. These multimedia services are responsible for handling audio 

and video processing, including hardware acceleration, supporting 

codecs, and streaming capabilities that enable applications to provide 

rich media experiences without concerns about low-level details 

(Windows uses DirectX, macOS has Core Audio and Core Video, and 

various frameworks are available in Linux distributions). Database 

and information management services provide structured data storage 

and retrieval capabilities, either via embedded databases (e.g. SQLite) 

or standardized interfaces to external database systems; some 

contemporary operating systems include indexing services that scan 

catalog file contents for rapid queries, facilitating user workflow by 

increasing user productivity when finding data. Software update and 

maintenance services automatically check, download and install 

updates to the operating system and applications, balancing security 

vulnerabilities patches and new features with user control by 

configuring update policies to suit organizations or users; examples of 

these services are Yum and APT. Services are there to help use 

different ecosystems, e.g., WSL that runs Linux code on Windows, 

compatibility layer like Wine to run Windows programs on Linux, or 

software solutions integrated into OS (virtualization software) that 

allow the same or another OS to run in the main one. 
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Operating systems of today are in an ever-evolving phase, aren't 

they? Multi-core processors and specialized hardware accelerators 

such as GPUs, TPUs, and custom chips are becoming widespread; this 

leads to a new generation of operating systems that can effectively 

allocate resources and schedule jobs to both homogeneous and 

heterogeneous workload, offering streamlined, cohesive interfaces to 

applications and users. Such profound growth of Internet of Things 

(IoT) devices introduces specific challenges for operating system 

(OS) design, particularly when you consider that these constrained 

environments must leverage minimal resources, but still meet 

unprecedented scale with regards security, connectivity, and 

manageability, as we're witnessing the arrival of specific IoT OSs 

alongside the adaptation of existing platforms to operate at some of 

these limitations. Unlike the traditional centralized cloud model, edge 

computing necessitates operating systems able to function well with 

sporadic connectivity, variable resource availability, and strict latency 

constraints; the distributed nature of the edge model challenges 

operating system core assumptions about how resources are available 

to applications and how they communicate. Security and privacy still 

propel operating system really of their features, notable adoption of 

hardware-backed security features, and strong encryption of data (the 

system and application information), containerization for application 

isolation and a fine-grained permission model for sensitive user 

information and this will only get better in the future provides with 

more complex threats. The lines separating diverse computing 

environments desktop, mobile, cloud, embedded—are rapidly 

disappearing, with operating systems moving towards more common 

systems that deliver consistent experiences and application mobility 

across multiple device clases; notably, Windows running on desktops, 

tablets, and servers; Linux variants found everywhere from embedded 

devices to supercomputers. Autonomous computing, 

1.6 System Calls 

Operating systems act as the crucial link between hardware 

components that execute instructions and the software programs that 

users interact with on a regular basis. One of the greatest feats in 

computer science is the design of operating systems that manage the 

resources of computer hardware while providing standard interfaces 
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hardware. The concept that lies behind this interaction is that of 

system calls. They are the interface between user applications and the 

protected kernel space, giving controlled access to hardware resources 

while maintaining system stability and security. This Unit discusses 

the wide phonotypical spectrum of OS types and their mechanisms to 

implement system calls. To this end, we first present the basic 

principles regarding operating system architectural designs and the 

importance of system calls within this context, followed by a survey 

of operating system paradigms (i.e., monolithic, microkernel, hybrid 

kernel, exokernel and virtualisation). We will explore how the design 

and implementation of system calls affects important operating 

system properties including performance overhead, security 

boundaries, extensibility, and hardware abstraction. This should give 

students an understanding of subtle differences in system call 

mechanisms among operating system architectures and highlight key 

tradeoffs and decisions found in system software in general. You learn 

how computers operate at a systems level, context that is critical for 

writing, optimizing, and securing software on various computing 

platforms. 

 

Figure 5: : System Call 
[Source - https://www.scaler.com/] 
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Operating systems is the most important software in any computing 

environment and is the fundamental software layer on top of which all 

other software runs. To appreciate the importance of syscalls, we'll 

first have a look at how modern operating systems are organized and 

what their responsibilities are. Operating systems do several important 

things: they manage and allocate the underlying hardware resources 

(such as the CPU, memory, or I/O devices); they isolate and protect 

separate processes from each other; they implement a file system and 

networking stacks; and they expose standard interfaces that let 

application developers write programs without a detailed 

understanding of the underlying hardware specifications. An 

operating system is divided into high level and low level components 

with respect to privileges. Application programs run with limited 

privilege and have restricted access to system resources in user mode, 

but have unrestricted access to memory and hardware devices in 

kernel mode. It is important to note that this separation is not only a 

software construct, as it is usually enforced by the hardware itself, for 

example, by hardware implemented protection rings implemented by 

the CPU. System calls are designed to be a controlled entry point to 

the underlying system kernel from the user level applications, 

allowing user applications to request services that require elevated 

privileges or access to protected resources. If we look at the history 

behind system calls, we can see they were born within early time-

sharing systems like MULTICS and early UNIX, where these systems 

needed to manage resource access among multiple users, requiring a 

more formal approach toward system services. System calls have been 

a consistent abstraction for decades The fundamental concept of 

system calls hasn’t changed much in decades of operating system 

designs, although the implementation details and specific interfaces 

have improved quite a bit. System calls usually require a context 

switch, which means the processor must switch from user mode to 

kernel mode to perform the requested privileged operation and then 

switch back to user mode. This switch is tightly managed and is 

considered a major milestone along the execution life of any 

application. Unlike regular library functions, system calls do not 

return at the entry to user mode and the actual implementation of 

these is often through a combination of interrupts (software interrupts/ 
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hardware architecture). For example, on contemporary x86-64 

machines, the SYSCALL instruction provides a fast mechanism upon 

an entry of user and kernel mode, while ARM implementations may 

use the SWI (Software Interrupt) instruction. Hardware mechanisms 

make sure the transitions go well, going to different layers do not 

permit access to unwanted memory protected. System Calls: The 

system calls can be broadly grouped into the following functional 

categories: process control (used to create and terminate processes), 

file management (used to read, write, and manipulate the file system), 

device management (used to interface with hardware peripheral 

devices), information maintenance (for data transfer between user 

and kernel space), and communications (used to communicate 

between processes and networking). Each operating system 

implements a different set of system calls, but there are many 

common operations that run on both systems. For instance, process 

generation on UNIX-like systems is performed with a sequence of 

fork() and exec(); on Windows, Create Process is used. Similarly, file 

operations like open(), read(), write() and close() have equivalents in 

most OSs, but the parameters and specifics may vary. The number of 

system calls varies widely by OS an embedded OS might implement 

only a handful of system calls, while a complex general-purpose 

operating system like Linux would have hundreds of specialized 

system call functions. The performance of any operating system 

depends on the design and the implementation of system calls, since 

each system call has an overhead due to context switch from user 

mode to kernel mode. To minimize this overhead, we use a number 

of optimization techniques; modern operating systems actually use 

system call batching to combine multiple operations into one system 

call, as well as fast paths for common ones. In order to understand 

how the design and implementation of each system call interface 

differs from those found in other types of operating systems, it is 

essential we explore this foundation. 

Monolithic Kernels and Their System Call Architecture 

Unlike the most optimized, derived Micro-kernel, monolithic kernels 

are the default architecture for historic Operating System design 

strategy. This architecture defines many mainstreams OSs like classic 

UNIXs, Linux and the old Windows. By avoiding the overhead that 
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the monolithic approach provides substantial performance benefits 

since various components can directly communicate with one another 

from within the kernel. The primary interface between user 

applications and kernel services is through system calls in a 

monolithic kernel. For a monolithic environment, when a user 

program makes a system call (which is the first step in any system 

call), a pretty simple chain of events happens. The first phase is for 

the application to fill CPU registers with the system call number and 

any required arguments, and then invoke a special instruction (such as 

SYSCALL on x86-64 processors) that makes the transition to kernel 

mode. Using the system call number, the kernel's system call handler 

finds the right function in a dispatch table, checks the arguments, and 

performs the requested operation with full kernel privileges. Results 

are then stored in registers or memory locations that may be accessed 

by the user program after completion, and control is returned to user 

mode. The execution path in this fashion leads to reasoned 

performance efficient patterns that are a hallmark of monolithic 

designs. Linux (the operating system) is a perfect example of the 

monolithic approach to system-call implementation but with many 

modern improvements to the kernel concept. If you get the same name 

as an application binary interface (ABI) or processor architecture (due 

to Linux), the Linux system call interface has grown: We maintain a 

wide range of entry points. For example, while legacy 32-bit 

applications would use the INT 0x80 instruction to perform system 

calls, contemporary 64-bit applications usually employ the more 

efficient SYSCALL instruction instead. Linux takes additional steps 

to improve system call performance with things like the vDSO 

(virtual dynamic shared object), which maps certain parts of the 

kernel memory directly into user space so some system calls can 

bypass the full context switch overhead. As an illustration, operations 

such as gettimeofday can be performed fully in user mode if the 

conditions are proper, leading to a reduction in latency by several 

orders of magnitude. In Linux, you have a system call table with a 

unique number for each system call. This table has grown 

significantly over the years, and Linux kernel version 5.10 has support 

for more than 400 unique system calls. New system calls come into 

the kernel as part of a carefully controlled process to minimize 
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are a key part of the kernel's guarantees about ABI stability. Looking 

at individual system calls shows us a little bit about this monolithic 

approach. Take the open system call in Linux which creates or opens 

a file. The open() system call is the widely known interface, but 

underneath, the kernel's implementation does so much more: it 

resolves the file path and permission, traverses the file system 

directory hierarchy, works with the correct file system driver, 

allocates the file descriptor and updates multiple internal data 

structure, all within the kernel's address space. This highly cohesive, 

single-context execution is a prime example of the monolithic 

philosophy behind tightly integrating various system services directly 

into the kernel. While it has performance advantages, the monolithic 

approach has some challenges. The single address space design; A 

bug in any part of the system say in a third-party device driver can 

crash the whole system or even take control of the entire system. 

Moreover, the monolithic structure can make it challenging to develop 

and test new kernel features due to the need to integrate changes into 

the monolithic codebase, potentially necessitating full system reboots 

during development. Policies get more complicated too since kernel is 

running with highest level privileges, and therefore presents a bigger 

attack surface. These restrictions have driven alternative approaches 

to kernel architecture, but the performance gains and practical benefits 

of monolithic kernels have ensured their continued dominance in 

nearly all computing platforms. Many of these concerns have been 

mitigated in modern monolithic kernels similar to Linux, which utilize 

a modular design where components can be dynamically loaded and 

unloaded, allowing for some of the flexibility of a microkernel while 

still retaining the performance benefits of the monolithic design. From 

monolithic kernel perspective, the implementations of various system 

calls are still evolving towards some fancy implementations which 

reduces the latency, enhance security and extensibility at high level, 

while retaining its kernel architecture for general purpose computing. 
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Microkernels: Minimalist Approach to System Calls 

Microkernels, in the clearest possible departure from monolithic 

design philosophy, put only the bare essentials in the privileged 

domain of the kernel, embodying the most minimalist approach 

possible to operating system architecture. This set of new ways of 

thinking about how an operating system works came out in the 1980s, 

and there were a few systems that became the first microkernel 

systems like Mach developed at Carnegie Mellon University. Under 

the microkernel philosophy, only those functions that are absolutely 

necessary to have kernel privileges usually address space 

management, thread scheduling, and simple inter-process 

communication (IPC) are kept within the kernel itself. And, for the 

most part, all conventional operating system services (file systems, 

device drivers, networking stacks, process management, etc) are 

implemented as user-space servers running with regular privileges. 

This architectural separation also fundamentally changes properties 

and implementations of system calls as compared to monolithic 

systems. Microkernel based operating systems ideally reduce the 

system call interface to less than around 20 core system calls as 

opposed to hundreds of system calls in general monolithic kernels. 

Instead of implementing diverse functionality this building component 

allows only for system calls that bridge the user application to the 

numerous separate server processes that facilitate the operating 

system services. Instead of passing all the arguments which causes a 

lot of redundancy, the microkernel will just expose system calls that 

Figure 6: Monolithic Operating System 
[Source - https://tutoraspire.com/] 
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Notes you can call from a process that communicates within the kernel the 

file operations to be run by this file system server process. When a 

program wants to read a file, for example, it constructs a message that 

describes the requested parameters and sends it via the microkernel's 

IPC mechanism to a file system server; that server processes the 

request and returns results to the application using the same IPC 

channel. That indirection makes system service execution paths 

radically different from monolithic systems. One such brilliant and 

successful project is MINIX, originally developed as an educational 

tool by Andrew S. Tanenbaum, and over the years, evolved to grow 

into a robust microkernel based operating system. The entire MINIX 3 

kernel comprises only the minimal core functionality: interrupt 

handling, process scheduling, and basic IPC. System services are 

implemented by independent processes with least-privilege assigned. 

And the Virtual File System (VFS) server, which sits atop the actual 

file system implementations, is responsible for coordinating file 

operations, delegating work to individual server processes for the file 

system implementations. Device drivers run as separate user-space 

processes and communicate with hardware over controlled interfaces 

offered by the kernel itself. This rigorous isolation results in an 

architecture where even essential elements, such as device drivers, 

are prevented from directly accessing memory beyond their 

designated boundaries, which greatly improves the system immunity. 

Another well-known example of commercially deployed microkernel 

architecture, particularly in embedded, automotive, and safety-critical 

environments, is the QNX Neutrino real-time operating system. QNX 

employs a message-based architecture with system calls primarily 

providing synchronous IPC between clients and servers. Using a very 

small microkernel (100KB or less) that handles memory protection, 

thread scheduling, and message passing, all other features of the 

system are implemented in user-space processes. Pros of the 

microkernel approach here on systems calls Second, it improves 

system reliability via fault isolation — a crashing device driver or file 

system server can never corrupt kernel memory; the system can detect 

and restart individual components without bringing the entire system 

down. Second, the architecture enhances security by limiting the 

privileged code base (the “trusted computing base” or TCB) and 

enforcing least privilege for system components. Third, microkernel’s 
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Notes enable extensibility, as new services can be added without any kernel 

code changes. Lastly, this architecture has the potential for lowering 

the cost of the formal verification of the kernel, as exemplified by 

seL4, a formally verified microkernel designed by NICTA (now a 

division of Data61) that offers mathematical proofs of its correctness. 

But the microkernel approach comes with performance challenges 

mostly concerning IPC overhead. Microkernel systems have 

historically taken a performance penalty versus monolithic designs, 

since even basic operations may involve context switching between 

user processes multiple times. Many of these issues were addressed 

by the implementation of modern microkernel’s using several 

optimization methods. As an example, L4 family microkernels sew 

up IPC paths very tight and efficient via direct process switching and 

messaging as registers for short messages. Until these optimizations, 

the performance gap between microkernel and monolithic systems 

was huge, but still, although it was reduced to the size of a knife, it 

was never eliminated. Mechanically, the system call implementation 

is different between microkernel and monolithic systems. Although 

the basic hardware primitives (like SYSCALL instructions or 

interrupts) are not much different, the work done in the kernel is 

often much simpler. Instead of executing complex operations directly, 

the microkernel typically checks the validity of the system call 

parameters, delivers the parameters to the corresponding user-space 

server via a message passing mechanisms and manages the responses. 

This separation leads to clean interfaces and minimizes the attack 

surface within the privileged kernel code. The microkernel approach 

to system calls is a philosophically different vision of operating 

system design – one focused on modularity, reliability, and security, 

rather than maximum performance. This leads us to the second point: 

Microkernels are not the dominant architecture among general-

purpose operating systems: Because microkernel architectures involve 

a higher level of indirection and typically introduce intercrosses 

communication (IPC) overhead, they have not displaced their 

monolithic counterparts for general-purpose workloads. Microkernel0 

systems are still evolving, with projects such as seL4 and Genode 

taking this one step further by proving the security / separation 

guarantees achieved through formal verification. 
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Hybrid Kernels and Pragmatic System Call Implementations 

Hybrid kernels are a practical solution born out of the theoretical 

elegance and practical difficulties of pure microkernel designs, 

incorporating elements from both monolithic and microkernel systems 

to provide a compromise between modularity and performance. This 

reflects an understanding that while the strong delineation of 

components provided by microkernel provides significant advantages 

for reliability and security, the performance penalties thereof 

especially for I/O-intensive operations make this a deal-breaker for 

many real-world workloads. Therefore hybrid kernels allow 

performance-critical subsystems to be implemented in kernel space 

while keeping the microkernel philosophy of modularity and 

separation for other components. This architectural trade-off has a 

strong impact on how system calls are designed, implemented and 

behave in those operating systems. Beginning with Windows NT, 

Microsoft Windows is probably the most commercially successful 

example of hybrid kernel architecture. The Windows NT kernel was 

first designed as a microkernel, separating the kernel-mode Executive 

services from user-mode subsystems. Though, to mitigate 

performance issues, the following components previously held in 

user space in a pure microkernel design (Window Manager, graphics 

drivers, portions of the file system) were placed in kernel space. To 

facilitate performance optimization, this pragmatic adaptation 

achieved a situation where the theoretical boundaries between kernel 

and user components were blurred. This Windows system call 

interface, referred to as "syscall" or "Nt" functions (e.g., NtCreateFile, 

Figure 7: Microkernel Operating System 
[Source - https://en.wikipedia.org] 
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Notes NtReadFile) is the basis for the Windows API. Note that applications 

normally do not call these native API functions directly, but instead 

call higher-level libraries like kernel32. dll, which offer the more 

familiar Win32 API functions (CreateFile, ReadFile, etc.). This 

abstraction allows Windows to implement multiple API personalities 

(Win32, POSIX, OS/2) on top of a single system call interface, and 

subsystem independence also means centralized access control and 

validation within the kernel. Now, in Windows, there is a mechanism 

called the System Service Descriptor Table (SSDT) through which 

the system calls are addressed in the Windows. When an application 

advances a system call, the processor switches to kernel mode with 

the specific hardware instruction (X86–64 uses SYSCALL and older 

X86 systems use INT 2E), and the kernel's system service dispatcher 

will use the syscall number to look up and invoke the corresponding 

handler function. This pattern is somewhat hybrid, as the dispatch 

mechanism is similar to that of a monolithic kernel, while the actual 

architecture provides some degree of separation between kernel 

objects. Another well-known example of a hybrid kernel architecture 

is Apple’s macOS (formerly OS X). The XNU (X is Not Unix) 

macOS kernel is a non-microkernel that combines the Mach 

microkernel, a core component of the NeXT STEP operating system, 

with parts from FreeBSD and Apple's proprietary I/O Kit framework. 

In this hybrid exercise, the Mach parachute delivers low level 

facilities like memory management, thread scheduling, and IPC, for 

its part, the BSD level implements the UNIX system call interface and 

\networking \stack. The I/O Kit, managed in the kernel, but operating 

with an object-oriented design, helps increase modularity of device 

drivers. An interesting case with hybrid design is the system call 

interface in macOS. Applications access system services through 

traditional UNIX system calls inherited from BSD, and implemented 

by XNU directly in the kernel. Many of the macOS-specific services 

use Mach messages instead of traditional system calls, thus 

promoting a microkernel-like interaction model for those services. 

This hybrid philosophy is in action for performance sensitive 

operations so they are implemented directly in the kernel but other 

services maintain a more separated message-passing architecture. For 

example, hybrid kernels implement system calls with various 

techniques to reduce the user-kernel barrier performance penalty. 
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Notes This can include batching together related operations into single 

system calls, user-space libraries that reduce system call frequency, 

or special fast paths for common operations. Both Windows and 

macOS, for example, provide mechanisms for speeding up certain 

graphics operations by allowing user applications to directly access 

frame buffer memory, with user-mode access being controlled by the 

kernel, as long as certain conditions are met, thus avoiding the need 

for kernel access with every draw operation. Sandboxing hybrid 

kernel system calls: Security minefield Hybrid kernels, while 

preserving the basic interface between user and kernel modes, may 

present more opportunities for exploitation than pure microkernel 

because of the greater architectural complexity and a larger codebase 

in the kernel itself. In response to these issues, contemporary hybrid 

kernels adopt several hardening mechanisms, including kernel 

memory ASLR (Address Space Layout Randomization), control flow 

integrity techniques, and rigorous parameter validation for system 

calls. For example, Windows 10 and later use Virtualization Based 

Security (VBS) features to drive this same theme by using hardware 

virtualization to further isolate critical kernel components from the 

rest of the system, achieving a more microkernel-like division for 

security-sensitive subsystems alongside the performance benefits of 

the hybrid architecture in normal operation. System calls in hybrid 

kernels have evolved as a result of this pragmatic approach to 

changing needs. Both Windows and macOS, for example, have added 

mechanisms to allow kernel extension (filter drivers, kernel 

extensions, or the entire open-source core kernel) which third-party 

software can utilize to view and telescope back into system call 

behavior without modifying the underlying core kernel. However, 

both have evolved over time toward kernel extensibility models that 

are more constrained than what either system started out with (Driver 

Kit in macOS and Windows Driver Framework), moving a lot of this 

functionality into user mode, suggesting a slow return toward a 

microkernel model for these particular things. Hybrid kernels in short 

capture an interplay between the theoretical ideal and the practical 

upper bound of performance based on considerations of security, 

compatibility, and architectural purity. 
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Notes Specialized Operating Systems and Unique System Call 

Paradigms 

Outside of the standard categories of monolithic, microkernel, and 

hybrid architectures are specialized operating systems that are 

tailored for niche computing environments and use cases. Such 

specialized systems often tailor their system call implementations in a 

way that bears little resemblance to traditional system calls, focusing 

instead on characteristics like real-time constraints, execution 

security, or limited resources. Exploring these other paradigms, in 

turn, illustrates the inherent wiggle room in the system call concept, 

and its ability to trade off different requirements. RT systems (real-

time systems) are one example of a specialized system with a unique 

implementation of the system call interface. In hard real-time systems 

where missing a deadline can mean failure or even disaster 

determinism and predictability are more important than average-case 

behavior. Real-time operating systems (RTOS) implementations such 

as VxWorks, FreeRTOS, and RTLinux modify the classic system call 

way to provide bounded rate execution and minimized interrupt 

latency. For example, many RTOS designs do disable interrupts in 

critical sections of system call processing, preventing lower-priority 

interrupts from preempting high-priority tasks. Also, RTOS system 

calls usually implement priority inheritance protocols to avoid priority 

inversion situations in which a high-priority task is blocked waiting 

for a resource from a low-priority one. RTOS environments, for 

example, usually provide a system call interface that includes 

dedicated APIs for fine-grained timing control; absolute and relative 

sleep functions; high-resolution timers; and predictable scheduling 

APIs. These specialized interfaces take into account the unique needs 

of real-time applications, where the timing of the response is just as 

important as the function of the response. Exokernels are a radically 

different way of thinking about operating system design, representing 

an extreme minimalism that exceeds even microkernel. Originally 

conceived by researchers at MIT in the mid-1990s, exokernels 

remove almost all abstraction from the kernel, exposing hardware 

resources to applications directly through a narrow interface of 

multiplexing primitives. Exokernel systems avoid using traditional 

system calls  such as read or write  and use low-level hardware access 

operations instead. Exokernels expose only physical resources like 
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Notes disk blocks, memory pages and network interfaces, instead of higher 

abstractions like files or processes, and their system calls are centered 

on safely multiplexing these resources. Applications (or their 

accompanying library operating systems (libOSes)) implement 

higher-level abstractions depending on what is needed in the 

application layer. For instance, rather than a traditional read system 

call which acts on abstract files, an exokernel might expose 

primitives to directly manipulate specific disk sectors, and the file 

abstraction is fully user-space. In such a model, domain applications 

gain the highest possible level of control and performance, because 

kernel abstractions are removed, and they can implement exactly 

those resource management policies that the applications need. 

Exokernel MIT implementation showed better performance for 

specific applications but with more competence code development. A 

more recent specialized approach, unikernels take us even further and 

destroy the classic distinction between operating system and 

application altogether. A unikernel system compiles the application 

together with only those parts of the operating system that it needs, 

into a single-address-space executable that runs directly on virtualized 

hardware. Unikernel implementations, like MirageOS (in OCaml), 

IncludeOS (C++) and Unik, often cut out traditional system calls 

altogether, substituting them with calls to functions in the OS libraries 

slotted right in with the actual application. Because the whole system 

operates on a single privilege level, this scheme leaves very little 

overhead for user-kernel transition. Although unikernels give up 

general-purpose functionality (like multi-tenancy), they do offer large 

benefits around security (lowering the attack surface), performance 

(removing mode transitions) and resource efficiency (images are 

measured in MB, not GB). The system call interface essentially 

becomes the API of the included OS libraries and the boundaries 

between application and OS code become fuzzy or get completely 

obliterated. For example, secure operating systems such as seL4, 

Genode, and KeyKOS utilize syscalls that have been explicitly 

designed to ensure strong security and isolation properties. In these 

systems, capabilities (unforgeable tokens used to denote access rights 

to resources) typically replace or augment conventional system call 

interfaces. In contrast to specifying resources by identifiers (like the 

numbers of file descriptors or process identifiers), system calls in 
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Notes capability-based systems operate on capability references that 

implicitly represent both the resource identity and the operations that 

it permits. This radically redefines the security model of system calls, 

as access rights are proved via possession of capabilities rather than 

via explicit permission checks in the system call implementation. 

Instead of opening the file by path and checking permissions against 

user credentials (as done in traditional UNIX systems), a capability 

system would have the application present a directory capability, and 

obtain a derived file capability through a controlled operation. 

Container-style OSes and library OSes are another flavor of system 

call implementation. Other systems, such as gVisor from Google, 

intercept system calls made by containerized applications and 

reimplement them in the Go programming language, providing a 

higher level of isolation and compatibility. gVisor intercepts these 

system calls through its potential PTRACE platform (using ptrace) or 

its KVM platform (acting as a KVM guest), essentially providing a 

backing implementation of every single system call and mediating 

access to the host kernel. By going with the existing concept of 

system calls to know how to approach the security, Flexi gate can turn 

a traditional process into a safer process. LibOSs, such as Graphene-

SGX, do the same, running applications inside Intel SGX enclaves 

and interposing on system calls to the host system that can be reached 

via a secure interface. A common approach adopted by many network 

operating systems (e.g. Cisco IOS, Arista EOS or Cumulus Linux) is 

to build up a specialized system call interface mostly covering 

network configuration and monitoring instead of general-purpose 

computing. Because of the proprietary nature of the hardware and the 

needs of network equipment in general, these systems tend to present 

proprietary APIs alongside more typical interfaces. In some cases 

these systems employ restricted or modified standard system call 

interfaces to block operations that would otherwise impact the 

networking functionality or security. Perhaps the biggest deviation 

from the standard system call story is for embedded operating systems 

that run on highly constrained devices. In very severely resource-

constrained environments like microcontrollers with kilobytes of 

RAM, traditional system call mechanisms may be outright too costly 

in terms of the amount of code they require and the execution 

overhead that they incur. In systems such as TinyOS and Contiki, 
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Notes traditional system calls are largely replaced by event-based 

programming models (e.g., with event queues) or direct function calls, 

both of which eliminate the mode transitions and context switches 

often seen with more conventional system calls. Sometimes the entire 

operating system might run at a single privilege level, and be 

protected using features of the programming language or just careful 

code review rather than through hardware means. Particularly for the 

operating systems that do not follow the traditional Unix architecture 

and their individual techniques to system calls, this underscores the 

intrinsic pliability of the system call idea and allows for adjustments 

to myriad needs. By exploring these other paradigms we can learn 

more about the tradeoffs embedded in system interface design and 

how a unique system call mechanism can be suited to particular 

operating environments and needs. 

Virtual Machines, Containers, and Layered System Call 

Implementations 

The rise of virtualization technologies has added new tiers to the 

system call model in terms of functionality and behavior, as system 

calls cross numerous barriers in multi-layer architectures. Neither is a 

trivial question, especially in our modern computing infrastructure 

where applications tend to run in evermore nested environments than 

sitting directly on the metal. To add further complexity, you must 

know how system calls work inside these layered sectors to 

comprehend the performance, security, and compatibility features of 

these systems when they undergo virtualization or containerization. In 

contrast, hardware virtualization uses hypervisors such as VMware 

ESXi, Microsoft Hyper-V, Xen, and KVM, which implement a series 

of resources in a virtualized type of virtual machine (VM), imitating a 

complete computer, including virtual CPUs, memory, and devices. 

From a system call perspective, this architecture introduces a massive 

complexity: system calls made by applications within the VM are first 

handled by the guest OS running inside the VM, not by the host 

system controlling the physical hardware. This kind of indirection 

establishes a multi-layer execution path which operations go through 

to eventually access physical resources. When an application running 

inside a VM makes a system call, the usual mechanisms (SYSCALL 

instruction, software interrupt, etc.) trap to the guest OS kernel. Lack 

of information from the host machine means the guest kernel 
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Notes processes the system call in a normal way, as if it were running on 

physical hardware. However, when the guest kernel tries to access 

hardware  i.e. if it wants to write to a disk or send network packets it 

interacts with virtual hardware devices that the hypervisor provides. 

These interactions most often lead to additional transitions from guest 

to hypervisor (or VM exits/hypercalls) and inject additional context 

switches on the execution path. As an example, here is a possible 

scenario for a simple write to a file from an application running in a 

VM: (1) the application performing a system call to the guest kernel; 

(2) the guest kernel creating an I/O request to its virtual disk; (3) a 

VM exit to the hypervisor when the guest tries to talk to its virtual 

disk; (4) the hypervisor translating this request to something dealing 

with the underlying storage hardware, which may involve making 

system calls to the host OS; and (5) completion of the physical I/O 

and walking back through all of those layers. This layering comes at 

the price of performance overhead, especially for I/O bound 

workloads. To overcome these limitations, modern day virtualization 

systems use several optimization techniques. Para-virtualization is a 

technique to modify the guest operating system so that it 

communicates with the hypervisor through special hyper calls and 

cannot directly access the virtualized hardware, thus aiming to 

decrease the overhead of trapping and emulating privileged 

instructions. Features like Intel VT-x and AMD-V (surprisingly, those 

don't always get detected properly) enable more optimized transitions 

between the guest and host contexts. Further, methods like direct 

device assignment (pass-through) enable VMs to communicate 

directly and use physical hardware for critical devices, bypassing 

some of the layering overhead. Instead of relying on this last 

deployment model, containers provide an alternative virtualization 

strategy by using OS-level mechanisms without using hardware 

emulation to make isolated environments. Container technologies, 

such as Docker, LXC, and Kubernetes pods, take advantage of kernel 

features like namespaces and control groups (cgroups) to build 

isolated process environments without needing the complexity of full 

hardware virtualization. Containers provide a very different model 

from hardware virtualization at the system call level. In containers, 

applications perform system calls directly to the host kernel, with no 

intervening guest operating system layer. On the other hand, these 
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Notes system calls are filtered, redirected, and translated between 

namespaces in various ways to change their behavior with respect to 

non-containerized programs. Container runtimes use system call 

filtering modes to limit the set of system calls available to any given 

containerized application (e.g., seccomp-bpf for Linux). This filter 

decreases the kernel attack surface visible to the potentially malicious 

app, so it is more secure. A containerized web server, for instance, 

could be allowed to perform certain network-related system calls and 

disallowed to perform others that modify kernel modules or access 

unauthorized file systems. Namespace virtualization changes the 

semantics of many system calls when inside containers. When a 

containerized application makes a system call that references global 

resources such as process IDs, network interfaces, or mount points the 

kernel resolves these references to the global resources in accordance 

with the mappings set for the namespace associated with the 

container. An example of this can be found when considering that the 

process inside the container would see itself as PID 1 (the init 

process), while in the global namespace of the host system effectively 

assigning the container process a different PID. Likewise, when the 

containerized process tries to reach the root file system, these 

operations get mapped to a container’s designated root directory 

through mount namespace mappings done by the kernel. These 

translations are invisible to the application but radically change the 

impact of system calls made by an application depending on how the 

container's namespaces are configured. Advanced container security 

mechanisms such as gVisor and Kata Containers provide extra layers 

of system call handling. gVisor is a user-space kernel that intercepts 

and reimpements the system calls from containerized apps while 

providing an isolation boundary beyond ordinary container isolation. 

Instead of sending container system calls directly to the host kernel, 

gVisor emulates them in its Sentry component, and fulfill them over 

the more limited interface to the host. Kata Containers follows a 

similar pattern, whereby containers are executed inside lightweight 

VMs, a hybrid of sorts where the system calls of the container are 

handled by a guest kernel inside a tailored virtualization VM. Server 

less computing and Function-as-a-Service (FaaS) platforms have 

added yet another layer of system call complexity. The code gets 

executed in highly controlled environments, sometimes with custom 
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Notes system call interception and a virtualization (e.g., AWS Lambda, 

Google Functions, Azure Functions) when developers deploy 

functions to the platforms listed above. Thus, these platforms 

basically employ a mixture of container technologies, special library 

interposition, and custom so-called runtime environments to deliver 

secure and isolated execution environments while still trying to ensure 

high efficiency for short-lived function invocations. These 

technologies stack on top of each other and can result in complex 

paths for the system calls a function running in a server less platform 

might be running in a container that runs in a VM, with system calls 

potentially traveling several layers of interception, filtering and 

translation before reaching physical resources. System call security 

has special significance for virtualized and containerized system. 

Every layer of virtualization generates attack surfaces for more 

security boundaries but also potential attack vectors at the borders 

between layers. Hypothetical example: Hypervisor vulnerabilities 

may allow guest operating systems to escape their VM boundaries, 

whereas container escape vulnerabilities are providing examples of 

how system call implementation bugs can be exploited to bypass 

namespace or capability restrictions. Current research efforts in this 

domain focus on concepts like hardware-enforced isolation, formal 

verification of security properties and least-privilege models with 

respect to system-call permissions. Understanding the complex 

interplay of system calls across virtualization boundaries is necessary 

for performance analysis and optimization in these layered 

environments. Tools like Linux's eBPF (extended Berkeley Packet 

Filter) tracing enable developers to discover which system calls 

dominate in a mixed environment and where the most important 

performance bottlenecks appear (as they often cross container and 

virtualization boundaries). Likewise, various hardware capabilities, 

such as Intel Performance Monitoring Units (PMUs), can allow the 

detailed measurement of the impact that virtualization has on the 

performance of system calls. Innovation in system call 

implementation and optimization is still ongoing, driven by the 

evolution of virtualization technologies. Emerging solutions like 

Firecracker (used by AWS Lambda), lightweight hypervisors that are 

tailored for container workloads, and unikernel-based isolation 

techniques are example of continued attempts at striking the right 
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Notes balance between the security advantages of enforced isolation and the 

performance needs of modern cloud applications. It is important to 

understand how system calls work across these layers of abstraction 

in order to design, deploy and debug your applications on modern 

virtualized infrastructure. 

The Future of System Calls: Innovations and Emerging 

Paradigms 

In light of a wide variety of hardware, security needs, and application 

trends, the operating system and system call interface has continued to 

evolve. These frontier technologies & research areas indicate a 

paradigm shift in how applications will interact with O/S, and the 

core idea of system calls, which has been quite steady for decades. 

The final section examines emerging technologies and theoretical 

concepts that may reshape system call design and implementation 

paradigms on diverse operating system architectures in the years to 

come. One important trend is a growing deployment of hardware 

extensions to improve system call security and performance. Modern 

processors include special features that enhance and protect 

privileged transitions. Intel CET (Control-flow Enforcement 

Technology) and ARM PAC (Pointer Authentication Code) prevent 

return-oriented programming (ROP) and jump-oriented programming 

(JOP) attacks that could abuse the system call interfaces. Likewise, 

AMD's Secure Encrypted Virtualization (SEV) and Intel's Trust 

Domain Extensions (TDX) add hardware-enforced divide between the 

virtual machines, resulting in the modification of how system calls 

work in virtualized environment and providing cryptographic isolation 

of guests memory. Such hardware innovations enable new methods of 

implementing system calls that do not compromise security for 

performance. An example of such an optimisation is the usage of 

user-interrupt by Intel — it reduces the number of context save and 

restore calls when going from user mode to kernel and the other way 

round. The increasing need for these types of systems is helping shape 

new approaches to system call design as part of efforts to create new 

confidential computing and trusted execution environment (TEE) 

initiatives. Intel SGX, ARM Trust Zone, and AMD SEV are 

environments that establish execution contexts in which even the 

operating system kernel is untrusted. Such models often use 

specialized "ocalls" (calls from enclave to outside) and "ecalls" (calls 
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Notes from outside to enclave) that might replace (or augment) traditional 

system calls, with cryptographic protection that guarantees that 

sensitive data is protected even if we have to utilize services from the 

untrusted operating system. Technologies like Asylo from Google, the 

Open Enclave SDK from Microsoft and the Enarx project are showing 

how these new system call paradigms could end up being transformed 

to accommodate confidential computing over a range of hardware 

technologies. The recent proliferation of programmable I/O devices, 

most notably smart NICs and computational storage devices, is 

forcing a rethinking of the syscall interface for I/O. Instead of 

funneling all of their I/O through the operating system kernel using 

traditional system calls, applications will increasingly communicate 

directly with smart peripherals through memory-mapped interfaces, 

RDMA (Remote Direct Memory Access), or specialized 

programming frameworks. SPDK (Storage Performance Development 

Kit) and DPDK (Data Plane Development Kit) are some of the 

technologies that allow existing high-performance applications to 

bypass system calls for the common I/O operations in favor of more 

direct hardware access, which will only become more common as 

devices are equipped with dual-purpose CPUs capable of executing 

those workloads onboard. So the programming languages 

environment and runtime systems are also shaping system call 

evolution. With runtimes like Was time, Wasmer, and WAMR (Web 

Assembly Micro Runtime), Web Assembly, originally defined to only 

run compiled code in the browser, is now growing into the server as 

well.  
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Notes 1.7 Operating-System Structure 

An operating system (OS) is software that acts as an intermediary 

between applications and the computer hardware, managing hardware 

resources and providing a user environment in which programs can be 

performed conveniently and efficiently. The operating system 

structure describes how the components of the operating system 

interact with each other and with the hardware underneath. Over the 

course of computing history, OS designs have changed from 

monolithic OSes, to multi‐layered and distributed OS architectures. 

The earliest operating systems date back to the mid-1950s as simple 

control programs for batch processing on mainframe computers, 

performing little more than sequencing through jobs and managing 

input/output. As computing technology progressed through the 

decades, operating systems expanded to support interactive time-

sharing, real-time processing, distributed computing, and the wide 

variety of personal and mobile computing environments we have 

today. The architecture of an operating system has a great impact on 

its performance attributes, fault tolerance, maintainability, and 

application to specific computing environments. Different structural 

approaches make different trade-offs between these attributes, but 

there is no single best design for every use case. In this Unit, we will 

analyze the main types of operating system structures we have, their 

strengths, weaknesses, and when to use the structure. We'll explore 

monolithic systems where the code base is tightly integrated, layered 

systems that organize functionality hierarchically, microkernel 

architectures with minimal privileged code, modular designs that 

minimizing loose coupling with component isolation. Per each 

architectural type, we will discuss the philosophy behind the design, 

implementation aspects, performance implications, and real world 

examples. We will also look at how new emerging technologies, such 

as virtualization, containerization, and cloud computing are shaping 

the range of available operating systems and their layout. The students 

will also know when and why certain features will become important 

along the history, various trade-offs made in order to achieve a 

workable system, and understand how Operating system organization 

is achieved in many systems. 
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Notes Monolithic Operating Systems: Comprehensive Integration      

The first and arguably simplest approach to operating system design, 

monolithic operating systems, refer to a set of operating system 

components that reside in a single location, with all system services 

running in kernel space with hardware access. Monolithic: The entire 

operating system, including the kernel, device drivers, file systems, 

memory management, process scheduling, and inter-process 

communication mechanisms, runs as a single program in a single 

address space in a privileged mode. This architecture was prevalent 

from the 1960s on, with systems like UNIX and its descendants, and 

is still reflected in contemporary systems like Linux, FreeBSD, and, at 

least in a part, Windows, although the latter has taken on aspects of 

other architectural ideas too. The primary benefit of the monolithic 

approach is performance, as components of the system can 

communicate by calling functions rather than having to pass messages 

or utilize other inter-process communication methods, which tend to 

be more expensive. All components operate in the same address 

space, and so data structures can be shared directly without the 

overhead of copying data between protected memory domains. In 

early computing environments, where hardware was scarce and 

expensive, monolithic systems dominated due to their performance. In 

a monolithic kernel, the functionality within the kernel itself is often 

organized as many logical layers, with the low-level hardware 

interfaces at the bottom and higher-level application interfaces at the 

top, but this layered implementation is not so much enforced by 

hardware protection mechanisms, but by software conventions. Early 

UNIX systems can be thought of this way, where the lowest layer was 

hardware management and the next layer up was memory 

management, process scheduling had its own, and file systems had 

theirs, and at the highest level was a syscall interface where each level 

was separate but depended on lower layers. Monolithic architectures, 

despite their performance advantages, pose considerable challenges 

for development, maintenance, and reliability of the system. Because 

the code base is unified, a bug in any component from a device driver 

to the virtual memory system can potentially crash the entire 

operating system since all code runs with full hardware privileges. 

With so much dependency between components, the system can be 

particularly vulnerable, and debugging can be a challenge, as bugs 
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Notes that originate in one subsystem can rear their ugly heads elsewhere in 

the system. In addition, the construction and development of 

monolithic systems need to be coordinated carefully between teams 

working on various components with one subsystem change can have 

domino effects all around kernel. The most common modern approach 

has been to maintain good performance whilst still implementing 

some of the benefits of modularity through loadable kernel modules, 

as the monolithic architecture evolves. This allows components like 

device drivers to be dynamically loaded and unloaded from the kernel 

at runtime, thereby increasing system flexibility and incremental 

updates without a complete boot. For instance, Linux implements a 

rich module system that allows it to support a tremendous number of 

hardware devices and specialized functionality while keeping its base 

kernel relatively small. Modernizing monolithic operating systems 

such as Linux learn and thus apply rich development and testing 

processes to address the intrinsic weaknesses of their design. 

Additionally, a variety of testing and debugging tools, like automated 

tests and code inspection frameworks, can catch bugs before they go 

live, combined with an extensive review process, help keep the 

system stable through such a massive, complex code base. To solve 

this, there are certain techniques that have been introduced, like kernel 

preemption and fine-grained locking to improve the responsiveness 

and scalability on multiprocessor systems, which used to be the 

weaknesses of the monolithic design. Although monlithic 

architectures are more problematic than new comers to computing and 

newer architectural paradigms have been added to mitigate those 

problems, monolithic systems such as Linux continue to be popular, 

suggesting that the performance advantages and practical 

effectiveness of monolithic architectures can remain relevant in 

modern computing environments, especially in the arena of hardware 

classes geared toward server systems in which are senriced by 

applications where performance and hardware support breadth are the 

primary products of arguable utility. It is a great example of the 

evolution of monolithic systems, showing how a solution that looks 

relatively simple from an architectural viewpoint can be improved 

and progressively developed to cope with new needs while keep its 

weaknesses under control and, most importantly, keep its advantages 

unscathed. 
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Layered OS type is a structured way to design the system, where 

functionality is divided into brows of functionalities, high level 

functionalities are provided using lower layer, And abstraction of 

services of lower layer are provided to upper layers. This architectural 

paradigm is derived from some of the early theoretical work on 

structured programming and systems design in the early 1960s that 

was applied first through systems such as the (TechnischeHogeschool 

Eindhoven) operating system developed by EdsgerDijkstra and later 

in commercial systems like Multics. A layered architecture is one 

wherein a strict hierarchy is maintained, so a component at layer N 

can only make use of services offered by components at layer N-1 and 

lower N (i.e. a layer N service cannot access a service or data 

structure provided directly by a layer N-2 component. The main 

theoretical benefit of this strict layering is that we can work on and 

validate each layer in isolation, with clearly defined interfaces 

between adjacent layers giving us well-rounded boundaries for 

testing and validation. The concept of a layered operating system also 

typically involves functionalities to form layers, from the lowest 

hardware dependent level, to the highest user-oriented level. The first 

(bottom) level may deal with physical hardware resources and 

interrupts, the next layers manage memory, processes, inter-process 

communications, virtual memory, file system, the higher most layers 

with user-interfaces and applications. You are provided with layers of 

abstraction, where each layer obscures the complexities of the layer(s) 

below and translates the naked hardware into the ornate computational 

environment experienced by users and applications. A major goal of 

an early operating system called THE, built in the late 1960’s, was to 

implement this paradigm, and THE itself was divided into five levels: 

process management, memory management, console management, 

input/output buffering, and user programs. With this level of clean 

separation, once the lower layers had been verified, the upper layers 

could be independently tested in systematic debugging of the entire 

system. But the IBM PL/1 system in the 1970s ushered in a new 

model with the Venus operating system, which had six distinct layers 

to tackle the many facets of process and resource management. 

Although conceptually elegant, the strictly layered model has practical 

challenges that, in practice, have made strictly following it a 
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Notes challenge in modern systems. The loss of spatial locality and strict 

hierarchy can add a huge performance cost, because something that 

could happen in a single monolithic system must now cross multiple 

levels of indirection, each of which might involve a context switch or 

even transform data. Also keep in mind that many Operating System 

functions do not have a natural hierarchy: services such as security, 

logging, or power management cut across various layers of the 

system and do not really fit a single layer. Additionally, rigid layering 

can make it challenging to implement efficient inter-process 

communication and synchronization mechanisms, which frequently 

depend on direct interaction between the components residing within 

diverse layers. In the face of such practical constraints, most modern 

operating systems take a more flexible approach to layered 

architecture but still retain their organizational principles, with 

carefully controlled breaches of strict layering where performance or 

functionality require them. For instance, while Windows uses a 

layered kernel architecture, with kernel components nested in various 

tiers, it enables some cross-layer optimizations to improve system 

throughput. Layering does end up looking something like this in 

modern systems, but more through a combination of practices, 

interface definitions, and documentation than through strict hardware 

boundaries enforced between all layers. This more pragmatic strategy 

retains much of the software engineering advantages of layering while 

avoiding many of its worst performance penalties. The multi-layered 

OS model still inspires OS design, especially in contexts like certain 

real-time and embedded systems where reliability and verifiability 

are more important than sheer performance. The idea also manifests in 

the way software development teams are organized and 

documentation trees are structured for complex operating systems, 

even where the underlying implementation likely offers more freedom 

than a rigidly layered model might imply. In practice, contemporary 

systems often integrate layered design components with various 

architectural styles, resulting in hybrid architectures that capitalize on 

the advantages of different paradigms and offset their respective 

drawbacks. 

Microkernel Operating Systems: Minimalist Core Design 

Microkernel operating systems are an architectural evolution from 

monolithic operating systems, based on a philosophy of reducing the 
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components necessary to facilitate computing. This is an architectural 

style that is developed in the 1980s and early 1990s with systems such 

as Mach, which was developed at Carnegie Mellon University, and 

has formed the basis of many systems including QNX, MINIX, and 

parts of macOS through its XNU kernel. Microkernel architecture's 

primary realization lies in the fact that only the services that truly 

require privileged or specialized access (generally IPC, basic memory 

power management, and minimum scheduling) should be 

implemented within the kernel itself, while the rest will run as user 

interaction processes which will have limited control, hence limiting 

the risk of impacting the entire system. This strict separation is 

intended to ensure greater reliability, security and maintainability of 

the system by limiting the trusted computing base (TCB) and isolating 

failure-induced components. The microkernel approach has a solid, 

multi-sided theoretical advantage. Because it minimizes the amount of 

code that must run in privileged mode, the system becomes less 

susceptible to catastrophic failure — for example a crash of a user-

space file system server need not bring down the entire operating 

system, as it would have to do in a monolithic design. This provides 

better fault containment, as you can restart individual servers without 

bringing down the entire system. Similarly, security benefits arise due 

to the reduced attack surface that the minimal kernel exposes and 

provides fewer opportunities for privilege escalation attacks by 

targeting kernel vulnerabilities. From a software engineering 

perspective, the microkernel approach makes it easier to implement 

systems with noticeable modularity, allowing development teams to 

focus on specific servers with well-defined channels between 

components. This modularity furthermore allows for extensibility of 

the system, as new services can be introduced as user-space servers 

without any need to update the microkernel itself. Also, the 

architecture in theory provides greater portability, with hardware-

dependent code mainly residing at the microkernel level and in low-

level device drivers, meaning that porting the system to new 

hardware platforms is easier. Microkernel System Design The 

advantage of microkernels is their small size; everything most 

applications could need is implemented as a distinct service that a 

monolithic kernel would contain, leading to high levels of modularity 
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Notes but high communication costs as the interposes communication needs 

to be deeply efficient given the nature of a microkernel architecture 

where each service operates in its own space. A user application sends 

a message to the file system server, for instance, when it has to 

perform a file system operation; the file system server can send 

another message to the disk driver server, and the microkernel takes 

care of this communication. Early hardware microkernel 

implementations (the most notorious entry here being Mach) suffered 

painful performance penalties due to the overhead associated with 

such message passing and the resulting context switches between 

address space. QNX, a commercial real-time operating system with a 

more efficient implementation, yet more forgiving of lower-

performance hardware, especially in embedded systems where 

timelines take precedence over other performance statistics. The 

shortcoming of the pure microkernel approach from a performance 

standpoint triggered many refinements and hybrid implementations. 

L4 (originally developed by JochenLiedtke in the 1990s) was a 

second-generation microkernel that achieved astonishing rates of 

interposes communication by virtue of careful design and 

implementation, demonstrating that much of the theoretical overhead 

of microkernel could be eliminated by amazing amounts of 

optimization. macOS (formerly known as OS X) comes with a hybrid 

approach on its XNU kernel, which incorporates the Mach 

microkernel and a monolithic UNIX kernel into a single address 

space, trading some of the fault isolation benefits for a performance 

improvement. Although Windows NT has been designed with 

microkernel principles, more and more components were incorporated 

into kernel space to address performance issues. Notwithstanding the 

above compromise, the conceptual impact of the microkernel 

architecture is far-reaching. Andrew Tanenbaum's MINIX 3 was 

another early but significant example, originally developed as an 

educational tool but then substantially evolving into a research 

system, providing demonstration of how microkernel principles 

continue to be refined, with a focus on reliability through isolation of 

components. The seL4 microkernel, developed by NICTA (now part 

of Data61), is possibly the most important recent development in this 

area and allows the formal mathematical verification of certain 

properties that could only have been accomplished at all due to the 
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recent systems may incorporate elements beyond the classic 

microkernel philosophy, the microkernel's optimization towards 

reducing privileged code and decoupling systems have undeniably 

left a mark on contemporary OS design, specifically where security is 

of the utmost importance, such as in embedded systems and those 

with high reliability constraints. Microkernel systems are one place 

where this same idea plays out and demonstrates how an architectural 

solution can continue to take shape and drive innovation in the field 

even while the pure idea struggles to be relevant in certain contexts. 

Modular Operating Systems: Component-Based Architecture 

Modular operating systems are an architectural shift based on clean 

interfaces between well-defined systems (modules) rather than strict 

layering or minimal priv. execution. This approach came to 

prominence in the 1990s and 2000s with systems such as Solaris (and 

its Spring research predecessor) and Windows NT, which included 

substantial modular design facets in them, even though they weren't 

strictly modular in every way. The first of these innovations, Low-

level modular architecture focuses not on the vertical stack (layered 

systems) or privilege levels (microkernel) used to organize elements 

of a system, but rather on the set of interfaces defining the interactions 

between components of a system, and allows any component of a 

system to be developed, tested, and replaced independently of the 

other components it interacts with, provided they adhere to agreed-

upon specifications of interaction. Modular architectures allow 

separate components at the same conceptual level (i.e., layers) to 

interact horizontally with each other in ways that are easier to express 

away from strictly layered systems, enabling natural expression of 

cross-cutting concerns and cross-layer functions. The principles that 

drive the design of modular operating systems are based closely on 

object-oriented programming principle, where system components 

implements their internal workings behind a well-defined interface 

which describes both services offered by the component and services 

the component require from other components. Thus it creates a 

system of modules, which are interdependent on each other but are 

connected via explicit interface declarations as opposed to implicit 

dependencies, enabling better comprehensibility and maintainability 

of systems. In the ideal modular architecture, the system is 



  

102 
MATS Centre for Distance and Online Education, MATS University 

 

Notes represented as a graph of components, with edges representing 

module dependencies mediated through interfaces, instead of a stack 

of layers. Modular operating systems usually feature a component 

framework that handles loading, initialization, and communication 

between modules. For example, Microsoft's Windows Driver Model 

(WDM) and later Windows Driver Framework (WDF) enable device 

drivers to work together in a way that was previously impossible by 

establishing standardized interfaces and support infrastructure that 

allow dozens able devices to be implemented as independent drivers 

but still interact in an orderly manner within the driver stack. Jigsaw, 

as the Java-based project is called, inspired Java 9's module system, 

which embodied the same principles regarding module dependencies 

and encapsulated implementations within the context of programming 

language runtime environments. The modularity approach, spurred by 

Solaris 7 and 8 major redesigns of the solaris operating system, 

adopted the heuristics of ServicePlex architecture a means of layering 

system significance into distinct removable parts with standard 

interfaces. This allowed for things like dynamic reconfiguration of 

system services without the need for a reboot a market first, for 

enterprise systems where availability requirements often mean 

upgrading the whole system cannot be taken down in order to perform 

the upgrade. The subsequent implementation makes use of 

methodologies like dynamic linking, runtime service discovery and 

component registration to design a flexible yet strong system 

architecture. Benefits of modular design go beyond just software 

engineering to operational considerations. In a modular architecture, 

it may be possible to implement “hot-swapping” of components, 

allowing for updating or reconfiguration of the system without 

downtime which is an important property of high-availability 

environments, such as telecommunications systems or financial 

services infrastructure. Moreover, the modular structure enables the 

use of different configurations for various use cases or hardware 

platforms by allowing components to be included or excluded as 

needed without major changes to the rest of the system. However, we 

find many of these same advantages pall in comparison to the nominal 

performance efficiency of non-modular, tightly integrated designs. 

Runtime overhead in these frameworks may be caused by interface 

compliance checking, dynamic binding between components, or even 
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the challenges of developing and maintaining an application tend to 

escalate proportionally to the number of components involved when 

there are explicit dependencies to manage. The challenge of 

comprehensive testing becomes more complicated with the increase 

in the number of interchangeable modules, as the number of potential 

combinations of the components grows exponentially. A hybrid 

approach often features in modern modular operating system designs, 

which retains a unified kernel core while enabling modular 

extensibility via precisely designed frameworks. The Linux kernel, 

despite being fundamentally a monolithic kernel, introduces a 

substantial layer of modularity via its loadable kernel module system 

allowing for dynamic extension of kernel functionalities while 

preserving performance within the core system. Windows also has 

such a driver model, but keeps a much more tight base system with 

options for modular extension. For Example, The prevalence of micro 

service architecture in distributed systems as well as containerization 

technologies are part of the continuing evolution of modular 

approaches, applying similar principles of componentization at a 

higher level. So again considering the evidence that we have been 

exposed to, it would seem that pure modularity has potentially created 

some pseudo-components that ultimately do not yield the fruitful 

experience one may want but the overall principles of modularity 

component isolation, interface-based design and explicit dependency 

management remain bedrock of every level of the system that we 

interact with. And as computing environments further diversify and 

specifications deepen (even if only at particular segments of a 

community), I suspect that the flexibility provided by such modular 

design approaches will remain valuable; as long as it is married 

pragmatically to efficiency with respect to performance and 

complexity. 

Hybrid Operating Systems: Pragmatic Integration 

Hybrid operating systems serve as a pragmatic amalgamation of the 

various architectures that can be seen on the operating system 

spectrum, containing some monolithic, layered, micro, and modular 

features to balance performance, reliability, maintainability, and 

flexibility. Hybrid systems do not follow strictly any communication 

structural philosophy but choose portions of each architecture that fit 
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idea has held sway over commercial OS design since the late 1990s, 

and all mainstream OSes today from Windows, macOS, iOS, and 

Android to modern Linux distributions are, to varying degrees, 

hybrids. The key argument for hybrid architectures says that because 

different parts of the system exercise different demands with regard to 

performance, availability and development flexibility, you cannot lag 

the same architectural solution for everything in the system. While 

performance or stability may benefit from implementing network 

protocol stacks in-kernel, experimental file systems may be better 

written as user-space components that crash without taking down the 

rest of the system. A hybrid system allows different subsystems to 

follow different architectural models, enabling the most appropriate 

design approach to be used on a given part of the overall system in 

pursuit of performance, pragmatism, and real-world usage instead of 

theoretical purity. One of the more recognizable examples of the 

hybrid approach is the macOS (formerly OS X) operating system, 

which features a hybrid kernel called XNU that integrates components 

of the Mach microkernel and BSD Unix in a single privileged 

execution environment. Although this design loses some of the fault 

isolation benefits of the pure microkernel approach, it greatly 

increases performance by removing the message-passing overhead 

for frequently used services. At the same time, the I/O Kit driver 

framework, the BSD subsystem, and Mach-based underpinnings are 

kept distinctly separate within the system, creating internal 

boundaries that provide a great deal of potential for maintainability 

with minimal impact on performance. Likewise, the Windows version 

implemented by modern Windows products also follows hybrid 

architecture principles, with a mixture of aspects of monolithic 

integration, modularity and layering. Running in privileged mode, the 

Windows kernel delivers essential services: the Hardware Abstraction 

Layer (HAL), which insulates a lot of the system from specifics of 

the hardware, memory management, process scheduling, and an 

elaborate object manager. On top of this foundation the Executive 

services provide higher-level functionality such as the registry, 

security reference monitor, and I/O system. Even though the various 

components execute in kernel mode for performance purposes, they 

adhere to well-defined abstractions with a modular organization that 
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along with various other environment subsystems, operate partly in 

user mode, illustrating a practical separation of function across 

privilege levels determined by security and stability concerns rather 

than strict architectural dogma. Linux has developed an extremely 

successful hybrid, retaining much of the performance advantages of 

its monolithic roots while also integrating concepts from alternative 

architectural paradigms. We will use the term core kernel to refer to 

such a high-privilege mode codebase, as the core kernel operates as a 

single privileged-mode entity, but implements an extensive module 

system to allow components such as device drivers, file systems and 

networking protocols to be loaded and unloaded dynamically. This 

method maintains performance efficiency with improved extensibility 

and maintainability. Moreover, much of Linux's functionality has 

been gradually pushed to user space when it makes sense to do so, 

with systems such as FUSE (File system in Userspace) allowing file 

systems to be written and run without modification to the kernel, as 

well as container technologies such as Docker and Kubernetes that 

offer user-space isolation mechanisms achieving many of the 

objectives of microkernel-process separation without compromising 

on performance. Notable advances in the hybrid model have indeed 

been made, particularly in mobile environments such as Android and 

iOS, providing privilege separation and process isolation of third-

party applications which would be the primary threat of an untrusted 

environment. Therefore, the logic behind Android is to isolate 

applications into their own process spaces with limited permissions 

over the core system services that run with elevated privileges. 

Running on an XNU-derived kernel fused with Mach and BSD 

components in a security model that embraces sandboxing at the per-

app level, iOS also takes a layered approach to security just like the 

Android variant. The performance benefits of hybrid designs are 

significant in multi-purpose operating systems that have to 

accommodate a wide range of often conflicting requirements. Hybrid 

systems have the potential to apply different architectural principles to 

different aspects of the system, allowing them to optimize 

performance for performance-critical paths, provide reliability 

through isolation of less stable components, enable development 

through modularization where it makes sense, and maintain 
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single, coherent operating system. They illustrate that real systems 

are not mere implementations of theoretical models but rather the 

solutions of engineering problems whose challenges outstrip elegant 

abstractions — such that real systems are more like hybrid 

architectures, borrowing from different architectural paradigms. It is 

this pragmatic synthesis that continues to define modern operating 

system design, with each new generation assimilating the lessons of 

multiple architectural traditions, while responding to new hardware 

capabilities, security threats, and application demands. Due to the 

continued diversification of computing environments across a wider 

range of form factors extending from embedded systems to cloud 

infrastructure, the versatility of hybrid approaches may prove useful 

in the construction of systems that fulfill their intended purpose, rather 

than over-commit to a single design (which is associated with a set of 

trade-off in the articulation of competing objectives of design). 

Specialized and Emerging Operating System Structures 

In addition to the mainstream architectural paradigms described 

earlier, a large number of specialized and new operating system 

architectures have emerged to meet specific computing 

configurations, workloads, or design objectives. These tailored 

architectures often serve as narrowly considered modifications of 

established methods toward specific goals or as novel constructs made 

possible by technological advances and changing computational 

models. The evolution of computing — from "general purpose 

computing" across embedded systems, mobile devices, cloud 

infrastructure and new advanced platforms, including wearable’s and 

IoT devices — has made these particular structures more and more 

relevant in the operating system landscape. For instance, real-time 

operating systems (RTOS) are tailored for predictable, deterministic 

behavior, as opposed to maximum average throughput. Such 

operating systems (OSs) test and operate to strict specifications to 

guarantee response times for time-critical operations, and often 

employ specialized scheduling algorithms, such as rate-monotonic 

and earliest deadline first scheduling, rather than the fair-share 

algorithms found in general-purpose OSs (like those in the UNIX 

family). This has architectural implications that tend to polarize: you 

want to reduce non-deterministic system behaviors like dynamic 
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that contribute to timing variability. Some real-time systems use 

microkernel designs to increase reliability (as in QNX) while others 

focus on minimal execution intervals and slim designs that are akin to 

stripped-down monoliths showing a degree to which functional 

requirements can dictate architectural design stronger than theories of 

software organization can. What are embedded operating systems? 

Embedded operating systems are the systems created for such 

resource-constrained environments as industrial controllers, 

automotive systems or consumer electronics and often end up having 

highly tailored architectures tuned for their limited memories, 

processing power and energy budgets. An example is TinyOS, which 

implements a component-based architecture but adopts static 

composition; the system is built at compile time rather than run time, 

allowing developers to avoid the cost to bind components 

dynamically, while losing flexibility. Embedded Linux variants 

commonly minimize the standard kernel removal of excess 

components, and static methods where dynamic mechanisms are 

unnecessary. These systems are examples of scaling limits that are 

pushing innovations in architectures that would never work for 

general-purpose computing but are exceptionally suitable for their 

targets. Network Operating System: Another specialized category is 

called distributed operating system which is a distributed version of 

an operating system, meaning that the OS services are extended to 

multiple networked computers and make it appear as a single coherent 

system to its client. Distributed computing systems such as Amoeba 

(1980-1999) took process migration, distributed shared memory, 

global resource naming, and similar features from single user 

distributed systems and implemented them across multiple physically 

independent networked computers. Although pure distributed 

operating systems have had limited commercial success, fundamental 

aspects of their architecture have been incorporated in most 

contemporary cloud infrastructure and cluster computing frameworks. 

First, Google's Borg system (the inspiration for Kubernetes) comes in 

as a brilliant solution for its distributed resource management and 

scheduling across a cluster of data center machines, functioning as a 

distributed operating system at the cluster level even while regular 

OSs are running on single machines. Virtualization has even given 



  

108 
MATS Centre for Distance and Online Education, MATS University 

 

Notes rise to entire new hypervisor architectures that reconfigure the OS 

actualization on the hardware. Hypervisors like VMware ESXi, 

Microsoft Hyper-V, and Xen serve as thin abstractions atop physical 

hardware to multiplex it among multiple guest operating systems, 

providing them the illusion that they are operating on exclusive 

hardware. In addition to requiring efficient mechanisms for hardware 

abstraction, these systems emphasize having effective inter-virtual 

machine isolation and low performance overhead, often resulting in 

designs that closely resemble microkernel with a small trusted 

computing base but specialized to virtualization primitives over 

generic operating system services. Architectural implications of 

virtualization undergo changes at the syscalls layer such as binary 

translation, par virtualization and/or hardware-assisted virtualization 

that fundamentally alter the behavior of operating system code 

interacting with the underlying hardware. Container-based systems 

provide a lighter-weight form of virtualization and have led to 

additional innovations in architecture. Unlike VMware, Virtual Box, 

or similar technologies, which virtualized at the hardware level, 

Docker, Kubernetes, and other related technologies virtualized at the 

operating system level, allowing multiple isolated user-space 

instances to share the same kernel. This model requires namespaces 

and the architectural support to have isolated namespaces, resource 

control mechanisms and multi-tenancy in the kernel level, needs that 

have already driven mainstream kernel development and facilitated 

new deployment and orchestration avenues in higher levels of the 

stack. The principle of separating the protection of resources from 

their management is pushed even further by Exokernels and library 

operating systems, which enable abstraction of resources at the 

application level. In these systems, demonstrated by MIT's Exokernel 

research and recently commercialized through systems like 

Unikernels, the kernel simply gives very low-level protection and 

multiplexing for resources, while applications link directly to library 

implementations of standard operating system services. This design 

takes away the distinction between application and operating system, 

which may further reduce overhead and enable applications to impose 

resource management policies according to their own requirements. 

Things like MirageOS compile high-level application code alongside 

only the OS components a particular application needs into a specific 
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embodiment of those principles in practice; The emergence of 

heterogeneous computing architectures with specialized accelerators 

(e.g. GPUs, TPUs, FPGAs and other domain-specific processors) has 

provided significant new pressures for operating systems innovations. 

Systems now have to not just manage traditional CPU resources but 

also allocate, schedule, and provide programming models for these 

heterogeneous compute engines. This has resulted in traditional 

operating systems being extended with new subsystems that mediates 

device- specific memory management, task scheduling and data 

movement, forminga hybrid architectures that incorporates multiple 

computational paradigms within a single system. The fundamental 

nature of computing is changing, and with it new architectural 

approaches. From unikernel designs that package applications with 

minimal operating system services inside specialized virtual machines 

to server less computing models that remove operating system 

concerns entirely from the developer workflow to edge computing 

paradigms that distribute computation across networks of devices 

from sensors near the physical world to cloud servers in the way of 

their own using novel storage and networking abstractions, these 

challenges have forced innovation on the structure of operating 

systems such that they are a vibrant space of ongoing design 

engineering. These specialized and evolving architectures show that 

operating system design is still a lively field that continues to change 

in response to new hardware capabilities, new application needs, and 

new computing paradigms. Instead of converging on one optimal 

shape, operating systems continue to diversify to meet an ever-

growing set of computing needs and scenarios, and architectural 

innovation occurs across the spectrum from microcontrollers to 

global-scale distributed systems. These approaches highlight the 

notion that operating systems are engineering artifacts: elegant in 

theory but compromised by practicalities and imperatives that are 

often very different from the original requirements. 

Conclusion and Future Directions 

Indeed, the subsequent coalescing of various operating systems 

structures is an ongoing process, driven by the intersection of theory, 

engineering, technology and application needs. Operating system 

structures thus have a long evolution from early monolithic systems 
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architectures that selectively embrace elements across multiple 

paradigms, continuously adapting to new demands yet balancing the 

inevitable tradeoffs of conflicting design goals.7 So, this adaptation 

process reflects both the timelessness (tymaldb probably has things 

like partitions, normalization, sharding, etc, etc) of some basic 

architectural concepts plus the pragmatic flexibility needed to use 

them in different computing environments. Feeding into the ongoing 

development of OS architectures are a number of trends that the future 

seems to hold. The rise of heterogeneous computing architectures 

integrating specialized processors alongside general-purpose CPUs 

creates new resource management challenges that may catalyze even 

more structural innovation. Operating systems must increasingly 

orchestrate computation across diverse processing units with their 

own programming models, memory architectures, and performance 

characteristics, a need that tests the limits of traditional process and 

memory management abstractions designed for homogeneous 

systems. This trend might hasten the adoption of the more explicitly 

parallel and distributed architectural models even within single-

machine operating systems. Security and reliability issues become 

more important as computing systems are more deeply integrated into 

critical infrastructure (power systems, transportation, etc.) and daily 

life. These priorities often favor architectural approaches that 

emphasize isolation, least privilege, and minimal trusted computing 

bases — principles long promoted by microkernel and capability-

based designs. With hardware support for virtualization, memory 

protection and secure execution environments steadily improving, the 

performance penalty historically associated with these more formally 

secure architectures is diminishing, making it feasible for them to be 

used widely in mainstream systems. The growth of edge computing 

the distribution of computation between everything from IoT devices 

to cloud data centers challenges traditional operating system 

boundaries and resource management models. By 2030, future 

operating systems may have to work efficiently across such 

distributed settings, coordinating resources, moving data, and 

determining where computation occurs across heterogeneous 

networks rather than on single machines. This may compel the fusion 

of traditional OS structures with distributed system paradigms, 
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across device ecosystems, while exposing consistent interfaces to 

applications and end users. Virtualization is still remodeling how 

applications, operating systems and hardware interact. Applications 

downloading services provide for greater compos ability, and can 

serve as the basis for a move toward more library-like systems, 

allowing applications to have only the system services they need. The 

distinctions between application and operating system become less 

and less clear in this transition. Domain like machine learning, 

augmented reality, autonomous systems have emerged where the 

workloads exhibit different characteristics and have different 

requirements that can drive domain specific architectural innovations 

Specialized operating system structures that would be radically 

different from general-purpose ones optimised for traditional 

interactive and server workloads might be needed for real-time 

constraints, massive parallelism and probabilistic computing models. 

Enabling persistent memory technologies that weaken the traditional 

boundaries between volatile memory and persistent storage break 

common operating system abstractions and might drive architectural 

updates in file systems, memory management, and process models. 

Systems tailored to make the most of these new technologies might 

take on structures that differ substantially from those optimized for 

the strict hierarchy of memory-storage elements that’s been the 

hallmark of computing for decades. These trends indicate that we 

have just scratched the surface, and operating system structures will 

only become more and more diverse rather than converging on the 

one true path. We believe different computing environments and 

workloads will continue to require specialized architectural 

approaches, although particular fundamental principles modularity, 

appropriate abstraction, separation of mechanism from policy, and 

efficient resource utilization will remain applicable to many different 

implementations. Perhaps the best lesson regarding the history of 

operating system structures is one of pragmatism: the ability to adapt 

to changing requirements and capabilities rather than faithfully 

adhering to any given architectural paradigm is what best 

characterizes successful systems design. Operating system developers 

must therefore appreciate both the theoretical underpinnings of these 

varieties of structure and the engineering requirements that colour 
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architect will combine principle and pragmatism, creating a new 

generation of operating systems which will effectively serve the needs 

of all users, applications and computing environments. But as we end 

this abstraction on operating system structures, and it is necessary to 

state that operating systems are a field of continuous development, 

full of new problems and innovations. (The architectures explored in 

this Unit are not just dead ends, but growing traditions that remain in 

the DNA of contemporary system design and will help guide future a 

direction as computing continues to evolve into exciting new 

domains, form factors, and application spaces.) 

1.8 Design Goals 

Introduction and Fundamental Concepts 

Indeed, the subsequent coalescing of various operating systems 

structures is an ongoing process, driven by the intersection of theory, 

engineering, technology and application needs. Operating system 

structures thus have a long evolution from early monolithic systems 

optimized for performance and hardware utilization to modern hybrid 

architectures that selectively embrace elements across multiple 

paradigms, continuously adapting to new demands yet balancing the 

inevitable tradeoffs of conflicting design goals.7 So, this adaptation 

process reflects both the timelessness (tymaldb probably has things 

like partitions, normalization, sharding, etc, etc) of some basic 

architectural concepts plus the pragmatic flexibility needed to use 

them in different computing environments. Feeding into the ongoing 

development of OS architectures are a number of trends that the future 

seems to hold. The rise of heterogeneous computing architectures 

integrating specialized processors alongside general-purpose CPUs 

creates new resource management challenges that may catalyze even 

more structural innovation. Operating systems must increasingly 

orchestrate computation across diverse processing units with their 

own programming models, memory architectures, and performance 

characteristics, a need that tests the limits of traditional process and 

memory management abstractions designed for homogeneous 

systems. This trend might hasten the adoption of the more explicitly 

parallel and distributed architectural models even within single-

machine operating systems. Security and reliability issues become 

more important as computing systems are more deeply integrated into 
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life. These priorities often favor architectural approaches that 

emphasize isolation, least privilege, and minimal trusted computing 

bases — principles long promoted by microkernel and capability-

based designs. With hardware support for virtualization, memory 

protection and secure execution environments steadily improving, the 

performance penalty historically associated with these more formally 

secure architectures is diminishing, making it feasible for them to be 

used widely in mainstream systems. The growth of edge computing 

the distribution of computation between everything from IoT devices 

to cloud data centers challenges traditional operating system 

boundaries and resource management models. By 2030, future 

operating systems may have to work efficiently across such 

distributed settings, coordinating resources, moving data, and 

determining where computation occurs across heterogeneous 

networks rather than on single machines. This may compel the fusion 

of traditional OS structures with distributed system paradigms, 

leading to emergent hybrid adjacently woven architectures spreading 

across device ecosystems, while exposing consistent interfaces to 

applications and end users. Virtualization is still remodeling how 

applications, operating systems and hardware interact. Applications 

downloading services provide for greater compensability, and can 

serve as the basis for a move toward more library-like systems, 

allowing applications to have only the system services they need. The 

distinctions between application and operating system become less 

and less clear in this transition. Domain like machine learning 

augmented reality, autonomous systems have emerged where the 

workloads exhibit different characteristics and have different 

requirements that can drive domain specific architectural innovations 

Specialized operating system structures that would be radically 

different from general-purpose ones optimised for traditional 

interactive and server workloads might be needed for real-time 

constraints, massive parallelism and probabilistic computing models. 

Enabling persistent memory technologies that weaken the traditional 

boundaries between volatile memory and persistent storage break 

common operating system abstractions and might drive architectural 

updates in file systems, memory management, and process models. 

Systems tailored to make the most of these new technologies might 
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the strict hierarchy of memory-storage elements that’s been the 

hallmark of computing for decades. These trends indicate that we 

have just scratched the surface, and operating system structures will 

only become more and more diverse rather than converging on the 

one true path. We believe different computing environments and 

workloads will continue to require specialized architectural 

approaches, although particular fundamental principles modularity, 

appropriate abstraction, separation of mechanism from policy, and 

efficient resource utilization will remain applicable to many different 

implementations. Perhaps the best lesson regarding the history of 

operating system structures is one of pragmatism: the ability to adapt 

to changing requirements and capabilities rather than faithfully 

adhering to any given architectural paradigm is what best 

characterizes successful systems design. Operating system developers 

must therefore appreciate both the theoretical underpinnings of these 

varieties of structure and the engineering requirements that colour 

their application in individual circumstances. The ideal system 

architect will combine principle and pragmatism, creating a new 

generation of operating systems which will effectively serve the needs 

of all users, applications and computing environments. But as we end 

this abstraction on operating system structures, and it is necessary to 

state that operating systems are a field of continuous development, 

full of new problems and innovations. (The architectures explored in 

this Unit are not just dead ends, but growing traditions that remain in 

the DNA of contemporary system design and will help guide future 

directions as computing continue to evolve into exciting new 

domains, form factors, and application spaces.) 

Batch Operating Systems: Maximizing Throughput and Resource 

Utilization 

Operating systems are the most critical link between computer 

hardware and the software applications that provide value to users. 

Operating systems are sophisticated software ecosystems meant to 

resolve computational resources for performance, giving core 

services to applications, and to offer interfaces that are human and 

machine accessible. The development of operating systems has been 

inextricably linked to the development of computer hardware, with 

each generation of operating systems reacting to and facilitating novel 
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systems: from the first systems, this simply loaded programs up 

sequentially into memory, through to modern complex environments 

that manage distributed resources over global networks. Operating 

systems must balance competing objectives: isolation or controlled 

communication, security or accessibility, reliability or failure, high 

performance or fairness. The architecture of an operating system is 

ultimately a game of tradeoffs: architectural choices differ radically 

based on what the system is optimizing for. This fundamental trade-

off dynamic has spawned a diversity of OS types, each optimized for 

specific use cases and environments. Batch systems care more about 

throughput than interactivity, real-time systems care more about 

predictability than general performance, distributed systems care more 

about availability than simplicity, and desktop systems care more 

about user experience than raw performance. That makes these 

distinctions important for students of computer science, since the 

operating system one chooses has fundamental implications regarding 

the applications that can be built on top of a given operating system, 

the performance of the operating system, and what guarantees can be 

given to users of applications built on top of a given operating system. 

In this Unit we discuss the different types of operating systems that 

operated as the backbone of computer systems and analyzing their 

goals and architectures as time progressed in computer science 

innovation. These variations and the particular problems they solve 

give us a sense of both the depth of diversity in computing 

environments, and the wide principles that underlie all operating 

system design. Operating System Design Goals Operating systems are 

about more than abstract design goals they inform the features, 

shortcomings, and usability of our computing systems. While 

exploring these differing approaches, we will find overlapping 

themes in how the designers of these systems manage complex 

requirements, balance competing objectives, and address the timeless 

issues of resource management and coordination of processes. From 

the embedded systems controlling household appliances to the 

massive cloud infrastructures powering global services, operating 

systems form the fundamental layer upon which all applications run, 

thus making their study critical to understanding modern computing. 
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Experience 

Interactive operating systems were a radical paradigm shift that 

changed the way we related to computers, turning computing 

machinery from batch processing calculators into systems that could 

respond in something more like closer to human thought processes 

and work practices. Interactive systems are characterized by the 

presence of a loop that delivers timely responses to user commands, 

giving the appearance of having the machine dedicated to the user 

even when resources are being shared among many users or 

processes. Of particular note in this cohort was time-sharing, which 

enabled multiple concurrent user interactions with a single system by 

multiplexing control through a rapid switching of attention on the 

system by the operating system in order to keep the computing 

environment feeling responsive. The initial rise of such systems in the 

1960s as illustrated by groundbreaking projects such as MIT's 

Compatible Time-Sharing System (CTSS) and even MULTICS 

(Multiplexed Information and Computing Service) were not merely 

technical advancements but a philosophical reimagining of what the 

computing experience should be: that a computer was a utility that 

could be always on for many users (as opposed to a constrained 

resource that should be carefully docketed). This highlights the central 

design goals of interactive systems: maximizing response time to the 

user at the expense of raw throughput (the measurement of how much 

work a computer can do), leading to complex scheduling algorithms 

trading fairness for interactive performance. These systems provided 

preemptive multiprogramming, in which the operating system could 

interrupt running programs after very short time slices in order to 

make sure that no individual program hogged system resources to the 

detriment of interactivity. Another important result of time-sharing 

research was virtual memory, a mechanism that made it possible for 

programs to run as if they had access to more memory than what was 

physically present, paving the way in those days for more 

sophisticated applications and more efficient use of the memory 

among many users working at the same time. With interactive 

systems, user interfaces evolved significantly, moving from 

command-line interactions, through early graphical user interfaces to 

the rich multi-touch and voice driven interfaces we know today. This 
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usable for the non-expert while giving powerful abstractions to the 

more knowledgeable. The need for protection mechanisms in multi-

user systems led to great strides in security since these systems were 

required to prevent users from interfering with each other’s processes 

or data. Compounding this demand, architects further needed to 

ensure that different processes (types of applications) could not 

interfere with each other, so memory protection, file access controls, 

and user authentication systems were developed to meet these needs 

and laid the groundwork for modern computer security. This is 

perhaps the most recognizable form of interactive systems, with 

personal computer operating systems including Microsoft Windows, 

Apple macOS and multiple distributions of Linux, representing the 

maturation of several decades of interactive system development, 

bringing time-sharing ideas that had previously been developed for 

mainframes into personal computing environments. Modern personal 

computers are optimized for a single user rather than multiple 

concurrent users, but the low-level mechanisms created for time-

sharing (such as preemptive multitasking and virtual memory with the 

concept of protection rings) are absolutely essential for multiple 

concurrent applications and system stability. Besides the command 

interface itself, interactive systems also introduced concepts like the 

shell (command interpreter), hierarchical file systems, and graphical 

windowing systems, which remain critical to how users engage with 

computers today. The focus on human factors in system design has 

resulted in rich research in the human-computer interaction literature 

highlighting that technical performance metrics do not capture system 

quality well enough — perceived responsiveness, consistency, and 

usability translate directly to productivity and user satisfaction. We 

are taught that the transition from batch to interactive computing is 

one of the great paradigm shifts in all of computing and has had 

effects on how computers are designed, programmed and used. The 

change shows how operating system design goals directly impact 

technical architecture and the overall computing experience, including 

hardware design, programming languages and application 

capabilities. As computing moves ever forward toward more natural, 

context-aware interfaces, the lessons we learned in the formative days 
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between technical constraints and human needs. 

Real-Time Operating Systems: Ensuring Predictable Timing and 

Reliability 

A Real-Time Operating System (RTOS) is an operating system with 

a real-time application that processes data as it comes in, typically 

without buffering delays. Real-time systems differ from general-

purpose operating systems in that most general-purpose operating 

systems optimize for average performance rather than guarantee 

someone meets deadlines, which is essential in applications like 

industrial automation, automotive control systems, aerospace, medical 

devices, telecommunication infrastructure and more. What sets real 

time systems apart from others is predictability; that is, meeting 

constraints to response times within bounds, even at peak loads or 

under stress. Such determinism is enforced by custom scheduling 

algorithms, avoidance of stochastic mechanisms such as virtual 

memory, and careful attention to interrupt latencies and context 

switch overhead. Real-time systems fall generally into hard real time, 

in which failure to meet a deadline constitutes system failure (like 

aircraft flight controls or automotive anti-lock braking systems), or 

soft real time, where infrequent failures to meet a deadline degrade 

quality but don’t cause catastrophic failure (like multimedia streaming 

or telecommunications). This distinction has a very strong 

repercussion on architectural choices, as hard real-time systems 

typically use static resource allocation and worst-case execution time 

analysis to deliver absolute guarantees. For instance, the real-time 

operating system employs a fundamentally different scheduler than 

that of a general-purpose system, using algorithms such as Rate 

Monotonic Scheduling (RMS) that allocate priority based on the 

frequency of tasks, or Earliest Deadline First (EDF) which 

dynamically determines priority based on which process has the 

impending deadline. These strategies help assure that the right 

resources get to important tasks in time to meet their limitations even 

if they need to be run in front of less time-critical operations. Paging 

and virtual memory techniques that allow for indeterminate timing 

behavior are usually avoided in memory management for real-time 

systems, in favor of static allocation or controlled dynamic memory 

allocation with bounded allocation times. I/O operations similarly 
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access (DMA) and dedicated hardware for the transfer of data 

between the I/O device and the processor without being the 

bottleneck. Some commercial RTOS implementations like VxWorks, 

FreeRTOS, QNX, and RTLinux are mature and cater to a wide range 

of industries with diverse requirements of certification, reliability, 

and performance. It is worth noting that these systems include 

functionality rarely found in general-purpose operating systems such 

as priority inversion prevention protocols, deterministic inter-process 

communication mechanisms, and timing and synchronization features. 

Verification techniques come into play specifically for the 

development of real-time systems because they cannot just be 

functionally correct, but they also need timing analysis; in most cases, 

formal methods are used to prove that a real-time system meets its 

deadlines under all possible operating conditions. This level of rigor is 

crucial for safety-critical applications where timing failures may 

threaten human lives or cause immense economic loss. Embedded 

systems, a related category of systems often using real-time operating 

systems, impose an additional set of constraints with limited 

resources, power efficiency and specialized hardware interfaces. 

These devices, from basic microcontroller applications to complex 

multi-core systems, frequently require specialized OS environments 

designed to optimize resource utilization but still support real-time 

guarantees. Another modern trend in real-time systems is the 

implementation of time-sensitive networking protocols that can 

extend timing assurances across distributed systems. Hypervisors that 

run both real-time and non-real-time operating systems on one 

hardware are also trending. Finally, artificial intelligence techniques 

are continuously applied to real-time systems while providing timing 

productivity. The changing landscape of real-time systems Several 

applications in mainstream computing are now emerging requiring 

timing guarantees that were once only employed in specialized 

domains, such as virtual reality, autonomous vehicles, and industrial 

IoT hence the increasingly ubiquitous importance of the principles of 

real-time computing. The design of real-time operating systems is an 

example of how fundamentally divergent goals yield tightly divergent 

architectural choices even while performing the same basic sets of 

functions for process management, memory allocation, and I/O 
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instead of faster, and this shift has enabled important applications that 

become critical where failure is not an option, such as space 

exploration and medical devices that sustain human life. As 

computation becomes more tightly woven into physical systems that 

interact with the world in real time, the principles that drove the 

development of specialized real-time operating systems are finding 

wider applications throughout the computing stack. 

Distributed Operating Systems and Network-Centric Approaches 

They are a significant evolution from conventional single-node 

computer focused models to a distributed environment where many 

Linked computers operate as a single virtual computer. Whereas 

traditional operating systems control resources on a single computer, 

distributed systems coordinate across multiple machines that might be 

spread through worldwide networks, working together for goals that 

the machines couldn’t achieve individually. These systems developed 

due to the exponential growth of networked computing and the need 

for scalability, high availability, and resource sharing between 

organizations. Distributed systems are designed to achieve a set of 

common goals, including location transparency, allowing users and 

applications to access resources without the need to know the physical 

location, fault tolerance, where the system maintains the availability 

of services even in case of any component failure, scalability, where 

the system grows with the increase in the number of users and 

resources, and also geographic location of the resources, and 

consistent performance irrespective of the hardware heterogeneity of 

the system. To satisfy these objectives, more sophisticated 

mechanisms for communication, coordination, resource management 

and failure detection and handling are needed which go far beyond the 

needs of standalone systems. The architectural approaches to 

distributed operating systems vary widely, from completely 

decentralized peer-to-peer systems in which all nodes are functionally 

equivalent, to hierarchical architectures with specialized management 

nodes. Client-server models are another common approach which 

provide the benefits of both centralization and distribution by splitting 

the functionality of the system between service providers and 

consumers. More recently, micro service architecture has gained 

popularity as a paradigm for building distributed applications, 
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that communicate over a well-defined interface. Messages can be 

delayed, delivered out of order, or not delivered at all. Distributed 

operating systems facilitate different forms of communication (such 

as remote procedure calls (RPC), message passing, or distributed 

shared memory), and use advanced protocols to address those 

uncertainties. Clock Synchronization is another fundamental 

challenge, since every node has its own idea of time that may deviate 

with respect to others, complicating the ordering of events and 

carrying out time-dependent operations. In general, process 

management in distributed systems consists of traditional scheduling, 

process migration (which could be as simple as moving running 

processes to other nodes based on load balancing or resource access), 

detection of global deadlocks, and global resource allocation. This 

allows the system to make more efficient use of available resources 

across the network as a whole while still delivering acceptable levels 

of performance to individual users and applications. Especially for 

distributed systems, one of the most challenging parts is data 

consistency and duplication, because if we keep more than one copy, 

it might lead to higher availability and performance, but when we 

update the data, it would cause inconsistency. Distributed operating 

systems support a range of consistency models from strong 

consistency that gives the illusion of single copy, to eventual 

consistency that allows for temporary divergence with corresponding 

tradeoffs in terms of performance, availability and programming 

complexity. Several distributed operating systems stand out, 

including: Amoeba (VrijeUniversiteit Amsterdam), Chorus (A 

microkernel-based OS that started the revolution for distributed 

systems), and more recently, Borg and Kubernetes from Google that 

schedule containerized applications on Beowulf cluster. Though only 

a few pure distributed operating systems have seen extensive 

commercial adoption, their principles have had an immense impact on 

modern computing ecosystems. Cloud computing platforms such as 

Amazon Web Services, Microsoft Azure, and Google Cloud Platform 

use many ideas of distributed operating systems at a massive scale, 

providing users the illusion of an infinite amount of resources that are 

available on demand. Virtualization technologies, which allow 

multiple logical systems to share physical hardware, have become 
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resources to be abstracted, isolated and managed in heterogeneous 

environments. Finally, some models of Distributed Systems today 

have autonomous management capabilities, which allow them to learn 

the best configuration to use through machine learning and 

adjustment through AI. Security issues in distributed settings are 

when challenges become most disturbing when continuous attack 

surfaces grow with another type of node and every communication 

channel. They should also implement comprehensive security 

architecture with proper authentication, authorization, export risk 

management and intrusion detection across organizational and 

geographic boundaries. The gradual replacement of existing operating 

systems with distributed ones indicates a paradigm shift in the 

understanding of what computing means and what it can achieve, 

moving from snapshot- or image-based computation to holistic 

systems that are defined more by their connectedness than by their 

individual components. As computer technology continues to progress 

towards more and more distributed models from edge computing at 

the network periphery through to global cloud infrastructures human-

centered design principles as discovered through distributed operating 

system research remain vital in guiding system designers aiming to 

strike the right compromise of performance, reliability, security and 

manageability across diverse, complex networks. 

Specialized Operating Systems: Tailoring Design to Unique 

Requirements 

Outside of the general categories of languages there is a broader 

operating systems ecosystem which addresses niche requirements or 

constraints in specific domains. These specialized systems are 

instances of how the bare metal principles of operating systems can be 

repurposed and reshaped into something new that is uniform and 

guided by some base constraints, often resorting to extreme design 

choices that would be completely unthinkable in any sort of general-

purpose computing, hence perfect for their dedicated environment. 

The most common subcategory here is embedded operating systems, 

which power the billions of dedicated computing devices baked into 

everything from cars and appliances to industrial equipment and 

consumer electronics. These systems are typically resource-

constrained in terms of memory, processing power, energy 
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operation over years of continuous operation without user 

intervention. Operating systems such as FreeRTOS, Zephyr, and 

Rethread all prove that embracing a more minimalist design approach 

can deliver a capable operating system with memory footprints in 

kilobytes rather than gigabytes, and are perfect for microcontrollers 

with limited resources. Operating systems for mobile devices, such as 

Android and iOS, have become a class of their own, combining the 

interactivity of desktop systems with the resource-depleted 

environment and alternate interaction model that mobile devices have. 

These systems are optimized for energy efficiency, touch based 

interfaces, connectivity, and security based on the personal nature of 

mobile devices. The design picks a number of the classic trade-offs 

on mobile systems, including higher application isolation, per-

application permissions and complex power management that to be 

definitively increases battery utilization by doing usage allocation and 

lessening background activity. High-performance computing (HPC) 

operating systems cater to the specific requirements of 

supercomputers and large computing clusters utilized in scientific 

simulations, weather forecasting, genomic analysis, and various other 

computationally demanding applications. Advanced job scheduling 

for batch workloads, support for extreme parallelism across hundreds 

or thousands of processors and optimized communication facilities on 

the hardware level for tight-coupled parallel programs are built into 

systems such as Cray Linux Environment and IBM Parallel 

Environment. Since these systems are designed for machine 

workloads, and not man-computers use, instruments are applications 

that prioritize established computation throughput and efficient 

resource utilization over the interactive responsiveness. Exadata and 

Oracle RAC, as systems which combine traditional operating systems 

functionalities as implemented with specialized functionalities for 

data processing, storage management, and transaction management, 

use special purpose systems for data management and data 

interaction. Such systems employ advanced buffer management, 

query optimization, and concurrency control techniques tuned for 

data-specific workloads, often eschewing general purpose operating 

system facilities altogether to ensure higher performance through 

direct access to the hardware device. Network operating systems (like 



  

124 
MATS Centre for Distance and Online Education, MATS University 

 

Notes Cisco IOS, Juniper JUNOS, and VyOS) are used for running the 

network infrastructure equipment (like routers, switches, and 

firewalls). Such systems are designed to process packets at an 

extremely high throughput, manage traffic, and remain highly 

available under very high loads, often with some form of a real-time 

scheduler to ensure the network functions well even during peak 

demand times. Again, systems such as VMware ESXi, Microsoft 

Hyper-V, and Xen are another more specialized category providing 

the abstraction and multiplexing of the physical hardware that offers 

support for several guest operating systems on the same infrastructure. 

Hypervisor-based systems have advanced resource management, 

isolation, and emulation capabilities that provide the ability to run 

multiple different operating environments together on the same 

hardware bases. Operating systems that fall into safety-critical 

categories — which cover aerospace, medical devices, nuclear 

facilities, and automotive applications — typically use formal 

verification, redundancy, and fault-tolerance mechanisms that exceed 

those found in consumer devices. INTEGRITY, LynxOS and PikeOS, 

for example, are designed for meeting stringent certification 

requirements such as DO-178C (airborne) or ISO 26262 (automotive) 

where the correctness of critical system components can often be 

proven mathematically. For example, security-controlled OSs -- such 

as SEL4 (with its formally verified microkernel), Qubes OS (with its 

threat model that emphatically prioritizes isolation) and Open BSD 

(which approaches secure defaults, and process separation) -- favor 

the maximization of attack surface as opposed to features or 

performance, making architectural decisions that systematically 

discard whole classes of threats. They prioritize the correct drawing 

and playback of multimedia content in real time according to 

parameters like scale and type via specialized scheduling and resource 

management, all while ensuring the sound and visuals remain in sync 

regardless of system load. Over these 50 years operating systems 

concepts have proven extremely adaptable over even very different 

environments and requirements as evidenced by the great variety of 

these specialized operating systems. Though the basic functions of 

process management, memory allocation, and I/O handling are 

universal, their wildly divergent design goals for their ecosystems 

lead to unique architectures crafted for specific use cases. The 
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Notes specialization trend continues to accelerate as computing is seeping 

into all manner of new domains, from wearable’s to smart home 

systems to autonomous vehicles to industrial IoT applications, each 

with its own set of unique requirements that influences how operating 

systems are designed. By studying these specialized systems, we gain 

valuable insights into the flexibility of OS principles and the powerful 

effects that design goals can have on the architecture of a system, 

lessons that we can apply hopefully to innovation even with more 

general-purpose computing. 

Future Directions and Emerging Paradigms in Operating System 

Design 

So continues the evolution of operating systems as we seek to broaden 

the scope of computing and face increasing complexity and 

challenges that test the limits of the designs we have known. A dozen 

or so trends are revolutionizing operating system design, fueled by 

hardware advances, evolving usage patterns, and pressing needs for 

security, efficiency, and adaptability in an interconnected world. 

Cloud computing, along with edge devices, is driving a sea change in 

the architectural distinction of operating systems and how that 

functionality is spread across computing environments. Edge 

computing is blurring traditional delineations between local and 

remote execution, and is giving rise to new operating system 

paradigms that enable the seamless relocation of processes, data, and 

state from edge devices to cloud infrastructure (and vice versa) in 

response to dynamic conditions, resource availability, and application 

requirements. Such a distributed execution model calls for operating 

systems able to operate across heterogeneous hardware while 

maintaining coherent application state and security across trust 

boundaries. Operating system functions are increasingly powered by 

artificial intelligence, which allows for adaptive resource management 

and predictive optimization with autonomous operations that exceed 

static policies or heuristics. Machine learning or AI-based operating 

systems can offer benefits in areas such as pre-fetching and 

scheduling based on system usage patterns (more on this in the next 

section), optimizing power consumption for anticipated workloads, 

discovering anomalies from baseline usage patterns that may correlate 

with potential security hazards, and automatically re-tuning system 

parameters to maximize application performance as requirements 
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Notes change. The transition to self-tuning systems encapsulates a radical 

move away from the deterministic, rules-based systems that have 

defined operating system design for decades, for systems that improve 

themselves over time through usage. Architectural innovations that 

fundamentally rethink traditional operating system models are being 

driven by security and privacy concerns. Increased threats are 

pushing techniques such as capability-based security, formal 

verification of critical components, and hardware-enforced isolation 

from the research realm into the real world. Perimeter-based security 

models are being supplanted by zero-trust architectures that require 

every access request to be validated irrespective of its origin, and 

privacy-preserving computation methods such as homomorphic 

encryption and secure enclaves are now being built into operating 

system services. Security as a Fundamental Design Principle that 

Shapes Core Operating System Architecture These developments 

make a departure from security as an add-on feature to security as a 

fundamental design principle. The booming world of Internet of 

Things (IoT) devices is forcing innovation in lightweight operating 

systems that can run on limited hardware and that participate in 

distributed applications that potentially involve hundreds or thousands 

of devices. This trend is evident in the various operating systems (OS) 

for embedded devices, such as RIOT, TinyOS, and Amazon 

FreeRTOS, which provide sophisticated functionality that is also 

highly resource-efficient. This includes new network protocols 

designed for low-power, low-bandwidth wireless communication; 

discovery mechanisms allowing battery-powered devices to 

efficiently find services; and security models that are both lightweight 

and suitable for unattended operation in the face of possible attacks. It 

also hints how containerization and micro services architectures are 

transforming application deployment models, with operating systems 

adapted to this model. Some third-party operating systems built 

specifically to host containerized applications include those from 

CoreOS (now owned by Red Hat), RancherOS and Google 

(Container-Optimized OS). They are designed with the bare 

minimum components required for what they do. This specialization 

trend is a return to purpose-built OSs, following decades of 

convergence onto general-purpose platforms, driven by virtualization 

technologies that allow many highly specialized systems to co-exist 
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range of principles that differ fundamentally from classical designs, 

poses possibly the most dramatic challenge to traditional designs for 

an operating system. New quantum operating systems face unique 

challenges such as qubit allocation, quantum error correction and the 

fusion of quantum and classical processing. Although functional 

quantum computers are still being developed, the operating systems 

used by these devices are likely to need completely new abstraction 

and resource management paradigms more similar to nature than to 

classical operating systems. The increasing focus on sustainability 

and energy efficiency is driving the operating system design from the 

mobile devices being designed to maximise battery life to data centres 

being designed to lower their carbon footprints. Energy-aware 

scheduling, dynamic voltage and frequency scaling across multiple 

cores, workload consolidation, intelligent resource hibernation, and 

other techniques are being developed into fundamental components of 

the operating system, rather than merely optional power-saving 

features. This move shows that more and more people are starting to 

understand that energy efficiency is not just an operational issue but 

the core design constraint that should inform system architecture from 

the ground up. Operating systems innovations that minimize latency 

and provide consistent performance guarantees in haselwareeug 

applications are driven by real-time analytics and event processing 

requirements. The well-known batch-oriented paradigms are replaced 

by the stream processing model able to manage continuous data flows 

with predictable processing times, supported by operating systems 

functionalities designed to achieve such a behavior. This historical 

bifurcation has blurred, and both workloads need to coexist on 

systems that efficiently support both whilst maintaining isolation 

where required. Together these emerging paradigms imply a new era 

of radical innovation in operating system design, rivaling the 

paradigm shift from batch to interactive computing or the rise of 

distributed systems. With the ubiquity of computing, its increasing 

complexity, and its integration into essential infrastructure, operating 

systems should move beyond acting merely as resource managers of 

stand-alone platforms and instead become orchestration systems for 

heterogeneous sets of distributed computational resources that can 

self-adapt to novel operating conditions and needs. The operating 
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Notes systems of tomorrow are likely to be based on a greater degree of 

specialization (largely thanks to specialization in hardware and 

firmware as well) running on tightly-coupled interoperation; 

continuous self-optimization based on AI; active security models 

rather than passive ones; and design paradigms treating sustainability 

directly as a design goal rather than as a side consideration to 

performance, or reliability, etc. We aren’t simply going to add to the 

existing space of operating systems; What these changes will do is 

change the nature of what an OS is and what is an OS to applications, 

to us to the outer environment. Operating systems is one of the few 

aspects of computer science that has tangential implications on 

almost everything; they are foundational systems that either enable or 

constrain what can be accomplished in computing, so it should come 

as no surprise that this field remains centrally located to many of the 

most exciting problems and opportunities in computer science today. 

 

Multiple-Choice Questions (MCQs) 

1. Which of the following best defines an Operating System? 

a) A collection of programs that manage hardware 

resources 

b) A software used for document processing 

c) A hardware component of the computer 

d) A program used to browse the internet 

(Answer: a) 

2. Which is NOT a function of an Operating System? 

a) Process management 

b) Memory management 

c) Compiling programming languages 

d) File system management 

(Answer: c) 

3. What is the main purpose of system calls? 

a) To provide an interface between user programs and the 

OS 

b) To execute application software 

c) To compile programs 

d) To manage network devices 

(Answer: a) 
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Notes 4. Which type of OS executes jobs one at a time without user 

interaction? 

a) Multi-programming OS 

b) Time-sharing OS 

c) Batch processing OS 

d) Real-time OS 

(Answer: c) 

5. Which of the following is an example of an Operating System 

service? 

a) File creation and deletion 

b) Providing direct access to hardware 

c) Executing JavaScript in web browsers 

d) Playing multimedia files 

(Answer: a) 

6. Time-sharing operating systems are designed for: 

a) Running a single program at a time 

b) Providing fast response time to multiple users 

c) Executing batch jobs sequentially 

d) Eliminating multitasking 

(Answer: b) 

7. Which system call is used to create a new process in 

Unix/Linux? 

a) exec() 

b) fork() 

c) open() 

d) exit() 

(Answer: b) 

8. Which OS structure follows a hierarchical design with layers? 

a) Monolithic OS 

b) Layered OS 

c) Distributed OS 

d) Network OS 

(Answer: b) 

9. Which design goal focuses on ensuring an OS remains 

operational despite failures? 

a) Security 

b) Portability 

c) Reliability 
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Notes d) Efficiency 

(Answer: c) 

10. Which of the following is NOT an OS design goal? 

a) User convenience 

b) System security 

c) Hardware development 

d) Efficient resource allocation 

(Answer: c) 

 

Short Questions 

1. What is an Operating System, and why is it needed? 

2. List three primary functions of an OS. 

3. Define batch processing operating system. 

4. What is time-sharing OS, and where is it used? 

5. Explain the purpose of system calls. 

6. What is the difference between multi-programming and 

multitasking? 

7. Describe two key services provided by an OS. 

8. What is the role of the kernel in an OS? 

9. Explain the concept of monolithic vs. layered OS structures. 

10. Why is security an important OS design goal? 

Long Questions 

1. Explain the need and functions of an operating system in 

detail. 

2. Compare and contrast batch processing, multi-programming, 

and time-sharing OS. 

3. Discuss the main services provided by an operating system. 

4. Explain system calls with examples and their role in OS 

functionality. 

5. Describe different operating system structures and their 

advantages. 

6. How does the design of an OS affect its performance and 

usability? 

7. Explain the importance of OS reliability, efficiency, and 

security in modern computing. 

8. Discuss the role of the kernel and user space in OS 

architecture. 
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Notes 9. How does an OS manage process scheduling and memory 

allocation? 

10. Explain different types of operating systems and their real-

world applications. 
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MODULE 2 

PROCESS MANAGEMENT AND 

SYNCHRONIZATION 

 

LEARNING OUTCOMES 

• To understand process concepts and states. 

• To explore process control and operations. 

• To analyze process scheduling and CPU scheduling 

algorithms. 

• To study inter-process communication and synchronization 

techniques. 

• To examine deadlock characterization and handling 

mechanisms. 
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2.1 Process Concepts 

Aforementioned processes. times and speeding the instruction 

processing. Control Unit; The control unit (CU) is in charge of 

managing the instructions (pipelining) fetch and execute different 

instructions at the same time (in different stage of the cycle) 

significantly improves instruction throughput. Additionally, the 

processor architecture uses caching techniques to temporarily store 

frequently needed data in fast-access memory that is physically close 

to the CPU, dramatically reducing memory read system performance, 

and CPU designers have invested in improving the performance of 

individual stages of this cycle. Overlap of fetch-execute of multiple 

perform some complicated calculation. Thus, this cycle efficiency 

directly dictates to is stored back to either memory or a register. And 

it continues infinitely in the same fashion, so the CPU can process a 

flow of instructions and an arithmetic/logic operation, data transfer, 

or change control flow. The final output of the execution the fetched 

instruction (opcode and operands). After decoding, the CPU executes 

the instruction – which could be (a register that keeps track of the 

instruction currently in execution). Once fetched, the instruction is 

decoded, in this step, the CPU identifies the operation to be done from 

loaded into memory of computer. The CPU starts by fetching an 

instruction from the memory; the address is determined by the 

program counter the fetch-decode-execute cycle, is the basic way 

CPUs do stuff. When a program begins execution, the instructions it 

needs are that must be completed in order: fetch, decode, execute and 

write back. This cycle, called to understanding how computers 

operate at a fundamentally low level. At the core of how a CPU 

operates is the instruction execution process, which is a series of 

actions interplay of processes that allow it to carry out commands and 

handle information. Learning these processes are key The CPU's 

functionality is based on a complex Other running processes. not in 

RAM at the time. These mechanisms are essential to support multiple 

processes running concurrently without affecting the to process 

memory beyond the one physically accessible to it, extending the 

address space by treating secondary storage as an extension of RAM. 

MMU is the part of the computer that takes care of the address 
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Notes translation, the process of converting virtual addresses to physical 

addresses, and page faults, which happen when a process tries to 

access a page that is memory, and ensuring data integrity. Virtual 

memory is a technique that gives the CPU uses that is, the layers of 

memory it works with, such as registers, the cache, main memory 

(RAM) and then secondary storage. Memory management consists of 

allocating and deal locating memory to various processes, processing 

virtual memory is equally important. And the hierarchical memory 

that multitasking environment. As with execution of process, 

managing will be finite. These types of scheduling algorithms are key 

for fairness and responsiveness in a shortest execution time. With 

this, no single process can gain control of the CPU for too long as the 

CPU time allocated for a process to execute of resources and 

minimize wait times. This algorithm "First Come First Served" means 

that the processes are scheduled in the order they arrive, and the 

second is "Shortest Job Next" which decides based on the state, 

which is then loaded into the context of the next process that is going 

to be executed. The operating system scheduler uses algorithms such 

as First-Come, First-Served (FCFS), Shortest Job Next (SJN), and 

Round Robin to determine the order in which processes are executed 

in order to optimize the use by giving time slices to each process and 

doing context switches extremely faster. This is the process of 

switching the context, which means the current process must save its 

of contemporary operating systems. The CPU does this involved in 

many concurrent processes with concurrent threads using scheduling 

algorithms and memory management. Multitasking, the ability to run 

many programs at once, is one of the pillars The core of the CPU is 

the instruction cycle but it is and exceptions are critical in their ability 

to allow systems to respond promptly to incoming events and 

exceptions. Exception handlers is not stored in memory, instead, the 

CPU accesses the interrupt descriptor table (IDT), which contains an 

entry representing the address of the handler for each interrupt or 

exception vector. Interrupts to an interrupt controller, which decides 

their priority and dispatches them to the CPU. The location of 

interrupt and in keeping the system stable and preventing errors from 

cascading through the system. Interrupt requests are sent that takes 

proper actions to rectify the wrongdoing. Exceptions play an 

important role event alerts emitted by the CPU itself when any errors 
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Notes or unusual conditions, such as division by zero, invalid memory 

access, or illegal instructions, occur. Similarly, when an exception 

gets raised, the CPU as well gives up on its current instructions and 

passes control to an exception handler happens, or, any hardware 

devices need to be read, cpu gets interrupted. Exceptions are the 

continues its previous execution after the interrupt has been handled. 

When data is needed from storage, or, a network event handler, a 

special routine set up to deal with the interrupt. The CPU restores the 

saved state and the CPU. When an interrupt happens, the CPU pauses 

its current operations, saves the current state, and branches off to an 

interrupt can react to external events and error conditions. Hardware 

devices like keyboards, mice, and network interfaces generate signals 

to initiate an interrupt request to these are vital mechanisms any CPU 

must have in place so it and multicore design, enabling better 

performance and more complex task processing. In addition, CPU 

architecture has evolved to incorporate features such as parallelism 

tasks can be executed simultaneously through the use of multicore 

processors, which is crucial to meet the growing performance 

requirements of modern applications. and throughput. These topics 

allow you to understand how computational a common address space 

and resource pool, making them lighter than processes. 

Multithreading enables applications to execute multiple threads 

simultaneously (including background computations while 

responding), which improves responsiveness create multiple threads 

of execution. Threads have systems and allow performance gains for 

applications that can use parallel processing. Another technique that 

improves Parallelism is threading, allowing a process to have 

multiple cores, each of those cores can do things autonomously 

executing its own specific instructions and managing its own 

resources. Multicore processors are everywhere nowadays in 

computer threads/processes.  

If you branch (conditional branch instruction) will go, in order to 

reduce the amount of penalty cycles that occur from branch 

instructions. This feature of Multicore processing integrates many on-

chip CPU cores together, enabling simultaneous execution of 

numerous units in the CPU so the CPU can execute multiple 

instructions at the same time. Branch prediction is the process of 

guessing which way a executed at various stages simultaneously. 
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Notes This means that there is multiple execution a CPU core, which makes 

it possible for the processor to carry out several instructions at a time. 

Pipelining splits the instruction execution cycle into stages, so you can 

have several instructions being instructions (monads) simultaneously 

using one core or even across multi-cores. Techniques like pipelining, 

superscalar execution, and branch prediction enable instruction-level 

parallelism (ILP) within Parallelization means executing the multiple 

process is basically a program in execution, which includes the 

program code, the current activity represented by the value of the 

program counter, and the contents of the processor's registers. an 

operating system schedules computational task. A active entities 

(representing running programs) that are owned, scheduled, and 

managed by the OS. Learning about the process state and CPU 

utilization is essential to understand how A modern operating 

system's core functionality is process management, where processes 

are processes. and it is taken out of the system. The process scheduler 

in the operating system takes care of this complexity by ensuring 

efficient usage of the CPU and equitable distribution of resources to 

competing to the ready state as well. Finally, when it completes its 

work or if it is terminated by a user or system, the process enters the 

'terminated' or 'exit' state, during which its resources are freed the 

process returns to the 'ready' state until it gets a chance to use the 

CPU. A process can also be preempted by the operating system, 

usually because it has run out of its time slice, or because a higher-

priority process needs to run, sending the process back does not 

execute until the needed resource is released or the event it is waiting 

for gets finished. Next, once the condition is satisfied, process may 

give up the CPU voluntarily, for example, when it needs some input 

from user or to read from a file, it moves into the waiting or blocked 

state. While in this state the process not permanent. A this state, the 

queue executes its operations with an active CPU. But this running 

state is 'running'. In the CPU to become free. So the scheduler is an 

important part of an operating system, which picks one of the 

processes from the ready queue and allocates it the CPU which passes 

the state of the process from 'ready' to process starts in the 'new' state, 

adopting a process life-cycle when it’s creating or loading itself into 

memory. On successful creation, it moves into the ready state, 

indicating that it is ready to execute and is waiting for and other 
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Notes system resources. A By evolving through a series of states throughout 

its lifecycle, this abstract entity indicates its relationship with the CPU 

Issues. and responsiveness. As an administrator, tools like your task 

manager and performance monitoring utilities give real-time insight 

into your CPU utilization, enabling rapid assessment and adjustment 

for performance low CPU usage indicates that the CPU is not being 

fully utilized, which might mean that certain resources are left idle, or 

that scheduling is inefficient. CPU Usage Basics CPU utilization is 

one of the most essential metrics for both system performance slowly 

spinning, may raises response time, indicates the CPU is greatly 

loaded. On the other hand, system loads and potential bottlenecks. 

Very high CPU usage, is by assigning them equally sized time slices. 

The operating system keeps track of CPU utilization using hardware 

timers and performance counters to provide information about 

Number) can be starvation. It ensures fairness among processes next 

(SJN): It is concerned with processes that have the shortest execution 

time. In Priority Scheduling, every process is assigned a priority 

number, and the CPU is allocated to the process with the highest 

priority number (Lowest for short processes. Shortest job Job Next 

(SJN), Priority Scheduling, Round Robin, etc. The simplest CPU 

scheduling algorithm is First-Come, First-Served (FCFS) which 

simply assigns the CPU to the processes arriving first but can cause 

long wait times algorithms designed to maximise CPU usage with 

fairness and responsiveness. The common types of scheduling 

algorithms are First-Come, First-Served (FCFS), Shortest types of 

scheduling algorithms in the operating system to decide which process 

will get the CPU at a particular time. They are different gets CPU 

cycles. We use different utilization is the fraction of time the CPU is 

active doing non-idle work. CPU utilization refers to the percentage of 

time that a CPU is busy checking the state of processes, and when a 

process is in the running state, it figure for applications monitoring. 

CPU the central processing unit and the brain of your computer; it 

runs instructions and processes calculations. Its usage is an important 

The CPU is Fairness and responsiveness to make sure that every 

process gets a fairly different share of the CPU time. that is holding 

back for low priority processes for too long and it would be not 

executed in a crude manner." The scheduling algorithm should be 

designed such that it can balance between that important tasks are run 
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Notes quickly. But, if all the processes get assigned priority at all time, then 

that could lead to starvation; the scheduler. Generally, high-priority 

processes get the CPU a lot more than low-priority processes, so 

context switching is a key to reducing overhead while maximizing 

CPU usage. The OS also manages process priorities which can affect 

decisions made by data. Now, fast saves the state of one process and 

load the state of the second process. This process also comes with 

overhead in terms of the time taken to store and retrieve all register 

values, memory mappings, and process-specific and thus controls the 

selection process. But switching is a vital job of the scheduler and we 

are the one who CPU. The scheduling algorithm determines in what 

order processes are run, the state of becoming ready. When a process 

is forced to wait or made to relinquish the CPU, the scheduler takes 

another process from the ready queue to share the SJN are examples 

of non-preemptive scheduling algorithms, where process can run to 

completion w/o interruption and thus long wait times for other 

process. It also maintains the ready queue that connects all the 

processes in the utmost importance. FCFS and process, adding it to 

the in-wait queue and giving the CPU to another process so no single 

process owns the CPU for a long time. This is especially critical in 

interactive systems, where responsiveness is of long it has been 

executing for, and what resources the process needs, in order to make 

educated guesses on what process should be allocated the CPU. For 

example, a preemptive scheduling algorithm like Round Robin or 

Priority Scheduling allows the operating system to suspend the 

execution of a an involved endeavor that must consider numerous 

conflicting goals regarding CPU utilization, waiting time, and fairness 

among competing processes.  
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2.2 Process State 

The scheduler needs to also consider factors like process priority, how 

Process scheduling is in order to optimize performance and remain 

responsive. Through process system calls. It helps to understand the 

process state and CPU utilization and communication. When a 

program needs to interact with the operating system (e.g. to perform 

file I/O, memory allocation, or create a new process), it uses manage 

shared resources. You are using it to process management features 

followed by the Linux operating system, including process creation, 

termination, processes, ensuring data consistency and eliminating 

race conditions. There are such as semaphores, mutexes, and monitors 

to synchronize processes and process at previous executions. In 

addition, the scheduler is responsible for inter-process communication 

and synchronization: the coordination between several balancing is 

an important part of multi-processor scheduling when processes are 

evenly distributed among the available cores so that no core becomes 

a bottleneck. To improve performance and minimize cache misses, the 

scheduler must account for cache affinity, or the relative caching 

similarity of a processors so that the maximum parallelism can be 

achieved and consequently, the performance. Load process 

scheduling gets a little harder. The operating system has to spread 

processes over multiple cores or So with the modern-day multi-core 

and multi-processor systems, the CPU resource allocation, the 

operating system allows applications to run efficiently, ensuring a 

stable and reliable computing environment. Management and 

resulting in chaos and instability in the system. Switch In the absence 

of the PCB, the OS would not be able to distinguish between 

processes, processes; which resources are being used? This data 

structure is crucial for smooth multitasking as it allows the OS to 

switch between processes efficiently, a procedure called a context the 

OS’s dossier on every running program, containing critical 

information that informs the operating system so it can correctly 

allocate and coordinate their execution. When a program is start, OS 

make matching PCB, which contains information about the state of 

the delicate art of multitasking, where multiple programs compete for 

the attention of the CPU, the PCB serves as an individual identity card 
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about the state of a process.  

 

  

Figure 8: Process State Model 
[Source - https://www.researchgate.net/] 
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2.3 Process Control Block 

In other words, its key structures used by an operating system is the 

Process Control Block (PCB), which serves as the main repository of 

information about the running processes. In the One of the processes 

is currently running, in a ready state, or waiting, or has been 

terminated. Multifaceted concept. The process state is a key 

component that signifies if a A PCB itself can do many, and like 

process management itself, is a of each process. can separate it from 

others. These data points are aggregated within the PCB, which 

allows the operating system full control and accounting info provides 

resource usage like CPU time and memory usage. Lastly, the process 

ID uniquely identifies itself among all the processes so the OS 

allocated CPU time. Status info tracks the allocated input/output 

devices for the process, tables and segment tables, control how the 

process accesses memory. Moreover, the process control block (PCB) 

stores scheduling information such as process priority and scheduling 

queues the OS uses to decide which process should be registers, 

along with the PCB, and preserves the computational state. 

Information about memory management facts, like page the context 

switch. Temporary data that is utilized by the process is stored in CPU 

A context switch involves saving the state of the currently running 

process, and restoring the state of the next scheduled process, the 

program counter is a critical part of that state that tells the CPU where 

to resume execution of the process after place and allowing it to 

quickly switch from one task to the next. of performance, and the 

PCB serves to minimize the overhead associated with this operation. 

PCB becomes the building block that makes the context switching 

process possible and less complicated by allowing the OS to store all 

the needed information in one allows the new process to continue 

where it left off the other process. For multitasking operating systems, 

the efficiency of switching contexts is a key determinant PCB into 

memory, which allows the OS to restore its saved state by copying the 

data stored in the PCB back into the CPU registers. These process 

other relevant data in the PCB of the process. Then, the OS loads the 

next process's running process. It does this by storing the CPU 

registers, program counter, and context switching. When the OS 
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Notes wants to switch from one process to another, it first has to save the 

state of the currently The PCB is especially useful during from 

destabilizing the rest of the system. PCB's are stored in a protected 

area of memory that normal users cannot access. This prevents 

malicious (or inadvertent) data corruption importance. That's why it 

has a smooth and efficient computing environment. DONOTSPEC in 

PCB is of utmost share data and synchronize their actions. In short, 

the PCB acts as the OS's main mechanism for process management 

and control, which helps that higher-priority processes get more CPU 

time. In addition, it provides intercrosses communication as a means 

for processes to like memory, input/output devices to the Processes. 

The PCB also enforces process priorities and scheduling policies, 

ensuring for resource management and process synchronization. PCB 

contains all the information, which is used by OS to allocate and 

deallocate resources In addition to context switching, the PCB is also 

crucial 

 

2.4 Operations on Processes  

We also explore how the operating system, as orchestrator, manages 

the processes (the unit of executing code) in the system, including the 

method of scheduling those processes. Helpful for tuning resource 

allocation and ensuring responsive UX. Processes are created and 

executed, suspended, resumed, and terminated over their lifecycle. 

Process creation is typically triggered by user input or software events 

and involves allocating the necessary resources, such as memory and 

file descriptors, and establishing the context in which the process will 

Figure 9: Process Control Block 
[ Source - https://techspace.co.th] 
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Notes execute. The CPU needs to save relevant data so it can resume 

execution from where it left off, such as the program counter, registers 

etc. The operating system keeps a data structure called the process 

table, which holds the information about every process, which allows 

it to manage state and a much greater detail about processes. The 

process states are — new, ready, running, waiting, terminated and 

they represent the various stages a process undergoes in its lifecycle. 

Processes transit between these states due to events like I/O requests, 

time-slice expirations, and process termination. That is, from the 

running state, the process maybe move to the waiting state whenever 

it asks for I/O, the when it finishes with the I/O, process get back to 

the ready state. Explanation: The IPC, or also known as inter-process 

communicational low communication and data transmission between 

multiple processes PIPE; In computing, a pipe is a mechanism for 

connecting the output of one process to the input of another. 

Graphically represented as a message queue is a queue of messages 

that can be read and written by different processes or threads. These 

are essential for cooperation, where one process needs to wait for 

another to finish a task or share data, and so on. The OS exposes 

system calls which the processes use to leverage these IPC 

mechanisms for controlled and secure communications. The last phase 

is Process termination, where all allocated resources are released and 

the process is removed from the process table. This returns system 

resources, making them available for use by other processes. The OS 

also needs to deal with unexpected terminations, like crashes or users 

force-quitting, to ensure system integrity. This means that the 

operating system needs to handle all processes, allowing them to run 

concurrently and ensuring a seamless user experience. CPU 

Scheduling is an OS function that chooses one of the ready processes 

to be allocated CPU at a given time.  

Goal of CPU scheduling:  

1. CPU utilization should be high  

2. Throughput should be high  

3. Turnaround time should be low  

4. Waiting time should be low  

5. Response time should be low  

6. Fairness.  
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Notes There are two types of scheduling algorithms Preemptive and Non-

preemptive. In non-preemptive scheduling, when a process gets the 

CPU, it holds it until it terminates or relinquishes the CPU by its own 

accord. First-Come, First-Served (FCFS) is a simple non-preemptive 

algorithm that handles the CPU to the process that arrives first. 

Additionally, FCFS is straightforward to implement but can suffer 

from the convoy effect, as a long process can block multiple smaller 

ones, producing a poor average waiting time. Shortest-Job-Next (SJN) 

~ SJN is non-preemptive which selects the process with a minimize 

burst time. Shortest job next is an optimal algorithm for minimizing 

average waiting time, but it needs knowledge about future burst times, 

which is often impractical. On the other hand, preemptive scheduling 

permits the operating system to suspend a currently executing process 

and pass the CPU to another process. RR is a preemptive algorithm 

that gives each process a fixed time slice, or quantum. If a process 

fails to finish within its time quantum it is preempted and placed at 

the end of the ready queue. When RR can ensure a fair share of the 

CPU to all processes, small time slice can cause excessive context 

switching, leading to lower CPU efficiency. Shortest-Remaining-

Time (SRT) is a preemptive implementation of SJN, which, at any 

point in time, chooses the process with the shortest remaining burst 

time. The Shortest Job First (SJF) algorithm, though has minimum 

average waiting time, it hinges on accurately predicting burst times 

and may lead to starvation for longer processes. We assign priority to 

each process in priority scheduling and allocate CPU to the process 

that reaches with the highest priority. Static or dynamic priority, 

preemptive or non-preemptive. Therefore while preemptive priorities 

scheduling can preferentially run higher-priority processes, it cannot 

starve low-priority processes. This can be mitigated by using aging 

techniques wherein the priority of a process increases overtime. 

Multi-level queue scheduling It splits the ready queue into multiple 

queues. Processes are queued according to their properties, like 

whether they are foreground or background processes. The multi-level 

feedback queue scheduler is considered one of the most flexible and 

responsive process scheduling algorithms, as individual processes are 

able to be moved between queues based on their behavior. 

In process management and CPU scheduling, context switching is an 

important operation performed by the operating system. Simply put, 
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Notes this is the process of saving the state of the currently executing 

process, and loading the state of the next process that needs to 

execute. This includes information such as the program counter, 

registers, and memory management. When a process gets preempted, 

blocked, or terminated, or a new process is chosen to run, the 

operating system must switch context. Context switching is an 

essential function in operating systems, enabling multitasking by 

switching between processes, but it comes with an overhead. Both the 

time slices and scheduling algorithms affect how often context 

switching happens. In Round Robin Scheduling, a time slice that is 

too small would cause lots of context switches. Operating systems 

make use of context switching optimization techniques like keeping 

the context switching routine fast and utilizing hardware level support 

by having special registers that stores process states. Context 

switching must be efficient so that CPU resource usage stays high 

and the system responds quickly. The underlying OS must balance 

between the overhead of context switching to ensure fairness and 

responsiveness, and minimizing overhead to maximize CPU 

throughput. Scenarios such as real-time systems that must prioritize 

the timely execution of critical tasks are another case where efficient 

context switching is a necessity. Reducing the context switching 

latency can be more critical for these types of system to maintain the 

deadlines and improve the system stability. Modern operating systems 

utilize advanced techniques to enhance task-switching efficiency 

such as lazy context switching (only saving or restoring the context 

that is actually needed) or hardware-accelerated context switching that 

uses specialized hardware to speed up the process. The relationship 

between process operations and CPU scheduling forms the basis for 

the efficient operation of a computer system. You need to be able to 

do so with one of multiple processes using multiple operating 

systems. It is essential to utilize CPU scheduling algorithms that will 

enhance the efficiency of the system to meet the demands of the 

workload being processed. You also learn about the trade-off 

between different scheduling algorithms, and the effect of context 

switching overhead. Advancements in operating systems have 

resulted in advanced scheduling algorithms and process management 

approaches that can accommodate a wide range of workloads and 

system needs. Machine learning and artificial intelligence techniques 
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Notes will likely become an integral part of future operating systems for 

advanced process management and CPU scheduling. Hardware and 

software co-designs would keep complementing each other leading to 

better performance and responsiveness and energy efficient systems. 

This cycle continues as operating systems strive to optimize both 

process operations and CPU utilization for efficiency and 

responsiveness, creating a robust environment for application 

execution and user engagement.  Inter-Process Communication (IPC) 

is a fundamental concept in operating systems and is especially 

important in modern computing environments with concurrent 

processes. It ensures these processes can communicate and 

synchronize with each other, allowing them to exchange data, 

coordinate actions, and work together toward a common goal. Such 

inter-process interaction forms the foundation for developing 

sophisticated applications that tap into the strengths of multi-tasking 

and parallel processing. When it comes to CPU utilization, effective 

IPC mechanisms play a vital role in boosting system performance.  

2.5 Inter-Process Communications 

The idea of inter-process communication (IPC) is quite standard 

practice, but it can go wrong, and you will end up with bottlenecks, 

context switches, and overhead, which can slow down CPU 

performing tasks. On the other hand, well-designed IPC mechanisms 

support efficient data transfer and synchronization between processes, 

helping to keep the CPU busy and minimize inefficiency. IPC covers 

various approaches, each with pros and cons, to cater to different 

communication requirements and system architectures. Some of these 

include shared memory, message passing, pipes, sockets, 

semaphores, etc. The ideal approach depends on the specific 

requirements of a program and the characteristics of its workload; 

knowing the difference between these methods is important for 

maximizing a CPU's performance and maintaining the efficiency of 

multi-process systems. Shared memory, for example, provides fast 

communication by allowing processes to each access that same region 

of memory. But it requires synchronization, lest you corrupt your 

data. In contrast, message passing is a more structured form of 

communication, where processes send messages to one another via a 

communication channel. This approach comes in handy for 

distributed systems or when processes are running on different 
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Notes machines. Certain IPC mechanisms are chosen based on the 

communication latency, data size, and the complexity of 

synchronization needed. Through effective IPC, normal applications 

become more practical and system reliability and responsiveness are 

improved, all of which lead to higher CPU usage IPC is facilitated at a 

lower level by the CPU, which handles the hardware resources and 

executes the communication primitives associated with IPC. When 

processes communicate, whether via IPC, the CPU is responsible for 

transferring the data, synchronizing operations and ensuring that the 

communication protocol is addressed. For instance, in shared memory 

intercrosses communication, it is the CPU that must coordinate access 

to the shared memory region, enforce memory protection, etc. In 

Message Passing, the CPU is responsible for buffering messages and 

directing them to the destination process. The number of such 

operations is directly proportional to the performance of the IPC 

mechanism and hence utilization of the CPU. Context switching is a 

very important operation in a multi-processing environment that is 

invoked during IPC. When one process issues a communication 

request, such as a message sender or a shared memory access, it is 

possible that it will have to wait for another process to respond or 

release the resource. The CPU can then switch to another process in 

this waiting time so that it can do some usefully work. On the other 

hand, frequent context switching can introduce a performance 

overhead, as the CPU must save the state of the interrupted process 

and restore the state of the next process. Some effective IPC 

mechanisms improve the communication latency and minimize the 

synchronizing efforts that eventually results in less number of context 

switches during the message transfer. CPU also participates in IPC 

security and integrity enforcing. For example, memory protection 

mechanisms prevent unauthorized access to the shared memory 

regions, and thus ensure that all active processes can access the data 

they have permission to access. For example, message authentication 

and encryption may be used to secure the confidentiality and integrity 

of messages exchanged between processes. These measures rely 

heavily on the security capabilities of the CPU to help build strong, 

secure IPCs. The CPU is responsible for a large part of the IPC 

process, as it provides the necessary hardware and software 

infrastructure that allows processes to efficiently and effectively 
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Notes communicate. This article explains how the CPU can be optimized by 

optimizing IPC mechanisms and minimizing overhead to improve 

multi-process applications. 

Synchronization plays a crucial role in IPC, as it prevents conflicts 

between accessing shared resources which can lead to race conditions 

or data corruption. The CPU includes various synchronization 

mechanisms, including semaphores, mutexes, and condition variables, 

that processes can use to coordinate access to shared resources. For 

example, semaphores are commonly used to manage access to a 

limited number of resources, ensuring that multiple processes do not 

access the same resource at the same time. In contrast, mutexes offer 

mutual exclusion, preventing more than one process from entering a 

critical code section simultaneously. Data that can be used to signal 

that the shared resources state has changed. Q2: Why does the CPU 

need to execute these operations? If synchronization is too inefficient, 

deadlocks, livelocks, and other concurrency related problems would 

limit performance of the system. For example, when two or more 

processes wait indefinitely for each other to release resources, it is 

called Deadlock. Livelocks happen when the processes in execution 

are constantly changing their state in response to each other, causing 

them to make no progress. It is using limited data and observing to 

detect these system stability problems and trigger the proper 

correction mechanism. The CPU architecture, beyond primitive 

synchronization, can directly impact synchronization performance. 

Hardware-level support enables lock-free synchronization techniques 

(e.g., atomic instructions such as compare-and-swap), which can 

greatly decrease contention (when multiple threads are competing for 

the same resource, causing some to wait for access) and reduce 

overhead under heavy contention in comparison to software-based 

locks. Modern CPUs have specialized instructions and cache 

coherence protocols to improve the performance of these atomic 

operations. This fusion between hardware and software is key to 

building highly perform ant and scalable concurrent applications. The 

CPU has a lot to do with synchronizing and handling interrupts, and 

you'd want to build up the ability for some signals as well. For 

example, interrupts might be used to inform processes about events or 

changes in the system, where signals could be used to facilitate inter-

process communication. More advanced synchronization patterns, like 
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Notes event-driven programming or asynchronous communication, can be 

implemented using these mechanisms. Modern computing scenarios 

have introduced new CPU architectures and operating systems that 

have altered IPC considerably. These inter-process communication 

facilities have been fundamentally impacted by factors such as multi-

core processors, distributed systems, and cloud computing 

environments. It becomes an even more urgent requirement with the 

increased number of cores per CPU. If you have a multi-core 

processor even that you have also multi-processes can run in parallel 

on different cores. Nevertheless, this level of parallelism brings its 

own problems relating to cache coherence, memory consistency, and 

synchronization. And, seeking to fill a gap, operating systems have 

delivered new IPC mechanisms that are tailor-made for the multi-core 

world: lock-free data structures, message queues that can be 

efficiently built on the underlying shared-memory architecture, etc. 

Distributed systems, where processes are on different machines 

connected over a network, would depend on IPC mechanisms that can 

handle network communication. Inter-process communication across 

network barriers is often achieved in distributed environments using 

something like remote procedure calls (RPC) or message queuing 

systems. Dynamic resource allocation and the nature of virtualized 

infrastructure in cloud computing environments introduce unique 

challenges for IPC. Virtual machines (VMs) and containers, for 

example, add another layer of abstraction, which potentially affects 

communication latency and performance. Micro services 

Architecture: Cloud-native applications can be developed using micro 

services architecture, which means the applications are composed of 

small, independent services that communicate with each other using 

lightweight IPC (inter-process communication) mechanisms, such as 

REST APIs or message brokers. It is important for the CPU to be 

able to manage these different IPC types efficiently in order to create 

cloud applications which can scale and remain resilient. The advent of 

specialized hardware accelerators, e.g., GPUs, TPUs, etc., has further 

introduced new paradigms for parallel processing and IPC. These 

accelerators likely have different memory hierarchies as well as 

communication protocols, which creates a need for specific inter-

process communication (IPC) strategies to effectively transmit data 

from CPU to the accelerator.  
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Foundations of Process Management and Communication 

In the delicate ballet of an operating system, processes serve as the 

smallest entities of execution, an isolated instance of a program 

contending for the computer resources. The efficient scheduling of 

these processes and the coordination of their interaction is the 

cornerstone for a working operating system. Now, at the core of this 

management is this thing called process scheduling, which is 

basically a mechanism that determines the order in which the 

processes are given access to the CPU. One CPU can only run one 

process at any instance, but many processes may be ready or waiting 

to run, and this indicates the need for process scheduling. New 

processes that need CPU time will need to be queued up with deciding 

algorithms that balance effective allocation of CPU time while 

preventing starvation for other processes. But before we dive into 

these algorithms, it is important to first understand how processes 

communicate with one another and coordinate their activities. IPC 

(Inter-Process Communication) enables processes to exchange data 

and synchronize their actions. This is especially important for 

complex applications where multiple processes handle various tasks 

to save resources and improve modularity. IPC methods are used to 

allow processes to work together and share resources in order to 

accomplish common tasks (such as shared memory, message passage 

Figure 10: Inter-Process Communication 
[Source - https://www.slideserve.com/] 



 

151 
MATS Centre for Distance and Online Education, MATS University 

 

Notes and pipes). Had these communication pathways not been established, 

various processes would have been functioning in isolation, which 

would have prevented the evolution of complex and cooperative 

software systems. Sharing information and synchronizing execution is 

crucial for not only application functionality but also the efficient use 

of system resources. Examples include a print spooler process that 

communicates with application processes to receive print jobs, or a 

database server that coordinates with multiple client processes to 

handle data requests. And that's why IPC is a vital part of 

contemporary operating systems, allowing for the development of 

resilient and highly networked applications. Furthermore, the 

paradigm is also extended with the concept of process threads where 

a single process can run several threads at the same time. A thread is a 

small unit of process that may be addressed, which shares the same 

address space and resources of its parent process, allowing for more 

fine-grained parallelism and higher performance As such, this 

threading model is widely useful for any application that can be 

broken down into independent, smaller subtasks, such as web servers 

that can concurrently handle multiple client requests or multimedia 

applications that can process audio and video streams on separate 

threads at the same time. However, the addition of threads brings 

new problems significantly around shared resources and preventing 

race conditions which takes us to the critical section problem. 

2.6 Process Scheduling and CPU Scheduling Algorithms 

In multitasking operating systems, process scheduling is the keystone 

of the system, making sure that the CPU is effectively utilized, and 

making sure that processes are run in a timely manner. The scheduler 

is part of the operating system that determines the next process that 

gets to run from the ready queue. The scheduling algorithm we choose 

has a great impact on the performance of the system such as 

throughput, turnaround time, waiting time and response time, etc. As 

such, different scheduling objectives and system requirements have 

led to the development of various CPU scheduling algorithms. First-

Come, First-Served (FCFS) is the most basic algorithm you can have 

it executes processes in the order in which they enter the ready queue. 

FCFS is easy to implement but can cause variants of the convoy 

effect: a long process can block other, shorter processes, leading to 

large average waiting time. Selecting the process with the shortest 
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Notes burst time attempts to minimize average waiting time that is the goal 

of Shortest-Job-Next (SJN). However, knowing future burst times as 

SJN requires is often not feasible. Shortest-Remaining-Time (SRT) is 

a preemptive version of SJN where a shorter process can preempt the 

currently running process if its remaining burst time duration is less. 

In priority scheduling each process is assigned a priority, the 

scheduler selects the process with the highest priority. This algorithm 

can also be classified as preemptive or non-preemptive, and it enables 

the use of various scheduling policies based on process priority. 

However, the priority inversion problem when a low priority process 

blocks a high priority process can add more time as it cooks up 

counterproductive wait states. Round-Robin (RR) is a time-sharing 

algorithm in which, every process is assigned a fixed time quantum. 

In case a process has not completed its quantum, it will be pausing 

(or will be preempt) and the process that is at the front of the ready 

queue will start. RR is a little bit fairer in assigning CPU time but with 

relatively poor averages compared to the previous sorting algorithms, 

it is most appropriate for Interactive Systems and depends heavily on 

the values for the Time Quantum. Ready Queue Scheduling: 

Multilevel Queue Scheduling Multilevel queue scheduled the ready 

queue into several individual queues. Processes are queued into these 

queues according to certain properties such as types of processes or 

based on priority. A slightly more complex scheduling algorithm is 

multilevel feedback queue scheduling, in which processes can move 

between the various queues based on their behavior (e.g. length of 

CPU burst or frequency of I/O burst). This allows for a highly 

adaptable and efficient scheduling system. Each of these algorithms 

has its own advantages and disadvantages, and the selection of 

algorithm is based on the different operating system requirement and 

corresponding workload. Therefore, you must grasp these algorithms 

to design and optimize operating systems capable of managing and 

executing numerous processes efficiently. 

2.7 Process Threads and Their Significance 

Process threads can be seen as a radical departure from the traditional 

model of process management, where separate processes operated in 

isolation from one another; they allowed for much greater parallelism 

and more efficient use of resources. A thread (or lightweight process) 

is the basic unit of CPU utilization. At the same time, unlike 
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Notes processes that have their own address space and resources, threads in 

the same process share the same code section, data section, and 

operating-system resources, such as open files and signals. Better yet, 

the model where threads share the same resource means they can 

communicate and collaborate more easily than separate process, since 

they just need to read/write directly a shared data instead of using any 

IPC mechanisms. User-Level and Kernel-Level Threads Threads can 

be implemented either at user level or kernel level. User-level 

threads: are managed without kernel support by a thread library at the 

user level. This is a lightweight solution, but not useful when there are 

blocking system calls or usage of multiple CPUs. In contrast, kernel-

level threads are handled by the OS kernel, which offers improved 

parallelism and blockage operations. But kernel level threads have 

relatively higher overhead as the kernel is also in charge of managing 

the threads. Multithreading is the concurrent execution of more than 

one sequence of instructions, or thread. It increases application 

responsiveness by allowing multiple threads to perform work in 

parallel, so the whole program isn't stuck doing one task. It enhances 

resource utilization by enabling threads to share resources and run 

simultaneously on multiple CPUs. It simplifies the development of 

complex applications by enabling tasks to be broken down into 

smaller, independent threads. For example, a web server might spawn 

a separate thread to service each client request, allowing it to service 

multiple clients simultaneously. A multimedia application can decode 

audio and video streams in separate threads for smooth playback. But 

multithreading also comes with its own set of challenges, including 

shared resource management and data consistency. Race conditions 

which lead to unpredictable and erroneous results result when the 

outcome of a computation depends on the relative timing of threads 

executing in parallel. Synchronization: You are built with the ability 

to synchronize yourself. Mutexes, semaphores, and monitors are some 

of the synchronization methods used to control automatically 

synchronized thread execution and to safeguard shared resources. 

These mechanisms allow threads to safely access shared resources 

without causing issues such as data corruption or unexpected 

behavior. Has threads always been a part of Operating System design 

and implementation? 
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Notes 2.8 The Critical Section Problem and Synchronization 

The critical section problem is the challenge faced by multiple 

processes/threads regarding the sharing of resources. Note that a 

critical section is a piece of code that accesses and modifies shared 

resources. If several processes or threads execute their critical sections 

at the same time, data inconsistency and race conditions may arise, 

resulting in incorrect and varying results. To avoid these problems, 

synchronization mechanisms are implemented to make sure that only 

one process/thread can access its critical section at a time. Protocols 

that solve the critical section problem must meet three requirements, 

namely mutual exclusion, progress, and bounded waiting. This means 

that only one process or thread is allowed to access the critical section 

at a time, a concept known as mutual exclusion. Note that if no 

process is in its critical section and some processes need to enter their 

critical sections, only those processes that are not in their remainder 

sections can take part in deciding which will enter its critical section 

next, and such selection cannot take place indefinitely. Bounded 

waiting makes sure that there is bound on the number of times that 

other processes are allowed to enter their critical sections after a 

process has made a request to enter its critical section and before that 

request is granted. To overcome the critical section problem several 

synchronization mechanisms have been introduced. Mutex (Mutual 

exclusion) locks are simple 2 state locks that can be acquired or 

released by a thread or a process. The mutex ensures that a single 

process (or thread) holds the mutex lock at a time, providing mutual 

exclusion. Semaphores are more general-purpose synchronization 

mechanisms that can be used to limit access to a given number of 

resources. Semaphores are integer variables that can only be accessed 

through two atomic operations: wait and signal. The wait operation: it 

decrements the semaphore value, and it blocks the process or thread 

when the value goes negative. The signal operation increases the 

value of the semaphore, and if the value is greater than or equal to 0, 

a blocked process or thread is released. The high-level 

synchronization constructs that encapsulate shared data and the 

operations that can be applied to that shared data are called monitors. 

It provides mutual exclusion by allowing only one process (or thread) 

into the monitor at any time. Condition Variables Condition variables 

are used to make a process or a thread wait until a specific condition 
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Notes occurs. You can access shared data between threads using constructs 

like Mutex, Atomic Int and other synchronization mechanisms. It is 

essential to correctly implement these mechanisms to avoid race 

conditions and ensure the correctness and reliability of concurrent 

systems. 

2.9 Semaphores and Classical Problems of Synchronization 

Synchronization, the coordination of multiple processes to ensure 

orderly execution and data integrity, is one of the fundamental 

challenges in operating systems. Semaphores are a classic 

synchronization data type in computer science, introduced by Edsger 

W. Dijkstra, and are an incredibly useful mechanism for regulating 

access to shared resources. A semaphore is an integer variable, the 

value of which is never negative, that, during initialization, is only 

accessed through two standard atomic operations: wait and signal. 

The wait operation, also known as P (it comes from a Dutch word 

"proberen", which means "to test"), is used to decrement the 

semaphore value. If the value is negative then the process that is 

executing wait is blocked until the semaphore value is non-negative. 

On the other hand, the signal operation (also referred to as V, from the 

Dutch word "verhogen" which means "to increment") increases the 

semaphore value. If any processes were blocked on the semaphore, 

one is unblocked. There are two types of semaphores: binary 

semaphores, which may only have values 0 or 1, and counting 

semaphores, which allow any non-negative integer value. Mutual 

exclusion is commonly implemented using binary semaphores, so 

only one process has access to a critical section at a time. Counting 

semaphores, in contrast, control access to a limited number of 

resources. The original value gives you the total amount of available 

resources for this instance of your counting semaphore. Semaphores 

offer a general solution to different synchronization problems, in fact, 

the classical synchronization problems. The bounded-buffer problem, 

also referred to as the producer-consumer problem, describes a work 

environment with a fixed-size shared buffer, where producers make 

the items that are put in the buffer, and consumers take items from 

the buffer. The Semaphores make sure the producers don't insert an 

item into the full buffer and the consumers don't remove an item from 

the empty buffer. The readers-writers problem is a common 

synchronization problem that deals with concurrent access to a shared 
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Notes data set in which there are multiple readers and only one writer. 

Semaphores can also be implemented to ensure writers have exclusive 

access to the data set, and that readers do not access the data set while 

a writer is modifying the data set. The dining-philosophers problem 

consists of five philosophers seated around a circular table, each with 

a plate of spaghetti and two chopsticks. It takes both chopsticks to eat 

in a philosopher way. One way not to have a deadlock, which is 

where everyone is holding a chopstick and is waiting for the other, is 

to use semaphores. These are classical problems that illustrate the 

challenges of synchronization and the necessity of using the proper 

mechanisms, such as semaphores, to correctly and effectively operate 

concurrent systems. Though semaphores are powerful, they need to be 

used cautiously to prevent synchronization errors which could lead to 

deadlock and starvation, when processes are unable to proceed 

indefinitely. 

2.10 Deadlock Characterization 

Deadlock in concurrent systems is a scheduling problem that occurs 

when two or more process are blocked forever, each holding a 

resource and waiting for another resource held by another process in 

the cycle. Before designing a deadlock handling mechanism, it is 

important to know the features of deadlock. A deadlock can only 

occur under four necessary conditions, which must hold (at the same 

time): mutual exclusion, hold and wait, no preemption, circular wait. 

Mutual exclusion means that resources are non-shareable i.e. only one 

process can use a resource at a time. Hold and Wait: A process 

holding at least one resource is requesting additional resources held 

by other processes. In a no preemption scenario, resources cannot be 

forcefully taken away from a process; they need to be released 

voluntarily by the process holding them. Circular wait → We are 

having a set of waiting process {P0, P1,..., Pn} such that P0 is waiting 

for a resource hold by P1, P1 is waiting for a resource hold by P2,..., 

Pn is waiting for a resource hold by P0. All four of these conditions 

cause the processes to hang and leave a wait, where the processes 

never move forward, leaving the whole system as a standstill. 

Resource-allocation graphs: These are very useful to both visualize 

and to analyze deadlock. A resource-allocation graph G is defined by 

a set of verticesV, and a set of edges E. The vertices are partitioned 

into two types, P = { P1, P2,..n }, the set of processes currently active 
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Notes in the system, and R = { R1, R2,…m }, the set of resource types in the 

system. If we say that there is a directed edge from process Pi to 

resource Rj, written Pi → Rj, this means that process Pi has requested 

one instance of resource type Rj. Here, an edge from resource Rj to 

process Pi, Rj → Pi, indicates that a resource of type Rj was allocated 

to process Pi. If a cycle exists in the resource-allocation graph, there 

is a possibility of deadlock. If there is only one instance of each 

resource type, then a cycle indicates that a deadlock has occurred. If 

there are multiple instances of each resource type, then a cycle does 

not necessarily indicate a deadlock. This means you have to do 

additional work to see if there is a deadlock, in this case. The 

deadlock characterization gives a technique to reason about the 

scenarios that can lead to deadlock, and how to prevent, avoid, detect, 

and recover from deadlock. By acknowledging the required 

conditions and applying mechanisms such as resource-allocation 

graphs, system architects can develop resilient strategies to avoid the 

threat of deadlock and preserve the reliability and responsiveness of 

concurrent processor systems. 

 

 

2.11 Deadlock Handling: Avoidance 

Deadlock avoidance is the appropriate technique of eliminating 

deadlock when the program executes, which ensures that the system 

will not enter a deadlock state. Ithence requires the operating system 

to know upfront the maximal resource needs of each process. It then 

checks request on resources to see if doing so will cause deadlock. 

The Banker's algorithm is a well-known deadlock avoidance 

algorithm, which is inspired by a banker who grants loans to 

Figure 11: Deadlock 
[Source - https://www.scaler.com] 
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maximum needs in advance. In the operating system, information 

about available resources, resources allocated to processes and 

maximum resources required by processes are maintained. When a 

process requests a resource, the system simulates the allocation to 

check if the resulting state is safe. If there exists some order in which 

the remaining resources can be allocated to each process then that 

state is called as safe state. The resource is allocated if the resulting 

state is safe; else the process has to wait. It is the Banker's algorithm 

which makes sure that system always remains in safe state and there 

is no deadlock. But it also has its limitations. It requires providing a 

declaration of maximum resource request size in advance for each 

process, which is not always possible. Computation can also be 

expensive since it requires the operating system to run complex 

calculations to determine if each state is safe. A different method of 

avoiding deadlock is the resource-allocation graph algorithm. This 

algorithm is when there's only one instance of each resource type. 

The system uses a resource-allocation graph and checks it for cycles 

before allocating resources. The resource is not allocated if 

allocating a resource will create a cycle. This algorithm is simpler 

than the Banker's algorithm, but it can only be applied on single-

instance resource types. Deadlock avoidance methods are helpful to 

prevent deadlock but they incur an overhead and not all resources can 

grow as per the demand. Deadlock avoidance mechanisms in systems 

require careful consideration of the trade-offs between deadlock 

prevention and resource usage. 

Deadlock Handling:  

Is a reactive approach for deadlock management, allows the system to 

enter a deadlock state and detects and recovers from it. The second 

approach is used by systems where it's not possible to avoid deadlocks 

due to the overhead in maintaining information about the resource 

needs and the lack of any advance information about the resource 

needs. Periodic Checking for Deadlock; in this scheme, we check the 

system for deadlock periodically. A popular technique is to utilize a 

resource-allocation graph and look for cycles. A deadlock is detected 

if a cycle is found. Another approach is the wait-for graph, a 

modification of the resource-allocation graph that focuses on the 

waiting relationships between processes. A wait-for graph has vertices 
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process Pi to process Pj indicates that Pi is waiting for a resource that 

is being held by Pj. The cycles in the wait-for graph are a deadlock. 

After the deadlock is detected, the system needs to get out of that 

state. Many recovery methods can be applied. One approach is to kill 

all processes involved in the deadlock. While this is a very 

straightforward way to do this, it can lead to a lot of work being lost. 

Another approach is to kill one process at a time until the deadlock is 

broken. Based on like priority, resource consumption, and the amount 

of work completed, have a process chosen which will be aborted. A 

second recovery strategy is preempting resources. This means 

stealing resources from one process and giving them to another. You 

need to be careful not to starve in this approach when a process is 

being preempted so many times and it never reaches completion with 

its execution. The selection of recovery mechanism depends on 

various aspects of the system and the trade-off between performance 

and resource consumption. Deadlock detection and recovery are 

flexible methods for managing deadlocks, but they can incur overhead 

and cause work to be lost. Designers of systems that need to support 

semantics like deadlock detection and recovery must evaluate these 

trade-offs against the rest of their system requirements. 

Deadlock Handling: Prevention 

Deadlock prevention is a prevention-based scheme, this scheme tries 

to remove one or more of the four necessary conditions for deadlock. 

If the system can prevent those conditions from ever occurring, then 

deadlock will never happen. To prevent deadlock that happens, 

mutual exclusion should be removed. One way to do this is to make 

resources shareable. Some resources, like printers and tape drives, are 

inherently non-shareable, however. An alternative is to remove the 

hold and wait. This is done by requiring processes to request all of 

their resources at once before they begin execution, or by requiring 

that processes release all of their resources before requesting more. 

 

Multiple-Choice Questions (MCQs) 

1. Which of the following is NOT a valid process state? 

a) New 

b) Running 

c) Terminated 

https://www.scribd.com/document/258572954/OS-CN-DS-DBMS-SE-Interview-Questions
https://www.scribd.com/document/258572954/OS-CN-DS-DBMS-SE-Interview-Questions
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(Answer: d) 

2. The Process Control Block (PCB) contains which of the 

following information? 

a) Process state 

b) Program counter 

c) CPU scheduling information 

d) All of the above 

(Answer: d) 

3. Which operation creates a new process in an operating 

system? 

a) Terminate 

b) Fork 

c) Kill 

d) Swap 

(Answer: b) 

4. Inter-process communication (IPC) allows: 

a) Processes to share data and synchronize actions 

b) A single process to run multiple times 

c) The CPU to execute only one process at a time 

d) A process to execute in kernel mode only 

(Answer: a) 

5. Which CPU scheduling algorithm selects the process with the 

shortest burst time first? 

a) First-Come, First-Served (FCFS) 

b) Shortest Job Next (SJN) 

c) Round Robin (RR) 

d) Priority Scheduling 

(Answer: b) 

6. Which of the following is NOT a characteristic of a thread? 

a) Shares the same address space with other threads in the 

same process 

b) Requires more resources than a process 

c) Can run independently within a process 

d) Improves program efficiency and responsiveness 

(Answer: b) 
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multiple processes access shared resources incorrectly? 

a) Thrashing 

b) Critical Section Problem 

c) Page Fault 

d) Fragmentation 

(Answer: b) 

8. What is the role of semaphores in process synchronization? 

a) They eliminate the need for process scheduling 

b) They prevent deadlock conditions completely 

c) They help control access to shared resources 

d) They replace CPU scheduling algorithms 

(Answer: c) 

9. Which of the following is NOT a classical problem of 

synchronization? 

a) Producer-Consumer Problem 

b) Readers-Writers Problem 

c) Dining Philosophers Problem 

d) Page Replacement Problem 

(Answer: d) 

10. Deadlock occurs when: 

a) A process is forced to terminate by the OS 

b) Multiple processes are waiting indefinitely for 

resources held by each other 

c) CPU scheduling fails to work 

d) All processes finish execution successfully 

(Answer: b) 

 

Short Questions 

1. Define a process in an operating system. 

2. List the different process states and explain any two. 

3. What is a Process Control Block (PCB)? 

4. Name two operations on processes and explain their purpose. 

5. What is Inter-Process Communication (IPC), and why is it 

important? 

6. List and briefly explain any two CPU scheduling algorithms. 

7. What is a thread, and how does it differ from a process? 
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synchronization. 

9. What is a semaphore, and how does it help in synchronization? 

10. Explain the concept of deadlock avoidance in process 

management. 

Long Questions 

1. Explain the concept of a process and describe the different 

process states with a state transition diagram. 

2. What is a Process Control Block (PCB)? Discuss its 

components and significance in OS. 

3. Discuss the different operations on processes, including 

process creation and termination. 

4. What is Inter-Process Communication (IPC)? Explain message 

passing and shared memory as IPC mechanisms. 

5. Compare and contrast different CPU scheduling algorithms 

with their advantages and disadvantages. 

6. Explain the concept of process threads and the benefits of 

using multithreading in an OS. 

7. Discuss the Critical Section Problem and the different 

solutions used to resolve it. 

8. What is a semaphore, and how does it help in process 

synchronization? Provide an example. 

9. Explain the different strategies for handling deadlocks, 

including avoidance, detection, and prevention. 

10. Describe the Dining Philosophers Problem and propose a 

solution using semaphores. 
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MODULE 3 

STORAGE MANAGEMENT 

 

LEARNING OUTCOMES 

• To understand memory allocation techniques and paging. 

• To study virtual memory concepts and page replacement 

algorithms. 

• To analyze file systems, access methods, and their 

implementations. 

• To explore free space management in file systems. 
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Notes Unit 7: Contiguous Memory Allocation 

 

3.1 Contiguous Memory Allocation 

One key aspect of operating system function is memory management, 

which begins with the simplest option, contiguous memory allocation. 

Though deceptively simple, this technique sets the stage for 

understanding more complex ones. Contiguous memory allocation = 

All the data of a process is allocated in a single block. A process that 

is executed must also have a memory laid out for its code and data. In 

some ways it simplifies memory management for the operating 

system because it only needs to track one starting address and a size 

for each process's memory section. While this leads to benefits, it also 

presents some major challenges; especially as far as memory 

fragmentation goes. Consider a system with a fixed partition scheme 

(with pre-defined number of fixed partition sizes). When a process 

arrives, it is assigned to the smallest available partition that is large 

enough to hold it. Hence proved external fragmentation while 

allocating memory using this algorithm; where allocation takes little 

time and hits on memory. External fragmentation when total free 

memory is enough for a process's request but is not contiguous; So for 

example, after many processes have been loaded and exited, free 

memory may hold many small isolated blocks. Large process cannot 

get loaded even though the total free memory is large enough, as no 

single free chunk is big enough. & Variable partition schemes (try to 

address this by allowing partitions to be created dynamically as per 

process size. When a process loads, a current partition of the exact 

size is assigned. This is because it minimizes internal fragmentation, 

which is created when the allocated partition for a process is larger 

than the actual size, thereby wasting space that belongs to that 

partition. But variable partitions add to external fragmentation. When 

processes are loaded and ended, memory gradually becomes more 

fragmented and memory usage is less efficient. This compaction is a 

solution for external fragmentation; it moves various processes in 

memory, to make the free space in memory become a continuous 

block. Although effective, compaction is neither cheap operation as it 

involves relocating processes and updating their memory addresses. 

The cost of compaction could greatly affect the throughput of the 

system, although it potentially only occurs at large objects in systems 
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provisioning. Although mathematically straightforward, successive 

contiguity is burdened with issues of fragmentation that more pliant  

and effective strategies for memory management would tackle. 

 

  

Figure 12:Contiguous Memory Allocation 

[Source - https://www.scaler.com] 
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3.2 Paging Techniques: Swapping, Paging, Segmentation, 

Fragmentation 

In order to improve when it comes to contiguous memory allocation, 

operating systems started to use more complex methods, such as 

swapping, paging, and segmentation. Swapping refers to memory 

management process in which a process is moved from main memory 

(RAM) to secondary storage (disk) and vice versa. When the 

principles of working are full then one of the inactive processes or 

processes with a low priority are transferred to the disk using 

Operating System and it will free memory for other processes. When 

it is again needed, the swapped-out process is brought back into main 

memory. Swapping is when the memory used by a running process is 

written to the disk, to free up RAM and reduce overall memory 

consumption, if the total memory requirements of the running 

processes exceed the available memory in RAM. This, however, 

incurs considerable overhead, as moving processes back and forth 

from memory to disk takes a non-negligible amount of time when 

compared with switching between processes that are in memory. 

Paging, a more complex technique, solves the problems of 

fragmentation that contiguous allocation has many. The paging 

mechanism divides physical memory (Ram) as well as logical 

memory (process address space) into fixed-size blocks, namely frames 

(for physical memory) and pages (for logical memory). The size of a 

frame is called the page size, which is usually from 4-8KB. The 

pages of a process are placed into the free frames in memory when 

the process is loaded. More specifically, the OS maintains a page table 

for every process, which translates the logical pages used by the 

process to the physical frames in which those logical pages are stored. 

This enables a process's pages to be not consecutive in physical 

memory, thus avoiding the issue of external fragmentation. Yet, 

paging complicates internal fragmentation because the last page of a 

process may not be fully used. Again, segmentation is another 

memory management technique by which the logical address space 

of a process is divided into a number of segments. Paging divides 

memory into fixed-size pages, while segmentation allows variable-

length segments. Each process has a segment table maintained by the 
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Notes OS that maps base address and limit (size) of the segment. 

Segmentation has the benefit of storing memory in a logical structure 

since the segments are related to logical units of the program. They 

do suffer from external fragmentation though, as segments can be of 

different length, leading to gaps in physical memory. Fragmentation is 

the general term for wasting memory, and it is a common problem in 

managing memory. Paging has another drawback named as Internal 

Fragmentation since allocated memory is greater than the required 

memory. In contiguous allocation and segmentation, external 

fragmentation refers to the condition of having enough total free 

memory, but it is spread throughout the system in small blocks. 

Solving fragmentation is an important aspect of memory management 

optimization and advancement of the system performance. Many 

contemporary operating systems implement a combination of paging 

and segmentation in order to gain the benefits of both techniques 

while minimizing their disadvantages. And, for instance, segmented 

paging combines logical segmentation with fixed-size allocation 

(which of course gives the best of both worlds). 

 

Figure 13: Paging 
[Source - https://www.scaler.com] 
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3.3 Demand Paging 

It is a virtual memory management concept that allows a page to be 

loaded into a virtual memory only when the page is needed. In 

classical paging, all the pages of a process are brought into memory 

immediately after the process is first invoked, even if some of these 

pages were not used. Demand paging, however, loads pages on 

demand, i.e., a page is loaded only when the process tries to access it. 

In this way, the memory that the process only actively uses is in 

RAM, thus drastically cutting down the required memory for a 

process to run. A page fault happens when a process tries to access a 

page that is not currently in memory. The operating system responds 

to the page fault by bringing in the missing page from secondary 

storage (disk) and placing it into a free frame in physical memory. 

The operating system keeps track of which pages are valid (in 

memory) and which are invalid (not in memory) by using a 

valid/invalid bit for each page in the page table. When a page is 

loaded, valid bit is set to 1 else its set to 0. The operating system will 

select one page currently in memory and evict it in order to bring in 

the page that caused the page fault. In this case, whichever page 

replacement algorithm decides to replace a certain page. Page 

replacement algorithms include Common Page Replacement 

Algorithms (First In, First Out · Least Recently Used · Optimal). 

FIFO: Replace the oldest page in memory; LRU: Replace the page 

not used for the longest time. Optimal replaces the page not going to 

be used for the farthest future time, but it is not practical to implement 

because it requires future knowledge. The performance of demand 

paging is greatly influenced by the page replacement algorithm used. 

A good algorithm should try to minimize page faults, so as to reduce 

the overhead involved with disk I/O. Thrashing happens when a 

process is executing so fast that it spends more time paging than 

running. A page fault occurs when the number of pages that are kept 

in memory at a time is less than the working set for a process (i.e. the 

set of pages that a process is actively using). This poses a serious 

problem, though; when thrashing occurs, the system is busy thrashing 

pages and the CPU is waiting for page loads from disk more time than 

it is spending in user space. The only solution left to avoid thrashing 
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frames to hold its working set. That was where working set models 

come in handy to figure out the working set of a process and the 

correct amount of frames to assign. In summary, demand paging is an 

efficient memory management technique that allows for greater 

flexibility in program execution and optimal memory usage. It is a 

key feature of contemporary virtual memory architectures, allowing 

optimal utilization of hardware resources and improving overall 

system efficiency. 

 

Advanced Demand Paging Considerations 

There are a few more advanced topics concerning demand paging 

beyond the scope of basic implementation. A key element of this is 

managing changed pages, so-called dirty pages. If an operation 

modifies a page in memory, the OS must write back the changes to 

disk before replacing the page. This is generally done by keeping a 

dirty bit in the page table, which is set when a page is modified. When 

it is determined that a page needs to be replaced, the operating system 

checks the dirty bit. If the bit is set, the page will be written back to 

disk, if not, it gets discarded. However, keeping consistency across 

the data has an implication that adds an overhead to the paging 

replacement process which is an impact of the write-back operation. 

Figure 14: Demand Paging 

[Source - https://www.naukri.com ] 
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Notes Another factor is the use of shared pages. This reduces memory usage 

and can lead to performance improvements because shared pages 

allow the same physical page to be used by multiple processes in-

memory. There are system-wide caches as well, for example, if there 

are multiple processes running the same program, these processes can 

share the code pages of the program. The pages are usually sharing 

implemented with a reference count, which counts the how many 

processes are sharing the page right now. If a process doesn’t need the 

shared page anymore, the reference count is decremented. The page 

can be reclaimed once the reference count drops to zero. In fact, you 

are trained on shared pages although, copy-on-write (COW) pages are 

given higher efficiency. The fork system call creates a new process, 

and initially the pages are shared between the parent and the child. 

On the other hand, as soon as one of the processes tries to modify a 

shared page, a copy of the page gets created and the modification is 

applied to the copy. Such system call results Page Fault on page level; 

So very minimal pages are copied on process creation. You can also 

do things like page buffering, which works to improve the 

performance of demand paging by keeping a pool of free frames. 

When a page fault happens, the operating system can easily take a 

free frame from the pool, thus improving the latency of retrieving a 

page. So, before they are really used, they put it in a memory page 

buffer, that is called page buffering. 

3.4 Page Replacement Algorithms and Virtual Memory 

With the shift to modern OS, virtual memory is the backbone that 

allows processes to run without needing to load their entire memory 

into physical RAM. The trick is enabled by a subtle combination of 

hardware and software working behind the scenes: pages — the 

discrete units of virtual memory are transferred between the limited 

main memory and more commodious secondary storage as needed. 

The process of swapping pages in and out of memory is allowed, but 

requires implementations of effective algorithms to practice a certain 

strategy for when to evict a page to load in a new one to make it more 

efficient. This approach is complicated, however, because the 

behavior of a process is difficult to predict, and it is not easy to say 

which pages are the least likely to be needed immediately. The 

earliest and one of the conceptually simplest algorithms is called the 

First-In, First-Out (FIFO) algorithm. It works on the principle of 
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Notes replacing the oldest page in memory. Although simple to implement, 

FIFO is subject to Belady's anomaly, in which increasing the number 

of page frames may sometimes result in an increase in the number of 

page faults, which is counterintuitive and undesirable. In contrast, the 

Least Recently Used (LRU) algorithm looks to evict a page that has 

not been accessed for the longest time. The hint behind this algorithm 

is localization which explains that recently accessed memory 

addresses are likely to be accessed again in the near future. LRU is 

often more efficient than FIFO, but it requires keeping track of a 

history of page usage, which can have a non-negligible cost. Access 

time journals (aka workless access time journal devices) (or 

seemingly all-in-ones (with pagetable cache ontop of workless ram) 

computelemens or what have you) back ends usually rely on hardware 

(counters getting set to zero (max delay) on page access) to track 

access times. Page Replacement Algorithms Belady's optimal (OPT) 

algorithm is a theoretical but unattainable optimum for page 

replacement. The Optimal (OPT) algorithm. The page replacing 

Algorithm is the best theoretical optimum scope for page replacement. 

It replaces the page that will not be used for the longest period of time 

in the future. Please note: OPT offers the optimal page fault rate; this 

is how it is defined; however, in practice, it requires knowledge of 

future memory accesses, which are impossible to have in real life, 

and hence, impractical. Nevertheless, OPT is a good baseline to use 

for estimating the performance of other page replacement algorithms. 

The clock replacement algorithm, also called the Second Chance 

algorithm, provides a compromise between the simplicity of FIFO and 

the efficiency of LRU. It has a circular queue of pages, and a use bit 

for each page. When it’s time to replace a page, the algorithm walks 

down the queue, resetting the use bit for every page it sees. If a page 

with a cleared use bit is found, it is replaced. When all pages have 

their use bits set, the algorithm resets use bits and keeps traversing the 

queue until a page with a cleared use bit is encountered. Because it is 

efficient and does not suffer from Belady's anomaly, the Clock 

algorithm is widely used in many operating systems. The Clock 

algorithm and its variants (e.g. Not Recently Used algorithm) refine 

the algorithm by taking the use bit and modified bit (whether or not 

the page has been modified since loading into memory) into account. 

This allows the algorithm to focus on replacing clean pages before 
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Notes dirty pages, which can save on the cost of writing existing modified 

values back to secondary storage. Working Sets Working sets also 

help us understand page replacement. A working set is the collection 

of pages being actively used by a process over a time interval. 

Working set model: The working set model tries to keep the working 

set of the process in the memory to reduce page faults and improve 

performance. The model requires estimating the size of the working 

set, which is difficult to do. Thus, it does not give the complete image 

but it serves its purpose by being a useful guide to prevent the 

memory from being shredded into million pieces in a Virtual memory 

system. Another algorithm is called the page fault frequency (PFF), 

which dynamically allocates page frames to a process depending on 

its page fault rate. In performing this algorithm, if the rate of page 

fault is high, the number of page frames gets increased by the 

algorithm, and if the page fault rate is low, the number of page 

frames gets decreased. By adapting in this manner, memory usage is 

kept optimized, and the system's performance benefits. One of the 

major concerns in the context of virtual memory is the idea of 

thrashing, which is when a process spends more time swapping pages 

in and out than executing instructions. These working sets are what's 

stored in the system memory, including RAM, which is why thrashing 

happens. Operating systems, to successfully eliminate thrashing, can 

use load control, which is the adjustment of the level of 

multiprogramming (the number of processes that can be in execution 

at a given time), and working set. A study of an interface between 

hardware and software is essential for understanding the 

implementation aspects of virtual memory. MMU (Memory 

Management Unit) is a hardware unit that translates a virtual address 

to a physical address from the physical address to a page table 

mapping virtual memory to physical memory In contrast, the 

operating system is responsible for maintaining the page table--the 

data structure that keeps track of the mapping between virtual and 

physical pages--and executing the page replacement algorithm. The 

performance of virtual memory relies on how well this teamwork 

works. Though for the simplest sense, the modern operating systems 

are still reliant on the base concepts of page replacement but they also 

have integrated the concepts of demand paging where the pages are 

loaded from disk into physical memory only when they are needed 
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a way that the number of page faults could be less. The use of these 

approaches, in combination with smart page replacement algorithms, 

allows virtual memory to operate smoothly and effectively, 

facilitating the proper performance of processes, regardless of the 

limited number of physical memory resources that the system 

possesses. 

3.5 File Concepts  

Files are fundamental abstractions in operating systems, providing a 

structured and persistent mechanism for storing and retrieving data. 

They serve as the primary means for users and applications to interact 

with data, whether it be documents, images, executables, or system 

configuration files. A file, at its core, is a named collection of related 

information that is recorded on secondary storage, such as hard disks, 

solid-state drives, or optical media. The concept of a file encompasses 

not only the data itself but also metadata, which includes information 

about the file's attributes, such as its name, size, creation date, and 

access permissions. The file system, a crucial component of the 

operating system, is responsible for organizing and managing files 

and directories. It provides a hierarchical structure that allows users to 

organize files into directories, creating a logical and intuitive file 

organization. Directories, also known as folders, can contain both files 

and other directories, forming a tree-like structure that facilitates 

efficient file management. The file system also manages the allocation 

of storage space, ensuring that files are stored and retrieved 

efficiently. Different file systems employ various data structures and 

algorithms to manage storage space, such as linked lists, bitmaps, and 

inodes. The choice of file system can significantly impact 

performance, reliability, and security. File naming conventions vary 

across operating systems, but they generally adhere to certain rules 

and guidelines. File names typically consist of a base name and an 

optional extension, separated by a period. The extension indicates the 

file type, such as .txt for text files, .jpg for image files, and .exe for 

executable files. Operating systems impose restrictions on the length 

and characters allowed in file names to ensure compatibility and avoid 

conflicts. File types are essential for identifying the format and 

structure of a file. Operating systems recognize various file types and 

associate them with specific applications. This allows users to open 
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Notes and manipulate files using the appropriate software. File types can be 

classified into several categories, such as text files, binary files, 

executable files, and directory files. Text files contain human-readable 

characters and are typically used for storing documents, source code, 

and configuration files. Binary files contain non-text data, such as 

images, audio, and video, and are typically processed by specialized 

applications. Executable files contain machine code that can be 

executed by the operating system. Directory files contain information 

about other files and directories, forming the hierarchical structure of 

the file system. File access methods determine how data is accessed 

and manipulated within a file. Sequential access is the simplest access 

method, where data is accessed in a linear order, from the beginning 

to the end of the file. This method is efficient for processing large 

files that are accessed sequentially, such as log files and backup files. 

Direct access, also known as random access, allows data to be 

accessed in any order, regardless of its position in the file. This 

method is efficient for accessing specific records or data elements 

within a file, such as database files and index files. Indexed sequential 

access combines the advantages of sequential and direct access. It 

uses an index to locate specific records within a file, allowing for both 

sequential and direct access. This method is commonly used in 

database management systems and file systems that require efficient 

access to large amounts of data. File attributes provide information 

about the characteristics of a file, such as its name, size, creation date, 

modification date, and access permissions. File attributes are stored in 

the file's metadata and can be accessed and modified by users and 

applications. Access permissions control who can access and 

manipulate a file. They typically include read, write, and execute 

permissions, which determine whether a user can read, modify, or 

execute a file. Access permissions can be set for different user groups, 

such as the file owner, group members, and other users, ensuring that 

files are protected from unauthorized access. File operations are the 

actions that can be performed on files, such as creating, deleting, 

opening, closing, reading, writing, and renaming. These operations are 

typically provided by the operating system through system calls, 

which allow applications to interact with the file system. File systems 

employ various techniques to ensure file integrity and reliability, such 

as journaling, which logs file system changes before they are applied, 
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to prevent data loss and ensure that files are stored and retrieved 

correctly. File caching is another technique used to improve file 

system performance. It involves storing frequently accessed file data 

in memory, reducing the need to access secondary storage. File 

caching can significantly improve performance, especially for 

applications 

3.6 File System Structures and Implementation 

The file system structures and implementation is what underlines any 

operating system's capability to manage persistent data. Why is there 

a file system? At the most basic level, a file system is a natural way 

of organizing data when stored, enabling users and applications to 

access, modify and share data. It abstracts away the intricacies of 

physical storage devices, providing a straightforward interface for 

data management. From raw storage blocks to a coherent file system 

is a long and complex journey involving a myriad of design decisions 

and implementation details, each of which greatly impact the end 

product's performance, reliability, and security. At the core, file 

system is built upon a hierarchical structure usually represented as a 

tree, where directories (or folders) act as containers for files and other 

directories. Such a hierarchical structure encourages a logical 

organization of related files, making it more navigable and 

manageable. At the very top of the hierarchy is the root directory, 

which serves as the entry point for the entire file system. In this 

arrangement, files are located by their pathnames lists of directories 

to navigate through until the desired file is located. Must also store 

metadata (e.g. names, size, timestamps, permissions, owner, etc.) in 

addition to the actual data content. This metadata is important in 

regards to file management operations and is often stored in data 

structures such as inodes or file allocation tables. A file system must 

manage both data and metadata, and the efficient organizing and 

accessing of this information is key to performance. Different 

allocation policies are used by file systems, which have effects from 

fragmentation to access speed to storage utilization. Here are some of 

the most commonly used methods of allocation: contiguous 

allocation, linked allocation, and indexed allocation. Discontinuously, 

on the other hand, is efficient with access but may leave behind 

external fragmentation. In linked allocation, the blocks are connected 
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memory for random access. In contrast, indexed allocation creates an 

index block that points to data blocks, allowing random access but 

also requiring more storage for the index. The allocation strategies 

are chosen based on the expected usage patterns and performance 

requirements for the file system. Beyond merely managing data and 

metadata, file systems must grapple with concurrency control, crash 

recovery, and security. Concurrency control mechanisms, including 

locks and transactions, provide the ability for multiple processes in a 

system to read and write files without corrupting data. Crash recovery 

mechanisms such as journaling, logging, etc., allow the file system to 

restore its consistency post a system crash. Such as access control lists 

(ACLs) and encryption help to secure sensitive data by preventing 

unauthorized access. How these features are designed and 

implemented have a major effect on the file system's reliability and 

robustness. 

The implementation of a file system involves a complex interplay of 

data structures, algorithms, and system calls. The operating system 

kernel plays a central role in managing the file system, providing an 

interface between user applications and the underlying storage 

devices. The kernel maintains data structures that represent the file 

system hierarchy, metadata, and allocation information. These 

structures are often stored in memory to facilitate fast access and 

manipulation. When a user application requests a file operation, such 

as opening, reading, writing, or deleting a file, the kernel translates the 

request into a series of operations on the storage device. This involves 

locating the file's data and metadata, allocating or deal locating 

storage blocks, and updating the relevant data structures. The kernel 

provides system calls, such as open(), read(), write(), close(), mkdir(), 

and rmdir(), which serve as the interface between user applications 

and the file system. These system calls encapsulate the low-level 

details of file operations, allowing applications to interact with the file 

system in a standardized and platform-independent manner. The 

implementation of these system calls involves intricate algorithms for 

navigating the file system hierarchy, managing metadata, and 

accessing storage devices. For instance, the open() system call 

typically involves searching the directory structure for the specified 

file, verifying access permissions, and allocating a file descriptor to 
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locating the file's data blocks, transferring data between the storage 

device and the application's memory, and updating the file's metadata. 

The close() system call releases the file descriptor and updates the 

file's metadata, such as the last access time. The kernel also manages 

the buffer cache, a region of memory used to cache frequently 

accessed file data and metadata. The buffer cache improves file 

system performance by reducing the number of disk accesses, which 

are significantly slower than memory accesses. When an application 

requests data from a file, the kernel first checks the buffer cache. If 

the data is present in the cache, it is retrieved directly from memory, 

avoiding a disk access. If the data is not in the cache, the kernel reads 

it from the disk and stores it in the cache for future use. The buffer 

cache employs various replacement algorithms, such as least recently 

used (LRU), to manage the cached data and ensure that frequently 

accessed data remains in the cache. The implementation of the buffer 

cache is critical for file system performance, as it directly impacts the 

speed at which applications can access and manipulate files. 

The choice of file system implementation significantly impacts the 

overall performance and reliability of the operating system. Different 

file systems employ varying data structures, algorithms, and 

techniques to manage data and metadata, each with its own set of 

trade-offs. For example, the FAT (File Allocation Table) file system, 

commonly used in older versions of Windows, uses a simple linked 

allocation scheme and a flat directory structure. While FAT is 

relatively simple to implement and understand, it suffers from 

performance limitations, especially with large files and fragmented 

disks. The NTFS (New Technology File System), used in modern 

versions of Windows, employs a more sophisticated B-tree structure 

for managing metadata and supports advanced features such as 

journaling, access control lists, and encryption.NTFS offers better 

performance and reliability than FAT, but it is more complex to 

implement and manage. The ext4 (Fourth Extended File system), 

commonly used in Linux distributions, also employs a B-tree structure 

for metadata management and supports features such as extents, 

which improve performance for large files, and delayed allocation, 

which reduces fragmentation.Ext4 is known for its performance and 

scalability, making it suitable for a wide range of applications. The 
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portability and interoperability. Operating systems may support 

multiple file systems, allowing users to access data stored on different 

devices or partitions. The kernel must provide a common interface for 

accessing these file systems, abstracting the differences in their 

underlying implementations. This involves the use of virtual file 

system (VFS) layers, which provide a uniform interface for file 

system operations, regardless of the specific file system being used. 

The VFS layer translates generic file system operations into specific 

operations for the underlying file system, enabling applications to 

interact with different file systems in a consistent manner. The 

implementation of the VFS layer is crucial for supporting multiple file 

systems and ensuring interoperability between different operating 

systems. Furthermore, the implementation of distributed file systems, 

such as NFS (Network File System) and AFS (Andrew File System), 

involves additional complexities related to network communication, 

data consistency, and fault tolerance. Distributed file systems allow 

multiple computers to access and share files over a network, enabling 

collaborative work and resource sharing. The implementation of these 

file systems requires careful consideration of network protocols, 

caching strategies, and security mechanisms to ensure efficient and 

reliable data access. The design and implementation of file systems 

continue to evolve, driven by advancements in storage technology, 

changing user requirements, and the need for improved performance, 

reliability, and security. In essence, the file system implementation 

constitutes a critical component of the operating system, bridging the 

gap between user applications and physical storage devices. It 

involves intricate algorithms, data structures, and system calls to 

manage data and metadata effectively. The kernel plays a pivotal role 

in orchestrating file system operations, providing an interface for user 

applications and managing the buffer cache to enhance performance. 

The choice of file system implementation significantly impacts the 

overall performance, reliability, and security of the operating system. 

Different file systems offer varying trade-offs, and the selection 

depends on the specific requirements of the system and its intended 

usage. The implementation of the VFS layer enables interoperability 

between different file systems, while distributed file systems facilitate 

network-based file sharing. As storage technology advances and user 
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innovate, ensuring efficient and reliable data management. The 

efficiency of a file system is judged by its speed of access, its 

reliability in the face of system failures, and its ability to manage 

storage space effectively. The speed of access is determined by factors 

such as the allocation strategy, the buffer cache size, and the disk 

access time. The reliability is ensured through mechanisms such as 

journaling, logging, and redundant storage. The ability to manage 

storage space is influenced by the file system's ability to minimize 

fragmentation and utilize available space efficiently. Modern file 

systems also incorporate features such as data compression and 

encryption to enhance performance and security. Data compression 

reduces the amount of storage space required for files, while 

encryption protects sensitive data from unauthorized access. The 

implementation of these features requires careful consideration of 

performance trade-offs and security implications. The future of file 

system implementation lies in addressing the challenges of managing 

increasingly large and complex data sets, supporting diverse storage 

technologies, and ensuring security and reliability in distributed and 

cloud-based environments. As data continues to grow exponentially, 

file systems must evolve to handle the demands of modern computing 

and data management. Finally, the intricacies of file system 

implementation extend beyond the core functionalities of data storage 

and retrieval. The modern computing landscape demands 

sophisticated features that cater to diverse user needs and evolving 

technological paradigms. Features such as snapshots, which allow for 

point-in-time recovery of file system states, are increasingly vital for 

data protection and disaster recovery. Similarly, copy-on-write 

(COW) techniques optimize storage usage and enhance performance 

by delaying physical data copying until modifications are made. 

These advancements underscore the continuous innovation within file 

system design, driven by the need for efficiency and resilience. 

Furthermore, the rise of cloud computing has necessitated the 

development of scalable and distributed 

3.8 Free Space Management: Principles, Techniques, and 

Implementation 

It is the core of a congruous operating system to expose persistent 

data which lives inside its own file system structures and 
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known as the logical organization of data being stored, so the user and 

any application can read, edit or share information easily. It abstracts 

the chaff of physical devices into a form that is much more useful, 

which allows you to deal with data, rather than devices. Creating a 

complex file system on top of ordinary storage blocks requires careful 

thought and systematic execution: every decision at the design and 

implementation stages of the project can have a tremendous impact on 

speed, dependability, or even safety of data. Essentially, a file system 

is based on a hierarchy one that is normally represented as a tree in 

which directory (folder) nodes are used to contain files and other 

directory nodes. This Top-Down Organization Makes for Naturally 

Related Files That Are More Effortlessly Navigable and Manageable. 

The highest node in the hierarchy is called the root directory, which 

provides the entry point to the whole file system. Under this structure, 

files are referenced by their pathnames, which define the path through 

the directory hierarchy to the file. The file system has to keep track of 

metadata that describes file names, sizes, creation and modification 

timestamps, permissions, and ownership data in addition to the actual 

data itself. This metadata is essential for file management operations 

and is usually stored in data structures such as inodes or file allocation 

tables. Efficient organization and retrieval of data and metdata is 

paramount to the performance of the file system. There are a number 

of different allocation strategies that a file system can use to allocate 

the real physical space, which has implications for fragmentation, 

speed of access, and overall utilization of storage space. The most 

common methods include contiguous allocation, linked allocation, 

and indexed allocation. In contiguous allocation a file gets a sequence 

of blocks, providing faster sequential access but causing external 

fragmentation. Linked allocation links blocks using pointers which 

avoids fragmentation but adds random access cost. Reloading of 

pointers from data block example in Indexed allocation Indexed 

allocation uses index block that contains pointers to data blocks which 

allows random access, but comes at the price of using more space to 

store the index. Which allocation strategy to chose depends on the 

access patterns and performance of the file system. File systems also 

deal with concurrency control, crash recovery, and security, among 

other things, in addition to data and metadata management. 



 

181 
MATS Centre for Distance and Online Education, MATS University 

 

Notes Mechanisms for concurrency control, such as locks and transactions, 

help ensure that multiple processes can simultaneously access and 

modify files without corrupting the contents. Crash recovery 

procedures (such as journaling and logging) allow the file system to 

return to a consistent state after a system crash. Sensitive data is 

safeguarded by security measures like access control lists (ACLs) and 

encryption. What and how these features are designed and 

implemented has a great influence on the reliability and robustness of 

file system. 

Theoretical Foundations and Fundamental Algorithms 

The figure (left) shows how the operating system kernel manages the 

file system, acting as an interface between the user applications and 

the underlying storage devices. Data structures that represent the file 

system hierarchy, metadata and allocation information are maintained 

by the kernel. These are usually kept in the memory to enable them to 

be accessed and modified quickly. When a user application needs to 

perform a file operation like opening, reading, writing, and deleting a 

file, the kernel converts that request to a series of operations on the 

storage device. This includes finding the file's data and metadata, 

allocating or deal locating storage blocks, and updating the 

corresponding data structures. User applications interact with the 

system calls provided by the kernel, including open, read, write, close, 

mkdir, and rmdir; these function calls act as the interface to the file 

system. These system calls abstract the underlying complexities of file 

manipulation, enabling applications to communicate with the file 

system in a uniform and OS-agnostic approach. Basic file system 

functionality: File systems provide a set of system calls for operations 

like opening, reading, writing, and closing files. The open system call 

usually requires traversing the directory structure to find the 

requested file, checking access rights, and allocating a file descriptor 

to represent the opened file. The read and write system calls go 

through finding the file's data blocks, moving blocks of data around 

from the storage device to the memory of the application and updating 

the file's metadata, etc. assert close fd The close system call closes a 

file descriptor and updates the file's metadata (e.g. last access update). 

The kernel also controls a method called a buffer cache, which is a 

portion of memory that is used to store file and metadata that is 

frequently accessed. The post cache improves file system performance 
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orders of magnitude slower than memory accesses. It works by 

checking a cache that sits between the application and the file itself. 

When there are a huge number of records, this greatly speeds up data 

retrieval since the data is only fetched from the memory, not from the 

disk. If the data is no longer on the cache, the kernel fetches it from 

the disk and places it in the cache for subsequent access. It uses 

various replacement algorithms, including least recently used (LRU) 

as examples, to efficiently manage the cached data (more frequently 

accessed data should remain in the cache). The buffer cache is 

responsible for file system performance, which is what makes every 

application read and write files faster. 

Memory Allocation Strategies and Fragmentation Management 

In other words, memory allocation strategies are tactical 

implementations of free space management principles, moving us 

from theoretical constructs to systems that balance competing 

objectives. Choosing the right allocation strategy is largely influenced 

by workload characteristics, hardware architecture, and application 

needs. The consecutive-fit strategies first-fit, next-fit, best-fit, and 

worst-fit strategies only differ in the search policy for free lists. 

Unlike first-fit, which always starts from the beginning of the free 

list, next-fit continues from the last allocated location, which likely 

improves locality but may fragment hot sections in memory over time. 

The best-fit and the worst-fit strategies optimize for different goals by 

the former minimizing the short-term waste of memory at the cost of 

creating completely unallocatable small fragments while the latter 

preserves the large continuous regions of memory at the cost of short-

term wastage. One example of a power-of-two strategy is the buddy 

system, which only allows for allocations to power-of-two sizes, 

making bookkeeping easier; the drawback is internal fragmentation. If 

a block is freed in this system, it can be combined with its buddy (the 

adjacent block of the same size) to make a bigger block, which may 

make it possible to mitigate external fragmentation. Slab allocation, 

introduced in solaris, is a technique where memory blocks are pre 

allocated (called slabs) for certain types of objects, making it because 

each allocated object knows its size and freeing the memory blocks 

for more easy insertion of allocated objects. Segregated free lists keep 

a separate pool for each size class, allowing for fast allocation of 
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overall memory consumption due to potential fragmentation, since a 

smaller allocation won’t fit into the pool of a larger allocation. These 

kinds of allocators are typically bitmap-based, meaning that they store 

the state of each byte of memory in a bit vector very compact but 

slightly slower allocation than with list-based allocators. The main 

problem with free space management is fragmentation, which occurs 

when the free memory is broken into non-contiguous nodes so blocks 

cannot be fully utilized, which has two kinds external fragmentation 

(inaccessible gaps between allocated blocks) and internal 

fragmentation (the space allocated but not actually used). Many 

different techniques used in the implementation of allocation 

strategies to avoid fragmentation such as split ( to break down the 

larger blocks to satisfy smaller requests), coalescing (the merger of 

two adjacent free blocks), compaction (the process of moving 

allocated objects to give larger spaces of free in a contiguous manner), 

and size rounding (the practice of standardizing the size of allocations, 

therefore, avoiding very small ones) These techniques hit different 

performance notes depending on the allocation profile of the 

application: programs that allocate lots of short-lived objects benefit 

from allocation-time optimizations like generational schemes, 

whereas long-running systems are characterized by their small but 

more unpredictable lifetimes and require balanced techniques that 

avoid the accumulation of fragmentation over extended periods of 

time. Adaptive allocation strategies monitor their workload and adapt 

their behavior according to observed workload properties, changing 

policies when needed, for example, depending on memory pressure 

or allocation patterns. Adapting request optimization strategies 

dynamically based on data regarding allocation requests, memory 

usage over time, and fragmentation statistics. How freed memory is 

retained (or not) also affects fragmentation and performance through 

memory reservation policies, which dictate how memory is 

provisioned for use beyond immediate needs: over-reserving memory 

decreases fragmentation but wastes memory resources, while under-

reserving memory (to keep it less fragmented) means that you have to 

do increasingly frequent resizing operations that involve costly system 

calls or reorganization of memory. 
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Integration 

The most obvious and important implementation of free space 

management principles is in operating system memory management, 

which gets instrumental as the bridge between hardware resources and 

application needs. Most modern operating systems implement a 

layered architecture on the topic of memory management, utilizing a 

virtual memory space that provides an additional layer of abstraction 

separating the viewpoint of the application from the physical structure 

of the storage devices. Giving this sort of abstraction allows advanced 

free space management techniques that would simply not be possible 

in systems with only physical memory. The virtual memory I/O sub-

system will divide the address space to fixed size pages (usually 4KB 

up to 64KB) which will be mapped to physical frame when using 

page tables, and use Translation Lookaside Buffers (TLBs) to reduce 

the address translation process. This paging mechanism adds a distinct 

type of free space management at several levels: free virtual address 

ranges within each process's address space, free physical memory 

frames, and pages moving between main memory and secondary 

storage via page replacement algorithms. During such periods the 

operating system free space manager needs to balance conflicting 

requests from different processes and ensure that the system remains 

responsive and stable at different load levels. Demand paging, which 

is bringing pages into memory and still keeping them on disk until 

they are accessed stands as a more specialized version of the lazy 

allocation and seeks to improve memory resource utilization as it 

postpones the physical resource commitment to pages until the very 

moment where such pages are required. Low-level page replacement 

policies like LRU, Clock, Working Set, and ARC carry out advanced 

free space management techniques that follow past fault experiences 

to anticipate future access patterns. Many operating systems have a 

mechanism called memory over commit that adds a level of 

abstraction to memory management the total of all virtual memory 

allocated can exceed the amount of physical memory available; it 

allows the free space manager to act as if it had all the resources it 

doesn't currently have at its disposal, based on statistical multiplexing, 

keeping in mind that requesting all allocated memory in the same time 

is rare. Operating systems provide multi-level free space management 
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management of large contiguous regions needed for memory-mapped 

files or shared memory segments, medium-grained management for 

process heap allocations and fine-grained management for kernel-

internal data structures. Most kernel physical frame allocators use the 

buddy system, zones, or some hybrid which tries to optimize 

performance and memory used by balancing the requirements of 

both. Memory compaction methods are used to periodically 

defragment physical memory into larger contiguous ranges, resulting 

in larger contiguous physical memory to service enormous pages 

(megabytes to gigabytes sized pages) on with less TLB pressure on 

applications with sizable working collections. Operating system free 

space manager and processor Memory Management Unit (MMU) 

integration, in particular under NUMA (Non-Uniform Memory 

Architecture), where memory access time varies as a function of the 

distance between processor and memory location, adds more 

complexity. Modern OS uses page migration and allocation policies to 

favor local memory allocation while balancing the load amongst the 

memory nodes. Free space management is furthermore complicated 

when the kernel needs to deal with hardware prefacers, cache 

hierarchies, and memory controllers, as decisions about where to 

place memory affect not only how well you are packing the boxes but 

also the latency of access to boxes and the use of bandwidth. 

Specialized memory types such as persistent memory (PMEM) or 

high-bandwidth memory (HBM) add even more complexity to free 

space management by creating heterogeneous memory pools with 

varying performance characteristics, cost profiles and persistence 

guarantees, necessitating sophisticated tiring and placement 

algorithms. 

User-space Allocators: Design, Implementation, and Optimization 

As the primary interface from applications to the operating system 

memory management facilities—with each user-space memory 

allocator utilizing their own sophisticated free space management 

techniques tuned to application-specific workloads while abstracting 

away system calls and virtual memory operations. Some allocators 

allocate memory in bulk from the OS using sbrk or mmap or some 

other syscall, and implement free space management through return 

stacks and per-thread caches as optimizations on top of the more 
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implementations must strike a balance between performance across a 

variety of workloads with unpredictable allocation patterns, object 

lifetimes and size distributions. These allocators are designed with 

attention to thread safety, cache locality, fragmentation, and 

allocation speed. There are a variety of production-quality 

implementations such as ptmalloc (the allocator used by GNU libc), 

jemalloc, tcmalloc, and mimalloc which in combination cover many 

points in the design space each with a different focus on different 

aspects of the allocation problem. Ptmalloc uses per-thread arenas to 

avoid contention, where each of these arenas implements a hybrid 

best-fit and segregated fit algorithm. Jemalloc, on the other hand, 

focuses on reducing fragmentation by using a carefully chosen set of 

size classes and regularly purging unused memory, making it 

especially well-suited for long-lived applications. The primary focus 

of tcmalloc is scalability in multi-threaded environments using thread-

local caches and a central heap for pages, while mimalloc emphasizes 

security and performance by techniques like eager coalescing and 

secure free lists. Specialized allocators are optimized for certain 

workload characteristics: pool allocators preallocate memory for 

objects of a single size, which allows for very rapid allocation and 

deal location in returns for absolute flexibility; region-based allocators 

(aka arena allocators) allow only bulk deal location, simplifying 

memory management for phases of a computation with well-defined 

lifetimes; and object-specific allocators will implement custom 

strategies that suit particular data structures or usage patterns. In 

garbage-collected environments, free space management encompasses 

memory reclamation by means of automated compaction, and 

allocators that are tailored to work with collector algorithms. These 

allocators commonly reflected fast paths for allocation, object 

contiguity to allow efficient collection, and management of metadata 

for efficient reference tracking. Mark-sweep collectors want 

allocators that can effectively reuse variably-sized free blocks, and 

copying collectors capitalize on bump-pointer allocation strategies 

over if contiguous memory regions. Thread-safe memory 

management functions provide behavioral guarantees that help ensure 

safe usage in multi-threaded environments. Modern allocators utilize 

strategies to reduce contention, such as thread-local caches, lock-free 
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approaches that improve parallelism at the cost of more complex 

memory handling. Optimizing the performance of user-space 

allocators requires clever engineering set of practices like size classes 

where the sizes of various classes were designed to find the trade-off 

between internal fragmentation and management overhead, hot/cold 

splitting, perfecting, and alignment of each slab on the heap to help 

utilization of the hardware. State-of-the-art allocators utilize hardware 

features, e.g., transparent huge pages, non-temporal instructions, and 

cache control primitives, to achieve high performance. Security has 

become an important consideration in the design of allocators, and 

many modern allocations have incorporated additional features such 

as guard pages, canaries, randomization of object addresses, and even 

separation of the metadata of objects from the objects themselves, to 

mitigate issues such as buffer overflows, use-after-free vulnerabilities, 

and double-free attacks. Production allocators are common with cross-

system memory management tricks like madvise calls, decommitting 

of unused pages, memory compaction and so on, which reduce 

physical pages and vastly enhance overall performance. Another 

important aspect of modern allocators is their debug ability and 

introspection capabilities, with support leak detection, heap 

validation, allocation tracking, detailed statistics gathering, etc. to aid 

development and debugging efforts. 

Specialized Free Space Management Systems 

Most memory allocators deal with general-purpose usage, but requires 

for more specialized free space management systems that can fit the 

needs of specific domains also are common an impressive 

demonstration of how the core ideas of memory management can be 

customized to specific restrictions and optimization possibilities. 

While database management systems (DBMS) employ a buffer pool 

manager responsible for many optimizations triggered by the 

integration of a specialized free space manager and the in-memory 

database page cache, the forced-page-layering policies can go beyond 

simple regency used within memory even to page dirtyness, and I/O 

scheduling opportunities, and query execution plans. It is common 

for these systems to include their own application-level memory 

allocators that are attuned to database workloads, with features such 

as block-oriented allocation, specialized structures for index nodes, 
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record information about free space availability, which file systems 

usually do with a bitmap, extent trees, free lists, etc. Copy-on-write 

file systems such as ZFS and Btrfs use novel strategies for file space 

that is free but that also adheres to transactional semantics, while log-

structured file systems like F2FS organize free space around 

sequential writes. Free space management techniques for real-time 

systems trade off memory utilization efficiency for bounded 

allocation and deal location times, which is often more critical than 

memory utilization efficiency in these systems. These systems often 

seldom use variable latency techniques like global coalescing or 

complex search algorithms where the time complexity can rapidly 

increase, in favor of a combination of pre-allocated pools, static 

partitioning, or scope based memory allocation. High-performance 

computing (HPC) environments use specialized allocators that are 

tuned for extreme levels of parallelism, NUMA awareness, and 

dedicated computation patterns. This includes topology-aware 

allocators, custom alignment for vectorized access, and integration 

with job scheduling systems for whole-node memory usage. Graphics 

Pipelins use domain-specific memory management for resources such 

as textures, frame buffers, and geometry data, with custom allocators 

that understand the 2D or 3D nature of the resources and hardware-

specific alignment and padding requierments. Modern GPU compute 

frameworks offer unified memory models with sophisticated free 

space management that crosses host and device memory and 

automatically migrates data based on access patterns, hiding the 

complexity of explicit transfers. However, embedded systems have 

limited memory resources and rely on specialized free space 

management techniques that are applied based on specialized 

constraints such as statically allocated objects that require 

determinism, or objects of fixed size requiring a pool-based 

allocation as well as custom fragmentation mitigation techniques that 

exploit application-specific information about allocation patterns and 

lifetimes. High-throughput, low-latency network stacks employ zero-

copy buffer management and must use specialized memory pools for 

common packet sizes, present in systems such as packet processing 

systems. Garbage collection systems are perhaps the most specialized 

type of free space management, containing techniques such as 
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and region-based collection that take advantage of specific properties 

and information from the managed languages and runtime 

environments. Just-in-time (JIT) compilers manage code memory 

according to their unique needs such as executable memory, 

alignment requirements in addition to constant caches to invalidate 

instructions. For example, hypervisors and virtual machine monitors 

maintain multi-level free space management that must account for 

physical memory allocation to virtual machines and be able to support 

features such as memory ballooning, page sharing by using 

deduplication, and live migration between physical hosts. Container 

runtimes use specialized memory management techniques that work 

with cgroup limits, accelerate page cache pressure and enable 

efficient copy-on-write for container images. Big data frameworks 

also have custom memory management systems understanding the 

lifecycle of distributed computations, with specialized techniques for 

spilling to disk, managing data from shuffles, or leveraging the 

memory of heterogeneous nodes. When it comes to in-memory 

databases and caching systems, free space management is typically 

optimized for key-value storage using techniques such as log-

structured memory allocation or slab allocation to minimize 

fragmentation and maximize throughput. 

Future Directions and Emerging Research in Free Space 

Management 

The state of device-free space management is constantly equipped to 

navigate these shifts driven by technologies, workload characteristics, 

and computing paradigms that are also evolving. Non-volatile 

memory technologies (NVM) like Intel Optane, Samsung Z-NAND, 

and multiple flavors of resistance RAM are obfuscating the classic 

boundary dividing memory and storage, prompting novel Layers of 

Indirection for managing free space that take into consideration 

persistence, wear-leveling, and hybrid memory hierarchies. The 

existence of these technologies brings new floors for multi-tenant 

read / writes performance, write endurance, and failure atomicity that 

lead to research into special-purpose allocators minimizing writes, 

batching updates, and recovering from power failures to keep 

metadata consistent. This heterogeneous memory architectures 

interoperability of DRAM, HBM, NVM, and traditional storage 
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tiering algorithms, placement policies, and migration strategies to 

cost-efficiently accommodate diverse access patterns and performance 

characteristics. Increasing popularity of multi-tenant environments in 

cloud computing has motivated research into isolation-minded free 

space management techniques that avoid performance interference 

while maximizing resource utilization through techniques such as 

page coloring, NUMA-aware allocation, and quality-of-service 

guarantees for memory bandwidth. As free space management 

research has turned to security considerations, new techniques such 

as address space layout randomization (ASLR), fine-grained object 

protection, guard regions, and memory tagging have emerged to help 

mitigate vulnerabilities that spring from mistakes in memory 

management. By combining machine learning and systems 

programming, new horizons emerge learning-based free space 

management with allocation strategies adapting to seen distributions, 

predicting future memory usage patterns with predictive models, and 

employing reinforcement learning to optimize long-term memory 

usage on varied workloads. These allocations of resources are made 

under the influence of energy efficiency, which has become a key 

design constraint in contemporary computing systems and motivates 

research on power-aware memory management techniques that factor 

in the energy cost of allocation decisions, placement decisions and 

data movement operations. To keep up with the never-ending memory 

size race, ignoring the properties of the order-of-magnitude difference 

in the size of memory addressed and the used datasets, research of 

techniques that keep optimal memory behavior at extreme scales such 

as hierarchical metadata, probabilistic (and shrinking) data structures 

for free space management or approximate allocation techniques that 

absolutely do trade perfect allocation size for allocation algorithm 

range - have popped up as points of interest. Rust, Web Assembly, 

and other memory-safe models are inspiring research works on 

ownership-based memory systems that use compile-time knowledge 

about the lifetimes and access patterns of objects to make smarter 

allocation choices and eradicate entire categories of memory errors. 

With the increasing significance of domain-specific workloads such 

as machine learning, genomics, and cryptography — there is a rising 

interest in domain-specific memory allocation strategies that go 
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access patterns/characteristics/life-times/performance requirements of 

such workloads. New concurrency models beyond classical threading 

(e.g., asynchronous programming, actor-based and dataflow models) 

are challenging traditional assumptions of free space management 

regarding thread-local caching, allocation ordering and 

synchronization strategies. Although the field of quantum computing 

is in its early days, it presents many new free space management 

challenges that are opportunities for terrestrial systems, stemming 

from the probabilistic nature of quantum states, finite coherence time 

of qubits, and different demands of quantum algorithms. Besides 

driving technology, methodological innovations in research on free 

space management include enhanced analysis and modeling 

techniques, systematic benchmarking approaches, and formal 

verification techniques that yield stronger guarantees regarding 

correctness, performance characteristics and security properties of 

allocators. Going forward, we will see free space management 

become even more specialization and adaptive, with systems 

dynamically choosing between many different strategies based on 

workload characteristics and the utilization of hardware resources, as 

well as application-specific needs. This evolution reflects the basic 

tension that has always animated memory management: to seek 

general principles that can be productively applied to an ever-wider 

array of computing environments that itself become increasingly 

diverse and specialized, balancing theoretical purity with practical 

matter-of-factness at gradually increasing scales of time, space, and 

complexity. 

Multiple-Choice Questions (MCQs) 

1. Which memory allocation method assigns a single contiguous 

block to a process? 

a) Paging 

b) Segmentation 

c) Contiguous Memory Allocation 

d) Virtual Memory 

(Answer: c) 

2. What is the main drawback of contiguous memory allocation? 

a) High efficiency 

b) Internal fragmentation 
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d) Low overhead 

(Answer: b) 

3. Which memory management technique allows processes to be 

swapped in and out of memory? 

a) Paging 

b) Swapping 

c) Segmentation 

d) Virtual Memory 

(Answer: b) 

4. In paging, what is a page? 

a) A fixed-size block of data stored in main memory 

b) A dynamic memory allocation technique 

c) A method for organizing files 

d) A replacement algorithm 

(Answer: a) 

5. Which type of fragmentation occurs in paging? 

a) External fragmentation 

b) Internal fragmentation 

c) Logical fragmentation 

d) No fragmentation 

(Answer: b) 

6. Which page replacement algorithm replaces the page that has 

not been used for the longest time? 

a) FIFO (First In First Out) 

b) LRU (Least Recently Used) 

c) Optimal Page Replacement 

d) MRU (Most Recently Used) 

(Answer: b) 

7. Virtual memory allows: 

a) More processes to be executed than the available 

physical memory 

b) Only real-time execution of processes 

c) Immediate swapping of processes without demand 

paging 

d) Elimination of the need for secondary storage 

(Answer: a) 
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which it is stored? 

a) Sequential access 

b) Direct access 

c) Indexed access 

d) Random access 

(Answer: a) 

9. What is the purpose of free space management in file systems? 

a) To increase file security 

b) To track unused storage blocks 

c) To reduce file sizes 

d) To prevent user access to certain files 

(Answer: b) 

10. Which of the following is NOT a common file system 

structure? 

a) Single-level directory 

b) Two-level directory 

c) Hierarchical directory 

d) Random directory 

(Answer: d) 

Short Questions 

1. What is contiguous memory allocation, and what are its 

limitations? 

2. Explain the difference between paging and segmentation. 

3. What is swapping, and how does it work in memory 

management? 

4. Define internal and external fragmentation. 

5. What is demand paging, and how does it improve memory 

utilization? 

6. Name and briefly describe two page replacement algorithms. 

7. Define virtual memory, and why is it important in modern 

operating systems? 

8. What are the different file access methods? 

9. Describe the structure of a file system in an operating system. 

10. What are the different techniques used for free space 

management in file systems? 

Long Questions 
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Notes 1. Explain contiguous memory allocation, its advantages, and its 

disadvantages. 

2. Compare and contrast paging and segmentation, highlighting 

their advantages and disadvantages. 

3. Discuss the concept of demand paging, including the steps 

involved and its advantages. 

4. Explain the different page replacement algorithms (FIFO, 

LRU, Optimal) and compare their efficiency. 

5. What is virtual memory? Discuss its role in memory 

management and how it is implemented. 

6. Describe file system structures and explain the different types 

of file organizations. 

7. How are file systems implemented in an operating system? 

Discuss various implementation techniques. 

8. Explain different file access methods, with examples of where 

they are used. 

9. Discuss the challenges of free space management and describe 

the various strategies used to manage free space in file 

systems. 

10. How does file system security impact file management, and 

what are the methods used to ensure data protection? 
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MODULE 4 

DISK SCHEDULING AND DISTRIBUTED 

SYSTEMS 

 

LEARNING OUTCOMES 

• To explore disk structures and scheduling techniques. 

• To understand RAID structures and disk management. 

• To study distributed system structures and file systems. 

• To analyze remote file access, naming, and transparency. 
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4.1 Disk Scheduling and Distributed Systems 

Data management in modern computing systems is a complex dance 

between data requests, commonly controlled by disk scheduling, and 

distributed systems, necessitating effective coordination between 

distributed systems. This article would cover Disk scheduling part 

part of Operating system which is a huge topic and addresses an 

important challenge of minimizing the seek time and maximizing the 

disk throughput. The order in which requests are serviced has a major 

impact on performance, especially when there are multiple processes 

simultaneously requesting access to disk blocks. Many disk 

scheduling algorithms have been designed to solve this optimization 

problem, including First-Come, First-Served, Shortest Seek Time 

First (SSTF), SCAN, C-SCAN, and LOOK. FCFS is a straightforward 

but inefficient disk scheduling algorithm that services requests in the 

order of their arrival; it results in excessive head movement. SSTF 

(Shortest Seek Time First) selects the request with minimum seek 

time from the current head position, optimizing seek time in total but 

may cause starvation to other requests if far from the current head 

position. The elevator algorithm, also known as SCAN, moves the 

disk head either way and services the requests along the way until it 

reaches one end of the disk, at which point it reverses direction. To 

counteract this uneven distribution of service, C-SCAN (Circular 

SCAN) is an option, which moves the head in one direction and 

begins serving requests back at the beginning of the disk instead of 

servicing requests on the back trip. LOOK and C-LOOK are 

optimized versions of SCAN and C-SCAN algorithms, respectively, 

which do not go to the end of the disk if there are no requests in that 

direction. This is single-disk, but distributed systems add even more 

complexity. At first sight, distributed storage and network storage do 

not sound like the same thing. Distributed file systems, like Hadoop 

Distributed File System (HDFS) and Google File System (GFS), use 

data replication and distributed caching to increase fault tolerance and 

approach high performance. These systems also have to manage 

network latency, data partitioning and consistency models (e.g., 

eventual consistency versus strong consistency). In such distributed 

databases, two-phase commit and Paxos are examples of methods to 
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among the nodes. Additionally, incorporating derivative models 

through cloud computing and edge computing has revolutionized 

both disk scheduling and distributed systems, leading to virtualized 

storage and widespread distributed data processing. To address these 

challenges, organizations increasingly leverage cloud storage services, 

such as Amazon S3 or Azure Blob Storage for scalable and durable 

storage, and edge computing platforms that allow for distributed data 

processing closer to end-users to minimize latency and bandwidth 

usage. From these past trends, newer storage technologies such as 

SSDs and NVMe have begun entering the market, with SSDs 

containing orders of magnitude faster access times followed by no 

seek time at all. For such situations, scheduling algorithms usually 

target load balancing/ wear leveling for SSD lifetime support. The 

interaction between disk scheduling and distributed systems remains 

dynamic, as emerging trends in big data analytics, machine learning, 

and latency-sensitive workloads push the boundaries of existing 

architectures, highlighting the need for dedicated research on the 

intersection of storage and distributed domain. 
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4.2 I/O Hardware 

The I/O hardware is the glue that allows seamless interaction between 

a computer and its external environment and is a key component of 

any computing system. Wide variety of I/O hardware, including 

keyboard, mouse, monitor, printer, scanner, network interface, storage 

devices. Each of these devices are communicating through physical 

hardware interfaces and protocols to send and receive data and control 

state. Introduction The fundamental operation of I/O hardware is the 

communication between the CPU and peripheral devices. These 

communications are usually controlled by I/O controllers, dedicated 

pieces of hardware that manage data transfers and interactions with 

external devices. I/O controllers serve as bridges, converting high-

level instructions given by the CPU into low-level signals that the 

peripheral devices can interpret. One such device might be a disk 

controller, which will handle the positioning of the disk head, along 

with actually transferring the data between the disk and the system 

memory. Just like a network interface controller (NIC) is responsible 

for sending and receiving data packets on a network. Further training 

on I/O hardware I/O hardware's continued advancement in speed, key, 

and connectivity older interfaces have been superseded by high-speed 

variants, such as PCI Express (PCIe) or Thunderbolt, which provide 

vastly improved throughput rates compared to their predecessors 

(PCI & ISA). PCIe Domination One notable aspect of the evolution of 

the computer motherboard is the widespread adoption of the PCIe 

standard. The evolution of USB (Universal Serial Bus) has 

transformed the way we connect peripheral devices, offering a 

standardized plug-and-play interface for everything from keyboards 

and mice when was this difference of devices to external hard drives 

and cameras. USB has gone through many generations, and USB 3.0 

and USB 3.1 deliver far greater data transfer speeds than previous 

iterations. These I/O operations can be leveraged as Shared Network 

resources or shared disk network, while the development of wireless 

technology, includes Wi-Fi, Bluetooth that enhance the connection of 

I/O devices and also allows wireless data transfer. The industry 

standard for wireless network connection is Wi-Fi, and Bluetooth is 

used for connecting devices like headsets, speakers, and mobile 
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been a growing need for multimedia applications, and therefore the 

design of specialized I/O hardware, like a graphics processing unit 

(GPU), a digital signal processor (DSP). For instance, GPUs are 

specialized in accelerating graphics rendering and parallel processing 

and DSPs are designed explicitly to process audio and video. As I/O 

hardware gets integrated into embedded systems and the Internet of 

Things (IoT), specialized interfaces and protocols have been 

developed. IoT devices commonly use low-power wireless 

technologies (such as Zigbee and LoRaWAN) to connect to the 

network. All in all, the future of I/O hardware is expected to be 

influenced by ongoing developments in high-speed connectivity, 

wireless technologies, and dedicated processors, leading to more 

immersive and interactive computing experiences. 

Figure 15: I/O Hardware 
[Source - https://www.tutorialspoint.com] 



  

200 
MATS Centre for Distance and Online Education, MATS University 

 

Notes 4.3 Application of I/O Interface 

Due to the versatility of I/O interfaces, they have been utilized in a 

wide range of fields to facilitate communication between computing 

systems and the rest of the world. One key component in the 

architecture of a personal computer is the I/O subsystem that handles 

input and output interactions between the user and multimedia. They 

interact with software applications through the use of input devices 

such as keyboards, mice, and touch screens. Visual output comes from 

monitors and projectors, whereas audio output comes from speakers 

and headphones. Which printers and scanners for 

digitizing/uploading documents and printing output? Multimedia 

applications have spawned specialized I/O interfaces like HDMI and 

Display Port that render high-definition video (HDMI) and audio 

(HDMI, Display Port) output. USB also comes with a variant of 

formats various from regular A/B shaped USB plug and cable 

connection for mobility or as compact as for on the motion like 

portable solid-state driver, USB interface is anyhow most widely 

interfaced connector amongst all peripheral devises from external 

storage devices to cameras has now also become for connectivity in 

mobiles and tablet. Networking I/O interfaces connect computers and 

devices to both local area networks (LANs) and wide area networks 

(WANs). Ethernet interface to translate the packet on a local area 

network (LAN) and modems and/or routers to bridge between the user 

and the internet. Examples of network applications especially web 

browsing, email, and video conferencing depend heavily on the I/O 

interfaces to transmit and receive data. You are specialized in IoT and 

embedded systems ·Complete Input/ Output interfaces Typically, 

however, serial interfaces like UART and SPI are used for 

communication between embedded devices. Wireless interfaces, 

including Bluetooth and Wi-Fi, provide wireless communication 

capabilities for IoT devices, empowering them to connect to the 

Internet. I/O interfaces play a critical role in industrial automation 

systems to control and monitor machinery and processes. I/O 

interfaces are used for data acquisition and control in PLCs and DCS. 

I/O Interfaces: I/O interfaces play a vital role in the communication 

between storage devices and computers/servers. Common interfaces 

for hard drives and SSDs include SATA and NVMe, while Fibre 

Channel and iSCSI are used for SANs. Storage: A bottleneck at scale 
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data transfer and storage management Cloud apps generate enormous 

amounts of data, making high-speed network interfaces and storage 

interfaces critical. I/O interfaces are also used in specialized areas, 

including medical imaging, scientific research, and virtual reality. I/O 

Interfaces are Required in Medical Imaging Devices Instrument and 

scientific devices, famous are Spectrometers, Microscopes, etc. 

Motion tracking and haptic feedback in virtual reality systems is 

managed through I/O interfaces. The automobile and the smarting of 

everything are modes of I/O interfaces that have piqued my interest 

beyond abstraction in a display or monitor. 

Security and Virtualization in I/O Operations 

Such developments, alongside the traditionally more complicated 

computing systems and the growing pervasiveness of virtualization 

technologies, have created an environment of critical concerns of 

security in I/O. The importance of securing input, output, and other 

I/O operations cannot be overstated—from data breaches to system 

compromises and even denial-of-service attacks, vulnerabilities found 

in such interfaces could lead to disastrous consequences. Such 

unauthorized access can lead to theft/corruption of sensitive data 

from I/O devices. I/O drivers and firmware vulnerabilities can be 

exploited by malware to control the system or attack. Secure I/O 

operations: the procedures for protecting I/O devices and data from 

unauthorized access and attacks This entails the use of robust 

authentication and authorization mechanisms, encryption of all data in 

transit and at rest, regular updating of I/O drivers and firmware to 

rectify security vulnerabilities, etc. Implementing additional 

hardware-based security elements, including Trusted Platform 

Modules (TPMs) and secure boot, to further secure I/Os, the field of 

virtualization is already well established, particularly for running 

multiple often disparate operating systems on a single physical 

machine to maximize utilization. 
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4.4 Fundamentals of Disk Structures  

Secondary storage, namely hard disk drives (HDDs) and solid-state 

drives (SSDs), is the bedrock of virtually all computer systems today, 

providing permanent data storage. Now, understanding the structure 

of these disks becomes fundamental to comprehend how data is 

organized, accessed and managed. Data organization HDD 

Hierarchical structure Traditional HDDs use magnetic platters to store 

data. Each platter is divided into concentric circles called tracks and 

tracks are further divided into sectors. Sectors, which are usually 512 

bytes or 4 kilobytes long, are the smallest amounts of data that can 

easily be read or written. The read/write head is mounted on top of 

the actuator arm and on the surface of the platters to access certain 

tracks and sectors. A several platters stacked on an spindle, creating a 

cylinder, which contains tracks at an equal radial distance on all 

platters. The next method of addressing data is by means of cylinder, 

head, and sector (CHS), though this has now been mostly replaced by 

logical block addressing (LBA). LBA abstracts away these physical 

details and presents the operating system with a linear sequence of 

blocks. It abstracts over the disk management and enables faster data 

access. In terms of components, HDD performance is impacted by the 

seek time (the time it takes to move the read/write head to the correct 

track), rotational latency (the time it takes for the target sector to come 

into position by rotating under the head), and data transfer rate (the 

rate at which data can be read or recorded to and from the disk). 

HDDs use spinning disks to write data, SSDs use flash memory which 

removes HDD mechanical components. Every solid-state drive (SSD) 

stores data in the form of blocks and pages, where a page is the 

smallest unit of a read/write operation and a block is a collection of 

such pages. This is because SSDs don't suffer from seek time or rotate 

latency like HDDs do, resulting in much faster access times. But 

SSDs can write only a certain number of times (limited write cycles), 

which is why wear-leveling techniques are used to ensure write 

operations are spread across the memory cells evenly. On the disk, the 

file system handles how files and directories are stored and retrieved. 

It stores metadata with file names, sizes and timestamps, and 

allocates disk space to files. The file system, including boot sector and 
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differently based on the operating system and file system type (e.g. 

FAT32, NTFS, ext4). The file system and the layout of various files 

and directories on disk, for example. 

    

Figure 16: Disk Structure 

[ Source - https://www.computersciencejunction.in] 
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4.5 The Importance and Nuances of Disk Scheduling Algorithms  

In a multitasking environment, typically multiple processes request 

access to the disk at the same time, resulting in a queue of pending 

I/O requests. Various disk scheduling algorithms are used to manage 

the serving sequence of these requests, with the goal of reducing seek 

time and thus enhancing overall disk performance. The floating-point 

purposes of these algorithms have a significant impact on system 

responsiveness and throughput. There are different algorithms to 

detect and decrypt a given cipher text, with their own merits and 

demerits. The first in, first out (FIFO) algorithm is the simplest it 

services requests in the order they arrive. FCFS is fair, but seek times 

can be large if requests are scattered all over the disk. Shortest Seek 

Time First: For each incoming request, SSTF finds the one that has 

the shortest distance from the current head position and fulfills that. 

One drawback of SSTF is starvation, where requests too far from the 

head get stalled indefinitely. Another simple method is the SCAN 

algorithm (for "elevator"), in which the head moves in one direction, 

servicing requests as it finds them, until it reaches the end of the disk 

and then reverses direction. However, while SCAN is favorable for 

fairness, it may still become detrimental to requests at the far side of 

the disk, resulting in these requests having very long waiting times. C-

SCAN (Circular SCAN); A variant of SCAN where the disk arm 

services requests in one direction only. C-SCAN offers more 

consistent wait times than SCAN. Continued algorithm of SCAN 

and C-SCAN are LOOK and C-LOOK respectively. They do not 

move to the end of the disk but instead only the farthest request in the 

current direction. Decreasing unnecessary head movement all the 

while enhances performance. Depending on the workload and 

performance requirement, different disk scheduling algorithms can be 

chosen. The SSTF or LOOK algorithms may be used for applications 

with large amounts of random workload. Instead, SCAN or C-SCAN 

algorithms may be better for workloads that have sequential requests. 

One such advanced disk scheduling algorithm is the Deadline 

algorithm, which supports real-time guarantees based on the request 

deadlines. In some cases, the OS may also employ hybrid strategies, 

blending various algorithms to achieve the best performance over a 
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algorithms is critical in devising optimal disk management strategies. 

4.6 Comprehensive Disk Management Techniques 

Proper disk management is essential for keeping systems functioning 

efficiently, ensuring that data remains intact, and that resources are 

used in an optimal manner. It involves various methods such as disk 

formatting, partitioning, file system management, and disk 

defragmentation. Formatting a disk sets up a file system structure 

that's required to use the disk. This relies on writing metadata to the 

disk, like the boot sector, the file allocation table and the directory 

structure. Disk partitioning is a technique by which we divide the 

physical disk into logical partitions and use these partitions to run 

multiple operating systems or file systems on a single disk. Partitions 

are like separate disk drives and they help keep everything organized 

and flexible. File systems manage how files are stored and retrieved 

in storage systems. The file system maintains data structures (such as 

inodes and file allocation tables) to track the location and metadata of 

files. In this article, we will learn about disk cleanup, disk 

defragmentation, how to disk defragmentation and why we need to 

perform disk defragmentation? How fragmentation happens over 

time, files can get fragmented. Defragmentation restacks these 

fragments into cluster blocks minimizing seek time and thus file 

retrieval. In GNU/Linux, Disk quotas are used to limits, or restrict the 

amount of disk space that users or groups can consume, preventing 

disk space exhaustion, and thus ensuring fair resource distribution. 

RAID 1; Disk Mirroring RAID 1, or Disk Mirroring, creates a mirror 

copy of the data across multiple disks for redundancy and flock 

tolerance. In the event of failure of one disk, the system can still run 

with the mirrored copy. With disk striping (RAID 0), data is spread 

across many disks to accelerate read/write speeds. But RAID 0 does 

not offer redundancy. RAID 5 and RAID 10, for instance, offer both 

striping and mirroring to provide a balance between performance and 

redundancy. Disk caching can save the data that is used very 

frequently in the memory and avoids the excess work over the disk. 

When the cache is full, you use some cache replacement algorithm 

like LRU (least recently used) or LFU (least frequently used) to 

decide which data to remove from the cache. Disk scheduling 

algorithms are also an important aspect of disk management and they 
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order of I/O requests. When merged, all of them form a potent and 

operational disk management system. 

Advanced Disk Management and Optimization  

Also, advanced disk management encompasses more technical 

strategies that enhance performance, reliability, and security. The 

introduction of SSDs has brought both challenges and opportunities 

for disk management. Wear leveling, garbage collection, and TRIM 

commands are all functions designed to improve the performance and 

longevity of the SSD. In order to avoid this premature wear the flash 

controller needs to implement what is called wear leveling which 

distributes the write operations among the memory cells. When blocks 

are no longer needed, they will be freed up through garbage 

collection, with this process helping to make writes faster. TRIM 

Command Which Helps SSD to Recover Deleted Data It is 

accomplished through disk encryption which secures sensitive data 

by encrypting it prior to writing it to a disk. While full-disk encryption 

(FDE) encrypts the entire disk, file-level encryption encrypts 

individual files. When files get compressed, the amount of disk space 

required to store data storage gets lessened. So that means you turn in 

the no compression, -- no bzip2, -- and you run through the lossless 

compression algorithms (gzip, zip). Disk snapshots → create point-

in-time versions of the disk. They are implemented using copy-on-

write and redirect-on-write and other techniques. Centralized storage 

solutions, such as storage area networks (SANs) and network-

attached storage (NAS), support large environments. SANs use high-

speed fiber channel or iSCSI connections for block-level access to 

storage, and NAS uses Ethernet connections for file-level access. 

Logical Units (LUNs) for storage are created by these storage 

virtualization solutions, which abstract their resources. and can create 

virtual pools of storage to efficiently resize dynamically. Thin 

provisioned - storage allocated on demand to avoid wasting space. 

Using storage tiering, commonly used data is automatically placed to 

faster tiers, like SSDs, while data that is accessed less frequently can 

remain in slower tiers, like HDDs. AI/ML together is becoming as a 

powerful method to focus on performance, reliability, and cost of 

storage infrastructure in organizations. 
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Notes Emerging Trends and Future Directions in Disk Storage and 

Management  

Constantly innovating itself and evolving with technologies and the 

data storage needs. New paradigms, such as the adoption of NVMe 

(Non-Volatile Memory Express) and NVMe-oF (NVMe over 

Fabrics), persistent memory technology, and the increasing use of 

cloud-based storage systems, represent the future of storage, 

Branham added. What is NVMe: NVMe is an interface protocol 

focused on high-performance SSDs and can achieve much higher 

data transfer rates than other interfaces such as SATA and SAS. 

NVMe-oF adds a layer of abstraction to NVMe, allowing NVMe 

traffic to be sent over network fabrics like Ethernet and Fibre 

Channel, facilitating high-speed remote storage access. 

4.7 RAID Structure 

RAID (Redundant Array of Independent Disks) is a technology that 

uses multiple hard disk drives to achieve redundancy and/or 

performance improvements. Essentially, RAID is designed to increase 

the reliability and speed of data storage by spreading the data across 

multiple disks in such a manner that the impact of a single disk failure 

is minimized. It was first introduced during the late 1980s in an effort 

to satisfy the demand for both fault-tolerant and high-performance 

storage in increasingly complex computing environments. RAID 

levels differ in terms of data distribution and protection. At its most 

basic level, RAID 0 (striping) splits evenly or by segments of data 

across two or more disks, allowing simultaneous access that 

maximizes read and write speeds. That said, RAID 0 provides no 

redundancy, so the failure of a single disk results in loss of all data. 

RAID 1 (mirroring): Data is stored on two (or more) disks as a copy 

for 100% redundancy. Whether you lose one disk, data is still 

accessible from the other. RAID 1 is known for great fault tolerance, 

but it halves the available storage capacity because every piece of 

data is written twice. RAID 5, known as striping with distributed 

parity, is a balance between RAID 0's speed and the redundancy of 

having parity information spread across all of the disks. The parity 

information can be used to reconstruct data in the event of failure of 

any one disk, which gives a compromise between performance and 

fault tolerance. RAID 6 (striping with double parity) is like RAID 5, 

but includes two sets of parity data, meaning it can recover from two 
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takes the mirroring and striping approach to combine both high 

performance and high redundancy. Requires at least four disks, with 

data mirrored across each of pairs of (2) disks and then striped across 

the mirrored pairs. RAID 01 (or RAID 0+1) combines striping and 

mirroring by striping data across disks and mirroring it to another 

group of striped disks. The one significant difference between RAID 

10 and RAID 01 is the order of operations: RAID 10 mirrors then 

stripes, but RAID 01 stripes then mirrors. Different RAID levels cater 

to varying applications based on the requirements of performance, 

redundancy, and the cost. For instance, where database servers use 

RAID 10 or RAID 5 for best performance and data protection, video 

editing workstations may use RAID 0 for speed. Along with these 

conventional RAID levels, there are also some proprietary RAID 

implementations that provide additional features and capabilities. 

These approaches might have different flavors of the standard levels, 

or they might have completely new ways of distributing and 

protecting data. There are primarily two types of RAID 

implementations, software RAID, which is based on an 

implementation from the operating system, and hardware RAID 

which is based on dedicated, physical RAID controller. Hardware 

RAID provides a higher level of performance and reliability because 

the RAID processing is offloaded from the CPU, whereas software 

RAID is more cost-effective and more flexible. Choosing a RAID 

level is a decision that balances performance and cost from the 

perspective of redundancy. Making the most appropriate selection 

operates based on having a crystal clean insight of the particular non-

IT related demands of the usage, in addition to all of the high level 

attributes of the RAID amounts on offer. Moreover, new RAID 

formulations and optimization methods have emerged, due to 

ongoing changes in storage technology like with solid-state drives 

(SSDs) and NVMe. They provide far superior performance to legacy 

hard disk drives (HDDs) and they need different techniques in order 

to implement RAID. It is also leading to more and more RAID-animal 

hybrids with SSD and HDD storage as writing in storage can be more 

costly but would require only a fraction of the speed needed for a 

read. RAID technology has been sold on many fronts, and the future 

of RAID will most certainly lead to more seamless integration with 
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protection solutions. This will encompass improvements on error 

correction, prediction of possible failures and automated data recovery 

systems. It aims at building intelligent storage systems which are 

self-managed, fault free and performant. 

4.8 Distributed System Structure  

A distributed system is a system whose components are located on 

different networked computers, which communicate and coordinate 

their actions by passing messages to one another. Such computers (or 

nodes) exchange messages over a network and coordinate their 

actions. Distributed system’s main purpose is to share resources and 

it achieves scalability, fault tolerance, and improved availability. 

Distributed systems, in contrast to centralized systems (where a 

single server processes and stores data), reduce the risk of failure and 

increase system performance by distributing processing and storage 

over multiple nodes. While they offer numerous benefits, distributed 

systems can be challenging to implement and require careful design 

and management to ensure reliability and efficiency. Distributed 

systems and their architecture play a vital role in promoting 

performance, scalability and fault-tolerance. A very common 

architecture pattern is a client-server where there are clients sending 

requests to the server in orders to get some services. This is a very 

common model in web applications where web browsers (clients) 

serve requests for web pages from web servers. Another architectural 

pattern you can choose is P2P (peer-to-peer), where all nodes are 

equal and have the same role and responsibility. Typically, P2P 

networks are utilized for file sharing and distributed computing. 

Another one is Layered Architecture, where the system is organized 

into layers, where each layer provides a particular range of services. 

As a result, it encourages modularity and results in a simpler system 

design. Microkernel architecture, where the operating system kernel 

provides the fewest number of services necessary and other services 

run in user space. This architecture expands both flexibility and fault 

tolerance. In this approach, the operating system itself is distributed 

among multiple nodes, that is, a more integrated distributed operating 

system. This alternative offers users a more transparent and seamless 

experience. Of course there are things to consider when designing a 

distributed system, such as communication, synchronization, fault 
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means of message passing, that can be either synchronous or 

asynchronous. The former involves synchronous communication; the 

sender must be willing to wait for a response from the receiver, 

whereas with the latter, the sender can keep on doing their processing 

without waiting for a response. Synchronization is vital to managing 

the functionality of different nodes, so that they act in a coherent and 

consistent way. This can be done using different mechanisms like 

distributed locks and consensus algorithms. The tolerance of faults of 

the system is the ability of the given system to keep working with the 

failure of the nodes. Redundancy and replication is how this is 

accomplished. As distributed systems are vulnerable to multiple types 

of attacks, such as denial-of-service attacks and data breaches, 

security is also a crucial issue in these systems. Protecting the system 

and its data requires security measures such as encryption and 

authentication. The scalability of a distributed system refers to its 

capacity to manage higher workloads with the addition of nodes. 

Horizontal scaling adding nodes to the system, or vertical scaling 

upgrading the nodes' hardware, will allow those storage systems to 

scale out and handle more traffic. The decision tree for whether to 

scale horizontally vs. vertically is app-specific. And how do we define 

the reliability of a distributed system? They do this by the use of 

techniques such as redundancy, full copies of data, and error 

correction and detection. Its ability to perform tasks efficiently and 

effectively is the performance of a distributed system. Load 

balancing, caching, and parallel processing are a few techniques that 

will help- Distributed systems are set to witness advancements in the 

realm of cloud computing, edge computing, and the Internet of 

Things (IoT) in ongoing future. With data being the operative word, 

fall of data sizes means the systems need to be adequately 

sophisticated to manage such data internally or over the network only. 

4.9 Distributed File Systems (Approx. 1900 words) 

A distributed file system (DFS), is a file system that enables clients to 

access and share files stored on multiple servers over a network as if 

they are stored on a single, local file system. DFSs are critical for 

supporting collaboration and sharing in distributed settings. They 

offer a single namespace so that users can access files without 

understanding the underlying location of the file. We can find very 
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tolerance and cover the performance maximally. Scalability The file 

system's capacity to manage growing volumes of data and user 

requests. This is done in two ways either adding more servers to the 

system. Availability: It allows the file system to be still available in 

the failure of the servers. This is done with replication and 

redundancy. Fault tolerance refers to the ability of the file system to 

tolerate errors or failures and continue operating correctly. Data 

redundancy and error detection and correction mechanisms are 

employed to achieve this. Performance defines how fast and 

efficiently the file system can grant access to the files. It can be 

performed with caching, load balancing, and parallel processing. A 

common architecture of a DFS is a client/server model where the 

client accesses files from the server. The metadata about the files, 

including things like their names, permissions, and locations, are 

stored on one or more metadata servers. This is where the actual file 

data is stored which is on data servers. The metadata servers maintain 

the namespace and information about where the file is contained, 

while data servers store and access file data. Network File System 

(NFS), Andrew File System (AFS) and Hadoop Distributed File 

System (HDFS) are common DFS architectures. One of the most 

popular examples of DFS is NFS (Network File System), which 

enables clients to access files located on remote servers on the 

network. It uses client-server architecture and provides an easy and 

efficient way to share a file. AFS is a more advanced version of DFS 

with added strength, security, scalability, and so forth. It employs a 

distributed caching mechanism to boost performance. HDFS is a DFS 

for large-scale data processing. It enhances the performance of the 

Hadoop Framework and gives a high throughput as well as fault 

tolerance. With that said, designing a DFS comes with many 

challenges such as naming, caching, replication, and consistency. 

4.10 Naming and Transparency Remote File Accesses 

Naming and transparency are paramount themes in distributed 

systems, especially for remote file accesses. These principles provide 

a way for users and applications to behave as if they were working 

with files on local disk, to speak with data located on remote servers. 

At core, naming is about establishing a logical, human-friendly way 

to identify and locate files in a distributed setting. This includes 

https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
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the physical location of the data and the logic used to access it, 

permitting users to specify a file with a symbolic name, rather than a 

complex network address. Transparency, in contrast, is the extent to 

which a distributed nature of the system is hidden from users. A 

distributed file system should fundamentally attempt to be as 

transparent as possible, where accessing remote files should seem no 

different from accessing a local file. This includes location 

transparency (the user doesn't know where the file actually resides), 

access transparency (the same access methods are employed for local 

and remote files), and concurrency transparency (simultaneous access 

to a shared file is together without interference from users). The 

difficulties in working to implement these transparencies are 

profound: they involve coordinating operations across a collection of 

machines, isolating the impact of network latencies, and so on, 

including reintegrating which nodes may fail. The nomenclature 

schemes used have to be robust, scalable and be able to adapt to the 

dynamic nature of a distributed environment. These higher-level 

abstractions are often implemented using techniques such as 

hierarchical naming (where names to files are organized into logical 

structures through directories and subdirectories, and through physical 

access paths) and attribute-based naming (where files are referenced 

based on their attributes). Moreover, name resolution must also be 

performed by the system, as symbolic names must translate to 

physical addresses efficiently.  

If you have to implement remote file access systems, I suggest you 

think about the different design choices you make and the overall 

performance, scalability, and reliability of the system that you end up 

with. The right file access protocols is one key factor. They establish 

the methods of communication between clients and servers, outlining 

the process of file requests and data retrieval. In file sharing, protocols 

like Network File System (NFS) and Server Message Block (SMB) 

are prevalent, each with its unique benefits and trade-offs. For 

example, NFSis known for its simplicity and platform independence; 

SMBis frequently used in home windows environments and has 

strong support for file sharing and printing. Caching strategy is 

another important design consideration. Caching refers to holding 

repeatedly accessed information on the machines of the client, 
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often improve performance markedly, but also brings cache 

consistency challenges. When the same file is coached by multiple 

clients, it must ensure that all clients have the latest version. To solve 

this problem there are some techniques such as cache invalidation, 

write through cache and others. And, the system needs to deal with 

fault tolerance. In a distributed system, failures are not a bug; they are 

a feature. Servers can crash, and networks can be disconnected, and 

data can be corrupted. The files system needs to be built to endure 

such failures and should guarantee that services are available and data 

is not lost. This can include techniques such as data replication to 

multiple servers, error detection and recovery mechanisms, and using 

distributed consensus algorithms to ensure consistency in the presence 

of failures. Another vital component of accessing files remotely is 

security. The system will only allow authorized users to expose 

sensitive data, and must implement access control mechanisms for 

this purpose. For instance, you might implement authentication 

protocols to confirm the identity of users, apply encryption to keep 

data secure while it's being transmitted, and create access control lists 

that limit what specific users and groups are allowed to do. 

The rise of the internet and distributed computing has left an imprint 

on the development of remote file access. The initial systems 

emphasized simple file sharing in localized networks. With the 

increasing prevalence of networks, there was demand for more 

advanced systems able to operate in large-scale distributed settings. 

Evolution in remote file access: From e-mails to cloud computing In 

the 1990s, the use of e-mail grew exponentially. The level of scaling 

and availability of these services is like never before with the ability 

to access your data from virtually anywhere on the planet. But they 

also bring mew risks concerning data security, privacy, and 

compliance. With the rising data generation and storage, works on 

efficient ways of data storage and retrieval have also increased. 

Today’s distributed file systems are designed to store petabytes and 

even exabytes of data, employing techniques such as data striping, 

erasure coding and distributed hash tables. There are also file access 

systems for mobile devices that are more adapted to low-bandwidth 

and intermittent network connections. Offline caching and data 

synchronization techniques are often employed to ensure that the data 
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to the network. This trend toward edge computing, in which data 

processing and storage are pushed closer to the edge of the network, 

is also affecting how remote file access systems are designed. Edge 

computing can help reduce network latency and improve 

performance by processing data locally. These trends are expected to 

shape the future of remote file access, which will determine how we 

seamlessly, securely, and efficiently access data in increasingly 

complex and distributed environments. 

There are numerous, difficult trade-offs to make when you strive for 

transparency in remote file access. Network latency Fixed by: 

Implementing zero-trust principles One of the key obstacles is 

network latency. Data network round trip latency degrades both the 

network file access response time and the remote file system 

performance. Many systems approach this through techniques like 

caching and prefetching that try to predict your data and pull data on 

your behalf before you actually ask for it. Yet, these techniques also 

add additional complexity regarding cache consistency and data 

staleness. The second issue is partial failure. In a distributed 

environment, you can have failures in some components while the rest 

are running. If this is not controlled properly it can lead to data 

inconsistencies and corruption. To do this we use distributed 

consensus algorithms (like Paxos and Raft) to make sure that all 

replicas in the system of a file are in sync, even in the presence of 

failures. These algorithms enable a set of machines to reach 

consensus on a value, even if some fail. Yet, their implementation 

may also be rather complex and can incur a performance overhead. 

Another major concern is security. The remote file access systems 

must protect the data from unauthorized access, modification, and 

disclosure. This calls for strong authentication and authorization 

mechanisms, together with encryption to secure data at rest and in 

transit. This has led to a great focus towards security in distributed 

file systems due to the rising frequency of cyber-attacks. Scalability is 

another important factor to consider. File systems need to scale as 

they scale to continue to feast on more users and more data. This 

necessitates thoughtful design of data structures, algorithms and 

protocols. Sharding (partitioning data across multiple machines) and 

load balancing (distributing requests among servers) are applied to 
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systems and devices each client has. Client support: File systems 

need to interact with a diverse set of clients, which may have varying 

levels of capabilities and limitations. This may include platform-

independent protocols and data formats. the principles of naming and 

transparency are central to the design and implementation of remote 

file access systems. High levels of transparency in using Reveal 

require overcoming many performances, consistency, fault tolerance, 

security, and scalability challenges. The need for better remote file 

access has emerged with the rise of distributed computing and the 

internet and later cloud computing, which led to the development of 

solutions for accessing data in new, massive and distributed 

environments, given the necessary emphasis on access without 

intervening systems on the data access process, while maintaining 

security and efficiency in data transfer. It is probable that some of the 

trends that will either directly or indirectly define the future of remote 

file access will include edge computing, mobile computing, and the 

growing volume of data, as there will be a need to build even more 

intelligent and adaptive systems. The continued evolution of new 

technologies and protocols will further enhance the performance, 

reliability, and security of remote file access, allowing users to access 

their data from anywhere and at any time. 

 

Multiple-Choice Questions (MCQs) 

1. Which of the following is NOT a disk scheduling algorithm? 

a) First-Come, First-Served (FCFS) 

b) Shortest Seek Time First (SSTF) 

c) Round Robin (RR) 

d) SCAN 

(Answer: c) 

2. Which component is responsible for managing input and 

output operations in a computer? 

a) CPU 

b) I/O Controller 

c) Cache Memory 

d) Registers 

(Answer: b) 
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a) To facilitate communication between the CPU and 

storage devices 

b) To execute user programs 

c) To process high-priority interrupts 

d) To store temporary data 

(Answer: a) 

4. Which of the following is a primary function of disk 

management? 

a) Process scheduling 

b) Memory fragmentation 

c) Formatting and partitioning disks 

d) Program execution 

(Answer: c) 

5. Which RAID level uses striping without redundancy? 

a) RAID 0 

b) RAID 1 

c) RAID 5 

d) RAID 10 

(Answer: a) 

6. What is the key characteristic of a distributed system? 

a) Centralized control over all processes 

b) Multiple independent processors working together 

c) Use of a single file system for all devices 

d) Only local execution of processes 

(Answer: b) 

7. Which of the following is NOT an advantage of a distributed 

file system? 

a) Scalability 

b) Data redundancy 

c) Single point of failure 

d) Remote file access 

(Answer: c) 

8. What is transparency in a distributed system? 

a) The ability to hide implementation details from users 

b) A mechanism for encrypting data 

c) The process of data fragmentation 

d) A technique for improving network latency 
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9. Remote file access allows users to: 

a) Access files stored on a local disk only 

b) Retrieve and modify files stored on another system 

over a network 

c) Use physical hard drives instead of cloud storage 

d) Remove files permanently from all servers 

(Answer: b) 

10. Which disk scheduling algorithm favors the request closest to 

the current head position? 

a) FCFS 

b) SSTF 

c) LOOK 

d) C-SCAN 

(Answer: b) 

Short Questions 

1. What is the purpose of disk scheduling in an operating 

system? 

2. List two common disk scheduling algorithms and briefly 

explain them. 

3. What is an I/O interface, and why is it important? 

4. Explain the basic structure of a hard disk. 

5. What is the function of a RAID system, and why is it used? 

6. Differentiate between RAID 0 and RAID 1. 

7. What are distributed systems, and how do they improve 

computing efficiency? 

8. Define naming transparency in a distributed file system. 

9. What is remote file access, and how does it benefit users? 

10. How does a distributed file system differ from a traditional file 

system? 

Long Questions 

1. Explain the need for disk scheduling and discuss different disk 

scheduling algorithms. 

2. What are the key components of I/O hardware, and how do 

they function? 

3. Discuss the applications of an I/O interface in operating 

systems. 

4. Explain the structure of a hard disk and its role in data storage. 
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Notes 5. Compare different RAID levels and their advantages and 

disadvantages. 

6. What is a distributed system, and how does it improve 

resource utilization? 

7. Discuss the features and architecture of a distributed file 

system. 

8. Explain the concept of naming transparency and its 

importance in distributed systems. 

9. How does remote file access work, and what are the security 

concerns associated with it? 

10. Analyze the challenges in implementing distributed systems 

and how they can be overcome. 
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MODULE 5 

STATEFUL VERSUS STATELESS SERVICE AND 

SHELL PROGRAMMING 

 

LEARNING OUTCOMES 

• To understand stateful and stateless services in OS. 

• To explore different shell programming techniques. 

• To study command execution processes and shell scripting. 

• To analyze decision-making selections and function parameter 

passing in shell scripts. 
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Notes Unit14: Shell Programming & Introduction to Shell 

Programming 

 

5.1 Shell Programming & Introduction to Shell Programming 

In the realm of operating systems, particularly Linux and Unix, the 

shell is a crucial command-line interpreter, bridging the gap between 

the user and the kernel, the core of the operating system. It allows 

users to interact with the computer by executing commands, 

managing files, and controlling system processes via a text-based 

interface. Shell programming is simply writing the shell command 

language scripts for repeating the tasks and is used to create powerful 

utilities. Essentially, the shell is a command line interpreter which 

takes commands from the user and translates them into instructions 

that the kernel can comprehend and execute. This feature is not 

limited just to running a single command; all in one and you can write 

complex scripts to automate repetitive tasks, manage the system 

configuration, and process data in a complex structure. By 

combining, controlling execution, and calling various available 

commands or built-in functionality, the shell is very powerful and 

flexible. The basics of shell programming using various shells are 

taught as an essential aspect of the concepts of operating system 

development by undergraduate students, highlighting their 

significance in system administration as well as automation. The shell 

environment gives students a direct view into the inner workings of 

the operating system: they can experiment with system commands 

and see their effects firsthand, gaining a hands-on understanding of 

how the operating system works. Students pursuing careers in 

computer programming, software development, and systems 

administration gain important hands-on experience. Users write shell 

scripts that are a single file combining multiple commands, 

automating complex workflows and eliminating manual steps. Tools 

and Utilities: You can write shell scripts to create custom utilities and 

tools that extend the OS's capabilities, enabling users to customize 

their environment according to their specific requirements. 

Additionally, shell scripting offers a programming environment with 

access to variables, control flow (loops and if statements), and 

functions, making it a powerful medium for writing complex 

programs. With the help of variables, users can store and manipulate 
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can be controlled based on specific conditions. With functions, a user 

can encapsulate reusable code blocks, promoting modularity and 

facilitating code reuse. Shell also has a rich set of built-in commands 

and utilities like file manipulation, references, and system 

administration commands which you can use inside the scripts. All 

these built-in functions, along with the shell's ability to use scripts, 

make it a powerful platform for building all sorts of applications. 

Shell programming is a skill set that is fundamental and a necessary 

basic building skill for more advanced aspects of programming. 

Learning to write shell scripts teaches students critical skills such as 

the ability to solve problems, think through their logic, and break 

complex tasks into smaller, more readable actions. Students aiming to 

be proficient programmers and system administrators require this 

hands-on learning. 

Shell programming is the foundation of understanding how to use 

commands. The command language of the shell is made to be 

predictable and simple to Joomla, its key strengths being simplicity 

and versatility. Commands are usually specified as a command name, 

its options, and its arguments. If options customize how a command 

runs, arguments define what data or files the command manipulates. 

The -l option lists the contents in a long format; so, for one example, 

ls lists the contents of a directory. Structured... Shell scripts are 

usually written in some text editor and saved with a. sh extension. 

The first line of a shell script contains a command that indicates 

which shell interpreter to use to execute the script, usually #! 

/bin/bash for the Bash shell. This is called the shebang, it informs the 

operating system that the script uses the interpreter that follows it. 

The shell script you can call with a simple command like 

shellscriptname, and it will execute commands sequentially, and any 

command can take the output of another command using pipes and 

redirection. Pipes enable the output of one command to be passed as 

input for another, while redirection enables you to redirect the input 

and output of a command to files or other devices. Shell 

programming variables: Variables are used to store data in a shell 

programming script. Values are assigned to variables using the = 

operator, while values can be accessed using the $ symbol. Built-in 

Shell Variables: The shell also has a set of built-in variables that 
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working directory, and the user's login name. Control structures, (if 

statements, for loops, etc.) these are used by users to execute flow 

control in scripts. If statements are used to execute different 

commands based on specific conditions, and for loops that enable 

users to iterate over a set of values or files. Functions allow users to 

wrap reusable code sections, fostering modularity and code reuse. 

Undergraduate students, within their learning and understanding of 

these basic concepts can also start building their own shell scripts to 

automate some of their tasks and processes. The big power of shell 

programming being able to connect all other programming languages 

and tools together. Some of the programs could be written in other 

languages, such as C, Python, and Perl, and shell scripts could invoke 

these programs and also pass data from one program to the other. 

Since shell can integrate other utilities, it is suitable for building 

complicated applications/systems. A shell script, for example, can be 

used to compile and run a C program, or to manipulate data produced 

by a Python script. Shell scripts can mix in with other UNIX and 

Linux commands to carry out basic tasks or perform more complex 

actions. Shell Environment for Debugging and Troubleshooting 

(ShellNamespaces.com) The set command will enable debugging 

options such as command execution tracing and variable value output. 

Here at SCRIPT execution the value of the messages and the value of 

the variables get displayed with the help of echo command, these are 

very helpful to understand errors and find the bugs. Command-line 

debuggers, like bashdb, are also supported with shell programming 

and offer advanced debugging capabilities, including but not limited 

to breakpoints, stepping, and variable inspection. These debugging 

tools help undergraduate students to learn how to write solid and 

dependable shell scripts. System administrators also benefit from 

shell programming since they use shell scripts to automate routine 

tasks such as system maintenance, managing user accounts, and 

monitoring system performance. Shell scripts also enable 

administrators to build custom tools and utilities that can be used for 

system administration tasks, making it easier for them to work 

efficiently. As I mentioned earlier, a shell script can be used to 

automate some tasks such as creating user accounts, installing 

software packages, or copying system files. Finally, the study of shell 
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careers in computer science and its allied fields. It is a command line 

shell that serves as a powerful and flexible environment to automate 

tasks, to customize the operating system and to integrate with other 

programming languages and tools. Students learn the command line 

and write their first shell program, without any knowledge, become 

the groundwork for learning about operating systems and basic 

building blocks of sysadmin and automation. If you don’t know how 

shell scripting sessions work, that’s fine but you should, because 

writing scripts isn’t enough to be a good shell programmer. The shell 

is a command line interpreter which allows the user to input 

command to manage the processes, files and configurations on the 

system. Shell programming is an important tool for both system 

administrators and developers as it has a close link with the operating 

system. Moreover, the shell provides advanced scripting features that 

allow you to combine multiple commands into a sequence of actions. 

The versatility of the shell comes from its ability to compose existing 

commands, control the flow of the program, and to leverage its rich 

set of built-in capabilities to manipulate data. Shell programming also 

exposes students (primarily in their undergraduate curriculum) to a 

programming paradigm which they can extend into other languages as 

they learn them. These types of programming quizzes can help 

students practice their problem-solving skills, as shell scripting 

requires not only knowledge and skills IT but they know how to put it 

to use. This hands-on experience is critical for students who want to 

become competent programmers and system administrators. The Shell 

Shells are essential because they enter every organization with X 

applications. Shell programming allows for building complex 

systems, from automating software product development workflows 

via web servers and databases. With the advancement of technology, 

the need for skilled shell programmers will only rise; it is an essential 

skill for students to learn. 

5.2 Various Types of Shells and Their Comparisons 

Many more shell implementations were developed over the years, 

each featuring different syntax and capabilities, targeting various user 

bases and needs. These different types of shells play a significant role 

in system administration and software development. Purely 

repercussive shells including the Bourne shell (sh) were the very 
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Notes early shells whilst targeting simplicity and efficiency, looking only 

towards basic command execution and scripting functionality. The 

syntax of the Bourne shell, while perhaps not as powerful as its 

successors, served as the blueprint for the development of future 

shells. With advancements in computing, users began to have 

different needs, and thus, more advanced shells were created that had 

better features and functionalities. You might also implement a more 

interactive feature such as command history, job control, and aliases 

with csh, etc. Its C-like syntax attracted C users, though the C shell's 

scripting capabilities had received complaints as inconsistent and 

limited. David Korn wrote the Korn shell (ksh), which attempted to 

merge the best features of the Bourne and C shells in an interactive 

and scripting environment. It also added command-line editing, job 

control improvements and many other features that made it popular 

among system administrators. The Bourne-Again shell (bash) is an 

improved version of the original Bourne shell that adds many features 

from the Korn shell and C shell and is the default shell for most 

Linux distributions. Bash has numerous more advantages and options 

for the interactive user and the script writer, together with command-

line completion, history growth, and plenty of scriping choices. This 

popularity is due to its ability to run Bourne shell scripts, as well as 

its extensive feature set and availability. In addition, yet another 

popular shell is the Z shell (zsh), which is built on top of bash to 

provide advanced features like advanced command-line completion, 

spell correction, and plugin support. Make Zsh Your Own (and Others 

Again) Zsh is highly customizable and extensible, which is why it is 

loved by power users and developers. Now when it comes to 

comparing these shells, things like syntax, scripting capabilities, 

interactive features, and customization options come into play. With 

simplicity and efficiency, the Bourne shell didn't offer many user-

friendly features introduced in later shells. While the C shell is 

interactive, it isn't that great for scripting. The Korn shell strikes a 

good balance between interactive and scripting features, while bash 

and zsh have plenty of features aimed more at interactive use with the 

script features there too. The normal shell to use is a matter of 

preference this leads to bash and zsh being the most popular and 

recommended for use due to the large set of features. 

5.3 Command Execution 
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Notes Here are the steps of command execution in a shell: parsing the 

command line, executing the corresponding command, collecting the 

result. The shell is the command-line interface that is responsible for 

processing user input. It expands. The shell makes lots of expansions 

variable expansion, tilde expansion, wildcard expansion, and so on to 

fix any special characters or variables in the command line. Variable 

expansion will put the value of variables instead of the variables in 

command, which allows us to build a command dynamically. Tilde 

expansion refers to the opening of a user account in this directory 

using the tilde character (~) for ease of use, so that users do not have 

to write out the full path to the user's home directory when the file or 

directory is in the home directory. Using Wildcard expansion means 

expanding the patterns using Wildcards like and?, thus allowing a 

user to perform operations and actions on multiple files with a single 

command. Then, after the parsing and argument expansion the shell 

checks whether the command executed is a built-in command or an 

external command Built-in commands include the commands that are 

implemented in shell itself, eg commands like cd, echo, exit etc. The 

commands here are run in the shell itself without invoking a new sub 

process. External commands refer to program residing on a file 

system like ls, grep, and gcc. When an external command is executed, 

the shell forks a new process calling fork system call and the image of 

the new process is then replaced with the specified program using the 

exec system call. Creating a child process through the fork system call 

including a new process replacing its memory through the exec 

system call The shell also waits for the process to terminate by using 

the wait system call once the program executes. Next, the shell 

collects the exit status of the process, which tells it if the command 

successfully executed or if an error occurred. Input Output 

Redirection (Using and ) Shell uses special characters like and to 

redirect input and output. The input is read from a file using input 

redirection Used to send the output from one command to another 

command as input, which gives the user the ability to elaborate 

commands and create complex operations. Another topic which is 

essential to command execution is job control, allowing users to run 

multiple processes at one time. The shell has commands like bg, fg, 

and jobs to manage the transitions between foreground and 

background processes, and to list background jobs that are currently 
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Notes running. In addition to handling separate processes, the shell also 

handles signals, which are messages sent to any process to notify it of 

asynchronous actions like interrupts, termination requests, and errors. 

The shell includes commands such as kill that are used to send 

signals to processes, enabling the user to kill or otherwise control their 

behavior. The understanding of these steps and functionalities is 

required to work with command line in an efficient manner as well as 

scripting. 

5.4 Detailed Breakdown of Command Execution Processes 

In order to do more details about command execution, we need 

discuss what happens behind the scene. The shell’s parser goes to 

work as soon as a command is typed; breaking down the input into its 

parts: the command name, any arguments, and options. Parsing is a 

critical stage for the shell to know the user's intention. After parsing, 

the shell begins a sequence of expansions to convert the command 

line to its equivalent executable form. The heart of Bash, variable 

expansion replaces variables with their assigned values, enabling the 

flexible crafting of commands. Variable DIR is set to 

/home/user/documents so when command cd $DIR runs it is 

substituted into of cd /home/user/documents before executing. Tilde 

expansion is a shortcut for navigating and designating files, 

converting ~ to the user's home directory. Another powerful feature of 

the shell is wildcard expansion, which lets you apply operations to 

multiple files based on a pattern. For instance, ls. Txt will show the 

output of all files with. in the current directory. Hash table or after 

expansions, the shell determines whether the command is built-in 

Unix like operating system command execution is an essential 

concept that enables all user interactions and system activities. Once 

a user provides a command to the shell, it goes through a complex 

sequence of processes that converts the command to actions that can 

be executed. First, the shell parses the command line, splitting it into 

separate tokens, like the command name and its arguments. This 

parsing includes anything from interpreting special characters, to 

quote-handling to wildcard expansion. The shell also aliases, allowing 

users to define custom command line shortcuts to possible forward to 

common command lines. After that, the shell looks for built-ins, 

commands that are built into the shell itself, like cd, echo, or exit. In 

case the command is built-in, the shell executes the command itself, 
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Notes so no new process needs to be created. Then if the command is not a 

built-in, the shell searches the directories in the PATH environment 

variable for an executable file of this name. PATH is a colon-

separated list of directories that the shell looks through, in turns. The 

shell forks a new process using the fork system call when it has 

located the executable file. The child process subsequently invokes 

the exec set of system calls to overlay its image with the executable 

file of its command. The parent shell process, on the other hand, 

invokes the wait() system call to block whilst the child process 

executes. The input and output streams are controlled via file 

descriptors when the command is executed. Standard input (stdin), 

standard output(stouts)and standard error(stderr) are usually attached 

to the terminal, but they can be redirected to files or passed to other 

commands. The shell also handles environment variables (key-value 

pairs that hold relevant information to processes). These variables can 

affect the way commands execute and are passed through to sub 

processes. After executing the command, the child process exits, 

providing an exit status reflecting success with zero or an error with a 

positive integer. The parent then displays its prompt, awaiting the 

next command. From parsing the command line to managing 

input/output and environment variables, the shell orchestrates this 

entire process, and acts as the main interface between the user and the 

kernel of the operating system. Therefore, for the effective fulfillment 

of tasks of a system administrator and shell programmer, it is 

important to have knowledge of this process to understand the very 

process of command execution and control over it. In this context, 

shell programming, the act of developing scripts that automate and 

enhance the capabilities of the command-line interface, is an 

incredibly powerful tool for both system administrators and 

developers. Different shells, like Bash, Zsh, and Ksh, offer different 

levels of features and syntax, with their respective strengths and 

weaknesses. Bash (Bourne Again SHell) is a widely used Linux shell 

that is the default shell in many distributions, and it is also the most 

commonly used shell for writing scripts. You can use variables, 

conditional statements, loops, and functions within Bash scripts to 

create complex automation routines. Bash variables are dynamically 

typed and can hold strings, numbers, or arrays. Flow Control; Uses 

conditional statements for decision making (if, elif, else) Sequence, 
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Notes selection, and repetition: The sequence section specifies a list of 

commands to execute one after the other, while conditional execution 

(via an if statement) allows for decisions to be made in the flow of 

code, and for loops, such as for and while, permit commands to be 

executed in repeat for a number of times, automating tasks that would 

otherwise require manual intervention. Bash functions help in making 

the scripts modular, organized, and reusable. Another popular shell is 

Zsh (Z Shell), which extends many of the features found in Bash and 

also offers better tab completion, spell checking, and theming. Zsh is 

highly customizable and configurable, making it great for users that 

want to make their shell environment suited to their specific 

freedoms. Enter Ksh (Korn Shell) a shell that merges the best of 

Bourne shell and C shell, providing an efficient and powerful 

scripting environment. These two features make ksh widely used in 

terms of performance while retaining compatibility for older shell 

scripts. Another thing to keep into consideration when writing shell 

scripts is that there are best practices—using comments to explain 

what the code is doing, using proper variable names, error handling, 

and so on. Error handling is done by conditional statements and the 

trap command, which enables the execution of certain commands on 

receiving certain signals. Shell also communicates with the operating 

system by making system calls or executing any external commands.  
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Notes Unit 15: Shell Programming in Different Shells 

 

5.5 Shell Programming in Different Shells 

The script uses grep to search for pattern(s) in files, or use sed to 

perform basic text transformations. Automation alone is just a small 

part of writing shell scripts, but to add more utilities that help within 

the command-line interface. Learning shell programming can help 

users automate tasks, understand the inner workings of the shell, and 

improve their productivity. Now a further look into shell 

programming in one of the most popular shell, Bash shows a lot of 

rich functionality for automating complex tasks. A bash script starts 

with a shebang line, Already, the first line starts with /bin/bash, which 

refers to the interpreter that is used to run the script. Bash does not 

require explicit types when declaring variables, which are referenced 

using the prefix. syntax is used for arithmetic operations, and various 

built-in commands or parameter expansions are used for string 

manipulations. Conditional statements including if, elif, and else are 

used to make decisions based on whether an expression evaluates true 

or false in Bash. These may be comparisons of strings, numbers, or 

file properties. Bash loops: for, while and until loop in Bash allow 

you to run the same command multiple times. The for loop is 

especially handy to iterate over collections of items; whereas while 

and until loops are used to iterate conditionally. In Bash, you define 

a function by writing the keyword function, or by writing the function 

name followed by parentheses. Makes up the arched arguments and 

return values that enable modular and reusable code. One of the core 

parts of bash scripting is the input and output redirection. The 

operator writes standard output to a file, and the operator appends 

standard output to a file. Pipes Let’s us link commands together so 

that the output from one command is the input to the next command. 

Bash error handling can be done using conditional statements and 

trap command. The command trap enables us to execute some specific 

commands whenever we receive some signals such as, SIGINT 

(interrupt), SIGTERM (terminate) etc. It offers several built-in 

commands like grep, sed, awk, and cut for text processing and data 

manipulation. Together with its scripting capabilities, Bash can easily 

be one of the most powerful tools in automating work and managing 

systems. Learning what Bash scripts are and why they matter are key 
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Notes for any Linux or Unix-like operating systems user looking to write 

automation that is as efficient and effective as possible. 

While Bash has wide availability, features unique to Zsh and Ksh 

showcase the variety of shell programming. Zsh provides more 

powerful interactive features like improved tab-completion, spelling 

correction and a powerful theming system. That is not all, the tab 

completion in Zsh is context-sensitive, suggesting commands 

depending upon the type of command and the arguments being passed 

against them. Say goodbye to typing long command names and file 

paths, this feature improves our productivity considerably. So, user's 

after most time are looking for more spelling verification, Zsh 

automatic corrects typos for command names and file paths, making 

the interactive experience better. Zsh theming feature provides 

customizing functionality to alter the look and feel of the shell prompt 

and surrounding components. In addition to this, Zsh offers advanced 

scripting features like arrays and associative arrays alongside regular 

expressions, which makes it an excellent tool for automating complex 

tasks. Another powerful shell that combines features of a Bourne shell 

and a C shell is Ksh, the Korn Shell. Ksh does, however, have great 

performance and compatibility with older shell scripts. Ksh supports 

functions, arrays, arithmetic operations and all the other bells and 

whistles a programming language would have. Ksh also supports 

powerful features like co-processes, enabling commands to run 

simultaneously. This is Ksh as it plays along with legacy Bourne shell 

scripts popular with many system admin type users. Shell is broadly 

categorized into two different ways, which is, one is Zsh and Ksh that 

have some syntax and file features. Hope this answers your question 

while most of the fundamental features and syntax (for example: 

variables, conditional branching statements, looping constructs) are 

similar albeit with minor variations in all of these shells, the 

differences can be subtle enough to mess up the behaviour of your 

scripts. For instance, Bash's syntax for arithmetic operations, or array 

manipulations, is different from Ksh and Zsh. The aim of this article 

is to explore these differences and ultimately to write portable and 

compatible shell scripts, Zsh has many interactive features that make 

it a better choice for interactive work, while Ksh may perform better 

for system administration tasks. This can help users to expand their 

shell programming toolkit and pick the individual shell that may serve 
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Notes them best. To summarize, command execution process and shell 

programming are the integral concepts of Unix and Unix-like 

operating systems. The shell remains the primary interface between 

the user and the kernel, handling the actual execution of commands 

and overseeing input/output and environment variables. Shell 

programming, the art of writing scripts that automate tasks and 

extend the utility of the command-line interface, is a powerful weapon 

in the arsenal of any system administrator or developer. There are 

different shells like Bash, Zsh, and Ksh with different levels of both 

features and syntax. Here we will focus on "Bash" the popular default 

shell used on many Linux distributions. The parameter passing is the 

mechanism in which the values are sent from a function to its caller. 

When a function is invoked, its caller has to provide the values that 

will be passed as arguments to the function to perform its operation. 

The two main forms of parameter passing are pass-by-value and pass-

by-reference. Pass by value is when you pass a copy of the value of 

the argument to the function. The parameter is a local variable within 

the function that refers to the same object in memory as the argument 

passed when the function is called. This approach is used when the 

function needs a copy of the data to work with and is not going to 

modify the original. This gives the caller more control over their data, 

providing a degree of safety by preventing unplanned side effects, 

since the callee never has access to the original data. Instead, pass-

by-reference passes the address in memory of the argument being 

passed to the function. Any modification to the parameter inside the 

body of the function modifies the argument in the caller. This is 

required when the function may need to update the data inside caller 

or typically used for large data structures where copying it would be 

costly. Pass-by-reference enables functions to alter multiple values 

and to produce results via their parameters. But it also has the 

potential for unintended side effects: If the function changes the 

caller’s data in an unexpected way. Pass-by-constant-reference is a 

similar variation some programming languages do offer this is when 

the function can access the caller's data, but there is no ability to 

modify it. This gives the performance of pass-by-reference, but the 

data protection of pass-by-value. Many times, you need to decide if 

you want to pass-by-value or pass-by-reference. If you want a 

function to be able to change the data from the caller, then pass-by-
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Notes reference is the way to go. If the function only needs to work with a 

copy of the data (for example, if it is going to mutate it), then you 

should use pass-by-value as it is a lot to pass the data structure as a 

reference. It is really important to know how args are passed because 

it matters for writing efficient and correct code passing a parameter 

incorrectly causes obfuscated bugs which are hard to find and correct. 

For instance, passing a complex data structure by value incurs an 

overhead in performance because of the copying process. Just as we 

can accidentally modify the caller's data by passing the variable by 

reference manually, we can do this just as easily by passing it by a 

default value. Parameter passing is not confined to primitive data 

types; it is also relevant for complex data structures, including arrays, 

objects, and pointers. Similar rules apply for when passing arrays or 

objects, however may differ from language to language. Some 

programming languages may pass arrays by reference, while others 

may use relinquish via value by default. Details of our parameter 

passing are also important in function interface designs Developers 

can write flexible and robust functions by carefully selecting the 

correct parameter passing strategy. They are able to design reusable 

components that can be easily integrated into different parts of a 

program. Long story short, parameter passing is a fundamental 

concept in programming that enables functions to communicate with 

their callers. 

5.6 Comparison of Shell Features in Detail 

Building on the above shell comparisons, the unique set of features of 

each opens them up for specific use cases and a dedicated user base. 

The Bourne shell is the most basic (the original) and most portable. 

Its syntax, although bleak compared to shells in widespread use today, 

is extremely consistent, meaning it’s great for writing scripts that 

need to work on a huge number of systems. Its main purpose is to 

execute commands and handle simple scripting tasks. But it does not 

implement any of the interactive features like command history, job 

control, aliases or things that modern interactive usage relies upon. 

The C shell (csh), aimed at a more casual user base, brought many 

virtual machine-like features that fundamentally changed how users 

interacted with commands and their arguments. It was much more 

convenient for interactive use due to its command history, aliases, and 

job control. Yet, the scripting functionalities were often mocked for 
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Notes their inconsistencies and non-standard syntax. Things like its 

handling of control structures and variables were seen as clunky and 

error-prone. To overcome the limitations of both Bourne and C shell, 

the Korn shell (ksh) was introduced which provided a powerful 

versatile environment for interactive use as well as scripting. It 

combined features from shells, including command-line editing, 

improved job control, and better scripting features. Its scripting 

syntax, for instance, was bolder and more consistent than that of the C 

shell, which made it a favorite of systems administrators and 

developers alike. The Bourne-Again shell (bash) is one of the most 

popular it is compatible with Bourne shell scripts, comes with many 

powerful features, and is very commonly available. Bash is as 

customizable as it gets and has tons of features under the hood for 

interactive use as well as for scripting. Its powerful command-line 

completion, history expansion, and rich scripting capabilities make it 

popular with both casual users and advanced developers. Bash is an 

acronym for the Bourne Again Shell, signaling that its scripting 

syntax is from the Bourne shell, but with many improvements and 

extensions that deliver much more power and flexibility. Fast forward 

to zsh, which adds even more advanced features on top of bash. 

Power users and developers love it for its enhanced command-line 

completion, spelling correction, and its support for plugins. Zsh is 

customizable and extensible, enabling users to customize their shell 

environment according to their needs. Oh My Zsh, its plugin system, 

offers a large library of plugins and themes, so you can easily extend 

the shell's functionality and appearance. All shells have their own 

unique strengths and weaknesses, so users should evaluate based on 

individual requirements. The Bourne shell might be enough for some 

simple scripting tasks. The C shell or Korn shell might be good for 

writing the shell scripts interactively. For a robust and flexible shell 

that works great interactively and can be scriptable faster than you can 

say "reverse-timestamp-auto complete", bash or zsh is the way to go. 

If you prefer a command-line shell that is compatible with most Unix 

systems, Bash would be a good option, whereas if you want extensive 

customizability, zsh would be preferable. 

 

Multiple-Choice Questions (MCQs) 

1. Which of the following is NOT a type of shell in Unix/Linux? 
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Notes a) Bourne Shell (sh) 

b) Korn Shell (ksh) 

c) Python Shell (pysh) 

d) C Shell (csh) 

(Answer: c) 

2. Which shell is the default for most Linux distributions? 

a) C Shell (csh) 

b) Korn Shell (ksh) 

c) Bash (Bourne Again Shell) 

d) Z Shell (zsh) 

(Answer: c) 

3. In a shell script, which symbol is used for comments? 

a) // 

b) # 

c) /* */ 

d) $ 

(Answer: b) 

4. Which command is used to make a shell script executable? 

a) chmod +x script.sh 

b) execute script.sh 

c) run script.sh 

d) compile script.sh 

(Answer: a) 

5. What is the correct syntax for an if statement in a shell script? 

a) if (condition) then ... fi 

b) if [ condition ]; then ... fi 

c) if condition { ... } 

d) if: condition -> ... fi 

(Answer: b) 

6. Which command is used to display the currently running 

processes in Linux? 

a) ps 

b) ls 

c) pwd 

d) kill 

(Answer: a) 

7. What is the purpose of the read command in shell scripting? 

a) To print text on the screen 
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Notes b) To read input from the user 

c) To delete a file 

d) To execute another script 

(Answer: b) 

8. Which loop structure is used in shell scripting to repeat 

commands? 

a) while 

b) do-while 

c) until 

d) Both a and c 

(Answer: d) 

9. Which symbol is used for passing parameters to a shell script? 

a) & 

b) % 

c) $ 

d) # 

(Answer: c) 

10. What is the function of the grep command in shell scripting? 

a) To search for a pattern in a file 

b) To copy a file 

c) To move files 

d) To delete files 

(Answer: a) 

Short Questions 

1. What is shell programming, and why is it used? 

2. List and explain three types of shells in Unix/Linux. 

3. What is the difference between interactive and non-interactive 

shells? 

4. How does command execution work in a shell? 

5. What is the purpose of the shebang (#!) line in shell scripts? 

6. How does decision-making work in shell programming? 

Provide an example. 

7. What is a function in shell scripting, and why is it useful? 

8. How can parameters be passed to a shell script? Provide an 

example. 

9. Explain the use of filters like grep, awk, and sed in shell 

programming. 
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Notes 10. What is the difference between $1, $2, and $@ in shell 

scripting? 

Long Questions 

1. Explain the concept of shell programming, its importance, and 

common applications. 

2. Compare various types of shells (sh, bash, csh, ksh, zsh) and 

their differences. 

3. Discuss the command execution process in Linux, from user 

input to execution. 

4. Write a shell script to check if a given number is even or odd. 

Explain the script. 

5. What is decision-making in shell scripting? Provide examples 

of if, case, and for loops. 

6. Explain functions in shell scripting, how they work, and their 

advantages. 

7. How does parameter pass and argument handling work in shell 

scripting? Provide examples. 

8. Describe how filtering commands like grep, sed, and awk are 

used in shell programming. 

9. Explain error handling and debugging techniques in shell 

scripting. 

10. Write a shell script that accepts a filename as an argument and 

checks whether it exists and is readable. Explain the script. 
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