
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Advanced Java Programming
Master of Computer Applications (MCA)

Semester - 2

Master of Computer Applications

Course Introduction 1

Module 1

Object-oriented programming concepts and implementations

3

Unit 1: OOPS Concepts and implementation 4

Unit 2: Package Concepts and Implementation 29

Unit 3: Managing Errors and Exceptions 49

Unit 4: Multithreading 54

Module 2

JavaFX technology

61

Unit 5: Introduction to JavaFX, Features, Architecture & Application 62

Unit 6: Java 2D Shapes, Colors, Text 75

Unit 7: FX Effects 79

Unit 8: JavaFX Transformation 83

Unit 9: FX Animation 84

Module 3

Servlet technology

91

Unit 10: J2EE Introduction and Architecture 92

Unit 11: Java Servlet 111

Unit 12: Servlet Life Cycle 114

Module 4

JSP Technology

179

Unit 13: Introduction, Need and Benefit of JSP, Life Cycle of JSP 180

Unit 14: JSP Scripting Elements 183

Unit 15: Implicit Object 186

Module 5

Spring and Spring Boot Framework

196

Unit 16: Introduction to Spring Initializing and Writing Spring application 197

Unit 17: Dependency Injection 203

Unit 18: Developing web applications 206

References 218

Advanced Java Programming

 ODL MCA-201

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Balendra Garg, Associate Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Dr. Balendra Garg, Associate Professor and Mr. Sanjay Behara, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-14-2

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in

any form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1

COURSE INTRODUCTION

Java is a powerful, object-oriented programming language widely

used for developing robust, scalable, and secure applications. This

course provides a comprehensive understanding of object-oriented

programming concepts, JavaFX for building graphical user interfaces,

and advanced web development technologies such as Servlets, JSP,

and the Spring Framework. Students will gain both theoretical

knowledge and hands-on experience in designing and developing

modern Java applications.

Module 1: Object-Oriented Programming Concepts and

Implementations

Object-oriented programming (OOP) enhances code

reusability, scalability, and maintainability. This Unit

introduces key OOP concepts such as encapsulation,

inheritance, polymorphism, and abstraction. Students will

learn how to implement OOP principles in Java, utilizing

classes, objects, and design patterns for efficient software

development.

Module 2: JavaFX Technology

JavaFX is a modern Java framework for developing rich

graphical user interfaces (GUIs). This Unit explores JavaFX

components, event handling, layout management, and styling

using CSS. Students will learn how to create interactive

desktop applications with advanced UI controls and

multimedia integration.

Module 3: Servlet Technology

Servlets are essential for developing dynamic web applications

in Java. This Unit covers the fundamentals of Servlet

technology, HTTP request/response handling, session

management, and database connectivity using JDBC. Students

will learn how to create server-side applications that handle

web-based interactions efficiently.

Module 4: JSP Technology

JavaServer Pages (JSP) enable the development of dynamic

web pages by integrating Java with HTML. This Unit

introduces JSP scripting elements, directives, custom tags, and

1

expression language (EL). Students will gain experience in

developing interactive and data-driven web applications using

JSP and Servlets.

Module 5: Spring and Spring Boot Framework

Spring is a powerful Java framework for building enterprise

applications, while Spring Boot simplifies application

development with pre-configured setups. This Unit explores

Spring Core concepts, dependency injection, Spring MVC,

and RESTful API development using Spring Boot. Students

will learn how to build scalable and efficient Java applications

using industry-standard frameworks.

2

MODULE 1

OBJECT-ORIENTED PROGRAMMING

CONCEPTS AND IMPLEMENTATIONS

LEARNING OUTCOMES

• To understand the fundamental concepts of Object-Oriented

Programming (OOP).

• To explore the implementation of OOP principles in Java.

• To analyze package concepts and their implementation.

• To study error handling and exception management.

• To understand multithreading concepts and network

programming.

• To explore Java Database Connectivity (JDBC) and its

architecture

3
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Object Oriented Programming Concepts

and Implementation

OOPS Concepts and Implementation

Object-Oriented Programming (OOP) is a paradigm that has made its

way to becoming the most powerful paradigm in the software

development arena, changing the very notions of how programmers

see the world, how they design, and execute the systems. OOP

essentially reflects the way in which we view the real world,

consisting of a group of individual objects, each with its properties

and functions, and among them making meaningful relationships.

Java, which first came into the world in the mid-1990's, has had the

reputation as being one of the leading standard-bearers for object-

oriented principles, supporting a rich, platform-independent

environment which embraces the object-oriented paradigm. While

procedural programming is based on functions or the sequence of

operations, OOP focuses on objects and methods rather than

functions, making them modular. This paradigm transformation

cemented OOP as the preeminent approach for designing large,

intricate software solutions across a wide array of sectors, whether

enterprise applications, web services, mobile devices, or embedded

systems.

The beauty of OOP in Java is that it’s organized around six core

concepts, namely classes, objects, encapsulation, inheritance,

polymorphism and abstraction. However, these principles operate in

concert to form a coherent framework that allows developers to model

the entities and relations of the real world in their code. Thus, classes

are templates that outline both features (attributes) and functionalities

(methods) of objects, whilst objects are actual manifestations of these

classes, encapsulating their details and bringing them to life in your

code. In encapsulation, a protective barrier is set around the object,

and the data is restricted from outside access and modification.

Inheritance defines the relationships between the base classes and the

derived classes. A derived class can also access the members of the

base classes. Polymorphism adds a layer of flexibility as an object

can use different behavior based on its context, even when derived

from common interfaces. With abstraction, developers can override

complexity, working only on properties that are relevant, while

4
MATS Centre for Distance and Online Education, MATS University

Notes hiding behind implementation. These principles form the bedrock on

which Java's approach to software development is built, providing

developers with a robust arsenal for crafting clean, efficient, and

maintainable code. This in-depth resource goes into each of the core

OOP principles in detail, explaining the theory behind them and how

you can apply them in practice in Java. We will explore how these

principles manifest in coding practices through step-wise explanation,

examples and applications. When developers understand these

principles, they can exploit the full power of Java object orientation

and create applications that are not only functional, but also robust,

flexible and scalable. This guide is a good fit for you if you are either

brand new to programming wanting to get started with object oriented

programming using basics of Java or you are a seasoned developer

wanting to learn the philosophical point behind the syntax of Java and

how Java implements object orientation as a the main paradigm of

programming, and what makes it one of the oldest and well built and

most used programming languages in the software development

industry.

Classes and Objects:

Java is an object-oriented programming language and classes and

objects are the building blocks of the object-oriented programming in

Java and the framework on which the whole paradigm is based on.

Java class: A class in Java is a blueprint or template that defines the

properties (attributes) and behaviors (methods) that are common to a

particular type of entity It summarizes the core attributes that

Figure 1.1: Classes and Objects
[Source: https://in.pinterest.com/

5
MATS Centre for Distance and Online Education, MATS University

Notes characterize what an object is and the actions that specify what an

object can do. View a class as an abstract thing—it's the idea of

something. For example, a Car class, will have attributes like color,

make, model, and year as well as methods like accelerate(), brake(),

and turn(). Note that the class itself does not represent any specific

car; it describes the structure that all cars in the program will adhere

to. On Java, a class is specified with the Keyword, course, myClass

and any code that contains area ideas, constructors, and method

definitions. This organized way of defining a class allows developers

to process strong units that truly represent real-world objects.

Classes exist as concepts that define the nature and behavior of

objects, while objects are specific occurrences of classes, actual

implementations of those ideas. Java implements an object creation

concept named instantiation where an object is created with the new

keyword followed by calling the constructor method. This action

reserves memory space for the object, sets the fields, and returns a

reference to the newly created instance. All fields in the object state

independently of all objects in the same class So with one Car Object

we might call accelerate () to increase its speed, but another Car

Object stays at 0. This allows objects to model separate entities that

can collaborate with one another in the program. Classes are the

blueprints for objects; they define the properties and methods that the

instantiated objects will have, while objects are the actual entity that is

created based on those blueprints — the things we work with in the

program.

This interplay between classes and objects is what allows Java

developers to write modular, organized code that accurately reflects

complex systems. By implementing proper OOP principles,

programmers are able to group together properties and methods,

allowing for the code designed to easily be reused and maintained.

Say for example, in a banking application, the classes could be:

Account, Customer, Transaction, Branch. Classes would represent

different entities, such as bank accounts, customers, transactions, and

branches, and they would define both the properties and behaviors

associated with these entities. This allows you to think of the program

as a collection of interacting entities instead of a series of operations,

more naturally matching how we approach thinking about systems in

the real world. Moreover, the class-object model promotes teamwork

6
MATS Centre for Distance and Online Education, MATS University

Notes across different teams of developers by defining clear boundaries as

well as interfaces between various elements in a system. However, as

long as team members follow the contract, they can work on different

classes independently, which can provide significant speedups during

development of large-scale applications. This clever interplay of

classes and objects grants Java nimbleness and versatility by offering

a well-defined framework for creating complex software systems that

can grow and evolve over time.

// Example of a class definition in Java

public class Car {

 // Attributes (fields)

 private String make;

 private String model;

 private int year;

 private String color;

 private double speed;

 // Constructor

 public Car(String make, String model, int year, String color) {

 this.make = make;

 this.model = model;

 this.year = year;

 this.color = color;

 this.speed = 0.0;

 }

 // Behaviors (methods)

 public void accelerate(double amount) {

 speed += amount;

 System.out.println("Car accelerating. Current speed: " + speed +

" mph");

 }

 public void brake(double amount) {

 if (speed >= amount) {

 speed -= amount;

 } else {

7
MATS Centre for Distance and Online Education, MATS University

Notes speed = 0;

 }

 System.out.println("Car braking. Current speed: " + speed + "

mph");

 }

 public void turn(String direction) {

 System.out.println("Car turning " + direction);

 }

 // Accessor methods (getters)

 public String getMake() {

 return make;

 }

 public String getModel() {

 return model;

 }

 public int getYear() {

 return year;

 }

 public String getColor() {

 return color;

 }

 public double getSpeed() {

 return speed;

 }

 // Object creation and usage example

 public static void main(String[] args) {

 // Creating objects (instances of the Car class)

 Car myCar = new Car("Toyota", "Camry", 2023, "Red");

 Car friendsCar = new Car("Honda", "Civic", 2022, "Blue");

 // Using object methods

8
MATS Centre for Distance and Online Education, MATS University

Notes System.out.println("My car is a " + myCar.getColor() + " " +

 myCar.getYear() + " " + myCar.getMake() +

 " " + myCar.getModel());

 myCar.accelerate(30);

 myCar.turn("right");

 myCar.brake(10);

 System.out.println("Friend's car is a " + friendsCar.getColor() + "

" +

 friendsCar.getYear() + " " + friendsCar.getMake() +

 " " + friendsCar.getModel());

 friendsCar.accelerate(45);

 friendsCar.turn("left");

 friendsCar.brake(15);

 }

}

Encapsulation:

Encapsulation is one of the four core principles of Object-Oriented

Programming and signifies the concept of encapsulation where

objects hide information and provide controlled access to its internal

state. In its simplest form, of encapsulation is bundling attributes

(data) and the methods that affect those data into a single entity (class)

and restricting access to the internal constituents of that entity. This

Figure 1.2 : Encapsulation
Source: https://www.simplilearn.com/

9
MATS Centre for Distance and Online Education, MATS University

Notes mechanism acts as a wall between the object with a hidden value and

code running outside it, the latter running any interference with an

external code trying to meddle with an object's hidden variable. Java

encapsulation is mainly achieved using access modifiers, which are

keywords that determine the visibility or accessibility of a class

member (private, protected, and public). Private modifier allows code

from other classes to access the field only if it is defined in the same

class, which makes it an essential tool for encapsulation. This protects

the object's characters from being accessed by external code directly,

and keeps the object's data valid without invalidating its state in its

fucking life. Java developers can create more portable and reusable

software components through effective encapsulation by separating

an object's implementation from its interface.

Default encapulation is very simple in Java, for achiving default

encapulation we use encapsulation like if you need we declare class

attributes as private and provides public methods (getters and setters).

This strategy has some major benefits in software development. First,

it gives the class designer the ability to enforce validation right in the

setter methods, making sure that attributes can only be assigned valid

values. For example, a setter method for an employee's salary might

check that the new salary value is positive and in a reasonable range

before making the change. Second, encapsulation allows internal

implementation details to change, without having to change any code

that uses this class. The public interface may be the same while

changing the internal representation of the attribute from some simple

primitive type (string, integer, etc.) to a complex object, thereby

allowing keeping the backward compatibility. Third, encapsulation

allows for additional logic to be attached to the reading or writing of

properties — think of logging a change, notification of observers, or

maintaining consistency between related properties. While the

contract enforced by this controlled access pattern ensures that

systems are more easily predictable and maintainable over time.

Encapsulation also serves as a guiding principle for software design,

ensuring loose coupling and separation of concerns. Encapsulation

minimizes inter-component dependencies by hiding implementation

details and presenting only necessary interfaces. This modularity

allows different classes to evolve separately so long as they adhere to

10
MATS Centre for Distance and Online Education, MATS University

Notes their contractually specified interfaces, which also allows for parallel

development and incremental modification of large codebases.

Encapsulation also enables defensive programming practices by

minimizing the exposure of attributes—once they can only be

changed through cleanly defined methods, the places where bugs

might creep in are limited and hence can be easily located.

Encapsulation also implements the principle of least privilege in

software design, which ensures information is accessible only on a

need-to-know basis. Limiting access rights reduces the risk of security

vulnerabilities and side effects in complicated systems. By providing

such a wide variety of advantages, encapsulation become a core

principle of Java programming, empowering developers to build

software that is not merely functional, but also secure, maintainable,

and adaptable to changing needs.

// Example of encapsulation in Java

public class BankAccount {

 // Private attributes - hidden from outside access

 private String accountNumber;

 private String accountHolderName;

 private double balance;

 private String accountType;

 private boolean isActive;

 // Constructor

 public BankAccount(String accountNumber, String

accountHolderName, double initialDeposit, String accountType) {

 this.accountNumber = accountNumber;

 this.accountHolderName = accountHolderName;

 this.balance = initialDeposit;

 this.accountType = accountType;

 this.isActive = true;

 }

 // Getter methods - controlled access to private attributes

 public String getAccountNumber() {

 // Return masked account number for security

11
MATS Centre for Distance and Online Education, MATS University

Notes return "XXXX-XXXX-" +

accountNumber.substring(accountNumber.length() - 4);

 }

 public String getAccountHolderName() {

 return accountHolderName;

 }

 public double getBalance() {

 return balance;

 }

 public String getAccountType() {

 return accountType;

 }

 public boolean isActive() {

 return isActive;

 }

 // Setter methods - controlled modification with validation

 public void setAccountHolderName(String accountHolderName) {

 if (accountHolderName != null &&

!accountHolderName.trim().isEmpty()) {

 this.accountHolderName = accountHolderName;

 } else {

 throw new IllegalArgumentException("Account holder name

cannot be empty");

 }

 }

 // No setter for account number - it should not be changed after

creation

 public void setAccountType(String accountType) {

 if (accountType != null && (accountType.equals("Checking") ||

 accountType.equals("Savings") ||

 accountType.equals("Investment"))) {

12
MATS Centre for Distance and Online Education, MATS University

Notes this.accountType = accountType;

 } else {

 throw new IllegalArgumentException("Invalid account type.

Must be Checking, Savings, or Investment");

 }

 }

 public void setActive(boolean isActive) {

 this.isActive = isActive;

 }

 // Business methods that modify the private attributes in a

controlled way

 public void deposit(double amount) {

 if (!isActive) {

 throw new IllegalStateException("Cannot deposit to inactive

account");

 }

 if (amount <= 0) {

 throw new IllegalArgumentException("Deposit amount must

be positive");

 }

 balance += amount;

 System.out.println("Deposited: $" + amount + ". New balance:

$" + balance);

 }

 public void withdraw(double amount) {

 if (!isActive) {

 throw new IllegalStateException("Cannot withdraw from

inactive account");

 }

 if (amount <= 0) {

 throw new IllegalArgumentException("Withdrawal amount

must be positive");

13
MATS Centre for Distance and Online Education, MATS University

Notes }

 if (amount > balance) {

 throw new IllegalStateException("Insufficient funds");

 }

 balance -= amount;

 System.out.println("Withdrawn: $" + amount + ". New balance:

$" + balance);

 }

 // Example usage

 public static void main(String[] args) {

 BankAccount account = new BankAccount("1234567890",

"John Doe", 1000.0, "Checking");

 // Access attributes through getters

 System.out.println("Account: " + account.getAccountNumber());

 System.out.println("Holder: " +

account.getAccountHolderName());

 System.out.println("Balance: $" + account.getBalance());

 System.out.println("Type: " + account.getAccountType());

 // Modify attributes through setters and business methods

 account.setAccountHolderName("John A. Doe");

 account.deposit(500);

 account.withdraw(200);

 // This would throw an exception:

 // account.balance = -1000; // Compilation error: balance is

private

 // Using methods with validation

 try {

 account.withdraw(2000); // Will throw exception for

insufficient funds

 } catch (IllegalStateException e) {

 System.out.println("Error: " + e.getMessage());

14
MATS Centre for Distance and Online Education, MATS University

Notes }

 }

}

Inheritance:

One of the fundamental building blocks of object-oriented

programming in Java is inheritance, which allows developers create a

relationship between classes that follows the same "is-a" relationship

found in real-world taxonomies. This is a potent process, enabling

developers to create a new class (the subclass or derived class) that

extends an existing class (the superclass or base class) to inherit its

characteristics, and functionality, while providing new or altered

functionality where required. The extends keyword in Java is used to

implement inheritance, forming a parent-child relationship between

classes, where the child class automatically inherits all the visible

members (fields and methods) from its parent class. This relationship

defines inheritance of common attributes and behaviors, which, due

to dynamic polymorphism, can be defined only once, in a parent class,

and reused in multiple child classes. An example of a Vehicle class

could provide common attributes such as speed, color, and weight,

along with methods to start, stop, and rate fuel consumption.

Language classes like Car, Motorcycle, and Truck can inherit these

common properties, but they can also introduce their own specific

properties, like the number of doors for the car or the capacity of a

Figure 1.3: Types of Inheritance
[Source: https://www.acte.in/]

15
MATS Centre for Distance and Online Education, MATS University

Notes truck. This simple hierarchy eliminates code duplication, but also

creates a natural organization that follows the conceptual relationships

between different types of entities.

The inheritance model of Java has some unique features that helps the

developers design their class hierarchies. Because Java only supports

single inheritance for classes — that is, it only allows a class to extend

one superclass — this helps avoid the complexities and ambiguities

associated with multiple inheritance. Java, for instance, compensates

for this limitation with interfaces, permitting a class to form a contract

with multiple interfaces, effectively creating a sort of multiple

inheritance of behavior. Second, the super keyword in Java refers to

the superclass, allowing subclasses to access inherited methods and

call superclass constructors. This ensures that the inherited fields are

initialized appropriately, and it also enables subclasses to build upon

and broaden the behaviors specified in their parent class. 3. Java's

model of inheritance provides the concept of method overriding,

where a subclass implements a specialized version of a method

defined in its superclass. The purpose of the @Override annotation is

to inform the compiler that the annotated method is being overridden

from its superclass, allowing it to check whether the method signature

matches an inherited method and providing an error in case of

method overloading. You are vertical after October twenty twenty-

three.

Inheritance in Java, however, is a philosophical approach to the design

of programs that centers on the concepts of generalization and

specialization, beyond the technical side. With inheritance, developers

can formulate abstract base classes that encapsulate the core

properties of a concept, and then derive specialized subclasses that

adapt and add to this concept for common scenarios. This maps very

nicely to how we humans experience and group our knowledge,

making for more sensible and natural object-oriented designs. There

are things like polymorphic behavior, where a collection of objects of

various subclass types can be handled uniformly via their common

superclass type, enabling greater flexibility and extensibility in

software systems. The point is that if you have a class with a method

that takes a Shape, you can call that method with any Circle,

Rectangle, or Triangle subclassed object, since they all inherit—from

16
MATS Centre for Distance and Online Education, MATS University

Notes some other class (directly or indirectly) from Shape. This polymorphic

feature allows programmers to write code that works with existing

types and future derivatives without needing to change the code,

providing an ideal case of the open-closed principle in software

design. Moreover, inheritance enables incremental development and

testing, as base classes can be implemented and validated prior to the

addition of derived classes. Inheritance continues to be a vital concept

within the Java programming language, allowing developers to create

software architectures that are both structurally sound and responsive

to changing needs by providing its various advantages.

// Example of inheritance in Java

// Base class (superclass)

public class Vehicle {

 // Common attributes for all vehicles

 protected String brand;

 protected String model;

 protected int year;

 protected double speed;

 protected double fuelCapacity;

 protected double fuelLevel;

 // Constructor

 public Vehicle(String brand, String model, int year, double

fuelCapacity) {

 this.brand = brand;

 this.model = model;

 this.year = year;

 this.speed = 0;

 this.fuelCapacity = fuelCapacity;

 this.fuelLevel = fuelCapacity / 2; // Start with half tank

 }

 // Common behaviors for all vehicles

 public void start() {

 System.out.println("Vehicle starting...");

 }

17
MATS Centre for Distance and Online Education, MATS University

Notes public void stop() {

 speed = 0;

 System.out.println("Vehicle stopped.");

 }

 public void accelerate(double amount) {

 if (fuelLevel > 0) {

 speed += amount;

 consumeFuel(amount * 0.1); // Simple fuel consumption

model

 System.out.println("Vehicle accelerating. Current speed: " +

speed + " mph");

 } else {

 System.out.println("Cannot accelerate. Out of fuel.");

 }

 }

 public void refuel(double amount) {

 if (fuelLevel + amount <= fuelCapacity) {

 fuelLevel += amount;

 } else {

 fuelLevel = fuelCapacity;

 }

 System.out.println("Refueled. Current fuel level: " + fuelLevel +

" gallons");

 }

 protected void consumeFuel(double amount) {

 fuelLevel = Math.max(0, fuelLevel - amount);

 if (fuelLevel == 0) {

 System.out.println("Warning: Vehicle out of fuel!");

 }

 }

 // Getters

 public String getBrand() { return brand; }

 public String getModel() { return model; }

 public int getYear() { return year; }

18
MATS Centre for Distance and Online Education, MATS University

Notes public double getSpeed() { return speed; }

 public double getFuelLevel() { return fuelLevel; }

 @Override

 public String toString() {

 return year + " " + brand + " " + model;

 }

}

// Derived class (subclass)

public class Car extends Vehicle {

 // Additional attributes specific to cars

 private int numberOfDoors;

 private boolean hasConvertibleTop;

 private boolean isTrunkOpen;

 // Constructor that calls the superclass constructor

 public Car(String brand, String model, int year, double

fuelCapacity, int numberOfDoors, boolean hasConvertibleTop) {

 super(brand, model, year, fuelCapacity); // Call to superclass

constructor

 this.numberOfDoors = numberOfDoors;

 this.hasConvertibleTop = hasConvertibleTop;

 this.isTrunkOpen = false;

 }

 // Override the start method from Vehicle

 @Override

 public void start() {

 System.out.println("Car engine starting... Vroom!");

 super.start(); // Call the superclass version of the method

 }

 // Additional behaviors specific to cars

 public void openTrunk() {

 isTrunkOpen = true;

 System.out.println("Car trunk opened.");

 }

19
MATS Centre for Distance and Online Education, MATS University

Notes

 public void closeTrunk() {

 isTrunkOpen = false;

 System.out.println("Car trunk closed.");

 }

 public void toggleConvertibleTop() {

 if (hasConvertibleTop) {

 System.out.println(hasConvertibleTop ? "Convertible top

opened." : "Convertible top closed.");

 } else {

 System.out.println("This car doesn't have a convertible top.");

 }

 }

 // Override the toString method from Vehicle

 @Override

 public String toString() {

 return super.toString() + " (Car, " + numberOfDoors + "-door" +

 (hasConvertibleTop ? ", Convertible" : "") + ")";

 }

 // Getters for car-specific attributes

 public int getNumberOfDoors() { return numberOfDoors; }

 public boolean hasConvertibleTop() { return hasConvertibleTop; }

 public boolean isTrunkOpen() { return isTrunkOpen; }

}

// Another derived class showing inheritance

public class Motorcycle extends Vehicle {

 // Additional attributes specific to motorcycles

 private boolean hasSideCar;

 private String engineType;

 // Constructor

 public Motorcycle(String brand, String model, int year, double

fuelCapacity, boolean hasSideCar, String engineType) {

 super(brand, model, year, fuelCapacity);

20
MATS Centre for Distance and Online Education, MATS University

Notes this.hasSideCar = hasSideCar;

 this.engineType = engineType;

 }

 // Override the start method

 @Override

 public void start() {

 System.out.println("Motorcycle engine starting... Rumble!");

 super.start();

 }

 // Override the accelerate method for different fuel consumption

 @Override

 public void accelerate(double amount) {

 if (fuelLevel > 0) {

 speed += amount * 1.5; // Motorcycles accelerate faster

 consumeFuel(amount * 0.05); // Motorcycles use less fuel

 System.out.println("Motorcycle accelerating. Current speed: "

+ speed + " mph");

 } else {

 System.out.println("Cannot accelerate. Out of fuel.");

 }

 }

 // Additional methods specific to motorcycles

 public void performWheelie() {

 if (speed > 15) {

 System.out.println("Performing a wheelie! Be careful!");

 } else {

 System.out.println("Speed too low for a wheelie.");

 }

 }

 // Override toString

 @Override

 public String toString() {

 return super.toString() + " (Motorcycle, " + engineType + "

engine" +

21
MATS Centre for Distance and Online Education, MATS University

Notes (hasSideCar ? " with sidecar" : "") + ")";

 }

 // Getters

 public boolean hasSideCar() { return hasSideCar; }

 public String getEngineType() { return engineType; }

}

// Example usage

public class InheritanceDemo {

 public static void main(String[] args) {

 // Create objects of different vehicle types

 Vehicle genericVehicle = new Vehicle("Generic", "Transporter",

2023, 15.0);

 Car sedan = new Car("Toyota", "Camry", 2023, 14.5, 4, false);

 Car convertible = new Car("Mazda", "MX-5", 2023, 11.9, 2,

true);

 Motorcycle sportBike = new Motorcycle("Honda",

"CBR600RR", 2023, 4.5, false, "4-cylinder");

 // Demonstrate inheritance by using common methods

 System.out.println("\n--- Generic Vehicle ---");

 System.out.println(genericVehicle);

 genericVehicle.start();

 genericVehicle.accelerate(30);

 genericVehicle.stop();

 System.out.println("\n--- Sedan ---");

 System.out.println(sedan);

 sedan.start();

 sedan.accelerate(35);

 sedan.openTrunk();

 sedan.closeTrunk();

 sedan.stop();

 System.out.println("\n--- Convertible ---");

 System.out.println(convertible);

 convertible.start();

22
MATS Centre for Distance and Online Education, MATS University

Notes convertible.accelerate(40);

 convertible.toggleConvertibleTop();

 convertible.stop();

 System.out.println("\n--- Sport Bike ---");

 System.out.println(sportBike);

 sportBike.start();

 sportBike.accelerate(50);

 sportBike.performWheelie();

 sportBike.stop();

 // Demonstrate polymorphism (will be covered in more detail in

the polymorphism section)

 System.out.println("\n--- Polymorphic Behavior ---");

 Vehicle[] vehicles = {genericVehicle, sedan, convertible,

sportBike};

 for (Vehicle v : vehicles) {

 System.out.println("Processing: " + v);

 v.start();

 v.accelerate(25);

 v.stop();

 System.out.println();

 }

 }

}

Polymorphism: When something may illustrate the measure of one

thing, polymorphism, from the Greek words significance "many

forms," is viewed as a standout amongst the most influential concepts

in object-situated programming you can have diverse items at

different circumstances to a similar interface in different ways.

Polymorphism in Java is mainly achieved through method overriding

and method overloading, providing a flexibility towards writing a

more elegant and extensible code flow. In simpler terms, when the

subclass has the same method as its super class, we call this method

as method overriding and thus subclass method will be called while

invoking the method on a class object. This dynamic method dispatch,

also referred to as runtime polymorphism, is based on the actual type

23
MATS Centre for Distance and Online Education, MATS University

Notes of the object rather than the reference type. Example: If we have a

superclass reference pointing to a subclass object and call a method

we would expect from the superclass to be called Java would

automatically invoke the one overridden from the subclass. Method

overloading, however, is an example of compile-time polymorphism,

because it defines multiple methods with the same name but different

argument lists to exist in the same class. The Java compiler decides

which version of the method should be execute based on number of

arguments, types of arguments and order of arguments passed. In

combination, but with the aid of such mechanisms, Java developers

can implement code that operates on objects at increasing levels of

abstraction whereby they are manipulated through common interfaces

while their specific implementations can still vary, which provides

the user reusability of code blocks and simplifies the evolution of the

system.

Polymorphism in Java, which would be the basis of this article, in

practical terms, is only deriving from the interplay of the concepts of

inheritance and interfaces. Case in point, through inheritance,

subclasses can override any methods declared in their superclasses,

allowing you to provide specialized behavior while preserving the

method signature. It allows code in the client to communicate with

objects using superclass reference variables, treating heterogeneous

cases of object types uniformly, according to common inheritance. An

example would be a drawing application that creates a Shape

superclass with Circle, Rectangle and Triangle subclasses. Client

code on a Shape reference doesn't need to know its subtype, it can just

call draw(), and each subclass knows its rendering logic, override

draw(). So interfaces take this polymorphic capability to the next level

by defining contracts that different classes must implement. A class

can implement many interfaces, where methods of the interface

describe different aspects of its behavior, enabling objects to be

treated polymorphically based on their abilities rather than their

inheritance lineage. For example, unrelated classes such as

ElectricCar, SolarPanel, and Smartphone might all implement a

common Rechargeable interface which would allow them to be

processed in a consistent way by healing systems. This late binding

that is made possible by showing this interface-based polymorphic

behaviour enables us to develop systems with high degree of

24
MATS Centre for Distance and Online Education, MATS University

Notes flexibility since new types can just be added without the need of

making any changes to existing code.

This goes beyond its technical application: polymorphism is a way of

thinking about software, a philosophy of design that's focused around

abstraction and behavior-oriented design. Polymorphism, by

emphasizing that it is what objects do and not what objects are that

matters, encourages developers to design systems around behavior

and capabilities, leading to more flexible, loosely coupled

architectures. This also enables the open-closed principle, which states

that software entities should be open to extension but closed to

modification, also allowing systems to evolve in a way that new

implementations can be registered, rather than modifying existing

code. When implemented correctly, polymorphism also supports the

strategy pattern and other behavioral design patterns where an

algorithm is chosen based on context at runtime. As an example, a

navigation system could implement a different pathfinder algorithm

(all implementing the same RouteStrategy interface) depending on

whether the user prefers the fastest, the most scenic, or the most fuel-

efficient route. Such a dynamic behavior makes the applications more

responsive and aware of the context. Moreover, polymorphism leads

to more intentional code as methods can retain the same name in

different implementations, aligning themselves with the conceptual

idea rather than the implementation.

// Example of polymorphism in Java

// Base interface defining a common behavior

public interface Shape {

 double calculateArea();

 double calculatePerimeter();

 void draw();

 String getType();

}

// Concrete implementation of Shape: Circle

public class Circle implements Shape {

 private double radius;

25
MATS Centre for Distance and Online Education, MATS University

Notes public Circle(double radius) {

 this.radius = radius;

 }

 @Override

 public double calculateArea() {

 return Math.PI * radius * radius;

 }

 @Override

 public double calculatePerimeter() {

 return 2 * Math.PI * radius;

 }

 @Override

 public void draw() {

 System.out.println("Drawing a circle with radius " + radius);

 // Imagine more complex drawing logic here

 }

 @Override

 public String getType() {

 return "Circle";

 }

 // Circle-specific method

 public double getDiameter() {

 return 2 * radius;

 }

}

// Concrete implementation of Shape: Rectangle

public class Rectangle implements Shape {

 private double length;

 private double width;

 public Rectangle(double length, double width) {

 this.length = length;

26
MATS Centre for Distance and Online Education, MATS University

Notes this.width = width;

 }

 @Override

 public double calculateArea() {

 return length * width;

 }

 @Override

 public double calculatePerimeter() {

 return 2 * (length + width);

 }

 @Override

 public void draw() {

 System.out.println("Drawing a rectangle with length " + length +

" and width " + width);

 // Imagine more complex drawing logic here

 }

 @Override

 public String getType() {

 return "Rectangle";

 }

 // Rectangle-specific method

 public boolean isSquare() {

 return length == width;

 }

}

// Concrete implementation of Shape: Triangle

public class Triangle implements Shape {

 private double sideA;

 private double sideB;

 private double sideC;

 public Triangle(double sideA, double sideB, double sideC) {

27
MATS Centre for Distance and Online Education, MATS University

Notes // Validate that the sides can form a triangle

 if (sideA + sideB <= sideC || sideA + sideC <= sideB || sideB +

sideC <= sideA) {

 throw new IllegalArgumentException("The sides do not form

a valid triangle");

 }

 this.sideA = sideA;

 this.sideB = sideB;

 this.sideC = s

28
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Package Concepts and Implementation

Package Concepts and Implementation

The Java language has a great mechanism the packages for

systematic programming. In Java, a package is a namespace that

organizes a set of related classes, interfaces, and sub-packages. The

package concept is the one of the fundamental concepts of Java that

helps rich developers to organize their largescale applications by

grouping related components. Packages have several roles in the Java

ecosystem: They help prevent naming conflicts and control access to

classes and their members, as well as allow for grouping of related

code into logical units. As an object-oriented language, Java uses

packages to allow one to group classes in a logical manner and

promotes modular programming approaches that help with code

maintainability, reuse, and scalability — all of which are essential in

the development of enterprise-grade applications. The core API itself

is organized into packages, and the Java platform itself is based on

packages (e.g., java. lang, java. util, and java. io — each containing

classes for specific functionality. I recommend this tutorial for those

interested in learning how to use packages when developing software

in Java. As applications scale in size and complexity this organization

only becomes more important. Moreover, packages form the basis for

the access control mechanism in Java’s security model. This Unit

delves into the theoretical constructs of Java packages, analyzes the

implementation aspects, and offers practical advice for utilizing

packages efficiently in Java development. We will take a closer look

at the syntax to define packages, access permissions for package

members, compilation and execution of the code organized in

packages, and good practices to design packages. Therefore, by

applying concepts of Java packages and using them, a developer can

have a more maintainable, secured, and professional structure of code

so that with the increasing complexity of the application, one can

scale accordingly.

The Purpose of Packages: Java follow on packages which address

certain issues faced in software development. Allowing packages, one

of the main advantages to packages are that they provide a method for

grouping sets of classes and interfaces together, which apply some

structure to the code that is hierarchical and reflects the logical

29
MATS Centre for Distance and Online Education, MATS University

Notes structure of an application. Plus, this organizational aspect becomes

more and more invaluable as projects increase in scope and

complexity. If we did not have packages, all classes would be in one

single namespace — which makes working in a codebase really

difficult, as well as increasing the chances of naming conflicts. For an

enterprise application with hundreds or thousands of classes,

organizing them into logical packages makes the codebase navigable

and comprehendible. Namespace management is another key purpose

of packages. Packages: Java uses packages to create a unique

namespace for each Java class name to avoid name collisions. Double

UsageDevelopers working in parallel on different components of an

application can both introduce a class called Configuration. If these

are in different packages (e.g. com. company. ui. Configuration and

com. company. database. As their fully qualified names differ, they

can coexist without conflict (e.g., if you have a class called

App\Configuration, then you can have a class called

Some\Other\Configuration). They also allow access control via Java's

access modifiers. The default access level in Java, also known as

"package-private", limits access to classes and members of the same

package. This allows developers to encapsulate implementation

details, only exposing what is necessary to the outside world while

keeping internal workings. This encapsulation is a core tenet of

object-oriented design that packaging helps enforce. Furthermore, the

packages facilitate Java application deployment and distribution via

JAR (Java Archive) files. A JAR file can have several packages and

the packages’ structure is retained in the jar archive. That greatly

simplifies the sharing of Java libraries and applications as standalone

packages. So packages are also a part of java security model. The

Loosely Couple Package: The Java security manager enforces security

policies based on package boundaries, determining what classes from

different packages are permitted to perform which operations.

Packages recast this level of organization to give more than single

applications. Now the conventional reversed domain names (like

com. company. (for each organization) and (for each project) enables

global unique naming of packages from different organizations and

different projects, which eases importing any code from any place.

Historical Context and Evolution: In this article, we will cover the

core concepts of Java packages and their evolution — from static

30
MATS Centre for Distance and Online Education, MATS University

Notes imports to the new modular system that was introduced with Java 9.

When Sun Microsystems shipped Java tools in 1995, packages were

already one of the language’s built-in features, illustrating the

language designers’ understanding that structuring code would be key

to building scalable applications. To begin with, a simple notion of

packages was used for basic namespace management and access

control. Before Java 2, the standard library was smaller, limited to the

key package’s java. lang, java. util, and java. io. The Java standard

library went through some dramatic expansion as Java matured up

through versions 1.1, 1.2 (Java 2) and beyond, and packages quickly

became critical for organizing the increasingly broad API. Enterprise

Applications and the java: namespace with the advent of the Java 2

Platform, Enterprise Edition (J2EE, later Jakarta EE), the associative

relationship between packages and namespaces became even

stronger. The complexity of Java applications increased drastically

around this time, as J2EE applications could now be large and could

require multiple teams to work on different components. Packages

gave you the necessary structure to manage such complexity. Java

packages took a big leap forward with the addition of the Java

Package Manager (JPM) and subsequently in Java 9 with the addition

Project Jigsaw (Java Module System). This had ameliorated

shortcoming of the original package system in areas of dependency

management and at a higher level of encapsulation than packages.

While packages offered namespace management and rudimentary

access control, they did not support declarative dependencies or

robust encapsulation boundaries, a capability introduced in Java 9. In

particular, while Java 9 modules build on the existing notion of

packages to enable explicit declaration of dependencies and better

encapsulation with in a module, they also build on the idea of a

module being a discrete unit with its own metadata that control its

usage patterns. However, packages are still essential to the

organization of Java code. The module system is an addition rather

than a replacement to packages, as modules contain packages which

in turn contain classes. By learning about the history of packages,

developers can better appreciate their place in the history of Java's

evolution and their best practices for their use in writing modern Java

applications. For all this evolution, the essential syntax and semantics

of packages have remained curiously stable throughout this series,

31
MATS Centre for Distance and Online Education, MATS University

Notes meaning code written for early versions of the language will be

compatible with contemporary Java environments. Backward

compatibility: As new features and capabilities have been added to

the language and platform; backward compatibility has been ensured

as a faithful promise of Java’s design philosophy.

Package Declaration and Naming Conventions

The syntax used for declaring packages in Java is simple, as it sets up

the namespace for the classes and interfaces that the package contains.

These classes and interfaces in a Java source file belong to the

specified package and must always be the first non-comment

statement in the Java source file. Essentially, usage of a package

declaration would look something like this: package packageName;

here packageName should follow the naming conventions of Java. If a

class does have an explicit package declaration, it belongs to the

default package, an unnamed package that has neither of the

organizational and access control benefits that named packages

provide. For instance, birth a class to belong to a package called

"utilities", the first line of the source file may read as follows:

package utilities; The package name generally used in Java is

hierarchical in nature and compulsory providing some forms of global

uniqueness within the code area as it is related to the organization

structure. Names for packages are based on reversed domain names,

followed by disambiguating identifiers that further constrain the

scope. For example, giving a utility class by a company with the

domain "example. A package which contains a class from a com.

example. utilities; It can be extended, in the logical level, to represent

project name, modules and specific functionality: package com.

example. projectname. module. feature The package declaration

establishes a direct correspondence between the package name and

the directory structure that the Java source files are organized. For the

package declaration package com. example. the corresponding

source file has to be placed in the directory needs to match package

structure: /com/example/utilities/ It is worth noting that package

names must also match the actual directory structure of the source

files, and this is enforced at the Java compiler level and is critical to

having meaningful package semantics.

Package Naming Conventions and Standards: The Java™ naming

conventions for packages have grown from the needs of development

32
MATS Centre for Distance and Online Education, MATS University

Notes of large software. The reverse domain name convention is the most

widely followed convention that prefix package names. By following

this pattern, as recommended by Oracle in the Java Language

Specification, we contribute to global package name uniqueness

across organizations/project. The default format starts with the reverse

domain name of the organization creating the code, followed by a

more specific identifier: package com. organization. project. module.

For instance, a data access component in an accounting application

developed by Example Corporation may utilize the package name:

package com. example. accounting. data; This convention has various

benefits. The first significant advantage is that it virtually removes

package name collision risk across code developed by separate

organizations. Second, it dismisses an artificial hierarchical tree

structure that doesn’t carry organizational and project boundaries.

Third, it builds on the current state of how domain names are

managed all over the world, where an entire domain is already

unique. However, organizations often have their own internal

conventions to outline more detail on how packages should be

named, and their own general framework of package naming might

land into several specific packages. Common patterns are:

1) The organizations department or division is specified after the

domain: package com. example. engineering. project;

2) Including year or version in package version for major releases:

package com. example. project. v2023;

(3) Separating API and implementation packages: package com.

example. project. api; and package com.

example. project. internal; Package names should always be written in

lowercase letters, following a convention that separates them from

class names (which use camelCase with an initial uppercase letter).

This convention allows developers to quickly identify which is a

package and which is a class in the code. Singular nouns are usually

used for packages containing utility classes or classes with similar

functionality: package com. example. utility; or package com.

example. widget; For packages denoting a subsystem or feature,

plural nouns or descriptive terms are often used: package com.

example. services; or package com. example. dataaccess The Java

Development Kit (JDK) itself has standard packages, which follow

certain naming conventions. The Java Core API packages start with

33
MATS Centre for Distance and Online Education, MATS University

Notes the prefix java. (Such as java. lang, java. util, java. io), and extension

APIs start with “javax. (Such as javax. swing, javax. crypto). Finally,

as you may already know, with the module system introduced in Java

9 and later, some of these packages have been moved to the jdk.

prefix. It turns out that the vast majority of third-party libraries and

frameworks follow the convention of using their website for projects

or organization that is reversed domain name.

Directory Structure and Package Mapping: Java's convention

requires package names to correspond to the structure of its

directories strictly. This mapping is an integral part of Java's package

implementation, and it has an impact on how the source files are

structured, built, and executed. For a class defined within particular

package, the Java compiler expects the.Adaptive unique solitary. java

file to be situated within a directory structure that reflects the package

hierarchy. Imagine a class defined in the package com. example.

utilities: package com. example. utilities: public class StringUtils {...

} The Java source file StringUtils. java should be in a folder structure

corresponding to : /com/example/utilities/StringUtils. This physical

organization has some implications for Java development. To start

with, it imposes a convention over the way source files are structured

to mirror the logical structure of the application. Second, it allows the

Java compiler and the runtime to find classes quickly. Thus, the

package name provides the mechanism for the Java compiler/JVM to

locate the class file that has been saved in the file system whenever it

needs to find a class. The pairing of package names and directory

structure is not just relevant for source files, it is also applicable to

compiled class files. In the process of compiling a Java source file,

the . class files are stored in a directory structure corresponding to the

package name (relative to the output directory specified during

compilation) To give an example, the StringUtils getting compiled.

So, such a path in /StringUtils. class under the /com/example/utilities/

path in the output dir. The JVM uses this mapping during

classloading to search for classes at runtime, which is fundamental in

Java's classpath mechanism. The classpath is the list of all the

directories and JAR files where the JVM looks up classes. Within

these, the JVM looks up specific classes using the package structure.

Proper organization of projects in Java, and reasons for common

compilation time and runtim time errors related to missing classes,

34
MATS Centre for Distance and Online Education, MATS University

Notes requires an understanding of this mapping. Development tools and

build systems such as Maven and Gradle complement all this

directory management by automating it to a great extent, and are built

upon conventions that associate source directories with package

structures. For example, the standard Maven directory layout puts

Java source files in src/main/java, with package directories below.

Along with that, having the source files physically organized by

package structure also aids version control and collaboration.

PRaying, a practice commonly used for working on multiple

packages in one app. Integrated development environments (IDEs)

such as Eclipse, IntelliJ IDEA and NetBeans usually take care of

package-to-directory mapping for you. These tools generate the right

directory structure on package creation and track the correct

organization as files are renamed or moved.

The Default Package and Its Limitations: Java allows you to define

a class without a package declared, and that puts your class in the

default package. However, while this method may seem to offer a

convenient way to implement code for smaller or simpler programs, it

is riddled with severe limitations and generally discouraged for

professional-level Java development. In the absence of a package

declaration, the class belongs to the default package: public class

SimpleClass {... } Only classes in the default package or the same

directory can access classes in the default package. They can not be

imported by classes of named packages, making it pretty hard to

reuse them. According to the Java Language Specification, it is

strongly discouraged to use the default package in production code.

As soon as projects move away from the simple examples, the

limitations of the default package become evident. To begin with,

classes in the default package cannot be imported by classes in

named packages. If you try to import a class from the default package,

you will get a compiler error that the package does not exist. Classes

in the default package are thus effectively invisible to most of the

codebase in a typical Java application. Second, some Java features

and frameworks, such as reflection and the JEE framework, rely

heavily on packages and will not work as expected with the default

package. Package scanning is relied upon for auto-configuration and

dependency injection in many of today's Java frameworks such as

Spring, Hibernate and Jakarta EE components. Many of these

35
MATS Centre for Distance and Online Education, MATS University

Notes scanning methods do not cover classes in the default package. Third,

working in the default package introduces potential name collisions

as a project scales. As there is no namespace separation through

packages, classes need to have unique names globally with respect to

the default package, which becomes more cumbersome to manage as

more and more classes are added. Fourth, the default package makes

access control convoluted. The absence of named packages means

that the code cannot make use of package-private access, which is an

important encapsulation mechanism in Java. The fifth, Java Module

System, which comes in Java 9, does not work at the same time with

the default package. Modules have to specifically declare what

packages they export and require, which you cannot do with the

default package. The default package is mostly for very simple

programs (like the ones beginners writing Java or some quick test

programs). In these situations, the downsides might be less than the

ease of being able to drop package declarations. A single class in a

small program or a small utility such as a “Hello World” program can

usually get away with using the default package. But once a program

gets larger than these simple examples, appropriate grouping into

packages becomes necessary. Most Java IDE's and build tools will

encourage you to use named packages from the very beginning, often

requiring a package structure based on the name of the project when a

new project is created. Following this advice helps you some good

practices from the start, and saves you from refactoring code from the

default package into proper package location.

Importing Packages and Classes

This can be simplified using the import statement—which is followed

by the package and the class, allowing developers to use the class

without needing to provide the full path every time. The import

statement tells the compiler which classes or whole packages to

provide with their simple names. In Java, there are basically two

types of import statements: single-type imports and on-demand

(wildcard) imports. Single-Type Imports: A single-type import

imports exactly one class or interface: import java. util. ArrayList;

This import allows the code to use the ArrayList class simply, rather

than by fully qualified name: ArrayList list = new ArrayList (); instead

36
MATS Centre for Distance and Online Education, MATS University

Notes of java. util. The java. util. import ArrayList (); An on-demand (or

wildcard-style) import makes all public types in a package accessible

by their simple names: import java. util. *; using this, the code can use

any public class from the java. util package as a simple name. Import

Statements These must occur after the package declaration (optional)

and before any class or interface declaration. Using multiple import

statements, we can import classes from different packages:

• Import Statements: In Java, there are multiple import

statements that allow you to tailor the access according to your

code organization and requirements. Grasping these

differences lets developers create cleaner, more manageable

code while steering clear of frequent mistakes. The simplest

form is the single type import, which imports exactly one

class, interface, enum, or annotation: import java. util.

ArrayList; This style is accurate and clearly indicates which

kinds are being used in a source file. It is usually

recommended when a person needs only some types of one

specific package. Wildcard imports (also known as on-

demand imports) use an asterisk syntax to import all public

types in a package: import java. util. ; This style is useful

when there are many types from the same package in a source

file. Yet, it may cause naming conflicts where multiple

packages have classes with the same name. Static Imports The

static import statement, which made its entry in Java 5,

enables importing static members (fields and methods) of a

class: import static java. lang. Math. PI; import static java.

lang. Math. sqrt; One can use static members directly with

static imports, without qualifying them with the name of the

class: double circumference = 2 * PI * radius; double

hypotenuse = sqrt(aa + b*b); On-demand static imports are

also supported, making all the static members of a class

available: import static java. lang. Math. * The first import

statement declares that all public static members of the Math

class can be used without qualification. Java 5 also added

support for importing enum constants, which are static

members of an enum type: import static com. example. Status.

This allows for the use of enum constants directly without the

enum type prefix -- if (status == ACTIVE) {... } instead of if

37
MATS Centre for Distance and Online Education, MATS University

Notes (status == Status. ACTIVE) { ... } It's been possible since

Java 7 to use single static imports to import a specific nested

static class:import static javax. swing. SwingConstants.

CENTER; This lets us refer to the nested class by its simple

name: int alignment = CENTER; instead of int alignment =

SwingConstants. CENTER; Java includes support for

importing annotations, which are a special kind of interface

you can implement in your classes: import java. lang.

annotation. Retention; Static import of annotation members is

also supported: `import static java. lang. annotation.

RetentionPolicy. RUNTIME; Based on my literary

background, I can say that since every import can have a

custom path, the only factor to drive your choice would be

code readability, possibility of name conflicts and project

conventions. Single-type imports give the best clarity but

cause a lot of import statements in files that are using many

different types. The first option imports on-demand as well,

which minimizes the number of import lines, but does not

reveal what kinds of imports are actually used in the code.

(One convention followed by many is that there should be a

single-type import per import statement for clarity, except

when importing lots of types from the same package (e.g.,

when using many classes from java. util or javax. swing).

• Import Resolution and Name Conflicts: Java's import

mechanism has specific rules for how Java will resolve class

names, and understanding these rules is critical to avoid and

troubleshoot name conflicts. Given a class name found in

source, the Java compiler tries to resolve it to a fully qualified

class name through a sequence of steps. Initially, the compiler

looks up whether the class name indicates a class in the

current package. Such a class is used and has no further

resolution. If no match is found in the current package, the

compiler checks for single-type import statements that match

the class name. If a single matching import is found, that class

will be used. Now, if there is ambiguity, for example if two

different single-type imports match the same simple name

(one from each of two different packages), then a compilation

error will result. If no matching single-type import is found,

38
MATS Centre for Distance and Online Education, MATS University

Notes the compiler then looks at the on-demand imports for a

potential match. If only one on-demand import contains a

matching class, then that class is used. However, if multiple

on-demand imports have classes with a matching name, a

compilation error is generated because it is ambiguous. Last

but not least if no class is found by any import the compiler

will look in the java. lang package will be implicitly imported.

Class not found issue and if it is still not found then we have a

compile time error. In which cases is there a possibility of

name conflict? One common case is when two packages

include classes of the same name, and both packages are

imported using on-demand imports: `java

import java.util.*;

import java.awt.*;

// Both packages contain a List class

List list; // Ambiguous - which List class to use?

``` When such conflicts occur, the compiler generates an error 

indicating the ambiguity. To resolve this type of conflict, developers 

can use a single-type import to explicitly specify which class to use: 

```java 

import java.util.*;

import java.awt.*;

import java.util.List; // Explicitly choose java.util.List

List list; // Now refers to java.util.List

``` Alternatively, the fully qualified name can be used directly in the 

code without an import: ```java 

java.util.List list; // Explicitly use java.util.List without an import 

``` Another type of conflict occurs when a class in the current package 

has the same name as a class being imported. In such cases, the local

class takes precedence over the imported class, following Java's name

resolution rules. This can lead to subtle bugs if a developer is unaware

of the local class and expects an import to bring in an external class

with the same name. Static import conflicts can also occur when static

members with the same name are imported from different classes:

```java 

import static java.lang.Math.max; 

import static java.util.Collections.max; // Conflict with Math.max 



 

39 
MATS Centre for Distance and Online Education, MATS University 

 

Notes ``` To resolve such conflicts, either avoid the static import and use the 

class name qualifier, or use the fully qualified name for the static 

method: ```java 

int larger = Math.max(a, b); 

List<Integer> maxValue = Collections.max(numbers); 

• Managing Imports Effectively: However, well manage 

import statement is a task of keeping java fine and bharat. 

Modern IDEs include tools to handle many import 

management processes automatically, yet a basic 

understanding of the principles involved is still useful 

information for Java developers to know. A vital choice you 

make in import management is whether to use single-type or 

on-demand (wildcard) imports. However, most Java Style 

guides, including Google Java Style Guide and Oracle Code 

Conventions for the Java Programming Language suggest 

using single-type imports to provide clarity and explicitness. 

Single-type imports makes it immediately clear what exact 

classes from external packages are being used in a source file. 

This whole transparency helps a lot when debugging things or 

if multiple team members are working on the same codebase. 

However, on-demand imports may be suitable for some cases. 

If a source file uses a lot of classes from the same package 

(e.g. many classes from java. util or javax. If you have to use 

the whole swing, importing each class individually can get 

tedious and you can make the import section long. In this 

scenario, even though there is still some duplication in what 

gets defined (though in most cases, you would significantly 

reduce clutter because on-demand import is local only) it 

should generally be clear what part of the library you are 

working with (to this end, the initial library should group its 

functionality separately or logically). All modern Java IDEs 

have the capability to handle imports automatically. Such 

features usually consist of:  

1. Importing classes on-demand  

2. Sorting and Removing unused imports  

3. Convert between single-type and on-demand imports based 

on configurable thresholds  



  

40 
MATS Centre for Distance and Online Education, MATS University 

 

Notes 4. Import conflicts resolution by suggesting specific single-type 

imports in the case of ambiguity.  

Most IDEs also have a way of configuring import management 

policies so that they are consistent with the conventions used 

by a team. Touching on this specifically, all of IDEs 

nowadays like Eclipse or IntelliJ IDEA or NetBeans let you 

set up these thresholds (like “use wildcard imports when 

importing more than N classes from the same package”) 

Teams must define import management conventions and set 

up their IDEs accordingly so that all the project code has the 

same style. Besides IDE automation, here are several best 

practices that can help maintain clean and effective imports: 1) 

Clean up unused imports — they add noise and can lead to 

confusion about what external classes are actually used; 2) 

Group imports logically (which usually means separating 

standard Java packages, third-party libraries, and internal 

project packages); 3) Avoid static imports that are not strictly 

needed — these handle potential conflicts with members of the 

same name and keep clarity of the code; 4) Avoid importing 

classes of the same name (e.g: List or Map) from different 

packages, as it may lead to conflicts. For large projects, build 

tools such as Maven and Gradle can have rules set (using 

plugins such as Checkstyle or PMD) to ensure import 

conventions are followed. Such tools (and rules) can check as 

part of the build process whether imports are organized 

correctly, regardless of which developer is working on which 

IDE. For example, if you are working with legacy code that 

may not be using the best practices for top-level imports but 

you are not willing to change large parts of the codebase just 

to clarify import style, consider refactoring import statements 

in the process of modifying files for other reasons. This 

gradual approach reduces the likelihood of bugs while still 

allowing code quality to improve over time. 

Access Control and Package Visibility 

Packages are used by Java's access control mechanism to specify the 

visibility and accessibility of classes, interfaces, and their members. 

Since you may also design the javax package and you are controlled 

the access modifiers in there, it’s important to understand how these 



 

41 
MATS Centre for Distance and Online Education, MATS University 

 

Notes access modifiers are interacting with package boundaries. Java has 

four access modifiers: public, protected, default (also known as 

package-private) and private. You declare a class, interface, or 

member with one of these levels to specify which part of the code can 

access it. The most permissive for public access, which is a public 

class or member is accessible from any other class in the Java 

program, without reference to package boundaries. Protected access 

means accessible from subclasses (any package) and any classes in 

the same package. When no access modifier is given, the access 

provided is called default access; classes within the same package can 

access it. The most restrictive, private access, restricts access to just 

the declaring class itself. This facility revolves around packages, 

which establishes a default access boundary. Default access classes 

are only visible to other classes in the same package, which formed a 

natural unit of encapsulation. Classes with default access (no 

modifier) can only be accessed by classes in the same package. This 

package-level visibility allows developers to keep implementation 

details private while allowing them to be available to classes that are 

closely related and need to work together. The containment offered by 

packages aids in the information hiding principle, which permits 

developers to change the implementation details inside a package 

without impacting code in other packages relying upon the public 

interfaces alone. 

• Package-Private Access: The default access level in Java — 

sometimes called "package-private" — is a primitive 

encapsulation boundary defined in terms of package 

membership. However, if you declare a class, interface, or 

member without an explicit access modifier, it is accessible 

only to other classes in the same package. This provides a 

natural module boundary that adheres to the principle of 

information hiding while still allowing cooperation between 

related classes. Package access (sometimes called package-

private access) is indicated by the absence of an access 

modifier: class Package Private Class { package int 

packagePrivateField; void packagePrivateMethod() {... } } 

Here both class and members are package-private - accessible 

to other classes in the same package but invisible to classes in 

different packages. So what does this use case package-private 



  

42 
MATS Centre for Distance and Online Education, MATS University 

 

Notes access in the context of Java application design serve? The 

former offers a degree of encapsulation between public and 

private access. So for the first point, package-private members 

give you an intermediate visibility scope between public and 

private classes that you can align with natural component 

boundaries, as opposed to class boundaries, with the visibility 

model. It enables related classes within a package to cooperate 

while keeping the internal details hidden from the rest of the 

application. Second, package-private access facilitates 

engineering the implementation of the Java platform itself. 

Espect to not be visible for any application code a direct 

cascade Anyone else explaining is a potential poison Gateway 

(as opposed to the intent of the feature is a 3rd party library) 

— used only in descendant descendants, without public 

Methods An alternative package-private as you could 

potentially inadvertently X between essentially which goes 

over and either as you would consider. For instance, classes in 

the java. The util package might use package-private methods 

to communicate with one another while keeping a clean 

public API for applications. Third, package-private access 

makes unit testing easier: test classes in the same package can 

access package-private members of the classes under test. This 

allows for extensive testing without the need for developers to 

expose the details of implementation just for the sake of 

testing. The most common pattern is to locate test classes in 

the same package as the classes they are testing, usually in a 

parallel directory structure below the test source root. Let's say 

you have the following code and two classes in the same 

package that need to collaborate closely:  

```java // File: com/example/banking/Account.java package 

com.example.banking;

class Account { int accountNumber; double balance;

void updateBalance(double amount) {

 balance += amount;

}

}

// File: com/example/banking/Transaction.java package

com.example.banking;

43
MATS Centre for Distance and Online Education, MATS University

Notes public class Transaction { public void process(Account account,

double amount) { // Can access package-private members of Account

account.updateBalance(amount); } }

• Protected Access Across Packages: The protected access

modifier in Java introduces a relationship between inheritance

and package membership that requires careful consideration in

application design. A protected member (field, method, or

nested class) is accessible within its own package, similar to

default (package-private) access. Additionally, protected

members are accessible from subclasses of the declaring class,

regardless of the package in which those subclasses are

defined. This extension of visibility across package boundaries

for inheritance relationships makes protected access more

complex than other access levels. The basic syntax for

declaring protected members is:

 ```java 

protected int protectedField; 

protected void protectedMethod() { ... } 

protected class ProtectedNestedClass { ... } 

``` To understand protected access across packages, consider the 

following example with classes in different packages: ```java

// File: com/example/base/Parent.java

package com.example.base;

public class Parent {

 protected int data = 42;

 protected void display() {

 System.out.println("Data: " + data);

 }

}

// File: com/example/derived/Child.java

package com.example.derived;

import com.example.base.Parent;

44
MATS Centre for Distance and Online Education, MATS University

Notes public class Child extends Parent {

 public void accessParentMembers() {

 // Can access protected members of the parent class

 System.out.println("Parent data: " + data);

 display();

 }

 public void accessOtherParentInstance(Parent other) {

 // Cannot access protected members of other Parent instances

 // System.out.println(other.data); // Compilation error

 // other.display(); // Compilation error

 }

}

Here, despite the Child class being in a different package, it can

access its protected data field and display method of the Parent class.

Protected access has an important subtlety: a subclass can access

protected members through inheritance (via this or super references),

but it cannot access protected members of other instances of the

parent class. However, this restriction is also evident in the

accessOtherParentInstance method, because if you try to access

protected members of another Parent instance, you will get

compilation errors. This is because protected access only supports

inheritance relationship, and it does not allow access to the whole

parent class instance for any instance of the other package class.

External classes are prevented from accessing protected data members

or functions, but subclasses can — making this access level useful in

framework and library design, where a base class may need to

facilitate subclasses while preventing them from exposing their

functionality to unrelated classes. For instance, many of the abstract

classes in the Java Collections Framework use protected methods to

enable subclass customization while encapsulating implementation

details. To properly architect a class hierarchy across different

packages, developers should think which members ask for the

protected access. Excessive use of protected access may lead to a

weakening of encapsulation and exposure of implementation details

to subclasses, resulting in tight coupling between the base class and its

subclasses. Conversely, making members private can hinder

legitimate customization through subclasses. A good rule of thumb is

45
MATS Centre for Distance and Online Education, MATS University

Notes to use protected access for methods that should be overridden by

subclasses (template methods from the Template Method pattern) calls

or for members that subclasses need to call as part of their

implementation. Unlike methods, it is more uncommon to mark fields

as protected, as subclasses can access them directly and thus can

avoid significant validation or synchronization action taken from the

parent class. Instead, protected accessor and mutator methods are

often a better balance of flexibility and encapsulation.

• Public Classes and Package Organization: This is critical for

organizing packages and building applications, as public

classes have a visibility across packages and affect the way

classes can be referenced within them. This means a public

class can be referenced from any other class in the Java

program, even a class in another package. However, we

cannot have classes without having public classes that are the

primary interface of igniter packages and, with that, is the

baseline use of and API design for any Java applications. In

Java, a source file may contain one and only one public class

or interface and if there is one, the name of that public class

must match the name of the file (excluding. java extension).

Importantly, since there is a 1:1 mapping between public

classes and source files, this reinforces the fact that the

primary units of functionality made available for use by a

package are its public classes. Classes with default package-

private access (i.e. non-public) in the same source file, on the

other hand, are implementation details that support the public

class that should not be visible outside the package. This

inherently encourages encapsulating code around clean public

interfaces with implementation details being hidden in the

package. Good organization of packages relies on the fact that

a public package has as few public classes as possible, but at

the same time, these public classes must give a complete and

coherent interface to the functionality is provided by the

package. The public classes define the package's contract with

the calling application, while the package-private classes hold

implementation information, and no information that the

calling class doesn't need to know is exposed. }} Consider an

46
MATS Centre for Distance and Online Education, MATS University

Notes application that implements a data access layer for some

package: `java

// File: com/example/data/UserRepository.java

package com.example.data;

public interface UserRepository {

 User findById(long id);

 void save(User user);

 void delete(User user);

}

// File: com/example/data/UserRepositoryImpl.java

package com.example.data;

class UserRepositoryImpl implements UserRepository {

 private DatabaseConnection connection;

 UserRepositoryImpl() {

 connection = DatabaseConnectionFactory.createConnection();

 }

 @Override

 public User findById(long id) {

 // Implementation details

 }

 @Override

 public void save(User user) {

 // Implementation details

 }

 @Override

 public void delete(User user) {

 // Implementation details

 }

}

// File: com/example/data/DatabaseConnection.java

47
MATS Centre for Distance and Online Education, MATS University

Notes package com.example.data;

class DatabaseConnection {

 // Implementation details

}

// File: com/example/data/DatabaseConnectionFactory.java

package com.example.data;

class DatabaseConnectionFactory {

 static DatabaseConnection createConnection() {

 // Implementation details

 }

}

// File: com/example/data/User.java

package com.example.data;

public class User {

 private long id;

 private String username;

 // Public constructors, getters, and setters

}

In this example, only the UserRepository interface and User class are

public, forming the API that other packages can use. The

implementation classes (UserRepositoryImpl, DatabaseConnection,

and DatabaseConnectionFactory) are package-private, hidden from

external

48
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Managing Errors and Exceptions

Managing Errors and Exceptions: Exception Handling

Mechanisms in Java

In software development, especially for one of the most solid and

popular programming languages such as Java, the ability to handle

errors and special conditions gracefully is crucial to building robust

and resilient applications.

In the context of Java, an exception is an event that interrupts the

normal flow of execution of the program. Generally, it represents an

unusual or abnormal scenario that falls outside of the intended

operating sequence. These exceptions can happen from lots of reasons

like in case of invalid user input, unavailability of any resource (file

not found), network connectivity loss or it can also be from

programming errors like divide by zero situation. Java incorporates a

rich and organized approach to handle such disruptions, aptly named

exception handling, which allows developers to predict, catch, and

address these exceptions in a both systematic and controlled way.

Java exception handling is built upon the basic concept of what is the

risk in a program and what is not following the normal flow of logic

and making it easier to manage error inside a large code. This

separation into different blocks of code is implemented with

keywords and constructs specifically designed for this purpose, which

are try, catch, finally, and throw, that in conjunction help handle

exceptions. The try block is the core of this mechanism, wrapping the

code segment that may raise an exception. On the other hand, catch

Figure 1.4: Exception Hierarchy
[Source: https://th.bing.com/]

49
MATS Centre for Distance and Online Education, MATS University

Notes block is an exception handler, describing the type of exception that

you can handle and having the statements to be executed when such

an exception is raised. Used with try and catch, the finally block

makes sure a block of code runs whether an exception is thrown or

caught, making it an excellent place to put resource cleanup

operations. The throw keyword allows Java developers to create an

exception, either a standard Java exception or a custom exception that

fits the application's needs. Java provides these constructs which

allow developers to bestow applications with the ability to recover

from errors or terminate gracefully while informing the user of what's

happened, making for a more stable software and user experience.

You move from technical correctness to a much more precise field,

error handling is essential in software development, and no one

knows where they are going to be deployed.

A tree structure forms the basis for exception handling in Java based

on a hierarchy of classes, with the Throwable class being the root of

that hierarchy. This is further divided into two major categories

known as checked exceptions and unchecked exceptions. Upon

hearing the term exception, checked exceptions typically come to

mind first in Java, as they fall directly under Exception and represent

exceptional behaviors that a sufficiently prepared application should

be able to handle. Such exceptions are usually linked with external

issues or resource constraints, including input/output or network

communications. Compiler enforces handling of checked exceptions;

developer needs to either handle it in try-catch block or declare it in

method using throws clause which essentially passes the

responsibility to handle it to the calling method. More importantly, it

encourages you to handle any potential errors up front, preventing

them from proliferating unchecked through the application. On the

other hand, unchecked exceptions extend from the class of

RuntimeException, and correspond to programming errors or logical

bugs that are usually meant to be handled by the programmer. Unlike

checked exceptions, these exceptions (like NullPointerException or

ArrayIndexOutOfBoundsException) often show a flaw in code logic,

hence they don't get compile time checks. In general, you don't have

to implement these, but it is good practice to add try-catch Here to

avoid terminating the program and apply graceful error recovery when

an exception occurs. Checked exceptions in Java are about two

50
MATS Centre for Distance and Online Education, MATS University

Notes words: design philosophy. Checked exceptions lead the developers in

a way where they think upfront about their errors and make provisions

to handle it where as unchecked exception give you more flexibility

to work on programming errors which might be difficult to predict or

prevent. In addition to these pre-defined exception classes, Java also

provides the ability to create custom exceptions by extending the

Exception or RuntimeException classes. This allows application-

specific exceptions to be crafted, representing the fine-grained error

conditions that may arise, resulting in a more helpful approach to

managing the state of an application. While built-in exceptions

provide some context, custom exceptions can include more specific

details about the error, including error codes and detailed messages,

which can be crucial for understanding and resolving issues. One

compelling feature that contributes to Java's strong error handling

capabilities is the ability to define and throw custom exception

classes.

The try-catch-finally construct is the workhorse for Java's exception

handling mechanism: a structured approach to intercepting and

managing exceptions. The try block specifies the part of the code that

might throw an exception. This is the basic syntax for exception

handling in C++ −Try Block: The code which is doubtful to have a

race condition is enclosed in a try block. If an exception is

encountered, execution of the try block gets interrupted, the catch

block is searched if there is any catch block to handle caught

exception and control is transferred to it. The catch block Follows the

try block and is where you define the type of exception the block is

capable of catching, followed by the code to run when such an

exception arises. We can define multiple catch blocks with a single

try block to handle different types of exceptions. It allows developers

to devise custom error-handling approaches per type of exception,

offering a more customized and resilient way to deal with potential

errors. Finally (optional) block: The finally block will be executed

whether an exception is thrown or caught. Usually, it is using for

finalization operations, such as file streams closing, network

connection releasing, other resources that have to be free allocated.

As you have now guaranteed that that code is going to be executed,

finally is an extremely important construct to allow you to ensure that

resources are managed well and help prevent resource leaks and

51
MATS Centre for Distance and Online Education, MATS University

Notes things like that. Java also offers a similar statement called try-with-

resources that also implicitly! closes resources that implement the

Auto Closeable interface. This statement is especially helpful when

working with resources that need to be closed explicitly, like file

streams or database connections, to avoid resource leaks. The try-

with-resources statement guarantees that each resource is closed when

it is no longer needed, similar to how all variable classes now are

automatically collected by the garbage collector. It decreases the

boiler code necessary for resource handling and is improving the

readability and maintenance of the Java applications. Try-catch-

finally, try-with-resources.

Java provides features for both propagating and rethrowing

exceptions, so that you can implement more custom error-handling

logic. Exceptions are thrown by a method, which can either choose to

handle the exception locally or pass it to the calling method. When an

exception is propagated, it means the exception is declared in the

method's throws clause and is left to the caller to handle the

exception accordingly. This is especially handy when some method

returns an error it can't handle and needs to inform a calling method

about the problem. The caller can then decide whether to handle the

exception, or let it rise further up the call stack. Rethrowing, one

means you catch an exception in a catch block and throw it again,

either as original exception or different exception. Usually, wrapping

it like this is done where a method must perform some kind of

cleanup, or want to log the exception, before letting it go any further.

Because, you can use it to re-wrap an exception in a more specific

exception type, as to give more information about the cause of the

error. And there are cases, a method that saves something in the

database may catch any kind of SQLException and as a result throw

that as DatabaseAccessException too, so that the calling method

knows that it may be a "custom" error. With this strategy, developers

can implement a layered approach to exception handling for

individual layers to handle exceptions in its level of responsibility and

propagate them upwards if required. Similarly, in Java, you also have

the assert keyword that allows developers to write assertions in their

code for conditions that should always be true and in addition to that,

comes with the hierarchy of exceptions to propagate. Assertions are

usually used in development and testing to catch logical programming

52
MATS Centre for Distance and Online Education, MATS University

Notes errors and to make sure that the code is behaving the way it should. If

an assert fails then an AssertionError is raised, indicating a

programming error. Assertions can be turned on or off when running

the code, enabling developers to toggle their behavior based on the

environment. The feature helps debug Java applications and verify

that they are functioning as expected.

Overall, the exception handling feature in Java is a powerful and

flexible mechanism that enables developers to build robust and fault-

tolerant applications. Java because of the constructs like try-catch-

finally, try-with-resources and the support for the creation of user-

defined exceptions allows the programmer to predict errors, monitor

them and handle the error in a systematic way. By organizing throw

exceptions into check and ignore, the hierarchical classification allows

developers to separate the more severe aspects of software

development from the less serious. Being able to propagate and

rethrow exceptions can make it possible to build layered error-

handling models; this prevents any one Single Responsibility

Principle (SRP) handler from having to manage all exceptions. The

assert keyword is a powerful feature for debugging and correctness of

Java applications. What You Need to Know is Java exception

handling is a powerful mechanism that allows the exception to be

caught and handled properly by the application, preventing it from

causing complete failure of the application. Doing so, then, leads to

faster exception handling, which can save valuable milliseconds both

in computing and in user experience. Error management is not just a

technical "thing" — since we are professional developers, we learn to

develop software that meets the new standards, expected of a modern

software system.

53
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Multithreading

Multithreading

Multithreading is a multiprocessor and concurrent programming

paradigm that enables multiple threads to run concurrently within a

process. Essentially it lets a single program do several things at once,

making programs run faster and more responsively, even when they

have to do things like I/O or heavy computation work. A thread, the

basic unit of CPU utilization, contains a thread ID, a program

counter, a set of registers and a stack. Threads created within a

process share the code segment, data segment, and operating system

resources with all other threads within the same process, hence

providing an efficient way of using resources. There are mainly 5

states of thread in Java life cycle namely - New, Runnable, Running,

Blocked / Waiting and Terminated. Stage 1: NEW When a thread

instance and a thread reference is created using the Thread class or

the Runnable interface, it is said to be in a new state. When you call

start() method, the thread enters into Runnable state, which means it is

ready to run and chosen by the thread scheduler to start running.

When the thread scheduler assigns CPU time to the thread, the thread

is moved to the Running state. Threads can enter the Blocked/Waiting

state for several reasons, including waiting for I/O operations to

complete, needing to acquire a lock, or calling sleep() or wait().

Lastly, a thread goes into the Terminated state after it has finished

executing or when it runs into an unhandled exception. Java give us

many ways to control and manage threads. The code that is executed

by the thread is contained in the run() method. The start() method is

where the thread actually starts by calling the run() method in the

new thread. sleep() : The sleep() method suspends the execution of the

thread for the specified amount of time. The join() method is used to

wait for a thread to finish executing. yield() — is used to indicate to

the thread scheduler that the current thread can relinquish. For shared

resource management and avoiding race conditions, synchronization

mechanisms are essential (including synchronized blocks and

methods). Methods: wait(), notify() and notifyAll() The basic

methods to inter-thread communication between synchronized blocks.

Deadlock Problem In Multithreaded Environment: It is a dangerous

condition in which two or more threads have blocked indefinitely

54
MATS Centre for Distance and Online Education, MATS University

Notes waiting, each other and needs to be solved. Deadlocks can be avoided

by correctly managing and synchronizing resources. Thread pools

(managed by Executor framework) are an efficient way to manage a

set of threads and help avoid the overhead of creating and destroying

threads. A Callable is very much like a Runnable, but it can return a

value, and it can throw checked exceptions. The Future interface is for

the result of an asynchronous computation, which allows the result to

be retrieved once it is available. To create applications that remain

responsive and efficient, especially in the world's of networked or

server-side processes necessitating concurrent handling. Assembling

knowledge of thread management, synchronization, and inter-thread

communication is essential for creating resilient and scalable

multithreaded applications.

1.5 Network Programming

In simple words, network programming in Java allows you to

communicate with other network applications and transfer data

between two or more network applications. Yes, Java network

programming by ship on the TCP/IP protocol suite. The java. Java

provides a rich set of classes for network programming in the java.

InetAddress is the class that represents an IP address, which is a

numeric label assigned to each device connected to a computer

network that uses the Internet Protocol for communication.

InetAddress class: getLocalHost() and getByName() are some of the

methods of the InetAddress class to get the IP address of a host. A

Socket class is for the client-side socket, an endpoint for

communication between two machines. It defines the IP address and

port number of the server which is used to create socket. First, answer

why socket class, where Socket class represents a socket for

communication between a client and server. The ServerSocket creates

a new Socket Object for communication with a client when a client

connects to a server. The URL class is used to identify a Uniform

Resource Locator, which is a reference to a resource on the web that

specifies its location on a computer network as well as a mechanism

for retrieving it. Understanding the concept of URLConnection class.

It has methods that can read and write data to the URL. Connection-

oriented UDP communication is done with the help of

DatagramSocket and DatagramPacket classes. It is a very basic

transport layer protocol which provides unreliable, unordered

55
MATS Centre for Distance and Online Education, MATS University

Notes delivery of datagrams. DatagramSocket- Sends and receives datagram

packets DatagramPacket- A datagram representing a packet of data

Network programming requires things such as setting up sockets,

sending and receiving data, handling network exceptions, etc. To read

and write data on a network connection, input and output streams are

used. The InputStream and OutputStream classes have methods for

reading and writing byte streams and the BufferedReader and

PrintWriter classes have methods for reading and writing character

streams. Network programming is an important aspect of building

distributed applications, web servers, and client-server systems. A

device that operates at the lowest level in the OSI model is

responsible for packet transmission over these connections. So, these

were some of the Pros of using Java.

1.6 Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) is a Java API that allows Java

programs to connect to and interact with relational databases. JDBC

stands for Java Database Connectivity, which is an API for Java

programmers to connect with the database. JDBC is divided into a 2

layered architecture which contains the JDBC API and JDBC drivers.

The JDBC API consists of interfaces and classes that communicate

with databases, and JDBC drivers are vendor specific

implementations that convert JDBC calls to vendor database

commands. The JDBC driver is a piece of software that enables the

connection between the Java application and the database. The Types

Of JDBC Drivers: Type 1 (JDBC-ODBC Bridge), Type 2 (Native-

API Driver), Type 3 (Network Protocol Driver), Type 4 (Thin

Driver). Type 1 drivers rely on ODBC to connect to databases; this

can be slow and relies on the platform. Type 2 drivers rely on native

database libraries, which can be faster but also include platform

dependency. Type 3 drivers are a lot easier to work with than type 2

to create because they act as a middleware server with the database,

which means they gain portability and scalability. Pure Java Driver

(Type 4) — It communicates directly with the database and offers the

best performance and platform independence. In order to open a

database connection, you load JDBC driver, generate a connection

object, and execute SQL statements. The DriverManager class loads

JDBC drivers and returns connection objects. The Connection

interface represents a connection to a database and has methods to

56
MATS Centre for Distance and Online Education, MATS University

Notes create statements, execute queries, and manage transactions.

Statement — The Statement interface is used to execute a static SQL

statement and it is suitable for executing a simple SQL statement

with no parameters Required, which is a secure way to prevent SQL

injection statement, only suitable for executing with no parameters

Required of the SQL statement. The ResultSet interface is an interface

that represents a table of data generated by executing a statement

against a database. Especially exceptions related to the database are

represented by the SQLException class. The JDBC provides methods

for executing SQL statements like SELECT, INSERT, UPDATE,

DELETE, etc. To ensure that a series of database operations are

executed as a single, atomic unit of work, you can use transactions to

group them together. Support for transaction management features,

such as commit, rollback, and savepoints. JDBC: JDBC is very

important for developing data-driven applications, as it offers a

standard and effective way to connect with relational databases. How

JDBC works: JDBC architecture, drivers, and database connectivity

in Java.

Multithreading is a fundamental concept in the world of concurrent

programming that allows multiple threads to run inside a single

process, improving the responsiveness and efficiency of an

application. Data from this layer is culturally related to multithreaded

Java applications. Thread life cycle, including states such as New,

Runnable, Running, Blocked/Waiting, and Terminated through which

a thread passes during its lifetime, primarily controls the execution

flow of a thread, whereas operations including those in methods such

as start(), sleep(), join(), and yield() enable fine-grained control of

thread behavior. Synchronization is achieved using synchronized

blocks or methods to maintain data integrity and avoid race

conditions, and inter-thread communication is performed through

wait(), notify(), and notifyAll(). A potential pitfall of a multithreading

design, deadlock, requires prudent resource management and

synchronization techniques to overcome it. The Executor framework

is a powerful tool for managing thread pools, optimizing performance

by avoiding the overhead associated with thread creation and

destruction. To enhance Multithreading capabilities, Java provides

several interfaces including the Callable interface and Future

interface, which allow threads to return values and manage

57
MATS Centre for Distance and Online Education, MATS University

Notes asynchronous computations. In essence, multithreading is crucial for

creating responsive, scalable applications, especially in networked or

server architectures, where simultaneous execution takes center stage.

Network programming forms the backbone of modern applications,

enabling the exchange and interaction between Java applications and

networks. The TCP/IP protocol suite provides a strong foundation for

network communication, and Java builds upon that through its

features for network programming. The java. The net In the Java

programming language, the net package provides a rich set of classes

and interfaces, such as InetAddress, Socket, ServerSocket, URL,

URLConnection, DatagramSocket, and DatagramPacket, which

enable a network-based application. InetAddress is used to resolve IP

addresses in string form, Socket and ServerSocket for establishing

client-server communication, URL and URLConnection for fetching

a web resource over HTTP, and DatagramSocket and DatagramPacket

for making connectionless communication using UDP. Network

programming behaviors such as creating sockets, sending and

receiving data and handling exceptions during the network operations

you will be doing on input and output streams.

Multiple-Choice Questions (MCQs)

1. Which of the following is not a feature of Object-Oriented

Programming?

a) Encapsulation

b) Inheritance

c) Compilation

d) Polymorphism

Answer: c) Compilation

2. What keyword is used to define a package in Java?

a) package

b) import

c) include

d) namespace

Answer: a) package

58
MATS Centre for Distance and Online Education, MATS University

Notes 3. Which of the following is not a valid exception handling

keyword in Java?

a) try

b) catch

c) final

d) throw

Answer: c) final

4. What is the default priority of a thread in Java?

a) 1

b) 5

c) 7

d) 10

Answer: b) 5

5. Which of the following JDBC drivers is platform-

independent?

a) Type-1

b) Type-2

c) Type-3

d) Type-4

Answer: d) Type-4

Short Answer Questions

1. What is encapsulation in Java?

2. How do you define and use a package in Java?

3. Explain the difference between checked and unchecked

exceptions.

4. What are the main states in a thread’s lifecycle?

5. What is the role of the DriverManager class in JDBC?

Long Answer Questions

1. Explain the four main Object-Oriented Programming (OOP)

concepts with examples.

2. Describe the process of handling exceptions in Java using try,

catch, finally, and throw.

3. What is multithreading in Java? Explain the life cycle of a

thread with a diagram.

4. Explain the concept of socket programming in Java with an

example.

59
MATS Centre for Distance and Online Education, MATS University

Notes 5. Describe the steps involved in connecting a Java application to

a database using JDBC.

60

Module 2

JAVA FX TECHNOLOGY

LEARNING OUTCOMES

• To understand the fundamentals and architecture of Java FX.

• To explore Java 2D and 3D graphics in Java FX.

• To analyze Java FX animation, effects, and transformations.

• To study Java FX layout management and UI controls.

• To implement Java FX event handling and image processing.

61
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Introduction to Java FX, Features, Architecture

and Applications

Introduction to Java FX

JavaFX represents a significant improvement in building graphical

user interfaces (GUIs) in Java compared to Swing and the Abstract

Window Toolkit (AWT). First introduced by Sun Microsystems

(subsequently bought by Oracle), JavaFX was first celebrated as a

2008-era component, giving developers who wanted to develop

desktops with rich graphics, embedded media and new programming

models a higher-level, more modern way to do it than from what early

Java offered with its early emphasis on building complex GUI

interfaces all on its lonesome. Initially, it was an Oracle product, but

when it was open-sourced into OpenJDK 2011, the theoretical

changes were made to the code were for every to contribute to the

code, allowing for small iterative changes and community

development. Initially it was hailed as an answer to Adobe Flash and

Microsoft Silverlight, this cross-platform rich-client alternative was

capable of the same rich interactive application creation possibilities,

now with the Java ecosystem advantages. When programming

languages such as Visual Basic and Visual C++ were introduced,

there was a demand for graphical user interfaces that were more

engaging, allowing interaction and features that would be visually

appealing, that would also run under a large number of operating

systems. However, JavaFX, when it landed, came with something of a

standalone scripting language (JavaFX Script) which aimed to

simplify UI development, thanks to a declarative syntax. But with

JavaFX 2.0 (released in 2011), Oracle returned to a pure-Java-API

approach, ditching the separate scripting language in favor of regular

Java code feathered with builder patterns and fluent APIs. Thus

JavaFX became a tangible platform for the existing pool of Java

developers based on the extensive familiarity with Java and some of

the ability to do modern UI development. The long and short of it is

simply this: JavaFX was never really about the technology — it was a

case study for Oracle that Java was still relevant, even in the midst of

an explosion of web and mobile technologies. : JavaFX was the first

stone in that rich client mountain: it established the right architecture

for taking Java out of the server and into both the desktop stacks. The

62
MATS Centre for Distance and Online Education, MATS University

Notes major functionality and improvements were rolled out with every

new release over a series of reworks. The core Java API was

developed in JavaFX 2.0; JavaFX 8 (along with Java 8) integrated

more with the Java Development Kit (JDK), and the more recent

releases enhanced performance, added new UI controls, extended

platform support. So this makes 2018: a new major shift for JavaFX:

with Java 11, it was decoupled from the JDK. While this added some

extra steps when you wanted to include it in your projects, this

modularization allowed JavaFX to release its libraries independently

of the overall Java platform release cadence. But what do you know,

all this was possible by JavaFX for Java which was released on

December 3, 2008, and eventually led to what we have today, a

complete mature framework for building rich cross platform

applications with powerful graphics, multimedia support and

advanced UI components. And its evolution is a window into some of

the most significant trends in software development overall, including

the shift toward more declarative programming models, the rising

need for rich user experiences, and the new need for cross-platform

compatibility as an ever more heterogeneous computing landscape

emerges. Having a clearer understanding of what led us to here, we

now have the context better to look at its present capabilities and its

role in the wider Java ecosystem before looking at its feature set,

architecture and use in modern application development.

Historical Context:

Java's history of developing graphical user interfaces has undergone

an evolution driven by paradigms shifts in technology and

development as well as developer and user expectations. This started

with the Abstract Window Toolkit (AWT), the original GUI toolkit

that Java shipped with the first version of Java in 1995. AWT offered

a basic set of UI components that mapped directly to native platform

components, in what is known as a “heavyweight” approach.

Although this method allowed applications to preserve the appearance

and behavior of the underlying operating system, it limited the level

of customization and appearance consistency across different

platforms. Moreover, the component set of AWT was quite limited

with basic components only buttons, text fields and basic containers

etc. These factors led to the creation of Swing, which was released in

1997 as part of the Java Foundation Classes (JFC). Previously, Swing

63
MATS Centre for Distance and Online Education, MATS University

Notes was a major improvement because it adopted a "lightweight"

architecture, which meant that in most cases each of Swing's

components were drawn using Java's own rendering engine instead of

native components. That was way more flexible, had much richer

component set, and much more consistent behavior cross platform.

From this, Swing adopted the pluggable look-and-feel system to

enable applications to look the same regardless of the underlying

operating system or adopt the native look and feel when needed.

Swing remained the de facto GUI toolkit for over a decade with

commercial and enterprise applications building on thousands of

Swing-based applications and establishing the baseline for user

interface design in the Java ecosystem. But as web and mobile

applications grew and as users experienced more advanced user

interfaces, expectations were updated for desktop applications as well.

For modern users, rich animations, seamless multimedia integration,

hardware-accelerated graphics—and more visually engaging

experiences—were all things that pressed Swing beyond its initial

design parameters. These evolving expectations, together with

improvements in graphics hardware and new rendering technologies,

set the stage for the arrival of JavaFX. JavaFX was first developing

as "Project F3" (Form Follow Function) within Sun Microsystems,

were first announced as a public product in 2007 and first released in

2008. First iteration (JavaFX 1. x), which had a dedicated scripting

language (JavaFX Script), that allowed you to describe user interfaces

in a declarative manner. It was a radical departure from Swing's

imperative programming model. Another focus was the integration of

rich media and the added support for animation, which positioned

JavaFX as competition for Adobe Flash and Microsoft Silverlight in

the arena of Rich Internet Applications (RIA). Oracle bought Sun

Microsystems in 2010, and for a while there it didn't look good for

JavaFX. But then Oracle established its real commitment to the

platform when it announced a massively ambitious roadmap. JavaFX

2.0, introduced in 2011, was a pivotal change, dropped the separate

scripting language and used a standard Java API. This move brought

JavaFX into closer alignment with mainstream Java development

practices, but without sacrificing the advanced graphics and animation

features available in the platform. This evolution continued with

JavaFX 8 in 2014, which aligned versioning with the Java SE

64
MATS Centre for Distance and Online Education, MATS University

Notes platform and provided complete integration for JavaFX; included as

part of the JDK. [More changes that includes UI controls, 3D, touch]

This release added a number of new UI controls, better 3D graphics

support, and improved touch capabilities: an acknowledgment of the

rising significance of touch-enabled devices.

For example, in 2018, the biggest milestone was that JavaFX got

decoupled from the JDK with Java 11 and became an independent

module under the OpenJFX project. Doing so gave JavaFX the

freedom to grow on its own timetable, separate from the release

schedule of the core Java platform. As each GUI framework evolved,

they improved upon their predecessors' limitations and adapted to the

changing technological landscape and user expectations. AWT

offered some primitive platform native components, Swing better

flexibility and more components, and JavaFX hardware acceleration,

modern skinning via CSS, richer animation, and full multimedia

support. It also signals an evolution in mindset, moving from

imperative programming and dense code in AWT and Swing, to the

emphasized declarative design encouraged by JavaFX, especially

with FXML for UI definition.

Positioning in the Modern UI Landscape

JavaFX maintains a unique position in the wealth of user interface

technologies available to developers today; indeed it reflects its

technical prowess with a strategic value proposition. JavaFX and its

place among the alternatives for building GUIs (including web

development, native platform toolkits and the other cross-platform

options) which gives you insight into this position. This is one of the

many strong points of JavaFX, the ability to be able to create true

native applications with the same behaviour across operating

systems. While most web applications rely on a browser runtime,

JavaFX applications can include all the required runtime components

and be distributed as standalone executables. This is still useful in

cases where tight integration with the OS, offline capabilities, or

access to local system resources is needed. JavaFX also boasts a

cross-platform architecture that enables it to run not only on

Windows, but also on macOS and Linux, and even to some extent,

mobile platforms, which can be a big plus when building applications

that need to run in heterogeneous computing environments. For

organizations that have a variety of technology ecosystems, or for

65
MATS Centre for Distance and Online Education, MATS University

Notes those that are creating software for distribution to people who may be

using any number of operating systems, they can rely on one code

base rather than maintain distinct implementations for each platform.

This cross-platform capability puts JavaFX in competition with

frameworks such as Qt, Electron, and Flutter — each of which has its

own take on the dilemma of cross-platform development. JavaFX can

be seen as a natural enterprise extension to companies that have

invested heavily in Java technology. Java is pervasive in the

enterprise, with many organizations having established Java

development skills, build pipelines, security practices, and

deployment workflows. JavaFX taps into this already well-established

ecosystem, providing these organizations with the ability to develop

complex, sophisticated desktop applications without a new

programming language, or a completely different programming

approach. This interoperability with the wider Java ecosystem,

including compatibility with tools, frameworks, build tools, and IDEs,

offers a unified programming experience that sets JavaFX apart from

other solutions that may require the adoption of entirely new

technology stacks. Today the User Interface of web applications are

heavily inspired by web technologies and frameworks like React,

Angular, Vue. js includes much of modern user interface

development. JavaFX acknowledges this fact by providing the

capability to embed web content into applications with the WebView

component, which is similar to embedding a web browser inside an

application. This hybrid approach allows the developers to leverage

the best features of web technologies for content rendering while

merging it with the platform integration and performance advantages

provided by a native application framework. Additionally, JavaFX

adopts concepts from modern web development, as seen in the use of

CSS for styling and FXML for separating presentation and logic.

These features also make it easier for developers who are familiar

with these types of technologies to work with the stack, and align with

the broader industry trend toward defining UIs in a declarative fashion

and separation of concerns. JavaFX shines above other technologies

when it comes to data-driven enterprise applications. You are still an

Editor for importing concepts, concepts into which the framework can

be used to bind the connection of really, making the interface

responsive, in which case you can update the data when some data is

66
MATS Centre for Distance and Online Education, MATS University

Notes actually changed. When these two powerful technologies are

combined together, it creates the perfect platform for business

applications requiring data visualization, analysis, and manipulation

due to Java's rock-solid data processing capabilities and a wealth of

connectivity options to databases and services. The introduction and

success of Electron, which bundles web applications with a

Chromium runtime to create desktop applications, has reshaped the

desktop application landscape. Electron has revolutionized the world

of desktop apps but comes with few drawbacks such as performance

and resource hogging but JavaFX is one good alternative. JavaFX

applications tend to be smaller in terms of size and resource usage,

compared to Electron applications that require an entire web browser

engine to be included. This efficiency is crucial for applications that

run on systems with limited resources or efficiency-critical

applications. JavaFX stands out with its excellent multimedia and

graphics support as well. Positioning it well, for applications which

needs rich visual experiences, is its scene graph architecture,

hardware-accelerated rendering pipeline and built-in support for

animation, 3D graphics, and a variety of media formats. The rich

media support and scene-graph architecture allow JavaFX to be used

for data visualization, demonstrations, educational software as well as

creative software such as keyframing tools where primitives must

render dynamically. As web applications have grown more complex,

the lines between web and desktop applications have become less

distinct. JavaFX recognizes this convergence with CSS styling, the

FXML markup language for UI definition, and WebView for web

content integration. It still has the power of a compiled language and a

native runtime, providing performance and security characteristics

that manage to be hard to come by through an entirely web-based

solution.

Core Philosophy and Design Principles

JavaFX was designed based on a set of core philosophy and design

principles which continue to influence its design and usage. These

principles are drawn from the lessons of past Java UI frameworks as

well as future directions in application development in a more

heterogeneous and dynamic computing ecosystem. One of the

principles that the design philosophy around JavaFX is built on is the

need for expressive and declarative user interface construction. In

67
MATS Centre for Distance and Online Education, MATS University

Notes contrast with the more imperative programming model of AWT and

Swing, where interfaces were created almost exclusively by

procedural code, this is a major advancement. JavaFX In a way, also

embraces a more declarative paradigm, especially with FXML for

defining user interfaces in an XML-based markup language. While

draft.is or TiddlyWiki is structured as an application — an interface

containing all its own logic — React.js separates UI structure from

application logic. As we will touch on the declarative approach further

above the visual and aesthetic, the declaration based approach even

flows over the structuring to the aesthetic, so JavaFX uses CSS to

allow usto visually adjust UI elements. This choice enhances the

broad knowledge base surrounding CSS, both for web developers and

web designers, while simultaneously providing a robust and standard

way to build visually striking apps without needing to change internal

code. The ability to apply multiple stylesheets and to work with

dynamic styles also help towards building interfaces that are visually

coherent and adaptive. Another one of the core concepts is hardware

acceleration out of the box — JavaFX has been designed from the

very beginning to maximize the potential of existing graphics

hardware by way of its Prism rendering pipeline. Using this method,

artists can construct rich animations and render dense scenes, with

pixel-perfect accuracy regardless of size (including very large

displays). By providing a graphics pipeline that abstracts the

interaction with hardware, JavaFX enables developers to write

visually and functionally rich applications without the need of detailed

knowledge with any specific graphics system while utilizing the

hardware when it is available. JavaFX is also designed for cross-

platform consistency while still respecting platform conventions.

Unlike previous approaches that tended to leave developers choosing

one or the other between cross-platform visual consistency and native

integration, JavaFX attempts to balance these tradeoffs. The platform

differs between what is showable patterns and functional behaviors

when appropriate, but provides a uniform model and idea of

contributions to underlying systems. This may sound like a no-

brainer, but it applies to accessibility too: JavaFX is built to work with

any type of assistive technology across multiple platforms, so

applications can be used by people of all abilities. JavaFX represents

the idea of scale in terms of the various kinds of application and

68
MATS Centre for Distance and Online Education, MATS University

Notes deployment cases. Its architecture handles everything from simple

forms-based business applications, to data visualization tools, to

complex maps with rich graphics. It can be used for standalone

desktop applications, for web deployment through Java Web Start (in

previous versions), or for embedded systems applications. This is

implemented through modules, meaning that you can only add the

necessary components for the given needs of the application. Pretty

much any Java SE application can contain JavaFX components, and

JavaFX itself is available as an importable Java library. This allows

developers to take advantage of their existing investment in Java

technology as they learn and adopt the modern UI features of JavaFX.

The framework offers initial support to integrate Swing components

when needed, allowing upgrading of older applications to be done in a

gradual fashion. Another major aspect of Flutter is its WebView

component, which allows for integration of browser content,

acknowledging the significance of web technologies in current

applications. Developer productivity has, in fact, hugely impacted

JavaFX's design. Then I also mention properties binding (or whatever

name it's got inside your own UI library, with property IDs that can be

only bound in a declarative way from the data model while

automatically redoing the view upon data changes so that it is not

needed to do the same manually in code), which cut the amount of

boilerplate code and up is not prone to consistency errors, as well as

getting rid of a lot of boilerplate code. In the same way, the animation

framework does not expect you to do complex mathematical

calculations, instead, it offers high-level abstractions for creating rich

transitions and effects. The event handling system, which follows

consistent patterns across various component types, also increases

developer efficiency as the learning curve is lowered. In addition,

JavaFX follows the design/developer collaboration approach by

supporting tools like Scene Builder, which is a visual design

environment that produces FXML that can be used directly in

applications. This strategy acknowledges the reality of modern

application development, where implementation and design specialists

increasingly collaborate. This separation of concerns in FXML and

CSS makes it easy for the designer to work on all of the visual

aspects without needing to focus on how this will all fit in the

application logic. The next core design principle is multimedia

69
MATS Centre for Distance and Online Education, MATS University

Notes integration, and this was a crucial consideration in the development of

JavaFX, which offers first-class support for audio, video, and images

without the need for additional third-party libraries. JavaFX also has

built-in support for images, audio, and video, which reduces the need

for external libraries or plugins for common media operations to

develop rich client applications. It even extends to 3D content,

because JavaFX natively supports 3D objects and scenes as part of its

out-of-the-box arsenal. JavaFX finally reflects the idea of future-

readiness with a number regarding display technologies and help for

touch interfaces and new interaction patterns. The platform was

created with an eye towards trends for high resolution displays, touch

capable devices, and animated user experiences. This future-proofing

helps guarantee that JavaFX-built applications do not go out of date

as computing environments persist in metamorphosing.

Core Features and Capabilities of JavaFX

These capabilities are just a glimpse into the powerful tools JavaFX

offers for developing high-performance, cross-platform applications

with stunning graphics and UI. The core of it is a scene graph

architecture, where graphical elements are arranged in a hierarchical

way that allows for quick rendering and interaction response. It is the

foundation on which JavaFX builds its approach of arranging UI

components, layouts, and custom visual objects as a hierarchy of

nodes in a scene graph. It includes a comprehensive library of pre-

built UI controls including buttons, text fields, tables, trees, charts,

and more. These controls match modern UI patterns and expectations

like animation, visual effects, and styling (including CSS). The styling

system approach that JavaFX introduced is a huge improvement

compared with other UI frameworks in Java, enabling developers to

decouple the visual aspect from the application logic and to deliver

visually unique applications without touching their internal code.

Prism is the platform's rendering engine that uses hardware

acceleration to maintain graphics performance, especially for

animations and effects. This hardware-accelerated pipeline allows

JavaFX apps to provide visually stunning experiences even for

complex scene rendering and high resolution content. Along with

these visual features, JavaFX has full multimedia support with built-

in classes for images, audio, and video. Such integrated support

means no additional libraries and APIs are needed for working with

70
MATS Centre for Distance and Online Education, MATS University

Notes common media formats, enabling the rapid development of complex

content-rich applications. JavaFX, on the other hand, offers built-in

visual support for 3D scenes, enabling developers to construct and

manipulate three-dimensional objects as needed, as well as leveraging

the same APIs for traditional 2D interfaces. JavaFX’s binding

framework, which allows UI elements to be declaratively bound to

underlying data models, is another differentiator. When data changes,

the UI automatically updates and you get to write a little less

boilerplate to synchronize presentation code with data to avoid

inconsistencies between the two. This two-way binding goes from

property to property across the framework and allows creating more

adaptive, data-driven applications. JavaFX also provides a declarative

approach to UI definition via FXML, an XML-based markup

language. The accompanying Scene Builder tool offers a similar,

visual design experience for building out JavaFX interfaces,

outputting FXML declarations that can be used out of the box in

applications. JavaFX also has integrated WebView, which embeds a

web browser engine, into the content. This allows applications to

render HTML, run JavaScript, and communicate with web

applications, essentially merging desktop and web technologies.

JavaFX Integration and Performance JavaFX Core Features The

combination of all of these core features makes JavaFX a powerful

tool for building modern applications that have the performance and

integration characteristics of traditional native applications

complemented with the more advanced visual richness and

application interaction models that users are becoming accustomed to.

Figure 2.1: JavaFX Architecture
Source: https://static.packt-cdn.com/

71
MATS Centre for Distance and Online Education, MATS University

Notes Scene Graph and UI Components

At the center of JavaFX's rendering architecture is a scene graph,

which is a hierarchical structure that represents all of the visual

elements in a single application. This approach to constructing user

interfaces is a monumental shift from the Java UI frameworks that

preceded it and supports many advanced features of JavaFX. A scene

graph is organized as a tree where each node in the tree is either a

visual element, a group of visual elements, or some operation (a

transformation or an effect) applied to its children. Such a hierarchical

organization lends itself well to the compositional nature of user

interface as-built (composite components are built of more simple

components). In JavaFX, the scene graph starts with a Stage that

serves as the top-level container, usually a window in desktop

applications. Scenes graph structure A Stage has exactly one Scene,

which holds the root node of the scene graph. From this root, you

have a tree of nodes extending (or a graph if you want to be technical)

for all visual elements in the interface. Node class Diagram The Node

class is the root of all objects in the scene graph and contains common

properties and behaviours for positioning, transformation, effects,

event handling, and user interaction. JavaFX divides its nodes into

some categories: shapes (Rectangle, Circle, Path), controls

(interactive components like Button, TextField and TableView),

containers (layout components like HBox, VBox, and BorderPane),

media nodes (ImageView, MediaView) and web content (WebView).

Note that Group nodes are also used to combine multiple nodes into a

single node which can be executed as an atomic unit. These various

node types act as building blocks for crafting interfaces that can

range from basic forms to elaborate visualizations. The scene graph

architecture provides many strong benefits to UI development. First, it

is a natural model for building complex interfaces using simple

components. Users can compose new types of components from

merely existing nodes, transformations and effects, and custom

behaviors. Second, the hierarchy aids efficient rendering with culling

(trees that are far away from view aren't rendered) and dirty region

(only redrawing the sections that have changed.) The JavaFX

runtime will automatically take care of these optimizations, so

developers can focus on writing their complex interfaces without

having to have knowledge of the rendering optimizations. Third, the

72
MATS Centre for Distance and Online Education, MATS University

Notes scene graph provides a single model for transformations and

transition, which simplifies animation and visual effects. Any node in

the graph can have properties such as position, rotation, scale, and

opacity animated to produce complex visual behaviors with minimal

code. The Scene graph is the core hierarchical structure upon which

JavaFX UI components are built, providing a rich toolkit for building

applications. Components can be simple elements or complex, data-

driven controls. JavaFX provides primitive shapes (like Rectangle,

Circle, Line, Path, etc.) in its most simple form for building custom

graphics. Text nodes can display formatted text with a variety of

fonts, styles, and effects. The framework offers a wide range of layout

components (HBox, VBox, BorderPane, GridPane, FlowPane, etc.)

that position its children based on different spatial configurations and

are responsive to size changes. JavaFX provides a rich set of controls

that implement common UI patterns for user interaction. These

include basic controls like Button, Label, TextField, PasswordField

and CheckBox. Selection controls include ChoiceBox, ComboBox,

ListView, TreeView, and TableView. That said, JavaFX has Slider,

ProgressBar and ScrollBar for numerical input. Date selection is

managed by DatePicker and complex text entry is provided by

TextArea and HTMLEditor. Higher-level components include the list

of chart types (PieChart, LineChart, BarChart, etc.) for data

visualization, TreeTableView for hierarchical data representation, and

Pagination to split data into pages. Basic interaction patterns such as

alerts, confirmation requests, and custom modal interfaces are

provided by the dialog components. They follow common patterns

for styling, interaction, and customization. The component exposes

its properties, which can be bound to application data, configured

programmatically, or set with FXML. Components emit events when

users interact with them as part of a unified event model that greatly

simplifies the implementation of interactive behaviors. JavaFX

controls are designed to be functional and leave it up to the

programmer to decide how it should look. Each control provides a

complete implementation of its intended functionality out-of-the-box,

with developers able to extensively customize appearance and

behavior. This customization can take place at several levels: CSS

styling, properties set in code, changing the control's cell factory (for

list-based controls), or by building completely new controls with

73
MATS Centre for Distance and Online Education, MATS University

Notes subclassing or composition. This versatility enables developers to

design functional yet visually improved interfaces. JavaFX's

implementation of UI components is designed to be accessible,

allowing its applications to be compatible with screen reader software

and other assistive technologies. Find out how JavaFX implements

appropriate roles and provides accessibility information, contributing

to the ability for applications built with JavaFX to be usable by

people of varying abilities. Context: scene graph and component

model ⇒ declarative UI construction Unlike earlier frameworks,

where developers imperatively controlled low-level graphics

contexts, JavaFX developers specify the desired contents and structure

of the interface. The framework abstracts away the specifics of

rendering, layout, and event propagation, resulting in cleaner, more

maintainable, and less error-prone code.

74
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Java 2D Shapes, Colors and Text

Java 2D Shapes, Colors, and Text

Java offers a strong 2D graphics API within the java. awt and javax.

swing packages that help the developer customize/add shapes, colors,

and text in their graphical applications. These and other functionality

to draw basic shapes like lines, rectangles, ovals, polygons can be

achieved using classes called Graphics and Graphics2D. The

Graphics2D class is an extension of Graphics class, which contains

more sophisticated control over geometry, coordinate transformations,

color management, and text layout. For instance, by overriding the

paintComponent method and using Graphics2D on a Swing

component, you can draw a rectangle and an ellipse with varying

colors and stroke widths.

 import javax.swing.*;

import java.awt.*;

public class ShapeDrawing extends JPanel {

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D) g;

 // Set color and draw a rectangle

 g2d.setColor(Color.BLUE);

 g2d.fillRect(50, 50, 100, 70);

 // Set stroke and draw an oval

 g2d.setColor(Color.RED);

 g2d.setStroke(new BasicStroke(3));

 g2d.drawOval(200, 50, 100, 70);

 }

 public static void main(String[] args) {

 JFrame frame = new JFrame("Java 2D Shapes");

 frame.add(new ShapeDrawing());

 frame.setSize(400, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

75
MATS Centre for Distance and Online Education, MATS University

Notes frame.setVisible(true);

 }

}

Customizing Shapes with Colors and Strokes

You can customize the shapes with colours, gradients, and stroke

styles and paint it as per your need. The Color class contains some

predefined colors and it can also create custom colors based on RGB.

Additional styles, such as smooth color transitions and different line

weights can be done with the classes GradientPaint and BasicStroke.

In the following example, we apply a gradient fill to a rectangle, and

use a dashed stroke for a line.

g2d.setPaint(new GradientPaint(50, 50, Color.BLUE, 150, 120,

Color.CYAN, true));

g2d.fillRect(50, 50, 100, 70);

float[] dashPattern = {10, 5, 2, 5};

g2d.setStroke(new BasicStroke(3, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_BEVEL, 1, dashPattern, 0));

g2d.setColor(Color.BLACK);

g2d.drawLine(50, 150, 200, 150);

This snippet demonstrates how Java 2D enables smoother, more

visually appealing drawings beyond basic shapes.

Combining Shapes, Colors, and Text for Interactive Graphics

This implies that integrating these elements also means that the

developers can reap visual applications of anything from drawing

apps through games and visualizations. As an example, we can dive

to a real-world use case of a dashboard visualization, which has bars

inside bars filled with gradients, custom strokes outline and anti

aliased text labels. It is powered for them to create visually enhanced

and interactive UI components.

JavaFX Graphical Effects and Transformations

As one of the most powerful GUI toolkits to build the rich client

application, JavaFX gives us a very handy set of graphical effects and

transformations that make it possible to give more visual effects and

interactivity to the user interface. These features are important for the

development of modern and interactive applications that catch the

user's eye. While the graphical effects allow you to apply visual

76
MATS Centre for Distance and Online Education, MATS University

Notes changes to nodes (like blur, drop shadows, and coloring) the

transformations allow you to modify the geometrical properties of

nodes like scale, rotation and translation. These tools are very

important to understand and need to use thoroughly in order to

develop rich user interface-based applications for JavaFX developer.

JavaFX effects are essentially visual transformations that change how

a node is rendered while keeping the node's underlying geometry and

layout intact. For example, you may use a Gaussian blur to smooth the

edges of an image or add a drop shadow to give some depth.

Transformations edit the position, size, or orientation of the node

within the scene graph, in contrast. You could scale the button to

make it grow or shrink, rotate the label to write it in an angle, or

translate the image to drag it across the screen. These transformations

are non-destructive, meaning the node's original properties remain

unchanged. JavaFX comes with many built-in effects and

transformations, all with their own parameters and options. This

capability enables developers to deliver an expansive range of visual

tweaks, from subtle touches to bold transformations. For instance: A

developer could create a night mode effect using a color adjust effect

to invert the color scheme of their interview application, or add a

reflection effect to their app's button to make it shiny. All these effects

and transformations could be animated and give you a very nice

dynamic visual experience. The Hierarchical structure of the

elements that minimal JavaFX Scene Graph reflected onto JavaFX

animation philosophyEffects and Transformations The effects are

applied to the specific nodes, the transformations change the node

and all children elements. Because of this hierarchical nature multiple

effects and transformation could be done to different nodes in the

scene graph resulting in complex visual effects. In addition, JavaFX

is hardware accelerated for effects and transformations, meaning that

they will be rendered efficiently and smoothly even for complex

scenes. Hardware acceleration is especially crucial in scenarios

involving animations and interactive applications, where performance

takes center stage. For example, if a developer wants to design an

eye-catching button that increases in size as the user hovers over it.

They would use a scale transform on the button and an animation

toward scale factor using a timeline. In the same vein, a developer

may create a drop shadow effect to highlight a selected item in a list

77
MATS Centre for Distance and Online Education, MATS University

Notes view as visual acknowledgment of user interaction. Effects and

transformations are naturally integrated in JavaFX, making it easier to

produce visually stunning applications with minimal coding effort.

78
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Java FX Effects

Java FX Effects

JavaFX supports numerous graphics effects out of the box: notably

blur, drop shadow, color adjustment, and reflection. These effects can

then be triggered on any node in the scene graph to provide an

application increased visual fidelity. Now, let us show some of these

effects with working code in Java. The first mentioned new effect is

the GaussianBlur effect newly add which is blurring the contents of a

node. This is used for illusion of 2D or physical emphasis. Here's a

simple example:

Javaimport javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.stage.Stage;

import javafx.scene.effect.GaussianBlur;

public class GaussianBlurExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Rectangle rect = new Rectangle(200, 100, Color.BLUE);

 GaussianBlur blur = new GaussianBlur();

 blur.setRadius(10); // Adjust the blur radius

 rect.setEffect(blur);

 StackPane root = new StackPane(rect);

 Scene scene = new Scene(root, 400, 200);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Gaussian Blur Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

79
MATS Centre for Distance and Online Education, MATS University

Notes }

}

In the example, we create a Rectangle and then apply a GaussianBlur

effect to it. The setRadius() method defines the amount of blur.

[Next] The DropShadow effect creates a shadow behind a node to

help emulate depth. Here’s an example:

Java

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Circle;

import javafx.stage.Stage;

import javafx.scene.effect.DropShadow;

public class DropShadowExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Circle circle = new Circle(50, Color.RED);

 DropShadow shadow = new DropShadow();

 shadow.setRadius(20);

 shadow.setColor(Color.BLACK);

 circle.setEffect(shadow);

 StackPane root = new StackPane(circle);

 Scene scene = new Scene(root, 200, 200);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Drop Shadow Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

There, a Circle is defined and the DropShadow effect is used.

Methods setRadius() and setColor() governs the shadow appearance.

Using ColorAdjust effect This allows you to modify node's hue and

80
MATS Centre for Distance and Online Education, MATS University

Notes saturation, brightness and contrast. This allows for potential color

variations or special effects.

Java

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.stage.Stage;

import javafx.scene.effect.ColorAdjust;

public class ColorAdjustExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Rectangle rect = new Rectangle(200, 100, Color.GREEN);

 ColorAdjust adjust = new ColorAdjust();

 adjust.setHue(0.2);

 adjust.setSaturation(0.5);

 rect.setEffect(adjust);

 StackPane root = new StackPane(rect);

 Scene scene = new Scene(root, 400, 200);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Color Adjust Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

In this example, the ColorAdjust effect is used to define a color on a

Rectangle. The color value is controlled through the setHue() and

setSaturation() methods. Next, we have the Reflection effect that

ensures what you see in the node above it, is also seen right below it,

providing it a mirror kind of effect.

import javafx.application.Application;

import javafx.scene.Scene;

81
MATS Centre for Distance and Online Education, MATS University

Notes import javafx.scene.layout.StackPane;

import javafx.scene.control.Label;

import javafx.stage.Stage;

import javafx.scene.effect.Reflection;

public class ReflectionExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Label label = new Label("Reflection");

 Reflection reflection = new Reflection();

 reflection.setFraction(0.7); // Adjust the reflection fraction

 label.setEffect(reflection);

 StackPane root = new StackPane(label);

 Scene scene = new Scene(root, 200, 100);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Reflection Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

In this example, a Reflection is applied to a Label. The length of the

reflection is controlled with the setFraction() method. All of these

samples show you how to use graphical effects in JavaFX. Developers

can use a combination of these effects by adjusting their properties to

produce a variety of visual enhancements.

82
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Java FX Transformations

JavaFX Transformations:

This is due to JavaFX transformations, which enables developers to

change the spatial features of the nodes, including scaling, rotation

and translation. This is a crucial process for building interactive and

responsive user interfaces. The Scale transformation is used to resize

a node. Here's an example:

import javafx.application.Application;

import javafx.scene.layout.Pane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.scene.transform.Rotate;

import javafx.scene.transform.Scale;

import javafx.scene.transform.Translate;

public class TransformDemo extends Application {

 @Override

 public void start(Stage stage) {

 Rectangle rect = new Rectangle(100, 60,

Color.CORNFLOWERBLUE);

 // Apply transformations

 rect.getTransforms().addAll(

 new Translate(100, 100),

 new Rotate(45, 50, 30),

 new Scale(1.5, 1.5)

);

 Pane root = new Pane(rect);

 Scene scene = new Scene(root, 400, 300);

 stage.setTitle("JavaFX Transformations");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

83
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Java FX Animation

Java FX Animation

JavaFX is a robust and flexible toolkit for creating rich client

applications that go beyond static UIs to include dynamic animations,

immersive 3D graphics, complex layout management, and a full set of

UI controls. JavaFX is highly visual and you can use timelines,

transitions, and keyframes to do animation. A Timeline, the heart of

JavaFX animation, a time-based driver that fires events at specific

periods in time. Transitions, such as FadeTransition,

TranslateTransition, and RotateTransition, offer pre-defined

animation effects that can be applied to nodes to create animations

with less complexity. Keyframes we use instead represent the state of

node at a certain point in time, allowing for complex animations to be

created by interpolating between the two states. UI transition

animations are smaller snippets of animations and can be utilized to

indicate when the user hovers/clicks on UI controls, for example,

using a FadeTransition to gradually change the opacity of a button,

reducing its visual presence as the button is being changed on hover.

For instance, a TranslateTransition can move a shape across the

screen, giving it the illusion of motion, and a RotateTransition can

rotate an object, energizing a UI. Keyframes Demonstration —

Bouncing Ball Animation A composite animation can be created by

adding keyframes that change the ball's position and velocity with

time, resulting in a more realistic bounce. When used well,

animation—especially interactivity—is useful in JavaFX, but it can

also help create a good user experience by giving feedback,

highlighting, and improving interface expressiveness, which makes it

more engaging and easy to use. With these animation techniques,

developers can add vitality to their applications, infuse energy into

their static interfaces and engage their user through dynamic

experiences. With the ability to orchestrate visual components in

time, it enables developers to craft rich user experiences, hence why

JavaFX is such a powerful framework for creating progressive,

stunning applications.

2.6 Java FX 3D Shapes:

With a solid 3D graphics support, JavaFX is capable of rendering rich

and interactive 3D worlds, beyond just 2D interfaces. To deal with

84
MATS Centre for Distance and Online Education, MATS University

Notes JavaFX 3D shapes one can use classes such as Box, Sphere, Cylinder,

and MeshView which are representing basic 3D primitives. For

example, a Box is used to make a cube or rectangular prism, and a

Sphere is an object shaped like a sphere. A Cylinder — as the name

signifies — is a cylindrical shape. More advanced 3D models can be

made through MeshView, where more advanced details can be created

such as vertices, faces, and texture coordinates can be defined.

Through Translate, Rotate and Scale properties, the primitives are

manipulatable in 3D space, meaning we can position the geometry,

rotate its position and also scale. JavaFX also has lighting and

material properties to make 3D scenes more realistic. As you shine

light sources (PointLight, AmbientLight, …) on a scene, the 3D

objects display shadows and highlights, which gives your objects a

sense of depth. Materials (e.g. PhongMaterial) specify the surface

characteristics of the 3D object and govern its color, reflectivity, and

texture. These properties can be used to create 3D scenes that never

fail to look great, now on par with things you would expect to see

built with full 3D graphics libraries. A PhongMaterial, for instance,

can be added to a Sphere to make the shape appear metallic or glossy,

or multiple PointLights can be added to the scene to get realistic-

looking lighting effects. JavaFX also supports accurate 3D models

generated in external modeling programs like Blender or Maya, using

the OBJ and FBX file formats for importing. By supporting these new

formats, this allows developers to use high-fidelity 3D assets in their

own applications, and breaks open new avenues for 3D experiences.

This gives developers complete control to manipulate 3D shapes,

lights, and materials to produce visually appealing applications

ranging from interactive 3D visualizations to rich gaming experiences,

showcasing the platform's versatility and capability to manage

advanced graphics.

2.7 Java FX Layout:

Having good layout management is an essential part of building

functional and visually appealing user interfaces. The main layout

panes provided by JavaFX are BorderPane, HBox, VBox, GridPane

and StackPane, each intended to layout UI components in a particular

fashion. Another example is BorderPane, which divides the layout

into top, bottom, left, right, and center sections, allowing you to create

a structured layout with different sections. HBox and VBox – Helpful

85
MATS Centre for Distance and Online Education, MATS University

Notes when needing to arrange components on a single line, horizontally or

vertically GridPane: A componen that arranges UI in a grid, giving

accurate control over each UI components position and alignment For

example, StackPane, which stacks Nodes on top of each other. These

layout panes can contain other panes to create intricate and adaptable

layouts. As an example, we can structure the application's overall

layout with a BorderPane, the top region with an HBox for a toolbar,

the left region with a VBox for a navigation menu, and the center

region with a GridPane for a data entry form. VBox, StackPane, etc.,

depending on the expected behavior, and they can also use layout

properties on their own (e.g., alignment, padding, and spacing) to

adjust the components' appearance and behavior. The alignment

properties determine the placement of UI components in relation to

their parent container, and padding and spacing properties add visual

distance between UI components and the parent container or between

neighboring elements. What is more, JavaFX support CSS styling

which allows developers to style the layout panes and UI components

according to their own custom style guide, providing better project

visual consistency and aesthetics. Static ImportsIn many cases,

including the libraries you need is sufficient to get you started, but if

you want more control over your final distribution, there are some

additional steps you can take to reduce the amount of unused code

from your bundles. Developers can learn these layout techniques to

make a very intuitive, responsive, and good-looking application to

have a good user experience. JavaFX layout management is flexible

and powerful, treason to build modern several applications.

2.8 Java FX UI Controls

JavaFX visuals are a set of controls that includes buttons, text fields,

labels, checkboxes, radiobuttons, and combo boxes. On the other

hand, buttons are intended for actions, for example in submitting a

form and navigating to a new screen. Text fields are used for receiving

user inputs and for displaying text that can be entered and altered by

users. Labels therefore are static text that helps inform the user about

what is required. Checkboxes, radio buttons and combo boxes are

used to select options. New UI control is automatically assigned with

set of properties/methods that could be used to customize its

appearance and behavior. These attributes provide characteristics for

certain types of controls— for instance, a button's text, font, and

86
MATS Centre for Distance and Online Education, MATS University

Notes color can be changed, and a text field can have its prompt text or input

validation configured. JavaFX is a rich user interface toolkit for Java

apps. For example, you can bind an event handler to a button that

allows the button to perform one or more action(s) when it is clicked.

Implemented in the form of UI controls, they can be styled with CSS

and designed. Custom styles enable you to create buttons with a flat or

gradient appearance, or adjust how text fields appear with rounded

corners or a custom border. In addition, JavaFX offers several UI

controls tailored for tabular and hierarchical data, including

TableView and TreeView respectively. TableView display data in a

table format, in columns and rows TreeView display data, in a tree

structure, in parent and child nodes The data consumer application

mentioned above needs these specialized UI controls to render the

data places mentioned above and to manipulate these complex data to

accomplish the goal. JavaFX also offers a wide variety of UI controls

that developers can use to create highly interactive and visually

appealing applications. These UI controls and event handling

mechanisms contribute to a rich user experience, the art of making

applications that are functional yet engaging is a domain for you to

discover. This is why JavaFX UI controls will always be a great

toolkit to use for developing modern interactive applications.

2.9 JavaFX Images:

JavaFX has various components that can be used in tandem such as

images and event handling which allows us to create dynamic and

interactive UIs. Combining these two flavours of software provides

developers with the power to construct applications that not only

present aesthetically pleasing content, but also respond dynamically

with intelligence in accordance to user input. Let's take an example,

say an application that showcases a gallery of pictures. (Users can

browse the gallery by hitting navigation buttons or swiping on the

screen.) We also define TextView3 and TextView4 objects for our UI;

these will be used to display the information about the image and

when buttons are pressed (Gallery contains images) each image can

be represented by ImageView object, and our Next and Previous

buttons will be represented by Button objects. The navigation buttons

and the ImageView objects can have event handlers that respond to

user clicks and touch gestures. If the user clicks on a navigation

button, the event handler may change the contents of the ImageView

87
MATS Centre for Distance and Online Education, MATS University

Notes to the next or last picture from the gallery. When the user swipes on

the screen, the event handler can detect the swipe gesture and update

the ImageView accordingly. JavaFX provides drag-and-drop, so users

can drag images around the application. You can do this by using the

setOnMousePressed(), setOnMouseDragged(),

setOnMouseReleased() methods of the ImageView class. When the

user click the mouse button on the ImageView, the

setOnMousePressed() event handler is executed and it would be

possible to record the initial position of the mouse pointer. The

position of the ImageView (the one to be dragged) can be updated

based on mouse movement in the setOnMouseDragged() event

handler when the user drags the mouse. The setOnMouseReleased()

event handler can be used to finalize the drag-and-drop operation

when the user releases the mouse button.

2.10 JavaFX Event Handling:

JavaFX Application Lifecycle and Event Handling JavaFX

Application Lifecycle And Event Handling JavaFX allows developers

to develop interactive In this article above things will be more clear,

as JavaFX provides a mechanism for working with images. Image

loading and manipulation is important for dynamic and interactive

applications. JavaFX offers comprehensive support for managing

multiple image formats such as PNG, JPEG, and GIF, using the

javafx. scene. image. Image class. This container provided by

RwImage gives the flexibility to load images from a multitude of

sources, including local files, URLs, or input streams. The caption for

the progress of loading an image is to create an Image object and

point to an image source. For example, an image can be loaded from

a local file by using the image constructor and passing the file path as

an argument. Likewise, for an image, the URL string is also passed to

the constructor for loading an image from a URL. After the creation

of Image object, it can be rendered inside the JavaFX stage using the

javafx. scene. image. ImageView class. The ImageView serves as a

node to draw the image in the scene graph. Developers can use the

setImage() method to assign the Image object to the ImageView. In

addition to just displaying them, JavaFX provides many ways to deal

with images. The ImageView class has methods like setFitWidth()

and setFitHeight() to scale the image to fit the provided dimensions.

By default, images are scaled proportionally, so setPreserveRatio()

88
MATS Centre for Distance and Online Education, MATS University

Notes can be used to preserve the aspect ratio of an image to avoid

distortion. Using the getTransforms() method of the ImageView class,

developers can also apply in-depth transformation on image like

rotation, translation, scaling, etc. This will return an observable list of

Transform objects which can be modified as necessary to produce the

desired visual effects. To rotate an image, for example, add a Rotate

transform to the list, indicating the rotation angle. For JavaFX you can

perform image filtering which enables a developer to apply an image

with different effects like Blur, color shading, drop shadow, etc. These

effects can be applied using the setEffect() method of the ImageView

class. For example, to create a blur effect, a GaussianBlur effect can

be instantiated and assigned to the ImageView. JavaFX also has low-

level image manipulation classes in its pixelreader and pixelwriter

methods.

Multiple-Choice Questions (MCQs)

1. Which of the following is not a feature of JavaFX?

a) Rich UI Components

b) Hardware Acceleration

c) Platform-Dependent Execution

d) CSS Styling

Answer: c) Platform-Dependent Execution

2. In JavaFX, which class is used to represent 2D shapes like

circles and rectangles?

a) javafx.scene.text

b) javafx.scene.shape

c) javafx.scene.control

d) javafx.scene.image

Answer: b) javafx.scene.shape

3. Which JavaFX transformation allows resizing of a graphical

object?

a) Rotation

b) Scaling

c) Translation

d) Reflection

Answer: b) Scaling

4. What is the main purpose of JavaFX Animation?

a) Handling user inputs

b) Managing database connectivity

89
MATS Centre for Distance and Online Education, MATS University

Notes c) Creating motion effects in UI

d) Writing multithreaded programs

Answer: c) Creating motion effects in UI

5. Which JavaFX class is used to load and display an image?

a) ImageLoader

b) ImageView

c) ImageDisplay

d) ImageHandler

Answer: b) ImageView

Short Answer Questions

a) What are the main features of JavaFX?

b) How can you draw a rectangle with a custom color in JavaFX?

c) Explain the difference between JavaFX rotation and

translation transformations.

d) What are some common JavaFX UI controls?

e) How do you handle mouse events in JavaFX?

Long Answer Questions

a) Describe the architecture of JavaFX and its key components.

b) Explain how to create and apply graphical effects in JavaFX

with an example.

c) What are the different transformations available in JavaFX?

Explain each with an example.

d) Discuss JavaFX animation techniques and how they can be

used to enhance a user interface.

e) Explain the process of handling user events in JavaFX and

provide a sample program demonstrating event handling.

90

Module 3

SERVLET TECHNOLOGY

LEARNING OUTCOMES

• To understand the architecture of J2EE and Servlets.

• To explore the servlet structure and its life cycle.

• To study form data handling and request-response

mechanisms.

• To analyze client request handling and server response

generation.

• To understand session tracking and cookie management.

91
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: J2EE Introduction and Architecture

J2EE Introduction and Architecture

You are currently reading about Jakarta EE (Formerly J2EE or Java

EE) Latest Version: Jakarta EE 10, learn how to use as old J2EE Java

Enterprise Edition. In the late 1990s, J2EE was introduced as a

complement to the Java Standard Edition (JSE) to create a

standardized framework for enterprise application development, and it

was a product of Sun Microsystems. We believed so strongly in a

complete integrated development environment that could solve many-

faceted enterprise computing problems without compromising the

primary promise of Java "write once run anywhere", that we offered

tutorial programs, synergies with upstream partners, and pushed

through customer accounts manager having knowledge beyond

database and applications servers products. This architectural shift

was a significant departure from the monolithic application designs

that preceded it in enterprise systems and into a more modular,

component-oriented methodology to meet the needs of an increasingly

distributed and componentized environment of business computing. It

was not just a technical specification—J2EE democratized enterprise

development by providing common patterns, practices and

abstractions, helping folks focus on business logic rather than the

underlying infrastructure concerns. J2EE defined standard APIs to

connect to databases, messaging, transaction management, web

services, and more, establishing a platform upon which third-party

vendors, open-source projects, and enterprise engineers could build to

create a shared community around a common technology stack. Java

EE 5, 6, 7, 8, a.k.a Jakarta EE 9+ (various specifications under the

Jakarta EE umbrella — it brings together many specifications and

broken-down Enterprise/Server components from Java EE). Even

with the emergence of alternative frameworks and architectural

approaches, the legacy of J2EE endures, underpinning countless

mission-critical applications across diverse industries and shaping the

principles of modern enterprise development. In this Unit, we will

delve into the architecture, components, and development

methodologies of J2EE, unveiling how this groundbreaking platform

laid the foundation for enterprise application development practices

that still echo in modern software engineering.

92
MATS Centre for Distance and Online Education, MATS University

Notes

Java Enterprise Edition (J2EE) is a specification that leads enterprise

application development to be done based on a specification that

provides the main interfaces and the behavior upon which the

associations of the applications should be based which multiple

vendors can develop compliant implementations. Standardization has

played a key role in the emergence of a healthy marketplace of

application servers such as IBM WebSphere, Oracle WebLogic, Red

Hat JBoss, Apache TomEE, and GlassFish, giving organizations the

flexibility of making deployment choices while ensuring application

portability. When J2EE was first developed, it was born out of these

gaps in the enterprise development world: how to develop distributed

systems, common concern over distributed transactions, designing

scalable communication protocols and security models. Your fleece-

covered IVR is about more than just reducing clicks; it's about

reducing payments to outside vendors (those handy-teddies!). The

adoption path of J2EE mirrored the classic technology diffusion

curve, with the original adopters being primarily financial services,

telecommunications and large scale e-commerce applications, and

subsequently expanding into healthcare, government, manufacturing,

and essentially any sector with a significant presence of IT

infrastructure. As it has evolved, J2EE has retained fundamental

architectural concepts while responding to new models: component-

based architecture morphed into service-oriented architecture, which

has moved towards microservices; synchronous communication

models were paired with asynchronous; XML-based configuration

was supplanted by configuration by annotation-based methods and

Figure 4.1: Servlet Architecture
[Source: https://th.bing.com/]

93
MATS Centre for Distance and Online Education, MATS University

Notes convention over configuration; and monolith deployments have

crumbled into both containerized builds and services. Such flexibility

has kept J2EE firmly in the conversation, despite massive shifts in

development practices. For students as well as practitioners, learning

J2EE gives practical expertise in working on enterprise systems and

also helps understand architectural patterns that are not technology-

bound, which makes the subject an essential cornerstone of any

education in enterprise software engineering.

Fundamental Architecture of J2EE

After reading through Unit 1 of Jeff Lynch's book J2EE made easy, I

was left with the impression that the J2EE architecture is simply a

multi-tiered distributed application architecture that separates

concerns in a way that allows each tier to effectively handle

modularity, scalability, and maintainability issues. J2EE is based on a

modified version of the client-server software architecture and is

chiefly characterized by a four-tier architecture consisting of the

client tier, web tier, business tier and enterprise information system

(EIS) tier. These tiers allow for functional stratification, both

logically and physically, so each tier can evolve independently of the

other whilst retaining contracted interfaces for cross-tier

conversations. The client tier refers to all user interface technologies

this is where end-users will interact with the application from web

browsers rendering HTML/CSS/JavaScript to native mobile apps,

desktop apps using Java Swing or JavaFX, and headless clients like

IoT devices or other systems that consume APIs. The web tier is

predominantly designed with Servlet and JavaServer Pages (JSP)

technologies, this tier accepts HTTP requests, manages user sessions,

applies presentation logic, and passes the required data to the

business tier and vice versa. The layer separates client

implementations from business logic (in this case, a microservice)

quite well, which is increasingly common in the contemporary era,

allowing for great freedom with how applications are accessed and

presented to users. As you know, the business tier, which contains the

application's core functionality, business rules, and workflows, is

arguably the heart of the J2EE architecture, with such functionality

typically being implemented using Enterprise JavaBeans (EJB). The

elements of this tier run in a container environment that manages

thing like transaction control, security, concurrency, and lifecycle, so

94
MATS Centre for Distance and Online Education, MATS University

Notes that developers can just think about business logic, not what is under

the infrastructure. The third and final tier, the EIS tier, includes the

data persistence layer and integrations with other systems (external

systems, external databases, legacy applications, enterprise

information systems), and it is accessed through JDBC, JPA, JTA,

and JCA technologies. This architectural separation lies at the heart of

scalability because each tier can be scaled independently according to

the performance needs of that tier and fault tolerance because a

problem in one tier is less likely to cascade throughout the entire

application. Furthermore, this multi-layer design also enables teams to

specialize, making it easier for developers to work on particular

segments of the application based on their strengths, whether it be

user interface, business logic, or data handling.

In particular, the container model was one of the more unique

architecture innovations introduced by J2EE, defining a clear

separation between infrastructure services and application logic that

almost all enterprise development frameworks have followed since.

In this paradigm, application components run within specialized

runtime environments (also known as containers) that offer

standardized services — transaction management, security, resource

pooling, lifecycle management, etc — via well-defined contracts

instead of through explicit coding. This abbeys the inversion of

control pattern, which significantly reduces the amount of boilerplate,

adds consistency across apps and enables developers to concentrate

mostly on business-specific functionality instead of plumbing. J2EE

specifies various container types for particular component models

and execution contexts. It is common for web applications to utilize

beans, known as Enterprise JavaBeans (EJBs), which are instances of

components managed by an EJB container, the runtime environment

that manages the lifecycle of an EJB component and its components

and creates for an EJB a complex service environment in which xact

propagation, instance pooling, and concurrent access to beans x are

among the complex services in its remote method invocation. It (web

container, or servlet container) serves as the execution environment

for Servlets, JSP pages, and other web-tier components, handling

request routing, threading models, session management, and HTTP

protocol details. You are supporting and simplifying access to

naming, security and remote EJB functionality, rather than J2EE

95
MATS Centre for Distance and Online Education, MATS University

Notes managed component containers, you are offering application client

containers against standalone Java-based applications that include

J2EE services. Last but not least, we have the applet container which

is no longer popular with so many J2EE applications but still loads

Java Applets that run inside web browsers. This container-based

architecture has the following advantages: it gives you uniform

programming models for different app types; it allows the declaration

of complex services in terms of deployment descriptors and

annotations; it allows components to be reused via standard interfaces

and lifecycles; it allows you to easily impose security on the edges; it

allows pooling of resources and instance management for

optimization; and it allows deployment flexibility through constant

package formats. J2EE framework emphasizes a model of

development around the container where you encapsulate

functionality in granular well defined, loosely coupled components

with well understood responsibilities and interfaces. Because it steers

developers to architectures that are highly cohesive in components

and loosely coupled among components in a natural way, these

principles can be applied to effective enterprise application design

irrespective of technology.

J2EE is itself defined as a building block that comprises other

components, services, and APIs to build the platform. Among the

finest and most versatile component technologies are Servlets, which

extend the functionality of web servers and dynamically builds web

content in response to HTTP requests; JavaServer Pages (JSP), which

is a template-based component technology for generating dynamic

web content, and can separate HTML markup from Java code;

Enterprise JavaBeans (EJB), which implements business logic (three

varieties exist, including session beans designed to orchestrate

business processes, (largely superseded by Java Persistence API)

entity beans that represent your data and Message-Driven Beans that

implement asynchronous processing; and JavaServer Faces (JSF),

which implements a component-based MVC (model-view-controller)

framework for web interfaces. These components are supplemented

by the container services of J2EE, which provide cross-cutting

capabilities to all components running in the application server

environment. They consist of JNDI (Java Naming and Directory

Interface) for finding resources and components, JTA (Java

96
MATS Centre for Distance and Online Education, MATS University

Notes Transaction API)responsible for transaction management across

multiple resources, JAAS (Java Authentication and Authorization

Service) for security, JMS (Java Message Service) for reliable

asynchronous messages, and JCA (Java Connector Architecture) for

interactions with external enterprise information systems. The

platform also includes many specialized APIs that focus on specific

enterprise areas: JDBC (Java Database Connectivity) for interacting

with databases; JPA (Java Persistence API) to perform object-

relational mapping; JAX-WS and JAX-RS for SOAP and RESTful

web services; JavaMail for email; and many other areas that have

been added in newer platform versions. Dependency injection is the

mechanism by which this rich ecosystem converges around common

patterns and practices (starting with JNDI lookup, later formalized

around CDI — Contexts and Dependency Injection), and the

proliferation of design patterns such as MVC (Model-View-

Controller), DAO (Data Access Object), Service Locator, Business

Delegate, and Composite Entity. This ecosystem of technologies,

services, and patterns culminated in a platform that offers to meet the

varied needs of enterprise applications while ensuring uniform

maintainable implementation patterns.

Evolution and Deployment of J2EE Applications

The platform has matured over time, with each release building upon

previous functionality to solve for new enterprise obstacles. On

December 12, 1999, the first version of J2EE delivered in the form of

the J2EE 1.2 specification, specifying the architecture: Servlet 2.2,

JSP 1.1, EJB 1.1 and JDBC 2.0 technologies for standardized

enterprise development. J2EE 1.3 brought connector architecture,

revamped JMS and EJB 2.0 local interfaces to this foundation (2001).

J2EE 1.4 (2003) brought a crucial direction towards ease of web

services integration, adding JAX-RPC, SOAP with Attachments API

for Java (SAAJ), and Java API for XML Registries (JAXR), aligning

with the overall industry shift towards service-oriented architectures.

The rebranding to Java EE 5, 2006, marked a turning point release in

which annotations, dependency injection, and the Java Persistence

API combined to significantly reduce the complexity of development,

overcoming criticisms of the platform featuring overly verbose

frameworks. Java EE 6 (2009): added web profile for lightweight

implementations, a more powerful Contexts and Dependency

97
MATS Centre for Distance and Online Education, MATS University

Notes Injection (CDI) implementation, and built-in support JAX-RS 1.1 for

improved RESTful web services. Java EE 7 (2013) added

standardized batch processing and concurrency utilities in partnership

with updated web technologies including WebSocket and JSON

processing. With the release of Java EE 8 (2017), the platform became

even more modern — with support for HTTP/2, improved security

features, and added support for JSON binding. The move to the

Eclipse Foundation resulted in Jakarta EE 9 (2020) which was

iterations with primarily the javax namespace adjusted. * to jakarta. *,

and Jakarta EE 10 (2022) started to add significant new capabilities

under the new governance model. Over the course of this evolution,

the platform has exhibited incredible backward compatibility while

incrementally moving away from its originally very XML-centric,

container-centric model to an increasingly lightweight, annotation-

based, developer-centric model—analogous to the broader industry

transition from monolithic applications to microservices and cloud-

native architectures. But these shifts represent J2EE's ability to evolve

with changing paradigms in development while maintaining its core

strength: namely, standardization and portability.

A J2EE application goes through a well defined process from its

designing, implementation, testing, deployment and maintenance.

Architects, for example, break the system requirements down into the

appropriate tiers and components, define boundary interfaces, data

models, and cross-cutting concerns such as security and transaction

management (often using UML diagrams, architectural patterns, and

J2EE environment reference architectures) during the design time

phase. There is also a slice of data focused on the implementation

work that typically involves many specialized teams working at the

same time: user interface developers who are creating the JSP pages,

Servlets, or JSF components; programmers focused on business logic

writing EJBs or CDI beans; data access experts creating JPA entities

and repositories; and integration engineers writing the connectors for

external systems. During development, this parallel effort is made

possible by J2EE's standardized APIs and component models, which

specify clear contracts between different parts of the application.

Packaging Modules The build aggregates these varied artifacts into

deployable units according to J2EE's packaging rules: JAR (Java

Archive) files for utility classes and libraries, WAR (Web

98
MATS Centre for Distance and Online Education, MATS University

Notes Application Archive) files for web modules with Servlets and related

resources, EJB-JAR files for Enterprise JavaBeans, and EAR

(Enterprise Archive) files that bundle multiple modules into an

integrated application. Arising from the building is deployment,

which is the act of installing these packaged artifacts in a J2EE

application server that then checks the configuration, satisfies

dependencies, sets the right container services and makes the

application available to the end-user. DevOps practices are prevalent

throughout modern J2EE development, encompassing CI/CD

pipelines for the automated execution of build, test and deployment

phases; containerization technologies such as Docker, for streamlined

environment consistency; orchestration tools such as Kubernetes, for

coordinating and scaling deployments; and Infrastructure-as-Code

approaches that further replicate deploys through environments. The

architecture of J2EE applications is distributed throughout multiple

tiers; as a consequence, testing these applications results in a unique

set of challenges. J2EE provides significant benefits with this highly

standardized approach across its lifecycle as J2EE components

become portable (the same application can run on various everywhere

implementations), a standard deployment model is applicable across

applications regardless of the implementation of the actual

application, and common enterprise concerns are addressed using

well-defined patterns.

Key Technologies and Components in J2EE

Servlet technology is the foundation of J2EE's web tier, serving as a

Java-centric method for processing HTTP requests and creating

dynamic responses in web applications. Servlets are managed in a

container that coordinates their lifecycle through specific methods:

init() for initialization, service() (usually overridden via doGet(),

doPost(), etc.) for request handling, and destroy() for teardown

activities. For example, the container takes care of managing the

object lifecycle, which means developers don't have to worry about

low-level background processing like socket handling, thread

management, and protocol details, etc. — they only have to worry

about processing the request in an application-specific way. Servlets

process incoming requests via HttpServletRequest objects, containing

parameters, headers, session info, and request details, and responses

via HttpServletResponse objects, enabling control over content types,

99
MATS Centre for Distance and Online Education, MATS University

Notes headers, status codes, and response content. Servlets provide a

performance state—an interface to manage server-side session

maintenance over literate requests through HttpSession interface, one

of the building blocks of web applications. Servlets can be mapped to

specific URL patterns by means of deployment descriptors (web.

(xml) or annotations (@WebServlet), allowing for flexible routing

configurations. In addition to basic request handling, the Servlet API

provides features for request dispatching (forwarding or including

content from other resources), filtering (intercepting requests for pre

or post-processing), event listeners (receiving notifications about

various contextual events such as application startup or session

creation), and asynchronous processing (handling long-running

operations without blocking threads in the container). Servlet

EvolutionThe Servlet specification has evolved hand-in-hand with

trends in web development: Servlet 2.5 fitted in annotations to avoid

excessive configuration; Servlet 3.0 brought asynchronous processing

and programmatic registration; Servlet 3.1 strengthened security and

facilitated file uploads; and Servlet 4.0 added HTTP/2 support and

server push. At the same time, Servlets remained the underlying

technology behind almost all the frameworks in the Java space (JSF,

Spring MVC, Struts and other dozens). Servlets serve as reusable

components for constructing Java web apps, and while many

developers now engage primarily with higher-level abstractions of

Servlets, it is critical to understand the underlying fundamentals of

Servlets in order to troubleshoot, optimize performance, and deploy

your own custom components across the J2EE ecosystem.

The JavaServer Pages (JSP) technology takes the web tier features of

J2EE and adds document-centric facilities for generating dynamic

content that work naturally in conjunction with the Servlet model. JSP

pages consist of standard static (usually HTML markup) and some

dynamic tags and embedded Java code, this framework produces a

template-based development environment using separate concerns for

presentation and business logic. When a JSP page is requested for the

first time, the container translates the page into a Servlet class and

compiles that class before executing it, as you would with any

Servlet—which means JSP is a syntactic sugar over the Servlet. This

process translates standard HTML into raw text output, JSP directives

() into package declarations and imports, scriptlets () into method

100
MATS Centre for Distance and Online Education, MATS University

Notes body code, expressions () into output statements, declarations () to

class-level variables and methods, and different tag types to Java

constructs. There are several approaches JSP uses to create dynamic

content: scriptlets for embedding raw Java code inside a page,

expressions for embedding an evaluated value, the Expression

Language (EL) for simplified access to object properties and standard

and custom tag libraries for more complex markup-oriented

functionalities. The JSP Standard Tag Library (JSTL) includes tags

for common tasks such as iteration, condition, XML processing,

database access, and i18n, so that embedded Java code can be used

much less. Custom tag libraries take this concept further by enabling

developers to create re-usable, declarative components that

encapsulate domain-specific logic. Over a period of 15 years, JSP

technology evolution has proved to be about progressive separation

of concerns (JSP 2.0 + Expression Language for easy object access;

JSP 2.1 + expression language enhancements with JSF integration;

JSP 2.x line of development to further enhance those while keeping

backward compatibility as its guiding principle). Though JSP

development has largely been replaced with component-based

frameworks such as JavaServer Faces and template engines like

Thymeleaf, JSP features still remain in use amongst enterprise

applications, especially for their view components via MVC

architectures. JSP's sustained relevance can be attributed to its

simplified learning curve, natural fit to HTML design flows, its

efficient execution model, and seamless compatibility with Servlet-

based applications.

EJB technology is the J2EE's main component model for writing

business logic. EJBs run inside specialized containers that provide

infrastructure functionalities such as transaction management,

security, concurrency control, and instance life cycle management,

enabling developers to primarily focus on business functionality

instead of low-level system issues. There have been three distinct

bean types defined by the EJB specification, each serving different

use cases: Session Beans that encapsulate business processes and

client-facing services and are further classified into Stateless Session

Beans, which maintain no client-specific state between method

invocations, Stateful Session Beans which maintain client-specific

state for the duration of a session, and Singleton Session Beans, which

101
MATS Centre for Distance and Online Education, MATS University

Notes maintain a single instance per application and are useful when a

shared state or coordinated operations are needed; Message-Driven

Beans (MDBs), which offer message-oriented asynchronous

processing by consuming messages from a JMS destination or

message provider; and Entity Beans, which historically helped to

provide object-relational mapping for database persistence but are

now largely rendered obsolete by the introduction of the Java

Persistence API (JPA) since EJB 3.0. The development of EJB

technology is a microcosm of the overall evolution of J2EE into more

developer-friendly programming models:[2] EJB 1.0 and 2.0 had long

interfaces, deployment descriptors, and lots of boilerplate code and

were justly criticized for being complex and verbose; EJB 3.0 was a

radical simplification thanks to annotations, dependency injection, and

the Plain Old Java Object (POJO) programming model; this option

drastically reduced development effort; newer versions built on that

with cleaner approaches and innovations like asynchronous method

invocation, timer services, and better capability for transactions. EJBs

inherently implement many of the foundational enterprise patterns:

Component-Based Development uses a modular structure, Inversion

of Control uses container-managed services, Dependency Injection

uses resource acquisition, Facade Pattern for simplifying client access

to complex subsystems, Business Delegate abstracts away remote

implementation details. Although alternative frameworks such as

Spring have captured much of the market share by providing

equivalent functionality with reduced perceived overhead, EJBs are

still a mainstay of many large enterprise applications, especially in

cases where distributed transactions and complex security policies are

involved or when integrating with older legacy J2EE systems. An

insight into the component-based design concepts that are employed

in a specific technology is useful—whether it be EJB or any future

framework.

The Java Persistence API (JPA) is a specification that configures

anObject Relational Mapping in the j2ee platform to provide a unified

and object-oriented interface to the relational data that can be

managed as objects. Java Persistence API (JPA) was introduced in

EJB 3.0 to supersede the previous entity bean paradigm, which was

criticized for its complexity and performance issues, and used a

lightweight, Plain Old Java Object (POJO) setup leveraging proven

102
MATS Centre for Distance and Online Education, MATS University

Notes Object Relational Mapping (ORM) frameworks like Hibernate.

Essentially, JPA reconciles the object-oriented world and the

relational world using entities—plain old Java classes, annotated with

@Entity, that correspond to persistent data structures. All these

features are complemented with extra annotations to customize their

mapping behavior: @Table for the database table or tables this entity

is mapped to, @Id to identify primary key fields, @Column to

configure the mapping of each single field, and relationship

annotations (@OneToOne, @OneToMany, @ManyToOne,

@ManyToMany) for the associations between entities. However, this

doesn't cover the entire lifecycle of persistence. JPA empowers it with

a richer set of features exposed via Entity Manager instances that

provide methods to persist, find, merge, and delete entities, while

internally, it maintains a persistence context that can track changes to

an entity and propagate them to the underlying database. The

specification defines a strict entity lifecycle: new/transient, managed,

detached, removed – and transitions between them according to

Entity Manager operations and transaction boundaries. To retrieve

data, JPA has several query methods: the Java Persistence Query

Language (JPQL), a platform-independent, object-oriented query

language that has the same building blocks as SQL but operates on

entities rather than tables; the Criteria API, which is a type-safe,

programmatic alternative to the string-based queries; and native SQL

queries for accessing features that are only available in specific

databases. It handles more sophisticated persistence issues such as

inheritance mapping (with support for single table, joined table, and

table-per-class strategies), composite keys, embedded objects, lazy

loading of relationships, optimistic locking for concurrent access, and

second-level caching for performance reasons. There are several JPA

implementations available, including but not limited to Hibernate (the

most popular), EclipseLink (JPA reference implementation),

OpenJPA and others; however, they all wrap the standardized API and

usually extend it with additional aspects/features. The JPA

advancements over time and their new capabilities could be

summarized as follows: JPA 2.0 brought the Criteria API, collection

mappings, and validation integrations; JPA 2.1 got stored procedures,

fetching strategies and entity graphs, and attribute converters; JPA 2.2

introduced support for some of the Java 8 features such as Stream

103
MATS Centre for Distance and Online Education, MATS University

Notes API results, Date/Time types and repeatable annotations. However,

since data persistence requirements are inherently a fundamental part

of all enterprise applications, JPA continues to be a cornerstone

technology in the world of J2EE because it provides a very good

blend of standardization and flexibility of database integration for

diverse scenarios.

The Java Message Service (JMS) resource adapter provides J2EE

applications with standardized asynchronous messaging capabilities

so that loosely-coupled communication is possible among distributed

components across application boundaries. These messaging

approaches provide additional benefits compared to synchronous

communication approaches, including: temporal decoupling, where a

sending application does not need to be online at the same time as the

receiving application; load-leveling, where messages can be buffered

for processing during variable workload periods; reliability, where the

delivery of a message can be ensured and scaled across multiple

consumers at ease using message-oriented middleware. JMS defines

two main types of messaging models — and point-to-point (PTP) via

queues where a message is sent to only one consumer instance,

commonly used to perform a load balancing approach, and publish-

subscribe (pub/sub) via topics where a message is sent to all active

subscribers, well suited to event propagation or notifications

distribution scenarios. The JMS API provides a uniform programming

model across these patterns with a few principal interfaces:

ConnectionFactory and Connection for creating communication

channels with the message provider, Session for creating messages

and producers/consumers, MessageProducer for publishing messages

to destinations, MessageConsumer for receiving messages from

destinations, and various Message types (TextMessage,

BytesMessage, MapMessage, StreamMessage, ObjectMessage)

representing different payload formats. Messages are structured as not

just payloads, but also headers (for standard routing and identification

metadata) and properties (for application-specific attributes that aid in

filtering and processing). JMS provides for synchronous consumption

(the receiver instructs the provider to deliver a message), as well as

for asynchronous consumption (messages trigger registered

MessageListener callbacks), giving the application flexibility in what

delivery model it chooses. Thus, J2EE's transaction model integration

104
MATS Centre for Distance and Online Education, MATS University

Notes allows messages to be part of distributed transactions, assuring that

the messaging operations are consistent with other resources as

databases. Message-Driven Beans (MDBs) are a specific component

model catering to message consumption, enabling developers to

define the information processing without considering concurrency

management, transaction management, and resource pooling, which

are handled by the EJB container. Since its inception, JMS has been

on an evolution path of simplification and integration with other J2EE

technologies: JMS 1.1 unified the separate point-to-point and

publish-subscribe APIs; JMS 2.0 added a simplified API, delivery

delay capabilities, and shared subscriptions for pub/sub load balancing

across multiple consumers. While JMS standards have stood the test

of time, as with many other legacy technologies, it is increasingly

integrated with (or replaced by) more modern messaging

technologies, particularly in microservices or event-driven

architectures context.

Security, Transactions, and Integration in J2EE

Security is a key cross-cutting concern of the J2EE architecture and is

handled through a broad architecture that cuts across all tiers and

components of enterprise applications. The Model consists of

different layers of security including authentication (verifying the

identity of the user), authorization (access control to the resources),

confidentiality (protection of data against disclosure), integrity (data

not altered during a transmission), and non-repudiation (a party

cannot deny the authenticity of their signature). In bare terms, J2EE

security implementations are normally conceived of as a combination

of declarative where the constraints are delineated via annotations or

deploy descriptors with no touching of app code and programmatic

where the security checks are embedded directly into the business

logic for intricate access control. Authentication involves extracting

credentials (for example through form-based login, HTTP

Basic/Digest authentication, client certificates, single sign-on ticket,

or integrations to external systems such as LDAP, Kerberos, or

SAML), validating the credentials based on user repositories, and

issuing a security context to the authenticated session. User identities

are grouped into roles—logical groupings indicating application-

specific functions or responsibilities—that access controls are defined

against at a more role-based level to encourage maintainability and

105
MATS Centre for Distance and Online Education, MATS University

Notes scalability rather than granular definitions against individual user

identities. Authorization constraints can be imposed at various levels:

web resources, using URL patterns and HTTP methods; EJB methods

based on callers’ roles; application data that is filtered according to

users’ contexts; and even JMS destinations or web services that are

offered only to authorized consumers. Container-managed services

integrate with the J2EE security model using the Java Authentication

and Authorization Service (JAAS) to provide pluggable authentication

modules, subject-based authorization, and delegation capabilities. For

securing web services, specifications such as WS-Security provide

the means for securing message-level protection, while for preventing

the abuse of APIs, standards based on OAuth 2.0 and OpenID

Connect are increasingly used in modern authentication scenarios.

Transport-level security is usually built on TLS/SSL for secure

communication, as the data should be encrypted when sent over the

network; protecting data on the wire between tiers and to/from outside

systems. Beyond these technical controls, robust J2EE security

implementations must also mitigate concerns pertaining to secure

configuration (removing default credentials and unnecessary

services), input validation (to prevent injection attacks and cross-site

scripting), session management (to guard against session fixation and

session hijacking), auditing (to record security-relevant events for

monitoring and compliance purposes), and secure exception handling

(to avoid information leaks in error messages). J2EE security has

evolved alongside new threats and new deployment patterns: Java EE

6 brought programmatic login and interceptor-based security; Java EE

7 added expression-based access control support; Java EE 8

introduced a new Security API (JSR 375) that made it easier to

configure identity stores and HTTP-authentication mechanisms; and

Jakarta EE has continued to build upon these abilities to support

cloud-native and microservices environments.

Transaction management is one of the several most significant

infrastructural services provided by J2EE that offers the ability to

help ensure data consistency and integrity across many operations and

resources. ACID — Atomicity (all or nothing); Consistency (A

transaction should maintain the data in a valid state before and after

the execution); Isolation (As an impact of the operation will not alter

the rest of the transactions); and Durability (the committed changes

106
MATS Centre for Distance and Online Education, MATS University

Notes persist during failure cases). J2EE provides two basic transaction

management styles: container-managed transactions (CMT), where

the application server automatically manages transaction demarcation

based on declarative configurations, and bean-managed transactions

(BMT), where application code explicitly controls transaction

boundaries. In the case of container-managed transactions, the

developer indicates transaction attributes that describe how

components participate in transactions: Required creates a new

transaction or join an existing transaction if one exists; RequiresNew

always creates a new transaction; Mandatory requires an existing

transaction; NotSupported suspends any current transaction; Supports

joins an existing transaction but does not require one; and Never

prohibits being run within a transaction context. You can set these

attributes through annotations (@TransactionAttribute) or deployment

descriptors, giving you fine-grained control (without peppering your

rigid business code with transaction details). One especially powerful

feature of J2EE is its support for distributed transactions (also known

as global or XA transactions) across multiple heterogeneous resources

including databases, message queues, and legacy systems. As in other

transactional systems, the ability to coordinate commits across

resources is provided by the transaction manager and the two-phase

commit (2PC) protocol, as users join the transaction using the Java

Transaction API (JTA) to ensure atomicity across participating

resources. Resource integration is done using J2EE resource adapters,

which implement the XA interface, providing the ability for

transaction manager to enlist such resources in distributed

transactions. Transaction management generally interacts with other

container services. Although the J2EE transaction model is a great fit

for consistency in traditional applications, it struggles with distributed

cloud architectures where we can see several issues, like the

performance impact due to distributed transactions, and the fact that

ACID guarantees are not useful with long-running workflows. As a

result, modern J2EE applications typically layer optional eventual

consistency patterns, compensating transactions, or saga patterns on

top of ACID transactions for certain distributed cases, even though the

transaction infrastructure platform is very much basic for those core

business operations in which we can't compromise on data integrity.

107
MATS Centre for Distance and Online Education, MATS University

Notes Tight integrations with Enterprise Information Systems (EIS), such as

ERP systems, mainframe applications, database systems, and other

legacy infrastructure is done through J2EE's standardized approach,

provided here by the Java Connector Architecture (JCA). Before JCA,

the integration did not usually use any standards, and relied heavily

on custom-built, point-to-point connectors that led to maintenance and

duplication nightmares in a multi-project environment. JCA solves

these problems by defining a common architecture of resource

adapters, which are specialized components that serve as a bridge

between J2EE applications and resource managers (such as database

connection pools, EISes, or messaging systems); these components

make use of the services provided by the container (transaction

management, security, connection pooling). This architecture consists

of three main contracts: the Connection Management contract, which

defines the central pooling, lifecycle management, and allocation

optimization models when connections to database servers are made;

the Transaction Management contract, which allows resource

adapters to participate in container-managed transactions by

coordinating both local and XA transactions; and the Security

contract, which provides secure access to external systems by

mapping credentials, delegating principal, and propagating the

security context. JCA resource adapters would generally have a

standard Common Client Interface (CCI) for application code want to

talk to the EIS, and adapter-specific interfaces that are specific to the

external systems. This enables application servers to cater to different

integration scenarios and ensure similar management approaches

across various types of EIS connections. In addition to basic

connectivity, JCA also supports different patterns of interaction:

synchronous request-reply for operations that require an immediate

response, local transactions for simple consistency requirements,

distributed transactions for operations that span multiple resources

and record-based interfaces for structured data exchange. The spec

has matured to meet the increasing integration challenges: JCA 1.5

had work management for incoming communication, creating

message endpoints that consume events from thirdparty sources; JCA

1.6 included support for annotations, pluggable work contexts, and

better lifecycle management features; and JCA 1.7 enhanced security

and connection validation capabilities. Although JCA is a thorough

108
MATS Centre for Distance and Online Education, MATS University

Notes integration solution, other paths are open in the J2EE world: Web

Services (JAX-WS, JAX-RS) is a common for service-oriented

integration, JMS is for message-oriented middleware, JDBC is a low-

level access to databases, and Java API for XML Processing (JAXP)

is for XML-oriented data interchanging. With API-based integration,

lightweight REST services, and cloud-native connectivity becoming

the order of the day, JCA is not given the same prominence in new

application development as it might have been in the past.

Nevertheless, JCA is still critical for integration with legacy systems

in enterprises where there are no alternatives available. Learning the

concepts behind JCA is needful to know about enterprise integration

patterns and different challenges to address this integration, no matter

what particular technology used to accomplish this goal.

J2EE Web Services technologies allow distributed applications to

communicate over the platform and organizational boundaries in an

interoperable and cross heterogeneous environment. The platform is

based on two styles of web service generation: SOAP with

XSD/WSDL documents and REST with standard HTTP verbs and

semantics. Center of SOAP based development, the Java API for

XML Web Services (JAX-WS) serves a powerful API which uses

annotations and auto-generated artifacts to make service

implementation much easier. It is possible for developers to expose

services simply by annotating a class with @WebService and methods

with @WebMethod; the container will generate the required WSDL,

XML Schema definitions, and marshalling code. JAX-WS also well

adapts to both approaches to handling WSDL files: top-down

(starting from existing WSDL documents) and bottom-up (where

WSDL will be generated from the Java classes). Example 1: Java

Architecture for XML Binding (JAXB) JAXB handles complex data

types and maps them to and from Java classes automatically. JAXB

does the marshalling and unmarshalling of Java object to XML and

back to Java automatically. Widespread in enterprise scenarios, JAX-

WS is extended with WS-Security for message-level security, WS-

ReliableMessaging for guaranteed delivery, WS-Addressing for

asynchronous communication and WS-Policy for declarative

configuration. For REST-based services, there is the Java API for

RESTful Web Services (JAX-RS) which is a lightweight specification

that focuses on dealing with resources and HTTP key concepts in an

109
MATS Centre for Distance and Online Education, MATS University

Notes annotation-based programming model. Resource classes are annotated

with @Path to specify URI patterns and methods are further annotated

with @GET, @POST, @PUT, or @DELETE to specify which HTTP

operation they143565iws seventeen220 query for. Content negotiation

occurs via the @Produces and @Consumes annotations, where you

indicate the acceptable media types, while parameters get bound as

per annotations such as @PathParam, @QueryParam and

@FormParam. JAX-RS uses serialization and deserialization for Java

objects and many other representations such as JSON, XML, text,

and so on based on content negotiation. In addition to these key

specifications, the J2EE web services ecosystem provides supporting

technologies such as JSON Processing (JSON-P) and JSON Binding

(JSON-B) for working with structured data, WebSocket API for

bidirectional communication, and Concurrency Utilities for

asynchronous processing. The trajectory of J2EE web service

evolutions mirrors broader industry directions: in its early days, J2EE

support was focused on SOAP and WS-* specifications for enterprise

integration, with Java EE 6 adding robust RESTful support in JAX-

RS 1.1, and Java EE 7 improving both paradigms with client APIs and

more format options, but Java EE 8 and Jakarta EE have increasingly

favored lightweight, cloud-friendly approaches prioritizing REST,

JSON and reactive programming models. And because APIs will

become the very

110
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Java Servlet

Java Servlet: Basic Servlet Structure

Java Servlets are one of the key technologies of Java web

development technology, they are the basis of server-side

programming in Java, which with the emergence of many clients does

not lose its popularity. Servlets are basically Java classes made with

the purpose of following the given specification of Java ServletAPI to

handle request and generate response normally inside a/your web

application framework. Servlet technology dates from the late 1990s

as one of Java's first enterprise offerings, responding to the

shortcomings of CGI (Common Gateway Interface) programming by

providing higher performance, platform independence, and to easily

take advantage of the Java ecosystem. Servlets run inside servlet

containers (or web containers) that provide the runtime environment

and lifecycle management. With the container-based architecture,

infrastructure management and application logic are separated, giving

developers the freedom to focus on business functionality rather than

lower-level protocols and communication mechanisms. Where CGI-

based programs create a new process for each request, servlets run

inside the JVM, which provides sophisticated support for multi-

threading. This underlying architectural difference allows servlets to

offer much better performance and resource usage than older web

programming models. Even though more abstracted frameworks such

as JavaServer Pages (JSP), JavaServer Faces (JSF), and various other

MVC implementations followed in its wake, servlets are the real

based technology behind Java web applications. For any Java

developer who is working on web application, understanding servlets

is a prerequisite, since all high level frameworks are finally backed by

the servlet technology, behind the scenes, Servlet technology is the

core of all request-response mechanism. The servlet spec has come a

long way since it was introduced, and in each version, new features

have been added but are still backward compatible. Newer servlet

implementations offered support for annotations, async processing,

non-blocking I/O and other improvements which have helped keep

this technology useful in modern web development contexts.

Basic Structure and Core Components of Java Servlets

111
MATS Centre for Distance and Online Education, MATS University

Notes A servlet is a simple Java class that has to extend appropriate servlet

class (javax.servlet.Servlet) and then implement specific methods that

handle the request from the client. All servlets must implement the

javax. servlet. Servlet interface - This interface defines all the

necessary methods needed for the servlet lifecycle management and

the request processing. However, rather than implementing the Servlet

interface directly, most developers extend the GenericServlet or

HttpServlet abstract classes, which provide partial implementations

of the interface. In particular, the HttpServlet class is important

because it is used to handle HTTP-specific request-response

interactions using methods like doGet(), doPost(), doPut(), doDelete(),

etc., corresponding to the HTTP methods. The following steps

summarize the typical structure of a servlet implementation: package

declarations, imports, non-required annotations, class declaration

extending HttpServlet, non-required constructors, must-have lifecycle

methods (init, destroy), and must-have request handler methods.

Servlet structure: A servlet contains a variety of structural

components such as deployment descriptors (specifically specification

web. xml (or using annotations in modern implementations), servlet

mappings to associate URL patterns with servlet instances,

initialization parameters that configure how servlets behave, and

context parameters that are applicable across the entire web

application. Request handling methods are at the heart of servlet

functionality and accept HttpServletRequest and HttpServletResponse

objects as their parameters – these objects are the primary conduits

for interaction with clients. The request object contains all the

information the client sent to the server, such as parameters, headers,

cookies, and session data, and the response object has methods to set

data to be sent to the client, set response headers, set cookies, and

control the status of the response. Servlets are inherently

multithreaded, meaning that it is important to consider how to handle

multithreading in the design of a servlet; the servlet container

instantiates a single instance of a servlet and then handles multiple

requests to the servlet by invoking them on multiple threads, which

means that thread safety is paramount. Servlet error handling uses

Java's exception mechanism, but it has special rules for catching and

reporting checked and runtime exceptions. The servlet architecture

also includes request filtering capabilities through the Filter API,

112
MATS Centre for Distance and Online Education, MATS University

Notes allowing pre-processing and post-processing operations to be applied

across servlets, and the use of listeners to handle various events

occurring in the application or user session. Grasping these structural

characteristics establishes the groundwork required for successful

servlet programming, allowing developers to design solid,

maintainable web applications that effectively utilize the features of

the Java Servlet API.

113
MATS Centre for Distance and Online Education, MATS University

Notes Unit 12: Servlet Life Cycle

3.3 Servlet Life Cycle

This servlet life cycle governs how servlets are created, initialised,

subserviced request and finally destroyed within the container

environment. Servlet life cycle is a step-by-step process of such states

followed by transitions which is handled by only the servlet container

which calls certain methods at specific time on the servlet. From when

web container either loads the servlet class (when web app starts) or

when first request comes (dependent on load-on-startup). Once your

class has been loaded, a container shall instantiate one and only one

instance of a servlet to your no-argument constructor, making it a

singleton with respect to your application. After that comes the

initialization phase, during which the container calls the servlet's

init(ServletConfig config) method and passes it a ServletConfig object

that allows access to initialization parameters and the ServletContext.

This initialization action is critical for execution of resource expensive

tasks such as examples are database connection establishment,

configuration file reading, or other setup processes. The init() method

completes before the servlet can attempt to handle client requests.

After initialization, the servlet goes into the service phase: it lives on

and responds to client requests until the container removes it. In this

state, each request from a client causes the container to call the

servlet's service() method (or, for HTTP servlets, the appropriate

HTTP method handler such as doGet() or doPost()) on possibly

multiple threads. Since servlets are singletons, instance variables of

Figure 3.2: Servlet Life Cycle
[Source: https://th.bing.com/]

114
MATS Centre for Distance and Online Education, MATS University

Notes the servlet might be accessed by multiple request-processing threads

concurrently, thus making thread-safety an important consideration

for servlet implementations. When the Times of retting a servlet out

of servile — when the application shuts down, or redeploys the server

— whether the servlet is a phase of destruction by its destroy()

method. This makes it possible to free resources, close connections,

and perform other cleanup operations. The servlet lifecycle ends after

destruction, when the instance switches to being eligible for garbage

collection. This lifecycle is managed by the servlet container, the part

of the web server that handles the servlet's functionality, which serves

the dual role as manager of the servlet's execution environment by

encapsulating communication protocols, implementing thread

management, enforcing security policies, and providing pooling of

servlet resources, freeing the servlet developers to concentrate on

business logic rather than the intricacies of infrastructure. The

container makes sure the contract defined by the Servlet API is

followed by instantiation of request and response objects, handling

session tracking, enforcing security constraints, and enabling access to

shared resources by way of the ServletContext. This container-servlet

synergy illustrates the classic "inversion of control" paradigm (the

container calls servlet methods, not the other wayaround); which

leads to a simplified, generic, and standardized component model

that's perfectly tailored for enterprise-level applications.

Request Processing and HTTP Handling in Servlets

This is the basic functionality of servlet, taking client requests and

generating response for those requests. A web application reacts to an

HTTP request it receives from a client by dispatching that request to

the servlet container, which then forwards that to the servlet for

processing, determining the proper servlet that can fulfil the request

by using URL mapping configurations defined in a deployment

descriptor or by annotation-based configurations. Once the container

has determined which HttpServlet will service the request, it creates

the HttpServletRequest and HttpServletResponse objects which

encapsulate the data of the client's request and the means to formulate

a response to the request, respectively. The service method of the

servlet is where the request is passed to the appropriate HTTP

method handler (such as GET, POST, PUT, or DELETE) for the

115
MATS Centre for Distance and Online Education, MATS University

Notes HTTP method being made. The HttpServletRequest interface

provides you with full access to all parts of the incoming request

Session Management and State Persistence

(sending cryptographic hashes of credentials) and Client Certificate

Authentication (using X.509 certificates) as well as programmatic

authentication through the HttpServletRequest. Servlet 3.0 The

login() method that we can use. After the user has been authenticated,

identity information is made available to servlets using methods such

as getUserPrincipal(), getRemoteUser(), and isUserInRole(), which

can support fine-grained, role-based access control within application

code. Transport Layer Security (TLS/SSL) can provide

confidentiality and integrity protection for servlet communications;

configurability is done through a element in security constraints. In

addition to declarative security, servlets support programmatic

security via the previous HttpServletRequest methods and the newer

SecurityContext API. For example, cross-site scripting (XSS)

protection mechanisms include output encoding utilities and the

HttpOnly and Secure cookie attributes, while cross-site request

forgery (CSRF) defenses may rely on synchronizer tokens that

servlets can generate and validate. Servlet A servlet is a purely Java

class that extends the capabilities of a server, like a web server. Java

servlets solve this problem through a series of complementary session

management and state persistence mechanisms. The core mechanism

for session tracking is the HttpSession interface, which acts as a

server-side container that stores and allows retrieval of information

specific to a user across multiple requests. The first time that a client

accesses the application, the servlet container sends the client a unique

session identifier, using either cookies or URL rewriting, and binds

an HttpSession object (using the identifier) to the client. On

subsequent requests, the container retrieves the session identifier from

the client, finds a corresponding HttpSession, and makes it accessible

to servlets via the getSession() method of HttpServletRequest. A

session object acts as a key-value store, allowing servlets to insert

attribute objects with setAttribute(String name, Object value) method

at the same time repopulating the requests from the same client using

the method getAttribute(String name), thus preserving state across

requests from the same client. The container automatically manages

the session lifecycle, creating sessions on-demand, maintaining

116
MATS Centre for Distance and Online Education, MATS University

Notes session activity and invalidating them after a specified timeout period

or by the application when the session invalidate() method is called.

The servlet specification describes some session tracking

mechanisms, including (the default and most common way) cookies,

URL rewriting (attaching the session-id at the end of the URL when

cookies are disabled), secure sockets layer (SSL) session information,

and (outdated) hidden form fields. In addition to session management,

servlets come with a few other state management mechanisms:

application state can be maintained within the ServletContext for the

entire web application to use, request-level attributes are useful for

sharing information to components handling the same request, and

cookies can be placed on the client with configurable expiration times

for persistence. For more permanent state storage, servlets usually

communicate with databases via JDBC, JPA, or other persistence

technologies. Replication and across-container session persistence

refers to maintaining session data between container restarts making it

an important consideration in enterprise environments, for which most

commercial servlet containers provide configurable policy for

backups and/or session recovery to ensure high availability. Common

security issues in session management are session fixation attacks

(which should be prevented by always regenerating session IDs after

successful authentication), session hijacking (prevented by setting

cookie attributes for same-site, secure and HTTP only and

implementing secure HTTPS communications), cross-site request

forgery (CSRF) (solved with synchronizer tokens). Session

management strategies are also influenced by performance

considerations, where too much session data can lead to bloated

memory and eventually impact garbage collection, and session

replication in clustered environments can lead to added network

overhead. Prevaring on these different state persistence strategies

help servlet programmer use best suited options according to specific

applicaiton scenario criction optimal usage state action, proformance,

Scalability and securtiy.

Servlet Security and Authentication Mechanisms

The knowledge is based on.java servlet SecurityServlet Security is an

important concern for application in servlet such as the security is the

general mechanism for securing web resources as well as

authentication, authorization and confidentiality of application data.

117
MATS Centre for Distance and Online Education, MATS University

Notes As the servlet container, this is the main enforcement point of those

security controls that, together with application defined constraints,

build a strong security architecture. The basic security model in

servlet applications is based on the concepts of realms, users, roles,

and constraints. Authentication (authentication mechanisms) defines

who you are, while authorization (authorization mechanisms) defines

what you can access and action and is based on the given roles of the

authenticated user. The deployment descriptor (web. xml), security

constraints are defined using the element , which binds collections of

web resources (represented in identified URL patterns) with two

constraints: those of authorization (user roles), and those of transport

guarantee (HTTP or HTTPS). NASDAQ: SQ, which provides

payments, post-trade risk management, and compliance solutions as

well as rich-data research. Modern servlet containers also include

additional security features such as HTTP Strict transport security

(HSTS), Content security policy (CSP), and an access via OAuth and

OpenID Connect for federated authentication scenarios. Security

filters are yet another very powerful means to define cross-cutting

security concerns (such as input validation, output sanitization and

access logging) in one location and have them invoked during the

lifecycle of each of your servlets. Aware of these various security

measures, developers are empowered with the knowledge necessary to

execute defense-in-depth concepts tailored to their application's threat

profile but at the same time protecting servlets applications so

sensitive resources and information are never exploited by attackers,

while still giving access to the legitimate user. Since security threats

on the web keep changing, it is very important to update the web

security best practices and use the servlet specification's security

features and other protections as per the need to develop and maintain

secure web applications.

Advanced Features and Modern Servlet Capabilities

Since then, the Java Servlet specification has undergone many

generations of enhancement and refinement, delivering features that

significantly boost developer productivity, achieve better application

performance, and provide for more flexible architectures throughout.

Servlets have come a long way since their early design, and current

implementations are significantly more advanced than just the simple

request-response model that served as the backbone of the early web

118
MATS Centre for Distance and Online Education, MATS University

Notes applications. The new annotation-based configuration that comes with

Servlet 3.0 radically changes servlet development, eliminating much

or all of the necessary XML deployment descriptor dependency.

Instead of the traditional xml-based configuration, APIs like

@WebServlet, @WebFilter and @WebListener allow for declarative

configuration, directly in Java code, which enables simple

deployment and better code readability. This approach enables you to

configure for URL mapping, initialization parameters, description

metadata and other configuration features that were limited to web

related. xml. Servlet 3.0 introduced asynchronous request processing

capabilities; these additional capabilities were subsequently enhanced

in the next versions to help tackle scalability issues from long-

running operations by releasing a thread during processing. This

allows servlets to start async operations that could take a long time to

complete without holding up container threads, and can help

applications become more responsive to incoming requests and use

system resources more efficiently under load. The API supports

container-managed asynchronous processing and application-

managed threading, with mechanisms for timeout handling and

completion notification. Servlet 3.1: As the first major specification

after Servlet 3.0, Servlet 3.1 introduced Non-blocking I/O support,

which allowing Servlet vendors to implement a scale-out model for

improved scalability by allowing asynchronous reading and writing

of request and response data. This ability to react to events as they

occur, rather than waiting for all the elements to be present at once

can be important when uploading or downloading files over the wire,

as well as processing streamed data or integrating with reactive

programming models. To support such db functions, both the

ReadListener and WriteListener interfaces enable it to send

notifications to its applications where data can be read, or it can write

the output buffer which is empty and its post data isn't blocked.

Servlet 40 enables HTTP/2 supported servlets through which servlets

can take advantage of performance characteristics offered by the new

protocol version, such as multiplexing, header compression and server

push features. PushBuilder provides an API that allows for server

push, where the Servlet can send resources to the client out of band,

before the client has even requested them. This includes stochastic

servlets, filters, and listeners for web applications, enabling

119
MATS Centre for Distance and Online Education, MATS University

Notes application initialization code to programmatically attach them instead

of a static declaration in the web.xml file. This breaks apart a glass

wall and builds flexible structures between web applications and

frameworks. Subsequent servlet versions introduced embedded

container capabilities, allowing applications to programmatically

configure and launch servlet containers themselves, supporting

microservice architectures and simpler deployment models. Fragment

web. This is similar to the built-in ability of Spring to provide

extension points that the libraries can also contribute to when

configuring the web applications, and the web.xml support allows

libraries to contribute as well. The other important concept is the

ServletContainerInitializer mechanism through which library authors

can add hooks to the framework initialization by configuring

information on integration points in their last descriptor. Security

lattice across versions is having great features like, programmatic

authentication, role mapping, and integration with Java EE/Jakarta

EE security frameworks. Same with multipart request handler allows

you to process file uploads, if API is common then all multipart

requests will be parsed in the same way and protocol upgrade support

allows you transition from HTTP to WebSocket or similar protocols.

As for security, we use JSR-375 (Java EE Security API) integration,

which gives us the latest security practices from identity stores to

authentication mechanims to security context concerns. Together, they

facilitate modern web development yet retain compatibility with

existing code bases. By recognizing and harnessing these capabilities,

developers can create advanced, high-performing web applications

that align with contemporary demands for responsiveness, scalability,

and developer productivity, thereby ensuring that servlet technology

retains its relevance in the modern software development landscape,

despite the rise of alternative frameworks and architectural

approaches.

Integration with Java EE/Jakarta EE and Ecosystem

Considerations

Java Servlets are a part of the larger Java EE (now Jakarta EE)

ecosystem, providing a building block technology that interacts with

many other specifications and frameworks to build complete

enterprise applications. So, in-development systems, where servlets

work, quite integrates well into those convolution landscapes. At the

120
MATS Centre for Distance and Online Education, MATS University

Notes specification level, servlets work closely with many Java EE

technologies, including JavaServer Pages (JSP), which is a view

technology that compiles into servlets behind the curtains; Expression

Language (EL), which provides a clean syntax for accessing data

within JSP pages and other templating technologies; the JSP Standard

Tag Library (JSTL) to extend JSP functionality with reusable tag

components; and lastly, JavaServer Faces (JSF), which builds a

component-based UI framework on top of the servlet foundation. The

servlet container also implements a number of Java EE specifications

other than servlets such as JNDI (Java Naming and Directory

Interface) for resource lookups, JDBC (Java Database Connectivity)

for database access, JTA (Java Transaction API) for transaction

management, JMS (Java Message Service) for messaging, and various

security technologies like JAAS (Java Authentication and

Authorization Service). Such a container environment helps servlets

access them through standard APIs, readily available data sources

include DataSources, JMS destinations, and EJBs (Enterprise

JavaBeans) via JNDI lookups or injection mechanisms. In modern

servlet environments (Java Servlets, Java EE, Jakarta EE, etc.),

dependency injection happens with CDI (Contexts and Dependency

Injection), which is the type-safe, extensible way to access a

resource/component. Then, through annotations like @Inject (along

with producer methods and qualifiers), servlets can get their

dependencies as injected without any code to look them up manually.

Bean Validation with Servlets Bean Validation enables declarative

validation of request parameters and form submissions. Servlets can

leverage a number of frameworks and libraries beyond servlet

technology itself: persistence technologies such as JPA (Java

Persistence API), Hibernate, or MyBatis; web frameworks such as

Spring MVC, Struts or Play Framework (most are designed on top of

servlet technology); template engines such as Thymeleaf, FreeMarker,

or Velocity; and utility libraries for JSON processing, XML, logging,

and other cross-cutting concerns. The microservices architectural

trend impacted how servlets are deployed, as frameworks such as

Spring Boot, WildFly Swarm/Thorntail, and Payara Micro allow for

the serving of self-contained applications with embedded servlet

containers. These cloud deployment factors influence servlet

applications via Docker containerization, Kubernetes orchestration

121
MATS Centre for Distance and Online Education, MATS University

Notes and integration of cloud services. In servlet-based environments,

performance-enhancing techniques include connection pooling, in-

memory and distributed caching strategies, distributing loads among

several containers and resource management. To test servlet

applications, you have specialized frameworks like JUnit, Mockito,

Spring Test, Arquillian, and tools that simulate HTTP requests. There

are also namespace changes because of the transition from Java EE to

Jakarta EE (from javax. * to jakarta. *) and governance changes but

the core integration archetypes remain unchanged. Technologies such

as Jakarta EE Faces Flow and Security, MicroProfile for

microservices development and GraalVM native image compilation

will continue to evolve the ecosystem around reactive programming

models, better application microservice development and

consumption in startup time and resources. By being aware of these

integration points and ecosystem considerations, developers can

make informed architectural decisions, choose the right technologies

for the different needs of their application, and build servlet-based

applications that take full advantage of the rich features and services

offered by the Java enterprise platform as a whole.

Servlet Life Cycle: Stages in Servlet Execution

The servlet life cycle is one of the basic concepts of Java web

development, indicating the specific order of actions that take place

between the instantiation and finalization of the servlet. Servlets differ

from regular Java applications in that there is no well-defined main

method that serves as their entry point; they run inside the managed

environment of a servlet container (for example, Apache Tomcat,

Jetty or JBoss) which takes responsibility for handling the lifecycle of

servlet instances by instantiating, initializing, invoking, and finally

destroying servlet instances according to a specified protocol. This

lifecycle is vitally important for Java developers who are creating

enterprise web applications, as it gives a roadmap of how to manage

HTTP requests properly while allowing for appropriate resource

management, resulting in the application working smoothly during its

time running. Now, servlets go through the following phases: loading

and instantiation, initialization, service processing (request handling,

response generation), and destruction. So, these stages serves for a

specific purpose and they provides developers with hooks to

implement specific behavior through methods that are defined in the

122
MATS Centre for Distance and Online Education, MATS University

Notes javax. servlet. Servlet interface. In this Unit, we will take a closer look

at these stages and the evolution of servlets in terms of their purpose,

details on how they work and the proper techniques to handling the

execution process in enjoyable Java Web applications. Understanding

servlet life cycle empowers developers to build not only powerful but

highly efficient and scalable web applications that manage resources

effectively, handle concurrent requests, and implement complex

business logic while adhering to the separation of concerns principle

that is a cornerstone of modern software architecture.

I. Loading and Instantiation Phase

The loading and instantiation phase is the first phase in the servlet life

cycle, during which the servlet container is first notified of a servlet

and loads the servlet into an execution environment. A servlet class is

loaded usually at one of the 3 moments in time: at container startup,

during first request of the servlet, or at an explicit time, defined in the

deployment descriptor (web. xml) or through annotations. When the

servlet container is initialized, it looks at the web application's

configuration files, most notably the deployment descriptor (web.

xml) or servlet annotations in the case of modern applications—would

indicate servlets to be loaded on startup, by marking these servlets

with a element in web. xml or by using the loadOnStartup attribute of

the @WebServlet annotation in code. These elements take integers

representing the relative order in which servlets are to be initialized,

with smaller numbers receiving higher priority; negative values (or

the absence of the element) signify that the servlet is to be loaded only

on its first request. Now when the container finds the servlet class, it

loads the servlet class into memory using the Java ClassLoader also

making sure that the classes and the libraries required by the class are

available in the classpath. And only after loading successfully this

container calls its no-argument constructor of the servlet, which is an

instance we will use for dealing with all the requests for the

application, keeping in mind that is actually a singleton in relation to

the servlet context.

Understanding this instantiation mechanism is crucial for developers

to implement servlets correctly according to certain rules. First,

servlet classes must implement a public no-argument constructor,

since the container uses reflection to create instances without passing

parameters. This constructor should remain lightweight and should

123
MATS Centre for Distance and Online Education, MATS University

Notes not contain complex initialization logic: proper initialization will

need to be deferred until the initialization phase discussed in the

upcoming section. Second, a single servlet instance is used to process

multiple requests, and they might come at the same time, so instance

variables should be used with caution because this can be a thread

safety issue — otherwise it is better to use immutable objects or

thread-local storage to maintain state between method invocations. It

must implement the javax. servlet. Servlet interface, usually by sub-

classing the javax. servlet. GenericServlet class for protocol-

independent servlets or the javax. servlet. http. HttpServlet A class

for HTTP-specific servlets, which is a base class that provides default

implementations of the interface methods. The servlet context is

selected too at the time of instantiation, allowing the servlet to be

served with access to the application-wide ServletContext that gives it

access to key elements of configuration, keys for parameters, and

connectors for applications that allow for inter-app communication

across the application. This context allows servlets to share

information among themselves, read configuration parameters, and

interact with other components of the web application. This loading

and instantiation step culminates in the servlet instance being created

(but not yet ready to be called), ready for an initialization step. This

phase is mainly based on activities managed by the container, with

little developer intervention, but knowing how it works under the

hood is important so that you can implement the design of your

servlets in such a way that they work well in the container

environment, especially when you implement custom classloading or

need to work with complex dependency scenarios.

II. Initialization Phase

The Initialization Phase signifies the servlet moves away from just

being an instance of a class to an entity that can actually serve

requests. So you know this important moment occurs right after

instantiation, when the servlet container invokes the servlet's

init(ServletConfig config) method, a contract method defined in the

javax. servlet. All servlets must implement this interface, which is a

Servlet interface. The key objective of this step is to provide an

opportunity for the servlet to initialize one-time setup stuff (like

loading configuration values, getting database connections, creating

resource pools, etc.) that will be used during the full lifecycle of the

124
MATS Centre for Distance and Online Education, MATS University

Notes servlet. A ServletConfig object is passed to the init() method by the

container — this object allows the servlet to access configuration

parameters specified in the deployment descriptor(web. xml) or

through annotations. This object acts as a middle ground between the

deployment configuration and the servlet code itself enabling the

developer to extract configuration details away from the code, thus

changing behavior without changing code. In addition, the servlet can

get a reference to the ServletContext object that represents the web

application and can be used to get access to application-wide

resources and functionality via the ServletConfig. It is contra the

event if the init() method is invoked at least once in the life cycle of a

servlet, so controlling the initialization that never repeats if once the

servlet instance will initialize. Because the initialization phase offers a

precious opportunity to create resource-intensive setup tasks that can

be then amortized to all the following request processing, since many

requests may be ultimately processed by this one servlet instance.

If initialization fails the init() method throws a ServletException,

allowing servlets to signal serious errors that preclude their

functioning. By doing so, it ensures that the servlet doesn't get into

action in a half-baked or bad state, which can lead to erratic

application behavior or even expose a servlet to security threats.

Initialization tasks can include opening database connections, creating

connection pools, initializing caching mechanisms, loading

configuration files, establishing a network connection to a remote

service, precomputing results, and constructing data structures that are

used to support the servlet's primary function. Because the init()

method is only called once, developers need to make sure that all

necessary resources are acquired and configured correctly at this

stage, with suitable error handling in place so that initialization errors

can be handled gracefully. The GenericServlet abstract class

implements a default version of the init(ServletConfig) method, which

stores the config object and then calls a no-argument init() method

that subclasses can override to implement their initialization logic

without needing to manage the ServletConfig reference that will be

stored for them. The configuration management separation pattern

helps in the development of servlets by allowing the configuration

management logic to be separate from the specific business logic

implementation. Different approaches can be taken in the initialization

125
MATS Centre for Distance and Online Education, MATS University

Notes phase to gear up for an application, e.g., lazy initialization of

expensive resources or eager initialization of critical components,

based on the performance needs and resource limits of the application.

The initialization phase ends when the servlet goes into the service

phase awaiting requests from the client.

III. Service Phase - Request Processing

Servlet Life Cycle The service methodServlet Life Cycle--The

Service Phase. This step starts when the servlet container receives an

appropriate HTTP request and invokes the servlet's

service(ServletRequest req, ServletResponse res) method, which

details the request and a channel to build the response. For HTTP

servlets (the most usual species in modern web applications), the

container actually invokes the service(HttpServletRequest req,

HttpServletResponse res) method of the HttpServlet class, which

receives HTTP-specific request and response objects populated with

protocol-relevant information. The default implementation of this

method given by HttpServlet checks the HTTP method (GET, POST,

PUT, DELETE… etc.) and calls the relevant method of the servlet:

doGet(), doPost(), doPut(), doDelete()… etc. The pattern of

delegation simplifies the servlet development because developers only

need to implement the methods representing the HTTP methods the

application supports and not handle the dispatching themselves. All

of those method specific handlers receive identical request and

response objects that allows them to inspect any request params, any

request headers, and request content and to produce appropriate

responses, including status codes, response headers, and response

body content. The service phase, unlike initialization and destruction,

occurs during the lifetime of the servlet and will be executed

whenever a request is made to the servlet, either once or multiple

times, on different threads, to handle multiple requests.

Handling requests in a multi-threaded manner is both a performance

gain and a huge development hurdle. Handling concurrent requests

efficiently without creating a new request thread per client per request

is typically accomplished by the servlet container (e.g., Tomcat) by

means of a request context (thread pool) that it manages under the

covers. This model enables a single instance of a servlet to handle

multiple clients simultaneously, thereby significantly improving

scalability compared to creating a separate instance per client. But this

126
MATS Centre for Distance and Online Education, MATS University

Notes shared-instance model makes it important to focus on thread safety,

because instance variable is shared across all service method

invocations. To avoid the inevitable pitfalls of managing state in this

environment, there are a few strategies: we can use synchronization

to guard shared resources, we can use thread-local storage to store

request specific data, the local variables that are scoped to the thread's

stack, we can use immutable objects that we can pass around safely,

or we can use session mechanisms to hold client specific state. It also

includes important processing steps that developers have to

implement, e.g. parsing request parameters and headers, mariage or

authenticate the user if applicable, apply the application-specific

business logic and formulate a fitting response, which covers the

status code as well as headers and content. Service phase: Handling

errors is pivotal, exceptions should be caught and converted into

HTTP compatible error representations. Also, the servlet API allows

request dispatching between servlets, which is useful for

maintainability, permission checking, and modularity. During the

service phase, performance considerations of minimizing processing

time, good memory usage, resource management and caching of

frequently used data or computations to decrease response time come

into account. We can say that the service phase exists for as long as

the servlet is running, handling requests until the servlet container

calls the destroy phase.

IV. Service Phase - Response Generation

After processing the request during the service phase, servlets need to

create and send appropriate responses back to clients, thus completing

the request-response loop at the core of HTTP interaction. For the

response generation, we use (and are given) the HttpServletResponse

object provided by the container, which includes methods to set status

codes, headers, content type, get output streams or writers to send the

response body, etc. Status codes convey the result of processing

requests—for example, 200 (OK) if a request was processed

successfully, 404 (Not Found) if it tried to access resources that don’t

exist, or 500 (Internal Server Error) if the server failed to handle the

request—and should always be configured before writing any

response content. HTTP headers are used to send additional

information about the data being transmitted along with the response,

and they control how caching should work, attributes of the transport

127
MATS Centre for Distance and Online Education, MATS University

Notes layer, security rules, and many other things between the client and

server; for example, common headers include Content-Type, Content-

Length, Cache-Control, and Set-Cookie. Using the setContentType()

method, the response content type, or the format of the data

(text/html, application/json, image/jpeg, etc), and the character

encoding for textual content is included on the response to help the

client correctly parse and render the response data. Servlets can

generate the response body with either a PrintWriter (obtained by

calling getWriter()) (for character data), or another type of output

stream (obtained by calling getOutputStream()) (for binary data), but

not both within the same response (as this constitutes a violation of

the servlet specification and results in an IllegalStateException being

thrown).

The response generation technique largely depends on type and

nature of the application. Servlets directly create markup using print

statements or use template engines like Thymeleaf or FreeMarker to

separate presentation logic from business logic for HTML based

applications, which will delegate rendering JSP (JavaServer Pages)

using request dispatch. In data-centric applications, servlets typically

return JSON or XML payloads, leveraging libraries such as Jackson,

Gson or JAXB to marshal/unmarshal Java beans to/from these

serialized representations. Binary data lowers content—like PDF,

images, or downloadable files—requires some business and particular

consideration, including content kind, content disposition headers, and

safe streaming strategies to handle massive files effectively. Complex

response patterns are now common in web applications, such as

partial updates for AJAX-based interfaces, streaming for large data

sets or real-time updates, compression to reduce the bandwidth

footprint, and content negotiation to return different representations

depending on what the clients can or want. Caching directives are

another important part of response generation, allowing servlets to

hint to clients and intermediaries about whether contents are fresh and

reusable, reducing load and improving performance. Likewise, the

ability to manage cookies via the Cookie class and the addCookie()

method allows servers to track sessions and maintain stateful

interactions through the inherently stateless HTTP protocol. Error

handling during response generation needs to be treated differently,

since exceptions raised after part of the response was delivered can

128
MATS Centre for Distance and Online Education, MATS University

Notes cause corrupted or partial content to be delivered; typically proper

error handling involves both buffer management and error pages

mapped in the deployment descriptor. Once the response has been

generated, the servlet container takes care of the underlying work of

sending the response back over the network connection and getting

ready for the next request. While generating the response, servlet must

be aware of performance implications, such as memory consumed

when generating large response, buffered output to tradeoff between

memory usage and responsive, and freeing resource associated with

response to avoid leak when operating in high volume.

V. Destruction Phase

Although the destruction phase marks the last stage in the servlet life

cycle, it takes place when a servlet needs to be taken out of service by

the servlet container. This phase is invoked under a variety of

situations, such as when the web application is being undeployed or

redeployed or if the servlet container is shutting down gracefully, or

when the container needs to recover resources. The service phase will

be invoked thousands or millions of times in the lifetime of the servlet

(and will also be executed on a separate thread for each request), but

the destruction phase will be executed (like the initialization phase) a

guaranteed — exactly once — for each servlet instance that is created.

This container indicates the start of this phase by invoking the

destroy() method on the servlet, which is a contract method written in

javax. servlet. This interface allows servlets to be given the chance to

do some cleanup work when the servlet is being taken out of service.

The destroy() method is primarily responsible for releasing resources

— closing database connections, terminating network connections,

shutting down thread pools, releasing file handles, and freeing any

other system resources that the initialized acquired during the

initialization phase or in the servlet's operational life. The cleanup also

prevents resource leaks that might exist beyond the servlet lifetime,

eventually leading to performance degradation or server instability.

Moreover, the destruction phase allows you to persist state

information that must outlive the current application instance (for

example, saving accumulated statistics, unsaved data, or configuration

changes to permanent storage).

During the destruction phase, the servlet container guarantees a

graceful shutdown. It guarantees that before calling destroy() all the

129
MATS Centre for Distance and Online Education, MATS University

Notes threads currently running in the service method must complete their

processing or are given a reasonable time to do so. That is, the

destroy() method will not fire until ALL service method invocations

have exited or a container-specific timeout has occurred. After calling

destroy(),

VI. Concurrency and Thread Safety

Managing concurrency is one of the biggest challenges in servlet

development because a servlet by design pattern, is a single instance

that is invoked by multiple clients (in parallel). Instead of the common

approach in programming model where each client request receives its

own application instance, the servlet container follows the singleton

approach with multi-threaded execution, leading to a shared

application space with the necessity of mitigating the risks associated

with shared state in a multi-threaded environment. Hint: When a

servlet container (like an application server or web server) handles

multiple concurrent requests directed at the same servlet, it may

forward these requests in parallel by calling the servlet's service()

method in separate threads. The potentially huge performance

advantages derived from this concurrency model comes at the expense

of a shared state with respect to instance variables (fields) of the

servlet as it is instantiated per application rather than per request.

Therefore, at the servlet instance level, every instance variable is at

risk of race conditions, data corruption, and other concurrency

problems unless appropriately safeguarded. Concurrency can be

handled in servlets in four ways: making your servlet thread-safe by

synchronizing yourself with your critical section code or maintaining

an immutable state, using local variables instead of instance variables

— since local variables are thread-local automatically as they are

created on the stack of the thread, using the thread-local storage

pattern or ThreadLocal class to persist thread-specific state, or using

an interface known as SingleThreadModel (which has been

deprecated for now in at least the last couple of servlet specifications)

which allows the web container to enforce that only one thread

accesses a servlet instance at any time, so that the container needs to

keep a pool of servlet instances.

For servlets that need to retain state between requests, certain

concurrent programming strategies are helpful. Synchronization is the

most simple solution to the problem, using Java's synchronized

130
MATS Centre for Distance and Online Education, MATS University

Notes keyword or explicit locks provided in java. util. concurrent. ensure

that only a single thread can execute a specific part of code or a

shared resource at a time and can be found in the locks package.

Synchronization, on the other hand, comes with performance

overhead in the forms of thread contention and possible deadlocks and

so is only appropriate for short-lived, sparse operations. Many

concurrency scenarios can be elegantly addressed using immutable

objects [Java Concurrency] which can safely be shared across threads,

without synchronization, after they've been built; this is the case for

things like configuration data or pre-computed results that will not

change during servlet execution. Java.Core. Concurrent.Collections

classes util. implementations in the java.util.concurrent package —

ConcurrentHashMap, CopyOnWriteArrayList, and BlockingQueue

implementations, for example—provide thread-safe alternatives to

the standard collections with better performance characteristics than

explicitly synchronized collections. The HttpSession API is designed

to handle user-specific state by maintaining a container-managed

thread-safe association between data and a particular client session

instead of relying on a servlet to do so, which further delegates the

thread-safety concern to the container. Other than these basic

techniques, servlets supporting significant concurrent traffic will often

use more advanced patterns like the read-write lock pattern for

resources that are expensive to acquire but that are heavily read and

seldom written, double-check locking for lazily initialized expensive

resources, or compare-and-swap operations provided by atomic

classes such as AtomicInteger and AtomicReference lock-free

updates to trivial values. Testing servlets for thread safety is

particularly difficult, needing specialized tools such as stress testing

frameworks, static analysis tools to catch possible concurrency issues

or explicit concurrency testing frameworks that can generate

managed race conditions. Servlet concurrency can be achieved by

following certain principles and practices in your application

development lifecycle.

VII. Advanced Life Cycle Considerations

In addition to the basic lifecycles stages, there are various advanced

aspects that heavily influence servlet functioning and efficiency in

real-world applications. Servlet initialization parameters is a method

of configuring servlets without changing code so the deployment can

131
MATS Centre for Distance and Online Education, MATS University

Notes set it to whatever it wants. These parameters can be defined through

the element in web. xml or the initParams field of the @WebServlet

annotation and accessed during initialization phase via the

ServletConfig. getInitParameter() method. This configuration

construct fosters the separation of code from configuration, allowing

the same piece of servlet code to run differently on different

environments. Load-on-startup settings dictate exactly when servlet

initialization happens, optimizing startup time and request latency.

Servlets with positive integers in their element or loadOnStartup

annotation attribute are constructed at container startup in increasing

numerical order so that critical servlets are in place when the

application first receives traffic, while servlets that lack this directive

or have negative values construct lazy on first request. This helps a

lot for servlets which have expensive initialization processes, and the

servlets provides low-level or any services which are required by

other components. Error handling is another high-level concept that

straddles the servlet life cycle, including both programmatic exception

handling in servlet methods and declaratively defined error page

mappings in the deployment descriptor, which direct specific types of

exception or HTTP error codes to dedicated error-handling servlets or

JSP pages, thereby allowing for consistent error presentation across

the application while allowing for generic information to be hidden

that a developer can use to troubleshoot.

Servlet context listeners allow for the management of an application's

life cycle, passing the life cycle management from individual servlets

to the application level, by implementing the ServletContextListener

interface and being notified of an applications startup and shutdown

through the contextInitialized() and contextDestroyed() methods

respectively. These listeners usually make application-wide

initializations and clean-ups like creating database connection pools,

logging configuration, Caches preloading, JDBC drivers registration,

In a similar way, session listeners — that is, classes that implement

the HttpSessionListener, HttpSessionAttributeListener, and

HttpSessionBindingListener interfaces — allow code to be executed

when a session is created, destroyed, and when its attributes change:

useful for keeping track of users, managing resources, and for security

monitoring purposes. The asynchronous processing, which was

132
MATS Centre for Distance and Online Education, MATS University

Notes introduced in the Servlet 3.0 specification, changes the conventional

request-response life cycle by letting servlets perform long-running

operations while freeing the container's request-processing thread. By

calling request. Either doAllInOneThread() of startAsync() method in

some servlet, where the servlet get the AsyncContext object, which

disassociates the request and response object from the current thread,

allowing original thread for returning to the container’s thread pool

while processing is continued on another thread, and may be end

much later. This pattern is useful for long-running operations, server-

push technologies, and non-blocking I/O system integration. The

servlet specification additionally defines resource management

through annotations including @Resource, @Resources, and

@PostConstruct/@PreDestroy, which enables resource injection and

life cycle method designation that incorporates with the container's

higher resource management amenities.

Production deployments add a number of other life cycle

considerations. For example, many containers will be able to reload

servlets, so that if a servlet class changes, the servlet can be detected

and getting going through the life cycle of destruction and

initialization without a restart of the application, which can be useful

during development but can sometimes be turned off in production for

performance reasons. One of the special challenges with clustering

environments, where different physical or virtual machines may run

multiple servlet containers: session replication, distributed caching,

synchronized initialization have to be considered because servlets

aren't singletons, and their life cycle management should be handled

specifically. While supplying a servlet involves specifying which

bytecode will be executed, there are security concerns that intersect

the servlet life cycle that you need to include in your design, including

role-based access controls that restrict which users can access which

servlets, programmatic security checks that you perform in servlet

methods, and secure initialization that protects sensitive configuration

data. Lifecycle performance tuning through connection pooling at

initialization, request dispatching during the service phase, response

caching between requests, and resource management at destruction.

Most servlet life cycle monitoring and debugging relies on recording

important transitions into a log file, container-specific utilities (such

as the one that tracks servlet life cycle and state), or JMX (Java

133
MATS Centre for Distance and Online Education, MATS University

Notes Management Extensions), exposing servlet metrics and state data to

outboard monitoring systems. Having advanced the understanding of

the servlets life cycle, developers can ideally design servlets for

correctness, efficiency, scalability, enterprise integration, and optimal

operation in hard times.

With Java EE, a specified life cycle for the servlet engines gives a

structured life cycle framework — characterized in tall levels below.

By thoroughly understanding and appropriately utilizing the

functionalities of each phase, developers are able to craft resilient,

performant, and maintainable web applications that make effective

use of the servlet container's services and adhere to correct resource

management and concurrency control protocols. However, a deep

understanding of servlet life cycle is always essential to Java web

application development regardless of being simple web applications

or complex enterprise solutions.

3.4 Reading Form Data from Servlet

Enter user input One of the most basic tasks that are performed in

web applications. [To know more JAVA SERVLETS] – How To

Handle HTML Forms In Servlets? Knowing how to retrieve, validate

and then use this data effectively is one of the key parts of building

interactive web applications.

3.4.1 Understanding HTTP Form Submission

So, when someone fills a form on a webpage, the data is sent to a

server with an HTTP request. The form data can be sent in one of two

ways, depending on how the form is configured:

GET Method: The form data is added to the URL as a query

string parameter. This is usable with non-sensitive data and when

you may want to bookmark the outcome.

POST Method: As the form data is sent as part of the HTTP

request body, it is not visible in the URL. Sensitive information,

large amounts of data, or a request that might mutate server state

should be passed via the body by this method The HTML markup

for these form types looks like this:

<!-- GET method form -->

<form action="processForm" method="get">

<input type="text" name="username">

<input type="submit" value="Submit">

</form>

134
MATS Centre for Distance and Online Education, MATS University

Notes

<!-- POST method form -->

<form action="processForm" method="post">

<input type="password" name="password">

<input type="submit" value="Submit">

</form>

3.4.2 Extracting Form Data in Servlets

There are some methods in Java servlets for extracting the form data.

The main methods are defined in the HttpServletRequest interface,

and are slightly different depending on whether the data was

submitted using GET or POST.

Basic Parameter Retrieval

getParameter(String name) is the most common and used method

which receives the parameter name and returns the value associated

with the parameter name as a String

@WebServlet("/processForm")

public class FormProcessorServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Retrieve a single parameter value

 String username = request.getParameter("username");

 // Process the username

 if (username != null && !username.isEmpty()) {

 // Valid username provided

 response.getWriter().println("Hello, " + username + "!");

 } else {

 // No username or empty username

 response.getWriter().println("Hello, guest!");

 }

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

135
MATS Centre for Distance and Online Education, MATS University

Notes // For POST requests, we can use the same getParameter method

 doGet(request, response);

 }

}

Handling Multiple Values

We use getParameterValues(String name) to get multiple values

(when we have checkbox or multi-select list in our form, with the

same name) as a String array.:

@WebServlet("/processInterests")

public class InterestProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Retrieve multiple values for the same parameter

 String[] interests = request.getParameterValues("interest");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Your Selected Interests:</h2>");

 if (interests != null && interests.length > 0) {

 out.println("");

 for (String interest : interests) {

 out.println("" + interest + "");

 }

 out.println("");

 } else {

 out.println("<p>No interests selected.</p>");

 }

 out.println("</body></html>");

 }

}

Retrieving All Parameters

136
MATS Centre for Distance and Online Education, MATS University

Notes To retrieve all the parameters that were passed in with a form, use

getParameterNames() to obtain an enumeration of the parameter

names, then iterate through them to get the values of each parameter:

@WebServlet("/displayAllParams")

public class ParameterDisplayServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>All Form Parameters:</h2>");

 out.println("<table border='1'>");

 out.println("<tr><th>Parameter Name</th><th>Parameter

Value(s)</th></tr>");

 Enumeration<String> paramNames =

request.getParameterNames();

 while (paramNames.hasMoreElements()) {

 String paramName = paramNames.nextElement();

 out.println("<tr><td>" + paramName + "</td><td>");

 String[] paramValues =

request.getParameterValues(paramName);

 if (paramValues.length == 1) {

 String paramValue = paramValues[0];

 if (paramValue.length() == 0) {

 out.println("<i>No Value</i>");

 } else {

 out.println(paramValue);

 }

 } else {

 out.println("");

 for (String paramValue : paramValues) {

 out.println("" + paramValue + "");

137
MATS Centre for Distance and Online Education, MATS University

Notes }

 out.println("");

 }

 out.println("</td></tr>");

 }

 out.println("</table>");

 out.println("</body></html>");

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 doGet(request, response);

 }

}

Using the Parameter Map

For more structured parameter handling, getParameterMap() returns a

Map containing parameter names as keys and parameter values as

String arrays:

@WebServlet("/processMapForm")

public class ParameterMapServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 Map<String, String[]> parameterMap =

request.getParameterMap();

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Form Data Summary:</h2>");

 // Process all parameters using the map

 for (Map.Entry<String, String[]> entry :

parameterMap.entrySet()) {

 String paramName = entry.getKey();

138
MATS Centre for Distance and Online Education, MATS University

Notes String[] paramValues = entry.getValue();

 out.println("<p>" + paramName + ": ");

 if (paramValues.length == 1) {

 out.println(paramValues[0]);

 } else {

 out.println("
");

 for (String value : paramValues) {

 out.println("- " + value + "
");

 }

 }

 out.println("</p>");

 }

 out.println("</body></html>");

 }

}

3.4.3 Character Encoding Considerations

To retrieve all the parameters that were passed in with a form, use

getParameterNames() to obtain an enumeration of the parameter

names, then iterate through them to get the values of each parameter:

@WebServlet("/internationalForm")

public class InternationalFormServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set character encoding before retrieving parameters

 request.setCharacterEncoding("UTF-8");

 // Now retrieve parameters with proper encoding

 String name = request.getParameter("name");

 String address = request.getParameter("address");

 // Set response encoding

 response.setContentType("text/html; charset=UTF-8");

139
MATS Centre for Distance and Online Education, MATS University

Notes PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>International Form Data:</h2>");

 out.println("<p>Name: " + name + "</p>");

 out.println("<p>Address: " + address + "</p>");

 out.println("</body></html>");

 }

}

3.4.4 Processing Different Form Data Types

Form data is always transmitted as strings, but your application may

need to convert these strings to appropriate data types for processing.

Type Conversion

If you want to handle the parameters in a more structured way, you

can use getParameterMap(): It returns a Map that has parameter

names as keys and parameter values as String arrays

:

@WebServlet("/calculateTotal")

public class ShoppingCartServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 try {

 // Convert string to integer

 int quantity =

Integer.parseInt(request.getParameter("quantity"));

 // Convert string to double

 double price =

Double.parseDouble(request.getParameter("price"));

 // Convert string to boolean

 boolean isGift =

Boolean.parseBoolean(request.getParameter("gift"));

 // Perform calculations

 double total = quantity * price;

140
MATS Centre for Distance and Online Education, MATS University

Notes if (isGift) {

 total += 5.00; // Gift wrapping fee

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Order Summary</h2>");

 out.println("<p>Quantity: " + quantity + "</p>");

 out.println("<p>Price per unit: $" + String.format("%.2f",

price) + "</p>");

 out.println("<p>Gift wrapping: " + (isGift ? "Yes" : "No") +

"</p>");

 out.println("<p>Total: $" + String.format("%.2f", total) +

"</p>");

 out.println("</body></html>");

 } catch (NumberFormatException e) {

 // Handle parsing errors

response.sendError(HttpServletResponse.SC_BAD_REQUEST,

"Invalid number format in form data");

 }

 }

}

Handling Date Inputs

Converting string date inputs to java.util.Date objects:

@WebServlet("/processDate")

public class DateProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String dateString = request.getParameter("eventDate");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

141
MATS Centre for Distance and Online Education, MATS University

Notes

 try {

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd");

 Date eventDate = dateFormat.parse(dateString);

 // Calculate days until event

 long daysDiff = (eventDate.getTime() - new Date().getTime())

/ (1000 * 60 * 60 * 24);

 out.println("<html><body>");

 out.println("<h2>Event Information</h2>");

 out.println("<p>Event Date: " + dateFormat.format(eventDate)

+ "</p>");

 out.println("<p>Days until event: " + daysDiff + "</p>");

 out.println("</body></html>");

 } catch (ParseException e) {

 out.println("<html><body>");

 out.println("<h2>Error</h2>");

 out.println("<p>Invalid date format. Please use yyyy-MM-dd

format.</p>");

 out.println("</body></html>");

 }

 }

}

3.4.5 Handling File Uploads

For flowing files, the getParameter() methods of the standard are not

enough. Instead, you must refer to the Part API added in Servlet 3.0

or third-party library such as Apache Commons FileUpload.

Using Servlet 3.0 Part API

@WebServlet("/fileUpload")

@MultipartConfig(

 fileSizeThreshold = 1024 * 1024, // 1 MB

 maxFileSize = 1024 * 1024 * 10, // 10 MB

 maxRequestSize = 1024 * 1024 * 50) // 50 MB

142
MATS Centre for Distance and Online Education, MATS University

Notes public class FileUploadServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get the file part from the request

 Part filePart = request.getPart("file");

 // Extract file information

 String fileName = getSubmittedFileName(filePart);

 long fileSize = filePart.getSize();

 String contentType = filePart.getContentType();

 // Define the location to save the file

 String uploadPath =

getServletContext().getRealPath("/uploads");

 File uploadDir = new File(uploadPath);

 if (!uploadDir.exists()) {

 uploadDir.mkdir();

 }

 // Save the file

 filePart.write(uploadPath + File.separator + fileName);

 // Process other form fields

 String description = request.getParameter("description");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>File Upload Summary</h2>");

 out.println("<p>File Name: " + fileName + "</p>");

 out.println("<p>File Size: " + fileSize + " bytes</p>");

 out.println("<p>Content Type: " + contentType + "</p>");

 out.println("<p>Description: " + description + "</p>");

 out.println("<p>File saved successfully to: " + uploadPath +

"</p>");

143
MATS Centre for Distance and Online Education, MATS University

Notes out.println("</body></html>");

 }

 // Helper method to extract the file name from the Part header

 private String getSubmittedFileName(Part part) {

 String contentDisp = part.getHeader("content-disposition");

 String[] items = contentDisp.split(";");

 for (String item : items) {

 if (item.trim().startsWith("filename")) {

 return item.substring(item.indexOf("=") + 2, item.length() -

1);

 }

 }

 return "";

 }

}

3.4.6 Form Data Validation

Always put security first when dealing with form data. Here are

some crucial security practices:

@WebServlet("/registerUser")

public class UserRegistrationServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String username = request.getParameter("username");

 String email = request.getParameter("email");

 String password = request.getParameter("password");

 String confirmPassword =

request.getParameter("confirmPassword");

 List<String> errors = new ArrayList<>();

 // Validate username

 if (username == null || username.trim().length() < 3) {

 errors.add("Username must be at least 3 characters long");

 }

144
MATS Centre for Distance and Online Education, MATS University

Notes // Validate email

 if (email == null || !email.matches("^[\\w-\\.]+@([\\w-]+\\.)+[\\w-

]{2,4}$")) {

 errors.add("Please enter a valid email address");

 }

 // Validate password

 if (password == null || password.length() < 8) {

 errors.add("Password must be at least 8 characters long");

 }

 // Confirm passwords match

 if (!password.equals(confirmPassword)) {

 errors.add("Passwords do not match");

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 if (errors.isEmpty()) {

 // All validations passed, process the registration

 out.println("<h2>Registration Successful</h2>");

 out.println("<p>Username: " + username + "</p>");

 out.println("<p>Email: " + email + "</p>");

 // In a real application, you would save the user to a database

here

 } else {

 // Validation errors found

 out.println("<h2>Registration Failed</h2>");

 out.println("<p>Please correct the following errors:</p>");

 out.println("");

 for (String error : errors) {

 out.println("" + error + "");

 }

 out.println("");

145
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<p>Go back

and try again</p>");

 }

 out.println("</body></html>");

 }

}

3.4.7 Security Considerations

Always put security first when dealing with form data. Here are

some crucial security practices:

Input Sanitization

Note: Always sanitize user input to avoid security problems such as

XSS attacks:

@WebServlet("/commentProcess")

public class CommentProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String name = request.getParameter("name");

 String comment = request.getParameter("comment");

 // Sanitize input to prevent XSS attacks

 name = sanitizeInput(name);

 comment = sanitizeInput(comment);

 // Process the sanitized data

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Comment Received</h2>");

 out.println("<p>From: " + name + "</p>");

 out.println("<p>Comment: " + comment + "</p>");

 out.println("</body></html>");

 }

146
MATS Centre for Distance and Online Education, MATS University

Notes private String sanitizeInput(String input) {

 if (input == null) {

 return "";

 }

 // Replace potentially dangerous characters with their HTML

entities

 String sanitized = input

 .replace("&", "&")

 .replace("<", "<")

 .replace(">", ">")

 .replace("\"", """)

 .replace("'", "'")

 .replace("/", "/");

 return sanitized;

 }

}

CSRF Protection

Implement Cross-Site Request Forgery (CSRF) protection by using

tokens:

@WebServlet("/secureForm")

public class SecureFormServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Generate a CSRF token

 String csrfToken = generateCSRFToken();

 // Store the token in the session

 HttpSession session = request.getSession();

 session.setAttribute("csrfToken", csrfToken);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

147
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<h2>Secure Form</h2>");

 out.println("<form action='processSecureForm'

method='post'>");

 out.println("Name: <input type='text' name='name'>
");

 out.println("Email: <input type='email' name='email'>
");

 // Include the CSRF token as a hidden field

 out.println("<input type='hidden' name='csrfToken' value='" +

csrfToken + "'>");

 out.println("<input type='submit' value='Submit'>");

 out.println("</form>");

 out.println("</body></html>");

 }

 private String generateCSRFToken() {

 // Generate a random token (in a real application, use a

cryptographically secure method)

 return UUID.randomUUID().toString();

 }

}

@WebServlet("/processSecureForm")

public class SecureFormProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Retrieve the submitted token

 String submittedToken = request.getParameter("csrfToken");

 // Retrieve the stored token from the session

 HttpSession session = request.getSession();

 String storedToken = (String) session.getAttribute("csrfToken");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Validate the CSRF token

148
MATS Centre for Distance and Online Education, MATS University

Notes if (storedToken != null &&

storedToken.equals(submittedToken)) {

 // Token is valid, process the form

 String name = request.getParameter("name");

 String email = request.getParameter("email");

 out.println("<html><body>");

 out.println("<h2>Form Processed Successfully</h2>");

 out.println("<p>Name: " + name + "</p>");

 out.println("<p>Email: " + email + "</p>");

 out.println("</body></html>");

 // Invalidate the token after use (one-time use)

 session.removeAttribute("csrfToken");

 } else {

 // Invalid or missing token, potential CSRF attack

 response.setStatus(HttpServletResponse.SC_FORBIDDEN);

 out.println("<html><body>");

 out.println("<h2>Error: Invalid Request</h2>");

 out.println("<p>The form submission could not be processed

due to security concerns.</p>");

 out.println("</body></html>");

 }

 }

}

3.5 Handling Client Request and Generating Server Response

Java servlets operate on the fundamental principle of handling client

requests and providing responses. This section walks through all

aspects of this request-response cycle, from understanding what an

HTTP protocol is to generating dynamic content based on user input..

3.5.1 Understanding the HTTP Request-Response Cycle

In order to understand the specifics of how to handle requests in

servlets, we need to learn the HTTP request-response cycle::

Client Request: The client (typically a web browser) sends an HTTP

request to the server.

Server Processing: The server processes the request, which may

involve:

Routing the request to the appropriate servlet

149
MATS Centre for Distance and Online Education, MATS University

Notes Extracting request parameters

Processing business logic

Accessing databases or external services

Server Response: The server generates an HTTP response and sends

it back to the client.

Client Rendering: The client processes the response (e.g., rendering

HTML, executing JavaScript).

In Java servlets, this cycle is represented by:

The HttpServletRequest object, which encapsulates the client request

The HttpServletResponse object, which provides methods to generate

the response

3.5.2 Analyzing the Request

In order to handle an incoming request we need to understand it.

Servlets offer several ways to get information from the request.

Request Headers

HTTP headers are metadata about the request. Using the getHeader()

method you can fetch headers equal to:

@WebServlet("/requestInfo")

public class RequestInfoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Request Information</h2>");

 // Get basic request information

 out.println("<h3>Basic Info</h3>");

 out.println("<p>Request Method: " + request.getMethod() +

"</p>");

 out.println("<p>Request URI: " + request.getRequestURI() +

"</p>");

 out.println("<p>Protocol: " + request.getProtocol() + "</p>");

 // Get request headers

150
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<h3>Request Headers</h3>");

 out.println("<table border='1'>");

 out.println("<tr><th>Header Name</th><th>Header

Value</th></tr>");

 Enumeration<String> headerNames =

request.getHeaderNames();

 while (headerNames.hasMoreElements()) {

 String headerName = headerNames.nextElement();

 String headerValue = request.getHeader(headerName);

 out.println("<tr><td>" + headerName + "</td><td>" +

headerValue + "</td></tr>");

 }

 out.println("</table>");

 out.println("</body></html>");

 }

}

Cookie Information

Cookies sent by the client can be retrieved using the getCookies()

method:

@WebServlet("/cookieInfo")

public class CookieInfoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Cookie Information</h2>");

 Cookie[] cookies = request.getCookies();

 if (cookies != null && cookies.length > 0) {

 out.println("<table border='1'>");

151
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<tr><th>Cookie Name</th><th>Cookie

Value</th></tr>");

 for (Cookie cookie : cookies) {

 out.println("<tr>");

 out.println("<td>" + cookie.getName() + "</td>");

 out.println("<td>" + cookie.getValue() + "</td>");

 out.println("</tr>");

 }

 out.println("</table>");

 } else {

 out.println("<p>No cookies found in this request.</p>");

 }

 out.println("</body></html>");

 }

}

Session Information

HTTP sessions allow you to track user state across multiple requests:

@WebServlet("/sessionInfo")

public class SessionInfoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Get or create a session

 HttpSession session = request.getSession();

 // Update session access counter

 Integer accessCount = (Integer)

session.getAttribute("accessCount");

 if (accessCount == null) {

 accessCount = 1;

 } else {

152
MATS Centre for Distance and Online Education, MATS University

Notes accessCount++;

 }

 session.setAttribute("accessCount", accessCount);

 out.println("<html><body>");

 out.println("<h2>Session Information</h2>");

 out.println("<p>Session ID: " + session.getId() + "</p>");

 out.println("<p>Session Creation Time: " + new

Date(session.getCreationTime()) + "</p>");

 out.println("<p>Last Accessed Time: " + new

Date(session.getLastAccessedTime()) + "</p>");

 out.println("<p>Is New Session: " + session.isNew() + "</p>");

 out.println("<p>Session Access Count: " + accessCount +

"</p>");

 out.println("</body></html>");

 }

}

Request Attributes

Servlets can set and retrieve attributes within each request scope,

which is useful for storing information relevant to those components.:

@WebServlet("/setAttributes")

public class AttributeSetterServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set some request attributes

 request.setAttribute("username", "john_doe");

 request.setAttribute("userRole", "admin");

 request.setAttribute("lastLogin", new Date());

 // Forward the request to another servlet to display the attributes

 RequestDispatcher dispatcher =

request.getRequestDispatcher("/displayAttributes");

 dispatcher.forward(request, response);

 }

153
MATS Centre for Distance and Online Education, MATS University

Notes }

@WebServlet("/displayAttributes")

public class AttributeDisplayServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Request Attributes</h2>");

 // Retrieve and display attributes

 String username = (String) request.getAttribute("username");

 String userRole = (String) request.getAttribute("userRole");

 Date lastLogin = (Date) request.getAttribute("lastLogin");

 out.println("<p>Username: " + username + "</p>");

 out.println("<p>User Role: " + userRole + "</p>");

 out.println("<p>Last Login: " + lastLogin + "</p>");

 out.println("</body></html>");

 }

}

3.5.3 Generating the Response

Now, servlets must provide a proper reply after handling the request.

You can create different types of responses using

HttpServletResponse object.

Setting Response Headers

Response headers provide metadata about the response:

@WebServlet("/setHeaders")

public class HeaderSetterServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

154
MATS Centre for Distance and Online Education, MATS University

Notes // Set response headers

 response.setContentType("text/html");

 response.setHeader("Cache-Control", "no-cache, no-store, must-

revalidate");

 response.setHeader("Pragma", "no-cache");

 response.setHeader("Expires", "0");

 response.setHeader("Custom-Header", "Custom Value");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Custom Headers Set</h2>");

 out.println("<p>This response includes custom HTTP headers

that control caching and demonstrate header setting.</p>");

 out.println("</body></html>");

 }

}

Setting Cookies

Cookies allow you to store small pieces of data on the client:

@WebServlet("/setCookie")

public class CookieSetterServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Create a new cookie

 Cookie userCookie = new Cookie("username", "john_doe");

 // Configure the cookie

 userCookie.setMaxAge(24 * 60 * 60); // Expires in 24 hours

 userCookie.setPath("/"); // Available across the entire

application

 userCookie.setHttpOnly(true); // Not accessible via

JavaScript

 userCookie.setSecure(true); // Only sent over HTTPS

 // Add the cookie to the response

 response.addCookie(userCookie);

155
MATS Centre for Distance and Online Education, MATS University

Notes

 // Create a session tracking cookie

 Cookie trackingCookie = new Cookie("sessionTracker",

UUID.randomUUID().toString());

 trackingCookie.setMaxAge(30 * 60); // Expires in 30 minutes

 response.addCookie(trackingCookie);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Cookies Set</h2>");

 out.println("<p>The following cookies have been set:</p>");

 out.println("");

 out.println("username: john_doe (expires in 24 hours)");

 out.println("sessionTracker: " + trackingCookie.getValue() +

" (expires in 30 minutes)");

 out.println("");

 out.println("</body></html>");

 }

}

HTTP Status Codes

Setting the appropriate HTTP status code is important for proper

client-server communication:

@WebServlet("/statusCodes")

public class StatusCodeDemoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String codeParam = request.getParameter("code");

 if (codeParam != null) {

 try {

 int statusCode = Integer.parseInt(codeParam);

 switch (statusCode) {

 case 200:

156
MATS Centre for Distance and Online Education, MATS University

Notes response.setStatus(HttpServletResponse.SC_OK);

 sendResponse(response, "200 OK", "The request has

succeeded.");

 break;

 case 201:

response.setStatus(HttpServletResponse.SC_CREATED);

 sendResponse(response, "201 Created", "The request

has been fulfilled and a new.

3.6 Handling Cookies

Cookies are one of the core technologies that allow managing state

on web apps. One of the challenges developers who use HTTP

protocol face is that it is stateless. Cookies became the elegant

solution to this problem, peas in a pod of data that could be stored on

the client’s side and sent with every request. Specifically in Java web

development, within the Servlets and JSP framework, cookies miss an

elegant way to persist user settings, track user's activities, and

maintain the state of a user's session. In a way, a cookie is just a small

text file, which is stored in the client browser. When a user visits a

site, the server can send one or more cookies to that user's browser,

which the browser keeps locally. When using the same server on

additional requests, the browser automatically adds these cookies to

the request headers. This mechanism enables the server to identify

returning users and pull up previously stored information without

relying on users needing to introduce themselves on each and every

page request. The Java Servlet API provides a rich set of classes and

methods that can be used to create, modify, and retrieve cookies. The

main class for cookie operations is javax. servlet. http. Cookie: This

is just a handy way to encapsulate the name/value pairs that make up

a cookie. This API allows the Java developer to work with cookies in

their web applications, providing a rich, personalized experience for

the user.

Cookies offer a key feature in modern web development, allowing

websites to remember user preferences, store their shopping cart data,

implement authentication mechanisms, and facilitate personalized

content delivery. But in recent years with GDPR, the CCPA and

growing focus on user privacy, the standard use of cookies by

developers means they have to be careful about how they implement

157
MATS Centre for Distance and Online Education, MATS University

Notes cookie-based solutions. We will cover the technical details related to

cookies in Java web applications but also some important concerns

around privacy, security, and best practices.

This article will cover deeper cookie management — the attributes

used to specify cookie behaviour, how cookies are sent and received,

removing cookies and the benefits and drawbacks of using cookies.

We will also delve into how cookies fit into larger session

management paradigms, discussing the use of cookies, session

tracking mechanisms, and their achievements to provide all-

encompassing state preservation in Java web applications.

Handling Cookies in Java Web Applications: The

javaxz.servlet.http package in Java's Servlet API enables powerful

cookie support. servlet. http. Cookie class. In this section you study

core functionality for creating, sending and receiving, and

manipulating cookies in Java web applications.

Creating and Sending Cookies: In Java, a cookie can be created

easily. The Cookie class's constructor takes the cookie name and

cookieValue as string parameters. You create a cookie, and then send

it to the client browser through the response. addCookie() method.

Here is the process translated into an example::

// Create a new cookie

Cookie userCookie = new Cookie("username", "john_doe");

// Set cookie properties (optional)

userCookie.setMaxAge(60 * 60 * 24 * 30); // Expires in 30 days (in

seconds)

userCookie.setPath("/"); // Available across the entire

application

userCookie.setSecure(true); // Only sent over HTTPS

userCookie.setHttpOnly(true); // Not accessible via JavaScript

// Send the cookie to the client

response.addCookie(userCookie);

Here, we have created a cookie with a name "username" and value

"john_doe". Then, we set multiple properties and set it to send it to

client browser. These attributes determine the cookie's behavior, such

as its duration, accessibility, and security properties

Receiving and Reading Cookies

158
MATS Centre for Distance and Online Education, MATS University

Notes All cookies for the domain are included in request headers when a

client does a request to the server. You retrieve these cookies in a

servlet, by using the request. getCookies() method which return array

of Cookie objects. The code below shows how to obtain and read the

cookies:

// Get all cookies from the request

Cookie[] cookies = request.getCookies();

// Check if cookies exist

if (cookies != null) {

 // Iterate through all cookies

 for (Cookie cookie : cookies) {

 // Retrieve the cookie name and value

 String name = cookie.getName();

 String value = cookie.getValue();

 // Process the cookie based on its name

 if ("username".equals(name)) {

 // Found the username cookie

 System.out.println("Welcome back, " + value);

 break;

 }

 }

}

The above code iterates through all cookies received in the request,

searching for a specific cookie by name. Once found, the cookie's

value can be retrieved and used to customize the response or make

application decisions.

Modifying Cookies

The above code loops through all the cookies that were sent with the

request and looks for one with a specific name. When located, the

cookie value can be accessed, and the data can be used to tailor the

response or to decide on actions to take within the application:

// Get all cookies from the request

Cookie[] cookies = request.getCookies();

if (cookies != null) {

 for (Cookie cookie : cookies) {

159
MATS Centre for Distance and Online Education, MATS University

Notes if ("username".equals(cookie.getName())) {

 // Create a new cookie with the same name but updated value

 Cookie updatedCookie = new Cookie("username",

"jane_doe");

 updatedCookie.setMaxAge(cookie.getMaxAge());

 updatedCookie.setPath(cookie.getPath());

 // Send the updated cookie to the client

 response.addCookie(updatedCookie);

 break;

 }

 }

}

In this example, we search for the "username" cookie and create a

new cookie with the same name but an updated value. We also

preserve the original cookie's attributes to ensure consistent behavior.

Deleting Cookies

In order to remove a cookie, set its age to zero or a negative value and

send it back to the client. This is an instruction in your web browser

to delete the cookie. Here is some code that shows how this can be

done:

// Create a cookie with the same name

Cookie cookieToDelete = new Cookie("username", "");

// Set the maximum age to 0 (delete immediately)

cookieToDelete.setMaxAge(0);

// Ensure it's on the same path as the original cookie

cookieToDelete.setPath("/");

// Send the cookie to the client

response.addCookie(cookieToDelete);

You must set the path for the cookie being deleted to be the same as

the original cookie. If the paths differ, the browser may not treat it as

the same cookie, so the deletion will silently fail

Cookie Persistence

Cookies can be classified into two types based on their persistence:

160
MATS Centre for Distance and Online Education, MATS University

Notes Session Cookies: These cookies expire when the browser session

ends. They are stored in memory and are not written to disk. To create

a session cookie, don't set the maxAge property or set it to -1.

Cookie sessionCookie = new Cookie("sessionId",

generateSessionId());

// No maxAge means it's a session cookie

response.addCookie(sessionCookie);

Persistent Cookies: These cookies have a specific expiration time

and are stored on disk. They persist even after the browser is closed

and are sent with requests until they expire.

Cookie persistentCookie = new Cookie("preferredLanguage", "en");

persistentCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year in seconds

response.addCookie(persistentCookie);

Choosing between session and persistent cookies depends on the

application's requirements and the nature of the data being stored.

Benefits of Using Cookies

Cookies offer numerous advantages for web applications, particularly

in the context of Java-based systems. This section explores the key

benefits of incorporating cookies into your application architecture.

User Experience Enhancement: One of the primary benefits of

cookies is their ability to enhance user experience by remembering

user preferences and settings. Consider a web application that allows

users to customize the interface, such as choosing a theme or

language. By storing these preferences in cookies, the application can

provide a consistent experience across multiple visits without

requiring users to reconfigure their settings each time.

// Example: Storing user theme preference

String selectedTheme = request.getParameter("theme");

if (selectedTheme != null && !selectedTheme.isEmpty()) {

 Cookie themeCookie = new Cookie("userTheme", selectedTheme);

 themeCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year

 themeCookie.setPath("/");

 response.addCookie(themeCookie);

}

This kind of personalization significantly improves user satisfaction

and engagement by creating a tailored experience that acknowledges

and respects individual preferences.

161
MATS Centre for Distance and Online Education, MATS University

Notes State Management in Stateless Protocols: HTTP is stateless by

design, that is, every request to the server is considered independent

and does not know about prior requests. Cookies allow you to

maintain state across multiple requests. For example, cookie functions

in insurance apps for shopping carts are track selected items:

// Example: Adding item to cart (simplified)

String itemId = request.getParameter("itemId");

if (itemId != null) {

 // Get existing cart cookie

 String cartItems = "";

 Cookie[] cookies = request.getCookies();

 if (cookies != null) {

 for (Cookie cookie : cookies) {

 if ("cartItems".equals(cookie.getName())) {

 cartItems = cookie.getValue();

 break;

 }

 }

 }

 // Add new item to cart

 if (!cartItems.isEmpty()) {

 cartItems += "," + itemId;

 } else {

 cartItems = itemId;

 }

 // Update cart cookie

 Cookie cartCookie = new Cookie("cartItems", cartItems);

 cartCookie.setMaxAge(60 * 60 * 24 * 7); // 1 week

 cartCookie.setPath("/");

 response.addCookie(cartCookie);

}

Whenever you visit a store and start browsing, you can add things to

your cart, and it goes around without you losing what you’ve selected

for a smooth shopping experience.

Performance Optimization: When used correctly, cookies can

greatly enhance the performance of the application by avoiding

162
MATS Centre for Distance and Online Education, MATS University

Notes database queries or server-side storage. You are also enabled for the

terrible site fetches if stored in cookies for non-sensitive, frequently

accessed data, which can reduce server load and improve response

times. For instance, placing display preferences or non-sensitive user

data into cookies can save you from needing to pull this data from the

database on each request:

// First-time user setup

if (request.getCookies() == null ||

!containsCookie(request.getCookies(), "displaySettings")) {

 // Default settings

 Cookie settingsCookie = new Cookie("displaySettings",

"compact:true,showImages:true,fontSize:medium");

 settingsCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days

 settingsCookie.setPath("/");

 response.addCookie(settingsCookie);

}

// Helper method to check if a cookie exists

private boolean containsCookie(Cookie[] cookies, String name) {

 for (Cookie cookie : cookies) {

 if (name.equals(cookie.getName())) {

 return true;

 }

 }

 return false;

}

Client-side storage also helps offload data to the front-end which

ultimately relieves the database service and results in quicker

response times and improved scalability.

Authentication and Remember Me Functionality

Cookies are essential for implementing "Remember Me" functionality,

which allows users to remain authenticated across browser sessions

without re-entering credentials. This feature significantly enhances

user convenience while maintaining security.

// Example: Implementing "Remember Me" functionality

boolean rememberMe =

"true".equals(request.getParameter("rememberMe"));

163
MATS Centre for Distance and Online Education, MATS University

Notes if (rememberMe) {

 // Generate secure token (simplistic example)

 String rememberToken = generateSecureToken(username);

 // Store token in database (associated with user)

 storeRememberTokenInDatabase(username, rememberToken);

 // Create persistent cookie with token

 Cookie rememberCookie = new Cookie("rememberToken",

rememberToken);

 rememberCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days

 rememberCookie.setHttpOnly(true); // Prevent JavaScript access

 rememberCookie.setSecure(true); // HTTPS only

 rememberCookie.setPath("/");

 response.addCookie(rememberCookie);

}

In this example, a secure token is generated, stored in the database,

and also sent to the client as a cookie. On subsequent visits, the

application can validate this token to automatically authenticate the

user without requiring a new login.

Analytics and User Behavior Tracking

Cookies are useful for tracking user behavior and collecting analytics

data. This enables applications to track navigation patterns, feature

usage, and user preferences by assigning unique identifiers to visitors.

// Example: Setting analytics tracking cookie

String visitorId = UUID.randomUUID().toString();

Cookie analyticsCookie = new Cookie("visitorId", visitorId);

analyticsCookie.setMaxAge(60 * 60 * 24 * 365 * 2); // 2 years

analyticsCookie.setPath("/");

response.addCookie(analyticsCookie);

// Log page visit

logPageVisit(visitorId, request.getRequestURI());

This helps product development, marketing strategies and interface

refinements, which in turn contribute to improved user experiences

and business results.

Cookie Attributes and Security Considerations

164
MATS Centre for Distance and Online Education, MATS University

Notes In addition to the simple name-value pair, cookies also support a

range of attributes which can influence their behavior, scope, and

security characteristics. "It is important to comprehend these attributes

if you want to deploy safe and efficient cookie-based solutions..

Domain and Path Attributes: Domain and Path attributes help us

identify the URLs to which a cookie needs to be sent..

Domain — The dot character (.) specifies the domain for which

the cookie is valid. A cookie is, by default, sent only to the domain

that set it. But you can set a cookie accessible to subdomains by

providing a domain prepended with a dot.

Cookie domainCookie = new Cookie("sitePreferences",

"darkMode:true");

domainCookie. setDomain(". example. com"); // Only available on

example. com

response. addCookie(domainCookie);.

Path Attribute: Specifies the portion of the URL path that must

exist in the requested resource before sending the Cookie header.

Cookies are by default set for the path of the URL where the

setting occurs. Domain and Path Example: Setting the path to “/”

will make the cookie accessible across the entire domain.

Cookie pathCookie = new Cookie("shopCart", "item1:3,item2:1");

pathCookie.setPath("/shop"); // Only available to URLs starting with

/shop

response.addCookie(pathCookie);

In this example, the cookie will be sent only to pages under the /shop

path, such as /shop/cart and /shop/products.

Secure and HttpOnly Flags

These flags enhance cookie security by restricting when and how

cookies are transmitted and accessed.

Secure Flag: When set, the cookie is only sent over HTTPS

connections, protecting it from interception over unsecured channels.

Cookie secureCookie = new Cookie("authToken", generateToken());

secureCookie.setSecure(true); // Only sent over HTTPS

response.addCookie(secureCookie);

This is particularly important for cookies containing sensitive

information like authentication tokens.

HttpOnly Flag: Prevents client-side JavaScript from accessing the

cookie, mitigating the risk of cross-site scripting (XSS) attacks.

165
MATS Centre for Distance and Online Education, MATS University

Notes Cookie httpOnlyCookie = new Cookie("sessionId", sessionId);

httpOnlyCookie.setHttpOnly(true); // Not accessible via JavaScript

response.addCookie(httpOnlyCookie);

By using the HttpOnly flag, even if an attacker manages to inject

malicious JavaScript into your page, they won't be able to access the

cookie directly.

SameSite Attribute (Servlet API 4.0+): The SameSite attribute,

introduced in newer servlet specifications, controls whether cookies

are sent with cross-site requests, providing protection against cross-

site request forgery (CSRF) attacks.

Cookie sameSiteCookie = new Cookie("csrfToken",

generateCSRFToken());

sameSiteCookie.setAttribute("SameSite", "Strict"); // Only sent in

same-site context

response.addCookie(sameSiteCookie);

The SameSite attribute can have three values:

Strict: The cookie is only sent in a first-party context.

Lax: The cookie is sent with top-level navigations and with GET

requests from other sites.

None: The cookie is sent in all contexts, including cross-site requests.

Note that when using SameSite=None, the cookie must also have the

Secure flag set.

7.4.4 Expiration and MaxAge

The expiration time of a cookie can be controlled using the

setMaxAge() method, which specifies the cookie's lifespan in

seconds.

// Session cookie (expires when the browser is closed)

Cookie sessionCookie = new Cookie("tempData", "value");

sessionCookie.setMaxAge(-1); // Default behavior for session cookies

response.addCookie(sessionCookie);

// Persistent cookie (expires after a specific time)

Cookie persistentCookie = new Cookie("userPrefs", "theme:dark");

persistentCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days in seconds

response.addCookie(persistentCookie);

// Delete a cookie

Cookie deleteCookie = new Cookie("oldCookie", "");

166
MATS Centre for Distance and Online Education, MATS University

Notes deleteCookie.setMaxAge(0); // Expires immediately

response.addCookie(deleteCookie);

The MaxAge value determines whether a cookie is stored temporarily

in memory or persistently on disk, and for how long it remains valid.

Cookie Size Limitations: Browsers impose limits on cookie size and

the number of cookies allowed per domain. These limitations vary by

browser but generally include:

• Maximum size per cookie: Usually around 4KB

• Maximum number of cookies per domain: Typically 50-60

• Maximum total size of all cookies for a domain: Around 4KB

to 10KB

Given these constraints, it's important to use cookies efficiently:

// BAD PRACTICE: Storing large data in cookies

Cookie largeCookie = new Cookie("userData", largeJsonObject); //

May exceed limits

// BETTER PRACTICE: Store minimal data in cookies

Cookie idCookie = new Cookie("userId", "12345");

response.addCookie(idCookie);

// Retrieve additional data from server-side storage as needed

For large amounts of data, consider alternatives like HTML5 Web

Storage (localStorage/sessionStorage) or IndexedDB, with cookies

used primarily for authentication and session management.

Cookie Security Best Practices :Implementing secure cookie

practices is essential for protecting user data and preventing common

attacks:

Use the Secure flag for sensitive cookies:

authCookie.setSecure(true);

Apply the HttpOnly flag to prevent XSS attacks:

authCookie.setHttpOnly(true);

Implement proper cookie expiration:

// Set reasonable expiration times based on the cookie's purpose

authCookie.setMaxAge(60 * 30); // 30 minutes for authentication

Validate cookie data:

String cookieValue = cookie.getValue();

if (isValidFormat(cookieValue)) {

 // Process the cookie

} else {

167
MATS Centre for Distance and Online Education, MATS University

Notes // Handle invalid data (potential tampering)

}

Encrypt sensitive cookie values:

// Example of encrypting cookie value

String encryptedValue = encryptData(rawValue, encryptionKey);

Cookie encryptedCookie = new Cookie("sensitiveData",

encryptedValue);

Implement CSRF protection alongside cookies:

// Generate and store CSRF token

String csrfToken = generateRandomToken();

Cookie csrfCookie = new Cookie("csrfToken", csrfToken);

csrfCookie.setHttpOnly(false); // Allow JavaScript access for form

submission

response.addCookie(csrfCookie);

// Store token in session for server-side verification

session.setAttribute("csrfToken", csrfToken);

By following these best practices, developers can leverage the

benefits of cookies while minimizing security risks.

Session Tracking in Java Web Applications

In contrast, cookies are a mechanism for storing small bits of

information on the client side, but come with limitations in terms of

size, count, and security. Whereas cookie is limited to a single

request, session tracking is used to maintain status between multiple

requests.

Need for Session Tracking: The statelessness of HTTP poses great

difficulties for interactive web application development. You have no

context beyond the input you received with every request. This

limitation presents a problem in situations like:

• Multi-step processes: These are operations such as

checkout workflows, multi-page forms, or wizard

interfaces that involve multiple steps and require

maintaining state across multiple requests.

• User authentication: Remembering who is logged-in

without asking for credentials on every request.

• Application state: Value can be used to to keep and

manage complex state for an application, such as shopping

carts, game states, or workspace configurations.

168
MATS Centre for Distance and Online Education, MATS University

Notes • Customization: Providing tailored content based on user

preference or browsing history.

3.7 Session Tracking

The Servlet specification in Java has support for multiple session

tracking mechanisms:

• Cookie-Based Sessions : The server creates it and sends it to

the client as a cookie. This cookie is included in subsequent

requests, permitting the server to identify the session.

• URL Rewriting: For those browsers that do not support or

have disabled cookies, at the end of the URLs the session ID

may be appended as a parameter.

• SSL Sessions: The SSL session ID can be used to keep the

session state for HTTPS connections without cookies or URL

parameters.

Hidden Form Fields One way is to use session IDs as hidden fields in

HTML forms and post them along with form data. Out of which,

session through cookies is the most common and reliable way to

implement it, whereas URL rewriting could be fall back when no

cookies available Of these mechanisms, cookie-based sessions are the

most common and reliable approach, with URL rewriting often used

as a fallback when cookies are unavailable.

The HttpSession API: Java's Servlet API offers complete interaction

with session management using the HttpSession interface. This means

developers can use this API for session tracking without worrying

about the underlying mechanism.

Creating or Retrieving a Session:

// Get the current session, or create one if it doesn't exist

HttpSession session = request.getSession();

// Get the current session only if it exists, without creating a new one

HttpSession existingSession = request.getSession(false);

The request.getSession() method returns the current session object

associated with the request. If no session exists, it creates a new one

automatically. This behavior can be controlled using the boolean

parameter: request.getSession(boolean create).

Storing and Retrieving Data in Sessions:

// Store data in the session

session.setAttribute("username", "john_doe");

169
MATS Centre for Distance and Online Education, MATS University

Notes session.setAttribute("loginTime", new Date());

session.setAttribute("shoppingCart", cartObject);

// Retrieve data from the session

String username = (String) session.getAttribute("username");

Date loginTime = (Date) session.getAttribute("loginTime");

ShoppingCart cart = (ShoppingCart)

session.getAttribute("shoppingCart");

// Remove data from the session

session.removeAttribute("temporaryData");

The session acts as a map-like structure, storing attributes as key-

value pairs. These attributes can be of any Java type, including

complex objects, as long as they implement the Serializable interface.

Managing Session Lifecycle:

// Get session creation time

long creationTime = session.getCreationTime();

// Get last accessed time

long lastAccessTime = session.getLastAccessedTime();

// Set session timeout (in seconds)

session.setMaxInactiveInterval(1800); // 30 minutes

// Invalidate (terminate) the session

session.invalidate();

The session timeout specifies how long the session remains active

without client interaction. After the specified period of inactivity, the

server automatically invalidates the session. Sessions can also be

explicitly invalidated using the invalidate() method, typically during

logout operations.

Accessing Session Metadata:

// Get the session ID

String sessionId = session.getId();

// Check if this is a new session

boolean isNew = session.isNew();

170
MATS Centre for Distance and Online Education, MATS University

Notes // Get the maximum inactive interval

int maxInactiveInterval = session.getMaxInactiveInterval();

These methods provide access to session metadata, which can be

useful for debugging, logging, and session management operations.

Session Tracking Implementation Examples

Let's explore some practical examples of session tracking in Java web

applications:

Example 1: User Authentication and Authorization

@WebServlet("/login")

public class LoginServlet extends HttpServlet {

 @Override

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String username = request.getParameter("username");

 String password = request.getParameter("password");

 // Validate credentials (simplified example)

 if (isValidUser(username, password)) {

 // Get the session (create if it doesn't exist)

 HttpSession session = request.getSession();

 // Store user information in the session

 User user = getUserDetails(username);

 session.setAttribute("user", user);

 session.setAttribute("authenticated", true);

 session.setAttribute("loginTime", new Date());

 // Set session timeout (30 minutes)

 session.setMaxInactiveInterval(30 * 60);

 // Redirect to dashboard

 response.sendRedirect("dashboard");

 } else {

 // Authentication failed - redirect back to login page

171
MATS Centre for Distance and Online Education, MATS University

Notes request.setAttribute("errorMessage", "Invalid username or

password");

 request.getRequestDispatcher("/login.jsp").forward(request,

response);

 }

 }

 // Validation methods (implementation details omitted)

 private boolean isValidUser(String username, String password) { /*

... */ }

 private User getUserDetails(String username) { /* ... */ }

}

This example demonstrates how sessions can be used to track

authenticated users. After successful authentication, user information

is stored in the session, allowing subsequent requests to verify the

user's identity without re-authenticating.

Example 2: Shopping Cart Implementation

@WebServlet("/cart/*")

public class ShoppingCartServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get the current session (don't create a new one)

 HttpSession session = request.getSession(false);

 if (session == null) {

 // No session exists - redirect to homepage

 response.sendRedirect("/home");

 return;

 }

 // Retrieve cart from session

 ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");

 if (cart == null) {

172
MATS Centre for Distance and Online Education, MATS University

Notes // Initialize cart if it doesn't exist

 cart = new ShoppingCart();

 session.setAttribute("cart", cart);

 }

 // Display cart contents

 request.setAttribute("cartItems", cart.getItems());

 request.setAttribute("totalPrice", cart.getTotalPrice());

 request.getRequestDispatcher("/cart.jsp").forward(request,

response);

 }

 @Override

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get current session or create one

 HttpSession session = request.getSession();

 // Get cart from session or create a new one

 ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");

 if (cart == null) {

 cart = new ShoppingCart();

 session.setAttribute("cart", cart);

 }

 // Process cart operation

 String action = request.getParameter("action");

 if ("add".equals(action)) {

 // Add item to cart

 String productId = request.getParameter("productId");

 int quantity =

Integer.parseInt(request.getParameter("quantity"));

 cart.addItem(productId, quantity);

 } else if ("remove".equals(action)) {

 // Remove item from cart

 String productId = request.getParameter("productId");

173
MATS Centre for Distance and Online Education, MATS University

Notes cart.removeItem(productId);

 } else if ("clear".equals(action)) {

 // Clear cart

 cart.clear();

 }

 // Redirect back to cart display

 response.sendRedirect("/cart");

 }

}

In this example, we highlight a cart functionality implemented to

keep track of the items in your session. This cart object is saved in the

session object giving the user the ability to add, delete, and view items

while making multiple requests..

7.5.5 Session Management Best Practices

Session management needs to be done with the utmost attention to

detail with regards to security, performance, and user experience:

Security Considerations:

Session ID Protection:

// Configure the session cookie to be secure and HttpOnly

@WebServlet("/secureApp")

public class SecureAppServlet extends HttpServlet {

 @Override

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Configure session cookies

 ServletContext context = config.getServletContext();

 context.getSessionCookieConfig().setHttpOnly(true);

 context.getSessionCookieConfig().setSecure(true);

 }

 // Servlet methods...

}

Session Fixation Prevention:

// After successful authentication, regenerate the session ID

@WebServlet("/login")

public class SecureLoginServlet extends HttpServlet {

 @Override

174
MATS Centre for Distance and Online Education, MATS University

Notes protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Authenticate user...

 // After successful authentication

 if (authenticated) {

 // Get current session data

 HttpSession oldSession = request.getSession();

 Map<String, Object> attributes = new HashMap<>();

 Enumeration<String> names =

oldSession.getAttributeNames();

 while (names.hasMoreElements()) {

 String name = names.nextElement();

 attributes.put(name, oldSession.getAttribute(name));

 }

 // Invalidate current session

 oldSession.invalidate();

 // Create new session

 HttpSession newSession = request.getSession(true);

 // Copy attributes to new session

 for (Map.Entry<String, Object> entry : attributes.entrySet()) {

 newSession.setAttribute(entry.getKey(), entry.getValue());

 }

 // Set authentication flag

 newSession.setAttribute("authenticated", true);

 }

 }

}

Proper Session Termination:

@WebServlet("/logout")

public class LogoutServlet extends HttpServlet {

 @Override

175
MATS Centre for Distance and Online Education, MATS University

Notes protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get current session

 HttpSession session = request.getSession(false);

 if (session != null) {

 // Invalidate the session

 session.invalidate();

 }

 // Clear authentication cookie if used

 Cookie authCookie = new Cookie("authToken", "");

 authCookie.setMaxAge(0);

 authCookie.setPath("/");

 response.addCookie(authCookie);

 // Redirect to login page

 response.sendRedirect("/login");

 }

}

Performance Optimization:

Minimize Session Data: Store only necessary data in the session to

reduce memory consumption and serialization/deserialization

overhead.

Session Timeout Management: Balance security and user experience

when setting session timeouts:

// Short timeout for sensitive operations

session.setMaxInactiveInterval(900); // 15 minutes

// Longer timeout for regular browsing

session.setMaxInactiveInterval(3600); // 1 hour

Session Clustering and Persistence: For high-availability

applications, configure session replication or persistence:

<!-- Example Tomcat context.xml configuration -->

<Context>

176
MATS Centre for Distance and Online Education, MATS University

Notes <Manager

className="org.apache.catalina.session.PersistentManager"

 saveOnRestart="true">

<Store className="org.apache.catalina.session.FileStore"

 directory="/tmp/sessions"/>

</Manager>

</Context>

Multiple-Choice Questions (MCQs)

1. What does J2EE stand for?

a) Java 2 Enterprise Edition

b) Java 2 Embedded Edition

c) Java Enterprise and Embedded Edition

d) Java Enterprise Evolution

Answer: a) Java 2 Enterprise Edition

2. Which of the following is not a component of a Java Servlet?

a) doGet()

b) doPost()

c) doPush()

d) init()

Answer: c) doPush()

3. In which phase of the servlet life cycle is the destroy() method

called?

a) Initialization phase

b) Service phase

c) Termination phase

d) Compilation phase

Answer: c) Termination phase

4. How can a servlet read form data sent by an HTML form?

a) request.getParameter("name")

b) request.readFormData("name")

c) request.getInput("name")

d) request.receive("name")

Answer: a) request.getParameter("name")

5. What is the purpose of session tracking in servlets?

a) To maintain client state across multiple requests

b) To validate user input

c) To handle file uploads

d) To close database connections

177
MATS Centre for Distance and Online Education, MATS University

Notes Answer: a) To maintain client state across multiple requests

Short Answer Questions

1. What are the main components of J2EE architecture?

2. Explain the purpose of the doGet() and doPost() methods in

servlets.

3. What are the different phases of the servlet life cycle?

4. How do you store and retrieve cookies in a servlet?

5. What is the difference between session tracking using cookies

and using HttpSession?

Long Answer Questions

1. Explain the architecture of J2EE and its key components.

2. Describe the life cycle of a Java servlet with an example.

3. How can a servlet handle user input from an HTML form?

Provide an example program.

4. Explain the process of handling client requests and generating

server responses in Java servlets.

5. What are the different session tracking techniques in servlets?

Compare them with examples.

178

Module 4

JSP Technology

LEARNING OUTCOMES

• To understand the concept, need, and benefits of JSP.

• To explore the life cycle of JSP.

• To study scripting elements and implicit objects.

• To analyze directive elements and action elements in JSP.

179
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Introduction, Need and Benefit of JSP, Life

Cycle of JSP

4.1 Introduction to JSP

JSP(JavaServer Pages) server-side technology to create dynamic web

pages and web applications. Java Server Pages (JSP) is a web

application technology that is used to create dynamic web content.

JSP separates presentation logic (HTML, CSS) from business logic

(Java code), making web applications easier to maintain and scalable.

JSP allows the development of web pages that are created

dynamically, responding to user actions, form submission results, and

return values from databases, instead of static web pages that are

always the same when accessed. This is done by embedding Java code

in special delimiters () in an HTML page. During the run time, JSPs

are converted into Servlets, which makes it highly performant and

reliable. Due to this feature, JSP is widely used in enterprise-level

web applications, online portals, and content management systems

that need to process data in real-time.

Need and Benefits of JSP: The need for JSP to come into existence

came because static web technologies at that time like HTML and

JavaScript couldn't generate content dynamically on the server side.

The alternative is to use Servlets, but it can be tiresome and less

maintainable when writing HTML inside Java classes using Servlets.

This problem is overcome by JSP in that it allows developers to code

using Java code within an HTML file. Platform independent is one of

the main advantages of JSP as it can be executed on any OS that

supports Java. Then, JSP also provides automatic session

management, which makes it easier to manage user sessions as

compared to handling it manually. Plus, it works in harmony with

JavaBeans, JDBC, and other Java technologies to facilitate database

connections and data management. One of the other major benefits is

tag libraries (JSTL), enabling the code to be reused and improves

code modularity and maintainability. These benefits make JSP a

popular choice for developing enterprise applications, e-commerce

simply by using, and interactive web platforms.

4.2 Life Cycle of JSP

A JSP page has three main stages during its life cycle: compilation,

execution, and request handling. The JSP engine first checks if the

180
MATS Centre for Distance and Online Education, MATS University

Notes requested JSP page has already been compiled when a client sends a

request for a JSP page. If not, it compiles the JSP file to a Servlet

class. The translation step converts JSP constructs, such as scriptlets

(), expressions (), and directives (), into corresponding Java code.

Once translated, the Servlet class is compiled to bytecode and loaded

into memory of the web server. At this point, the JSP is ready to deal

with client requests. Execution starts when an HTTP request comes to

the compiled Servlet. The service() method of the created Servlet gets

called, which in turn calls the doGet() or doPost() method based on

the request. The response is then generated and is usually an HTML

document returned to the client's browser. If the JSP file is modified,

translation and compilation processes are restarted to account for

changes.

Compilation, Execution, and Request Handling: After it is

compiled into a Servlet, execution of a JSP page is no different than

that for a conventional Servlet. Initialization — the jspInit() method is

called just once when the JSP page is visited for the first time. This

is useful for configuring database connections or initializing global

application-wide variables. Next step is request processing (the

jspService() method is invoked on each HTTP request) This approach

collects the request parameters, accesses the business logic layer, and

Figure 4.1: JSP Life Cycle
[Source: https://www.researchgate.net/]

181
MATS Centre for Distance and Online Education, MATS University

Notes construct HTML content on the fly to serve a response. Destruction:

Is the last step in the life cycle where before the JSP instance is

removed from memory jspDestroy() method is called. This is handy

for closing database connections, freeing resources, or doing cleanup

tasks. JSP uses all the performance enhancements provided by

Servlets (e.g. Caching, Session management) so it is a better

technology in terms of building a scalable web app. The life cycle of a

JSP is, therefore, essential to understanding how JSP-based

applications can be optimized and how data is handled during request

processing in actual production environments.

182
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: JSP Scripting Elements

JSP Scripting Elements:

JavaServer Pages (JSP) technology allows developers to create

dynamic web content by embedding Java code within HTML pages.

JSP scripting elements are the mechanisms through which this

integration occurs, enabling the execution of Java logic within the

web page. These elements fall into three primary categories: scriptlet

tags, expression tags, and declaration tags. Scriptlet tags, denoted by

<% ... %>, are used to embed Java code that will be executed when

the JSP page is requested. This code can include any valid Java

statement, such as variable declarations, control flow statements (if-

else, loops), and method calls. Scriptlets are particularly useful for

performing server-side processing, such as retrieving data from a

database, manipulating data, and generating dynamic content. For

instance, a scriptlet could be used to iterate through a list of products

and display them in an HTML table. Expression tags, represented by

<%= ... %>, are used to insert the result of a Java expression directly

into the output stream. The expression within the tag is evaluated, and

the result is converted to a string and inserted into the HTML. This is

useful for displaying dynamic data, such as the current date and time,

user input, or the result of a calculation. For example, <%= new

java.util.Date() %> would display the current date and time.

Declaration tags, denoted by <%! ... %>, are used to declare variables

and methods that are accessible throughout the JSP page. Declarations

are typically placed at the beginning of the JSP page and are used to

define reusable code components. For example, a declaration could be

used to define a method that calculates the sum of two numbers,

which can then be called from scriptlets or expression tags within the

page. The order in which these scripting elements are processed is

crucial. Scriptlets are executed first, followed by declarations, and

then expressions. Scriptlets can modify the state of the page, such as

by setting request or session attributes, which can then be accessed by

subsequent scriptlets or expressions. Declarations define the structure

of the JSP page, such as by defining variables and methods that can be

used throughout the page. Expressions are evaluated and their results

are inserted into the output stream, generating the dynamic content

that is displayed to the user. The use of scripting elements allows

183
MATS Centre for Distance and Online Education, MATS University

Notes developers to create dynamic web pages that respond to user input and

server-side events. However, excessive use of scriptlets can lead to

code that is difficult to maintain and debug. Best practices suggest

minimizing the use of scriptlets and encapsulating business logic in

Java classes, which can then be accessed from the JSP page using

JavaBeans or custom tags. This approach promotes code reusability,

maintainability, and separation of concerns. Answer: JavaServer

Pages (JSP) is a technology that helps software developers create

dynamically-generated web pages based on HTML, XML, or other

document types. This integration occurs by way of JSP scripting

elements, which allow Java logic to be executed inside the web page.

These components are divided into three types : scriptlet tags,

expression tags and declaration tags. The flags denoted by are

scriptlets which are hashed embedded Java Code that will be executed

when the JSP page will be requested. Your code here can be any legal

Java statement – variable declarations, control flow statements (if-

else, loops), or a call to a method. One of the special purposes where

scriptlets can be very helpful is server-side processing in which it can

be used to pull to data from the database, process data, and generate

dynamic content. Example: Show products in an HTML table using

Scriptlet But example: You can show the list of products in an HTML

table using a Scriptlet. Expression tags () insert the result of a Java

expression into the output stream. It evaluates the expression found

inside the tag, converts the result to a string, and inserts it in the

HTML. This is also useful for showing dynamic data like current

date/time, user input, or result of a calculation. For example, —

would render the current date and time. These declaration tags start

with is used to import any Java classes/page variables declared here

are available throughout the JSP page. Declarations are used to define

reusable code components and are normally found at the top of the

JSP page. For purpose, a declaration will help you tell Jsp that it's a

method that calculates the addition of 2 numbers and that method can

also be called in Jsp via script lets or expression tags. The sequence

for the processing of these scripting components is very important.

The order of scriptlets, declarations, and expressions are executed

one after the other. Scriptlets can change the state of the page, such as

by setting request or session attributes, which can be read by

subsequent scriptlets or expressions. Declarations specifies the

184
MATS Centre for Distance and Online Education, MATS University

Notes structure of a JSP page by declaring a variables and methods, these

can be used in the whole JSP page. This is done by evaluating the

expressions and inserting their results into the output stream, which is

the dynamic content shown to the user as well. This is how to use

scripting elements to develop dynamic web pages which respond and

update showing user information and activities on the server. This

doesn't always translate well when working with snippets of code, for

example, in file processing or scrapers, where code is quickly written

and deployed, sometimes in languages that require multiple steps to

execute, such as Python. Recommended practice is to have a less use

of scriptlet, keep the business logic in java classes and access these

classes from the JSP page using JavaBeans or custom tags. It helps in

reusing the code, maintainability and separation.

185
MATS Centre for Distance and Online Education, MATS University

Notes Unit 15: Implicit Objects

4.4 Implicit Objects:

JSP provides a set of predefined objects, known as implicit objects,

which are automatically available to developers within the JSP page.

These objects provide access to server-side resources and contextual

information, simplifying the development of dynamic web

applications. The implicit objects include request, response, config,

application, session, pageContext, page, and exception. The request

object, an instance of javax.servlet.http.HttpServletRequest, provides

access to information about the client's request, such as request

parameters, headers, and cookies. Developers can use the request

object to retrieve form data, access session attributes, and handle file

uploads. The response object, an instance of

javax.servlet.http.HttpServletResponse, allows developers to send

data back to the client, such as HTML content, images, and other

resources. Developers can use the response object to set response

headers, cookies, and redirect the client to another page. The config

object, an instance of javax.servlet.ServletConfig, provides access to

servlet configuration information, such as initialization parameters

and servlet context. Developers can use the config object to retrieve

configuration settings for the JSP page. The application object, an

instance of javax.servlet.ServletContext, provides access to

application-wide resources and attributes. Developers can use the

application object to share data between different JSP pages and

servlets within the same web application. The session object, an

instance of javax.servlet.http.HttpSession, provides access to session-

specific data and attributes. Developers can use the session object to

store user-specific information, such as login credentials and shopping

cart contents. The pageContext object, an instance of

javax.servlet.jsp.PageContext, provides access to the JSP page's

context, including access to other implicit objects and page-scoped

attributes. Developers can use the pageContext object to forward

requests to other pages, include other resources, and manage page-

scoped attributes. The page object, an instance of java.lang.Object,

represents the JSP page itself. In most cases, it is equivalent to the this

keyword. The exception object, an instance of java.lang.Throwable, is

available only in error pages and provides access to the exception that

186
MATS Centre for Distance and Online Education, MATS University

Notes caused the error. Developers can use the exception object to display

error messages and log error details. The implicit objects are

automatically created and initialized by the JSP container when the

JSP page is requested. They are accessible within scriptlets,

expression tags, and declaration tags. The request and session objects

are particularly useful for managing user sessions and handling form

data. The application object is useful for sharing data between

different parts of the web application. The pageContext object

provides a convenient way to access other implicit objects and

manage page-scoped attributes. The exception object simplifies error

handling in JSP pages. Understanding and effectively using these

implicit objects is essential for developing robust and efficient JSP

applications.

4.5 Directive Elements:

Directive Elements JSP directive elements used to control the overall

behavior of the JSP page and also to provide the configuration

information to the JSP page to the container. These elements do not

produce any output that has to be sent to the client, instead they

control the general structure and behavior of the JSP page. Directive

elements are found at the top of the JSP page and start with .

Directive elements can be of three types: page, include, and taglib.

Indeed, the page directive defines page-specific properties like content

type, import statements, and error page configuration. The page

directive contain attributes like contentType, import, errorPage,

isErrorPage, session, buffer, autoFlush, info, isThreadSafe, language,

extends. The contentType is a string representation of the MIME type

of the response, e.g., text/html or application/json. The import

attribute allows for the importing of Java classes and packages so that

they are available for use in the JSP page. The URL of the error page

to be displayed in case of Exception is defined using the errorPage

attribute. isErrorPage attribute determines whether the page is an

error page Example of using session in in JSP page The session

attribute: Determines whether the JSP page participates in a session.

ParseBuffer(buffer,20); This instruction parses a response buffer of

20 bytes. autoFlush attribute specifies the buffer autoFlush or not The

info attribute provides a description of the JSP page. The

isThreadSafe attribute indicates if the JSP page is thread safe. The

language parameter specifies the scripting language in the JSP page.

187
MATS Centre for Distance and Online Education, MATS University

Notes The extends attribute in id extends the superclass of the generated

servlet. The line with the include directive looks like this: Other than

that, the included file can be a static HTML file, another JSP, servlet

or any other resource that is available to the JSP container. There are

two forms of the include directive: a static one and a dynamic one.

Static include: () – Includes the file at translation time, that is, the

included file is processed only once, during JSP page compilation.

Dynamic include or generates the file at request time which means

the included file will be processed each time the JSP page is

requested. This article explains the usage of JSP Taglibs along with

an example JSP page. The taglib directive has two attributes: prefix

and uri. The uri attribute indicates the URI of the tag library

descriptor (TLD) file that defines the custom tags. The prefix attribute

defines the prefix to be used by the custom tags in the JSP page. At

the same time, directive elements can guide the JSP pages in behavior

and structure. They allows us to process page-level settings (like

external resources) and add a custom tag. So keyword such are

Directive element must be used appropriately in JSP application to

more effectively.

Advanced JSP Scripting and Implicit Object Utilization

While its basic usage—combining JSP scripting elements and

implicit objects—serves most purposes, advanced techniques can help

optimise the functionality and efficiency of JSP applications

significantly. For example, scriptlets can be utilized to execute

complicated business logic like data validation, which involves

checking data integrity and accuracy against specific criteria, form

processing can process user input from HTML forms to operate on,

and database interactions can fetch data from a database. Using

scriptlets for presentation logic should be minimized, as it may cause

code that is hard to maintain and debug.

Directive Elements:

In this Article JSP (JavaServer Pages) directive elements define

essential construction information for the JSP container regarding the

information, dependencies and handling requirements of a webpage.

These are not included in the output instead they are configuration

directives that guide how the JSP page will be translated and

executed. 1 There are three primary directive elements: the page

directive, the include directive, and the taglib directive. You can give

188
MATS Centre for Distance and Online Education, MATS University

Notes page specific information using this directive like content type of the

page, how to handle the error for the page and about session

management. It appears at the start of a JSP page and can consist of

several attributes. The contentType property carries the MIME type

and character encoding of the response, so that the client browser

interprets the response. Example: → This sets the content type as

HTML with UTF-8 encoding. In this example, the errorPage attribute

defines the URL of an error page to be displayed in case of an

exception as part of that page processing. This gives a chance to

handle errors gracefully & prevents users from having the raw stack

traces. The isErrorPage property informs whether in the current

context an error page is present, making possible the implementation

of conditional error handling logic. Session AttributeExecutes on

endInitialize | endLoadSyntaxPage Attributes When set to true, the

session attribute allows or prevents SQL session management for the

page. If set to true, the session implicit object will be available as

well, enabling developers to access the session data. Developers can

import Java classes and packages, which become available for use in

the JSP page by using the import attribute. For multiple import

attributes multiple classes or packages can be imported. The language

attribute also specifies the scripting language of the JSP page which is

usually Java. Other properties, like buffer, autoFlush, and info, offer

more fine-grained control over the process of paging. The include

directive allows you to include a file in the JSP page at translation

time. It enables code reuse and modular development. The file to

include could be a JSP page, HTML file, or any text file. The file

attribute defines the path to the file to be included. For example, //

contains master header jsp file. Since the included file is processed

just like part of the current page, any changes to the included file

would cause the JSP page to be recompiled. 2 The taglib directive is

used to declare a tag library so that its custom tags can be used in this

JSP page. They offer a way to encapsulate commonly-used

functionality and make JSP development simpler. 3 The uri attribute

declares the URI of the tag library and the prefix attribute declares a

prefix to identify in the library the tags. For example, declares the

JSTL core tag library with prefix c. After declaring a tag library, its

custom tags can be used in the JSP page using the specified prefix

within the JSP page. 4 It is three-line configuration. Because they

189
MATS Centre for Distance and Online Education, MATS University

Notes perform the directives, which control the behaviour of JSP, they allow

page authors to have more control over their JSP

Action Elements:

JSP action elements are runtime instructions that dynamically

generate content or control the flow of execution within a JSP page.

Unlike directive elements, which are processed at translation time,

action elements are executed at runtime, allowing for dynamic

behavior. The two primary action elements are jsp:forward and

jsp:include, each serving distinct purposes in JSP development. The

jsp:forward action element is used to transfer control from the current

JSP page to another resource, such as another JSP page, servlet, or

HTML file. It effectively redirects the request to the specified

resource, and the current page ceases processing. The page attribute

specifies the relative or absolute URL of the resource to which control

should be transferred. For instance, <jsp:forward page="welcome.jsp"

/> forwards the request to the welcome.jsp page. The jsp:forward

action can also include parameters using the jsp:param sub-element,

allowing developers to pass data to the target resource. For instance,

<jsp:forward page="profile.jsp"><jsp:param name="userId"

value="123" /></jsp:forward> forwards the request to the profile.jsp

page with the userId parameter set to 123. The jsp:forward action is

often used for implementing navigation logic, error handling, and

conditional page flow. It is crucial to note that once the jsp:forward

action is executed, any output buffered by the current page is

discarded, and the response is generated by the target resource. The

jsp:include action element is used to include the output of another

resource into the current JSP page at runtime. This allows for dynamic

content inclusion and modular development. The page attribute

specifies the relative or absolute URL of the resource to be included.

For instance, <jsp:include page="footer.jsp" /> includes the output of

the footer.jsp page. The included resource is executed, and its output

is inserted into the response stream of the current page. The

jsp:include action can also include parameters using the jsp:param

sub-element, allowing developers to pass data to the included

resource. For instance, <jsp:include page="news.jsp"><jsp:param

name="category" value="sports" /></jsp:include> includes the output

of the news.jsp page with the category parameter set to sports. The

jsp:include action is often used for including common page elements,

190
MATS Centre for Distance and Online Education, MATS University

Notes such as headers, footers, and navigation bars, dynamically. It allows

for creating reusable components and maintaining consistency across

multiple pages. Unlike the include directive, which includes files at

translation time, the jsp:include action includes resources at runtime,

allowing for dynamic content generation. Action elements provide a

powerful mechanism for controlling the flow of execution and

generating dynamic content within JSP pages, enabling developers to

create interactive and dynamic web applications. JSP action elements

are instructions that are executed during runtime and are used to

dynamically generate content or control the flow of execution in a

JSP page. Whereas directive elements are processed during the

translation phase, action elements are executed in the runtime phase,

providing dynamic run-time behavior. The only two dominant action

elements are jsp:forward and jsp:include and they serve different

purposes. jsp:forward action element Transfers control from one JSP

page to another JSP page, servlet, or HTML file. This is useful as it

makes use of the request and is placed on the JSP page itself. It does

its job of re-routing the request to the targeted resource and the

current page stops its processing. The page attribute indicates the

relative or absolute URL of the resource to which control will be

transferred. Such as forwards the request to welcome. jsp page.

jsp:forward action may also pass parameters to the target resource

with the jsp:param sub-element, thus, developers can also pass some

data to the target resource. Example, forwards the request to the

profile. The Web/cgi-bin/launchpage.jsp page with the userId

parameter set to 123. Also, jsp:forward action is commonly used for

navigation logic, error handling and conditional page flow. Please

note that, upon executing the jsp:forward action, anything that is

output buffered by the current page will be: discarded and the

response will be generated by the target resource. JSP JSP:include

The jsp:include action element is used to include the output of another

resource (servlet, JSP file, etc) in the current JSP page at runtime.

Dynamic content inclusion and modular development. The page

property points to the relative or absolute URL of the page to include

For example, outputs the footer. jsp page. The included resource is

invoked and the result is inserted directly into the response stream

such that it becomes part of the output of the current page. The

developer of the included resource must access the included resource

191
MATS Centre for Distance and Online Education, MATS University

Notes through the request object just as with the request, but the developer

of the included resource can also pass parameters if they exist within

it as sub-elements to the parent include. For example, includes the

output of the news jsp page — the category parameter set to sports.

jsp:include action is frequently utilized to dynamically include shared

components like headers, footers, or navigation bars. It enables the

development of reusable components and the seamless preservation

of uniformity across different pages. The jsp:include action differs

from the include directive in that the include directive includes files at

translation time, whereas the jsp:include action includes resources at

runtime, enabling dynamic content generation. By acting as a

combination of XML and Java, action elements are a great way to

control your flow of execution and generate dynamic content within

JSP pages.

Page Directive: Configuring Page-Specific Attributes

The page directive in JSP development is one of the primary methods

through which a developer can define several things on a page that

affect the way the JSP container manages this page. Syntax : It is

usually found at the top of a JSP page and it has one or more attributes

each of which has its own purpose. Here the contentType attribute is

used to state the mime type of JSP page response and the character

encoding. This attribute makes sure that the client browser understand

the content. For example: defines that the content type is HTML,

encoded in UTF-8, so the page will render the HTML content

encoded in UTF-8 Some other widely used values are text/plain,

application/json, and application/xml, according to the content being

produced. On imports tag JSP developers can make use of Java

classes and packages in JSP page. It makes development JSP so

simpler because you will not have to use fully qualified class names.

Import multiple classes or packages using import for multiple import

attributes e.g. imports all classes in the java. util package. If an

exception occurs and the errorPage attribute of the page is specified,

the page URL specified in errorPage will be invoked. That means we

can implement graceful error handling and avoid raw stack traces

from being displayed to users. For example, If there is any Exception

then a jsp page should be shown. Check whether the current page is

an error page with the isErrorPage attribute This post is related to the

exception implicit object that is available when the isException=true.

192
MATS Centre for Distance and Online Education, MATS University

Notes For example, specifies that the page in question is an error page. The

session attribute is used to enable or disable session management for

the page. When this is true, the session implicit object is made

available and developers can store and read session data. Example:

The creates session management for the page. This uses a buffer

attribute where you can set the buffer size for the output stream before

writing it to the client autoFlush Specifies whether the buffer will be

automatically flushed if the buffer is full. The info attribute is a string

storing a description of the page, which can be obtained through

calling the HttpServlet class getServletInfo() method. The language

attribute defines the scripting language that's used in a JSP page, it is

Java in usual. The other attributes that can be specified (extends,

pageEncoding and isThreadSafe) give more control over how the

page is processed. It is important to note that the page directive is

critically important in setting up page-specific information so that the

JSP container can process the page as per the information given.

Include Directive:

One is the include directive, which is a powerful tool in JSP

development, allowing developers to insert the content of another file

into the current JSP page at translation time. This allows for modular

development and code reuse, as common elements that appear on

multiple pages can be factored out into separate files and then

included in multiple JSP pages. This last parameter is the file to be

included. The path can be a relative/absolute path depending upon

where the included file is.

Multiple-Choice Questions (MCQs)

1. What is the primary purpose of JSP?

a) To create standalone Java applications

b) To generate dynamic web content

c) To replace JavaScript in web pages

d) To manage databases

Answer: b) To generate dynamic web content

2. Which of the following is not a JSP scripting element?

a) Scriptlet (<% %>)

b) Expression (<%= %>)

c) Declaration (<%! %>)

d) Method (<%method%>)

Answer: d) Method (<%method%>)

193
MATS Centre for Distance and Online Education, MATS University

Notes 3. Which implicit object in JSP is used to access session-related

data?

a) request

b) session

c) application

d) config

Answer: b) session

4. What does the <%@ page %> directive do in JSP?

a) Includes another JSP file

b) Defines global settings for a JSP page

c) Forwards a request to another page

d) Declares a Java variable

Answer: b) Defines global settings for a JSP page

5. Which action element is used to forward a request to another

resource in JSP?

a) <jsp:forward>

b) <jsp:include>

c) <jsp:action>

d) <jsp:redirect>

Answer: a) <jsp:forward>

Short Answer Questions

1. What are the advantages of using JSP over servlets?

2. Explain the different phases in the life cycle of a JSP page.

3. What is the difference between a scriptlet and an expression in

JSP?

4. Name and explain three JSP implicit objects.

5. What is the difference between <jsp:forward> and

<jsp:include>?

Long Answer Questions

1. Describe the life cycle of a JSP page with a detailed

explanation of each phase.

2. Explain JSP scripting elements with examples of each.

3. What are JSP implicit objects? Describe any five with their

usage.

4. Explain the different types of JSP directive elements and their

purposes.

194
MATS Centre for Distance and Online Education, MATS University

Notes 5. How do JSP action elements work? Compare <jsp:forward>

and <jsp:include> with examples.

195

Module 5

Spring and Spring Boot Framework

LEARNING OUTCOMES

• To understand the core concepts of Spring and Spring Boot.

• To explore dependency injection and IOC container.

• To analyze web application development using Spring.

• To study Spring Boot architecture and key components.

• To implement database connectivity using Spring JDBC.

• To explore Aspect-Oriented Programming (AOP) in Spring

Boot.

196
MATS Centre for Distance and Online Education, MATS University

Notes Unit 16: Introduction to Spring Initializing and Writing

Spring application

5.1 Introduction to Spring:

With Spring, a full-fledged and well-accepted framework that has

absolutely changed the way Java applications are developed by

providing an infrastructure to develop enterprise applications. Spring

is a container framework that is designed to develop very loosely

coupled easily testable and maintainable applications based on

DI(AOP) principles under the hood. Spring is designed in a modular

way, meaning developers can pick and choose only the aspects that

they will need, making it a light development environment. The

framework is capable of serving different types of applications like

web applications, microservices, and batch processing systems.

Spring was conceived out of a desire to overcome the challenges and

confines of Java EE, providing a more agile and pragmatic approach

to application development. Over the years, the framework has

evolved to support new technologies and methodologies, making it a

popular choice among developers. Spring is a collection of many

different modules that focus on different aspects of application

development. The heart of this framework is its core container,

responsible for managing the full lifecycle of application components

(beans). The Spring's DI mechanism helps developers configure the

dependencies for beans and process these beans by injecting the

dependencies for them in runtime. By doing so, we encourage loose

coupling, such that interdependencies between code are reduced and

code is more reusable. Aspect-Oriented Programming, or AOP, is

another key pillar of Spring, offering a way to modularize cross-

cutting concerns like logging, security, and transaction management.

Aspects can also handle cross-cutting concerns, allowing developers

to encapsulate these concerns into facets that can be applied

uniformly to the application without polluting the business logic itself.

The Spring framework enables seamless interaction with different

data access technologies like JDBC, Hibernate, JPA, etc., to facilitate

data persistence. Spring Boot is a sub-project of Spring that has taken

the core components of Spring and provided sensible defaults for

creating stand-alone, production-ready Spring applications (also

known as Auto-Configuration). Spring offers a wealth of

197
MATS Centre for Distance and Online Education, MATS University

Notes documentation, an active community, and an abundance of resources

that make it suitable for both novice and expert developers.

Initializing a Spring Application:

When a Spring application starts, it initializes the Spring container

that serves as the central interface in the Spring framework to manage

the components of your application. A Spring application consists of

different types of objects called "beans". 4 Techniques to Initialize a

Spring Container Historically, bean configuration, including

properties to inject and bean dependencies, was done primarily in

XML. An XML file is created and is usually called

applicationContext. xml but defining the beans using elements. The

container would parse this XML file and create the beans. XML and

its configuration can be lengthy and cumbersome, particularly for

large and complex applications. The solution Spring provided, was an

annotation-based configuration which allowed the developers to

define beans (and their dependencies) inside the code written in Java.

With annotations like @Component, @Service, @Repository and

@Controller, classes are marked as beans, while @Autowired and

@Qualifier determine which dependency is to be injected. Spring also

provides Java-based configuration, which is a more programmatic

Figure 5.1: Spring Framework
[Source: https://www.careerride.com/]

198
MATS Centre for Distance and Online Education, MATS University

Notes way of defining beans and their dependencies. Developers may write

configuration classes (with annotation @Configuration) and specify

beans (with @Bean methods). It gives them more control and

flexibility for configuring how they handle data. Spring Boot comes

with autoconfiguration which makes the bootstrapping process even

simpler. Spring Boot automatically instantiates the Spring container

and configures it with the dependencies that exist in the classpath.

One of its key features is auto-configuration, meaning if Spring MVC

is found on the classpath, a dispatcher servlet and other beans will be

automatically populated. This means that in most cases there is no

manual configuration required. The decision on which method to use

depends on the characteristics required by the application. In general

annotation based and java based configuration is preferred in modern

spring applications due to better readability and flexibility. XML-

based configuration is still possible but primarily exists for legacy

applications or when very specific configuration is required. In

whichever way we choose to go about it, the initialization is upon us

and we create an ApplicationContext, which is your Spring container.

In Application Context, you have many methods to access the beans,

retrieve the configuration properties, and also to publish the events.

Now, the Application Context is helpful when it comes to obtaining

the beans and calling the methods from those beans. Spring

Application is typically used in Spring Boot applications. run()

method part to create the Application Context. This means that the

container will be configured automatically and the application will be

started. Bean validation also takes place in Spring for this reason,

where Spring ensures that all beans have either been created properly

or possess the correct configuration and parameterization for the

application to run properly. Knowing the different initialization modes

and their impact helps developers in properly configuring their Spring

applications and making the advantages of the framework.

Writing Spring Applications:

Creating Spring applications is based on the use of the framework's

main attributes Dependency Injection (DI) and a component-based

style. DI encourages loose coupling because the beans do not create

their dependencies, but rather, define them. It frees the components

from each other using dependency injection (DI) at runtime and

increases code reusability by maintaining loosely coupled

199
MATS Centre for Distance and Online Education, MATS University

Notes components. Spring Applications are, generally speaking, layered

with presentation, service, data access layers, etc. All three layers

contain components, which are classes annotated with @Component,

@Service, @Repository, or @Controller. These annotations indicate

that these classes are beans, which enables the Spring container to

manage their lifecycle. The Service Implementation classes are also

annotated with the @Service annotation and the different classes that

are used to interact with the database (DAO classes) are annotated

with the @Repository annotation. It is about @Controller annotation

used in spring framework to decorate classes which handle HTTP

request. @Autowired: Used to specify dependencies between beans.

When one bean needs another, the @Autowired annotation can be

used to inject the needed bean instance. There are many types of

dependency injection Constructor Injection, Setter Injection, Field

Injection supported by Spring. However, in most cases, constructor

injection is preferable so that all dependencies are set when the bean

is created. Setter injection and field injection can be applied for

situations where constructor injection is impractical. It also provides

support for dependency injection through Java-based configuration.

Developers configure beans and their dependencies using @Bean

methods in @Configuration classes. It allows for more flexibility in

the configuration process. By using AOP and aspect-oriented

programming, developers can modularize cross-cutting concerns, such

as logging, security, and transaction management, into aspects that

can be applied across multiple classes and components. Upon

encapsulating these concerns into aspects, developers would be able

to apply them consistently across the application without muddling

the core business logic. We define aspects using @Aspect classes and

pointscuts using annotations such as @Before, @After, @Around,

@Pcumptcut, etc. Because Spring also supports multiple data access

technologies, interacting with a database becomes more

straightforward. The database can be accessed using JDBC,

Hibernate, or JPA by the developers. It can be tricky to access data

easily as the project grows in size and the codebase gets bigger, but

Spring definitely reduces that complication by providing repositories

that create database queries based on the name of the method you

wroteSpring Data is a sub-project under the Spring umbrella that

makes it easier to access data by providing functionality to create

200
MATS Centre for Distance and Online Education, MATS University

Notes repositories, which automatically builds database queries based on the

name of the method you wrote. Spring MVC is a model-view-

controller framework for building web applications. The Spring

MVC framework makes use of the Dispatcher Servlet, which is

responsible for processing incoming HTTP requests and sending it to

the appropriate controllers. Controller - Classes annotated with the

@Controller handle specific HTTP requests. JUnit and Mockito are

usually used to test spring applications. Thanks to Spring's

dependency injection support, you can mock and stub dependencies

easily, hence also write unit tests easily. Spring Boot makes it easy to

create stand-alone, production-grade Spring-based Applications that

you can "just run". Spring Boot lets you package your applications

as executable JAR files, for quick deployment and running. Spring

framework helps to develop a flexible and easy oriented application.

Spring Boot:

Enter Spring Boot which has become a real-deal-industry-changer for

all Spring Development, liberating developers with quicker and more

efficient development of stand-alone, production-ready Spring

Applications. It handles a lot of the boilerplate configuration needed

in a traditional Spring application, so developers can concentrate on

writing business logic. It does this with its auto-configuration

features, which provide Spring container configuration whenever your

classpath has dependencies. So if Spring MVC is on the class path,

Spring Boot configures a dispatcher servlet and other necessary

components. That means much less setup is required manually.

Spring Boot comes with sensible defaults for many aspects of

application development, including embedded servers, logging, and

security. If necessary, developers can override these defaults, but

usually, they are enough for most applications. Since spring-boot

applications need to include all jars for uses (zipped into a jar) and

load an embedded server. This is what simplifies their deployment

and execution since they can be run from the command line with the

java -jar command. The Spring Boot CLI is a command-line tool that

you can use to create and run Spring Boot applications with ease. The

CLI has also your back for dependencies management and test

running. The Spring Boot Actuator Module: The Spring Boot actuator

module provides endpoints to monitor and manage your Spring Boot

application. This endpoints gives information of application

201
MATS Centre for Distance and Online Education, MATS University

Notes bsolutely. By using DI in our Web Application we can ensure that our

components or services are unload and reuseable, let us dive into

Dependency Injection, Web Application Development, and return

8800−word answer in Eight paragraphs on what DI we can achieve

through Web Application Development in the context or any learnings

out there, DI in combination with Web Application Development.

202
MATS Centre for Distance and Online Education, MATS University

Notes Unit 17: Dependency Injection

5.2 Dependency Injection

Dependency Injection (DI) helps achieve loose coupling and

modularity within the systems. Basically, DI helps provide the

dependencies of a class from an outside source instead of the class

creating/managing them itself. This inversion of control (IoC) means

the class does not take responsibility for managing its dependencies,

instead, the responsibility is delegated to an external agent, normally

an IoC container. DI is a design principle that follows the Dependency

Inversion Principle, which puts the high-level modules not relying on

the low-level modules to maintain the code, but both rely on

abstractions. Decoupled components allow easy replacement of a

dependency and hence would result in more flexibility, testability,

maintainability. In classical application development classes usually

instantiate their dependencies directly and this leads to tight coupling.

If there are any changes in the dependency, dependent class must also

be modified leading to a chain of modifications in the significant part

of code. DI solves this problem by introducing an intermediary (the

IoC container) that manages the instantiation and provisioning of

dependencies. The IoC container instantiates objects and injects them

into dependent classes, according to configuration or conventions.

This is because classes can now focus on their core logic, and not on

how to create and manage their dependencies. In between simple

factory-style IoC containers and advanced framework-style IoC

containers. They have features like dependency resolution, lifecycle

management, and configuration management. Using IoC containers,

developers are able to build more modular, testable, and maintainable

applications. The container abstracts away the details of object

instantiation and dependency injection, allowing developers to focus

on business logic.

Understanding Constructor Injection and Its Benefits

Constructor Injection: It is a type of dependency injection in which

dependencies are injected into a class via its constructor. With this

design, a class is guaranteed to receive all of the dependencies it

requires when it is constructed; as a result, the class is fully initialized

and prepared for any subsequent interaction. In Constructor Injection,

your dependencies can declared as final fields, there by ensuring

203
MATS Centre for Distance and Online Education, MATS University

Notes immutability. Because this structure is immutable, it is easier to work

with across threads and you are less likely to accidentally cause side

effects. In addition, constructor injection provides clarity to a class in

terms of its dependencies only by looking at its constructor

parameters. In addition, you are using Dependency Injection, which is

an explicit declaration of dependencies for classes, and thus it offers

better readability, maintainability and testability.

Delving Deeper into IoC Containers and Dependency Resolution

Well, IoC containers are the all-time base work of Dependency

Injection this allows you to separate the creation of a service from

using it. Container runtimes, for example, are responsible for running

containers, providing features like dependency resolution, lifecycle

management, and configuration management. Dependency resolution

is discovering and supplying the correct dependencies to a class

based on its constructor parameters or setter methods. IoC containers

use metadata (like annotations or XML configurations) to identify the

dependencies and their implementations. Based on such type

matching or named binding, they automatically resolve dependencies

and allows you to easily construct complex object graphs. Another

important feature of IoC containers is lifecycle management. They

handle object life-cycle management (creating, initializing, and

destroying them). The containers can invoke initialization methods

after the object is created and destruction methods before disposing of

the object, providing the developers an opportunity to do the

necessary work in setting up and cleaning up the resources associated

with the object. In configuration management, the developers specify

dependencies and implementations using configuration files or

annotations. IoC containers will read these configurations and use

them to wire them up. The separation of configuration from code

allows for easy management and modifications of an application's

dependencies without compiling the code. Another feature offered by

IoC containers is scope management where developers can specify the

lifecycle and visibility of the objects. They can define singleton

objects, which are objects that have a single instance within the

application, or prototype objects, which create a new instance for

each request. Also, the containers provide support for aspect-oriented

programming (AOP) which allows developers to write cross-cutting

concerns such as logging or transaction management and apply it to

204
MATS Centre for Distance and Online Education, MATS University

Notes multiple objects. That make it easy for the application to be separated

into modules implementing common functionality.

205
MATS Centre for Distance and Online Education, MATS University

Notes Unit 18: Developing web applications

5.3 Developing Web Applications

Web application development refers to the process of designing,

building, deploying, and maintaining web applications. These apps

usually deal with showing and processing information, validating user

input, and maintaining the state of the application. To present

information in a web app, developers use HTML, CSS, and

JavaScript among other techniques. Hypertext Markup Language

(HTML) is used to create the structure and content of a web page, and

cascading style sheets (CSS) are used to style and format that content.

FIGURE 22: JavaScript adds interactivity and dynamic behavior to

web pages. Most of the time web applications receive data from

databases or external APIs and show it to the user. This data may be

shown in many forms, including tables, lists, or charts. Server-side

programming languages like Java, Python, or PHP, are used by

developers to process the data, and generate HTML before sending it

to the browser. JavaScript running on the client-side can also be used

to dynamically update the web page content, in real time, without the

need of a full page reload. One such technique, commonly

abbreviated to AJAX (Asynchronous JavaScript and XML), enables

the development of more dynamic and interactive user interfaces.

Handling user input, including form submissions and search queries,

is another core functionality for Web applications. The server-side

code processes this data after the forms collect data from the users.

Various techniques for user input validation exist, and developers

make sure the input is formatted correctly. Client-side validation

using JavaScript or server-side validation using the chosen

programming language can perform this check. Similarly, web

applications need to perform maintain the application's state, such as

user sessions and application settings. Cookies, session variables and

databases are some of the different methods to store this state. There

are many ways the developers ensure that the state is consistent

across multiple requests. Web Application Development Conclusion

The web application development process includes client-side and

server-side technologies that combine to create dynamic and

interactive applications that react to user input and manipulate data.

206
MATS Centre for Distance and Online Education, MATS University

Notes From the perspective of Web applications, we often take care of

Form input validation and processing information in it.

Processing Information and Validating Form Input in Web

Applications

Thus works in a web application processing information such as

fetching data from multiple sources, transforming it and showing it to

users. This can be in the form of databases, external APIs, or user

input. Data is processed and HTML content is generated using

server-side programming languages before being submitted to the

browser. Developers employ numerous methods to query databases,

modify data structures, and create dynamic content. They may utilize

SQL (Structured Query Language) to access relational databases, or

employ object-relational mapping (ORM) frameworks to convert

database tables into objects. After getting the data, developers can

apply different methods to transform it into the required format. That

could mean filtering, sorting, or aggregating the data. Word

processors include features related to formatting, editing, and

printing, while they can also utilize templating engines to build up

HTML content by filling dynamic data into pre-constructed templates.

Form Validation is one of the key parts of web application

development. Then the application makes utilization of this data by

collecting the output as per the conditions stated in the validation

object. Basic level validation can be done on client-side JavaScript,

like checking if required fields are filled out or checking validity of

email address. It's also important to mention that server-side

validation is required to stop malicious input and maintain data

integrity. Renowned developers tempt respective patterns to verify

that the input was as expected,adding checks on data

types,longitudinal arrangements, etc. They can also validate complex

input formats using a regular expression. For instance, if the input is

invalid, developers can show error messages to the user and stop the

form from being submitted.

5.4 Working with Data in Spring

Developers have control over data persistence with the Spring data

access layer, that offers powerful tools to interact with databases.

Java Database Connectivity (JDBC) is the old way of directly

interacting with the relational database, where developers write SQL

queries and manually maintain the database connections. Spring does

207
MATS Centre for Distance and Online Education, MATS University

Notes an excellent job of doing this by encapsulating abstraction layers and

helper classes that minimize boilerplate code. JDBC by itself is

about making a connection, creating statements, executing queries,

and processing the result set. In complex applications, this can be

tedious and error-prone. One solution to the above difficulties is

Spring's JdbcTemplate class, which abstracts JDBC operations,

manages resources and offers a cleaner API. JdbcTemplate allows

developers to run SQL queries in a few words by utilizing its query(),

update(), and execute() methods. An example would be to fetch the

data, you would call the query() method by passing SQL query and

RowMapper implementation to map the result set to Java objects. This

interface contains one method, mapRow(), which is responsible for

converting a row of the result set into an object. For executing queries

with named parameters, Spring provides the

NamedParameterJdbcTemplate, which makes the code more readable

and maintainable. JdbcTemplate only gets us halfway there, though,

as Spring also provides DataSource implementations for establishing

connections to our databases. This means that the DataSource

interface is actually a type of factory for connections; developers can

configure connection pools and so on. For example, Spring has

DriverManagerDataSource, that creates new connection each time

request is made, and BasicDataSource from Apache Commons DBCP

provides connection pooling. Another important feature of Spring

data access is transaction management. TransactionTemplate provides

a way of committing a transaction, so makes transaction transactional

very easy and reduces the boilerplate to write, you will just have to

focus on all your normal transaction overall logic. Transactional

management with declarative transactions (e.g. using @Transactional

annotations) further abstracts transaction management by

automatically opening and closing transactions. Spring Data JDBC,

one of the newer members of the Spring Data clan, offers a

minimalist and object-oriented approach to data access. You focus on

mappng domain objects to relational database table mappings, which

will reduce the need to write manual SQL queries. Spring Data JDBC

follows an aggregate oriented approach, which means that domain

objects are regarded as aggregates, which are further defined as

collections of related objects. This strategy is cohesive with domain-

driven design, crafting a more organic correspondence between the

208
MATS Centre for Distance and Online Education, MATS University

Notes domain models and the database schemas. JdbcAggregateTemplate

sits behind Spring Data JDBC for all database operations. This

template comes with a set of functions on how to save, delete and

query for aggregates. Spring Data JDBC uses annotation mapping

like @Table, @Id and @Column for mapping domain objects to

database tables. Each of those are explained below @Table annotation

specifies the table name, @Id specifies the primary key, and

@Column specifies the column name. These annotations help Spring

Data JDBC to map objects to the database table, it will generate SQL

queries automatically so user need not to write the query themselves.

Spring Data JDBC does also support relationships between

aggregates. You can map one-to-one, one-to-many, and many-to-

many relationships using annotations such as @MappedCollection

and @Reference. @MappedCollection ===> @Reference: Mapped

collection of related objects, and mapped a single related object.

Spring Data JDBC caters you with an aggregate-root mapping model,

thus making for a simpler data access by eliminating the need for

writing SQL queries on your own and handling a lot of mapping. Full-

fledged Data Access Solution: It is deeply integrated with Spring's

transaction management and other features, providing a full data

access solution.

5.5 Introduction to Spring Boot:

Spring Boot is a new milestone on the way to evolution of the Spring

ecosystem — it alleviates the pain of extra configuration and

complexities of the traditional Spring development cycle. A Heavy

framework for enterprise applications tightly packed with

configurations which is end of the case nightmare for developers

especially for the newbies. Spring Boot minimizes all of these into

sensible defaults, tracking configuration and an embedded server,

making it simple and possible for developers to bootstrap and deploy

applications. Difference between Spring Framework and Spring Boot

– The Spring is a Framework where another is reduce or eliminate,

the requirement to make three-letter dependency in specific modules.

This is in stark contrast to Spring itself, which is a huge framework

and requires you to configure everything you want even the beans,

datasources, web components etc. Usually this is set up using XML

or Java annotations. On the other hand, Spring Boot follows the

Convention over Configuration approach by providing sensible

209
MATS Centre for Distance and Online Education, MATS University

Notes defaults for most of the configuration. To do this, it automatically

sets up components based on the dependencies in the classpath, with

the least amount of configuration. Example: You can see that when it

finds a database driver in the classpath, Spring Boot will

automatically configure a DataSource and JdbcTemplate. It includes

an Embedded Server (Tomcat, Jetty, and Undertow), so there is not

necessity for external deployment server. γ This simplifies the

deployment steps, as developers can bundle applications into

runnable JAR files that can be executed without a separate server.

One of the most important feature of spring boot is auto-

configuration, which makes developer's life easy. It auto detects

beans by looking for dependencies in the classpath. What this means

is if a web dependency exists, Spring Boot will automatically

configure a DispatcherServlet and other web related classes. Because

of that less the configuration required, which helps the developer to

concentrate more on the business logic. Spring Boot provides several

starters — a set of convenient dependency descriptors to simplify the

dependency management. Starter dependencies is self-explanatory; it

is basically a wrap for related dependencies grouped together as a

single dependency to avoid declaring them one by one. Adding a

starter dependency like spring-boot-starter-web pulls in the required

dependencies to create web applications with Spring MVC, Tomcat

and Jackson. Spring Boot Actuator provides a set of production-ready

features, such as health checks, application metrics, and auditing.

Features helpful for tracking and operating the applications in

production environments. It provides excellent testing support and

has a suite of testing solutions, such as @SpringBootTest and

MockMvc, making integration tests easier to implement. These tools

ease integration and unit testing so developers can mock extensive

tests to their applications. Basically, Spring Boot is a tiny little baby

of Spring with all its goodness and no in-depth complexity. It also

removes the configuration burden, improves deployment, and

introduces production-ready features, making it the ideal framework

for building modern enterprise applications.

5.6 Spring Boot Architecture:

The architecture of Spring Boot is a significant set of core

components to simplify and accelerate the applications development

process by providing an overview of the framework. Spring Boot is

210
MATS Centre for Distance and Online Education, MATS University

Notes built on a core component called its auto-configuration mechanism

that, based on dependencies available in the classpath, it auto

configures the beans. This leads to less manual configuration,

allowing developers to concentrate on business logic. Spring Boot

auto-configuration works through conditional configuration classes,

which are annotated with @Configuration and either

@ConditionalOnClass or @ConditionalOnBean. No translation

availableSorry, your browser doesn't support embedded videos. A

conditional annotation, for example a configuration class annotated

with @ConditionalOnClass(DataSource. Those will be effective only

in case DataSource class is on the classpath. Another important parts

of spring boot architecture is spring boot’s starters. Starters are

dependency descriptors that aggregating similar dependencies into a

single dependency. They help manage dependencies: Since you don’t

have to specify all dependencies one by one. The spring-boot-starter-

web starter, for example, aggregates all dependencies needed for web

app development, including Spring MVC, Tomcat, and Jackson.

Bootstrap also supplies some sensible defaults for configuration,

making development even easier. One of the significant features of

Spring Boot is its embedded server. It does not require it to run on an

external server, which means Joseph needs to deploy physical server

or any server which just runs JET, builds standalone executable JAR

file which can be launched without an external server. Spring Boot

does have an Embedded Container of its own, supporting Tomcat,

Jetty, and Undertow. Spring Boot provides a way to configure which

embedded server to use with the spring. called in a properties file or

via command line. Spring Boot actuator module contains production-

ready features like health checks, metrics and auditing. It can help the

production applications to monitor and manage. The actuator module

exposes various endpoints that offer insight into the application's

operation, such as health, metrics, and more. You can use HTTP or

JMX to access these endpoints. Spring Boot's command-line interface

(CLI) makes it easy to use Spring features as you build succinct and

concise scripts and even for rapid prototyping. To create and run

Spring Boot applications, the CLI provides a list of commands. It is

also equipped with a suite of Groovy scripts that can be used to

automate common development tasks. Testing Tools:

@SpringBootTest and MockMvc make integration and unit testing

211
MATS Centre for Distance and Online Education, MATS University

Notes easier. @SpringBootTest to create an application context for testing,

and MockMvc to test web controllers. For testing, Spring Boot offers

testing starters, too — spring-boot-starter-test being the starter that

contains all testing dependencies. Recognizing the pros and cons of

these usages — Spring Boot Externalized Configuration This makes

configuration management very simple as you can change

configuration values without recompiling the application. Spring Boot

provides profile-specific configuration, which enables its user to

configure the application by different environments such as

Development, Testing, and Production. Spring Boot Event Publishing:

Spring Boot provides a powerful mechanism to publish and listen to

application events. This is suitable for async processing and

decoupling components.

Project Components in Spring Boot

The architecture of Spring Boot is created in such a way that it

simplifies the effort involved in the development phase; and the

project components in Spring Boot are a fundamental aspect of this

design. Among those, annotations, dependency management, and

application properties are fundamental. Annotations are a type of

metadata that provides a declarative way to add information to source

code. Annotations are widely used in Spring Boot for the

configuration of beans, mappings, and transactions. To give you an

example, it uses @Component, @Service and @Repository

annotations to annotate the classes so that these classes are

discovered automatically and registered as Spring beans. @Autowired

must be followed by, is Autowired, which reduces the code to be

written for instantiation. In Spring Framework, @RequestMapping

and its variants (@GetMapping, @PostMapping, etc.) allow

developers to map HTTP requests to controller methods, making it

easier to create web applications. Data consistency is taken care of by

annotations like @Transactional which manages the transaction

management functionality. Annotations in Spring Boot greatly

minimize boilerplate code and xml configuration. You can also

create custom annotations to consolidate common patterns and

configurations, allowing for code reusability.

Spring boot manages its dependency primarily through Maven or

Gradle and relies on transitive dependencies to work. Spring Boot

212
MATS Centre for Distance and Online Education, MATS University

Notes starters are pre-configured dependency sets for different

functionalities. As an example, spring-boot-starter-web contains the

dependencies needed to create a web app with Spring MVC, Tomcat,

and Jackson. spring-boot-starter-data-jpa contains dependencies for

working with a JPA and databases (Hibernate, JDBC drivers, etc.).

spring-boot-starter-security → Dependency for authentication and

authorization. These starter dependencies make the project setup

easier, which means fewer dependency conflicts and compatibility

issues. Spring Boot provides a parent pom, spring-boot-starter-parent,

which defines the versions of common dependencies, making it even

easier to manage dependencies. This parent POM also defaults some

configurations to build plugins like the one from the Spring Boot

Maven plugin that helps simplify creating executable JARs. Spring

Boot dependency management is also highly extensible. It allows

overrides for some dependency versions and the addition of as

needed depending on the use case. This level of flexibility enables

developers to adapt the project to their particular needs.

Application properties managed at application-level properties or

application. Also remember that application settings like env, yml

files let you centralize the place for managing application settings.

Using these properties, you can set up the details to connect with a

DB, server port numbers, logging level, and many other application-

specific configurations. These properties are loaded automatically by

Spring Boot and they get fed into the application. You can access

Properties using the @Value annotation or through Environment

objects. For instance, @Value("${server. This piece

"/schedule/secrets/" + port injects the value of the server. port

property into a field. It also allows you to have sub keys (flattened

hierarchies) to allow you to make your properties easier to read, like

when they are defined in the same context. You can learn more in

the system, Spring Boot supports Externalized configuration,

properties can be loaded from several sources including command-

line arguments, environmental variable, external configuration file.

This resistance allows developers to prevent modifying source code

when adapting the application actions on new environments. Profiles

are used to define the configuration of any environment

(development, tests, production). For example, application-dev.

properties for production-specific settings. properties allow to

213
MATS Centre for Distance and Online Education, MATS University

Notes configure settings specific to production. Spring boot automatically

loads the right profile quiet properties depending on the playing

profile. The application properties are also important to configure

Spring boot's auto-configuration. Most of Spring Boot's auto-

configurations are configurable by properties, which means

developers can tweak the behavior of these configurations. For

instance, the spring. datasource. The url property is used for setting

up the database connection URL, whereas the spring. jpa. hibernate.

Schema Generation ddl-auto Property ddl-auto property is used to

configure the behavior of Hibernate's Schema generation. These

properties give you an extremely powerful and flexible way to

customize your Spring Boot applications.

5.8 Developing Spring Boot Applications

That's because Spring Boot applications are meant to be developed as

simply as possible by using starter dependencies and automatic

configurations. As noted, before, Starter dependencies give a pre-

configured set of dependencies for particular functionalities. It saves

developers from spending much more time just setting up a project

rather than writing business logic code. For instance, to build a web

application, developers only have to add spring-boot-starter-web

dependency in a project. Spring Boot Starter Web - This starter

dependency comes with all necessary dependencies required to create

a web application like Spring MVC, Tomcat, Jackson. Similarly, if a

data access layer needs to be created, developers can simply add the

spring-boot-starter-data-jpa dependency, which includes the necessary

dependencies for interaction with JPA and databases. They are

modular and compositional starter dependencies you use the parts

you need and leave out the rest. One such critical feature of Spring

Boot is the auto configurations, which ease the development process

even more. So basically, Spring Boot does have default configuration

classes which it configures (beans, components) by checking the

available dependencies in the classpath and properties file provided

like application. It removes the need for XML or Java-based

configuration, decreasing boilerplate code and increasing

maintainability. For instance, if we have the spring-boot-starter-web

dependency, Spring Boot automatically configures a dispatcher

servlet, view resolvers, etc. Likewise, If spring-boot-starter-data-jpa

dependency is found, Spring Boot will configure a data source, an

214
MATS Centre for Distance and Online Education, MATS University

Notes entity manager factory and a transaction manager. Each of these auto-

configurations is an intelligent, adaptive component that

automatically recognizes and configures the necessary components

according to the project dependencies and properties. It is also very

powerful mechanism to customize the auto-configurations as well.

By declaring their own beans or properties, developers can customize

the default configurations. If, for instance, developers want to

configure a data source, they can define a DataSource bean in their

application context. In the same thought, if developers want to know

how to customize the web configuration, they can define a

WebMvcConfigurer bean. With such customization possibilities, you

can fully customize the app as per your needs.

The Spring Boot command line interface (CLI) also helps to ease

getting started with Spring Boot. The build tool and CLI enable

creating, running, and packaging Spring Boot applications in a very

convenient way. It also offers a command package to handle

dependency management, code generation, and various other

development steps. You can use spring init to generate a new Spring

Boot Project and spring run to execute one. We have ancripción and

automation tools and loads of distribution information close to

Maych to save time and allow productivity. Also, Spring boot gives us

developer tools such as spring boot DevTools to improve the

developer experience. With features like Hot Module Replacement

(HMR) and remote debugging, DevTools drastically empowers

productivity for developers. With automatic application restarts,

developers do not have to manually restart the application in order to

see changes to the code in real-time. Live reload refreshes the browser

automatically upon modifying static resources like HTML, CSS, and

JavaScript. Debugging applications running on remote servers is

called remote debugging. These servers are embedded into

developers' applications allowing packages to be deployed as

executable JARs in any environment without needing an external

server. This makes the deployment process easier and provides

consistency across environments. Another reason is that Spring Boot

offers remarkable deployment options, including Docker containers

and cloud platforms, enabling developers to select the deployment

method that is most appropriate for them.

215
MATS Centre for Distance and Online Education, MATS University

Notes 5.9 Aspect-Oriented Programming (AOP) in Spring Boot

Aspect-Oriented Programming (AOP) is a programming paradigm

that provides a way to modularize cross-cutting concerns, such as

logging, security, and transaction management. 1 Spring AOP is a

fully featured AOP used in Spring for both defining and applying

aspects with Spring boot. It uses annotations or XML configurations

to define aspects and applies those aspects to join points, which are

defined as points in an application execution such as method calls and

exception handling. Using AOP with Spring Bootis even easy,

because Spring Boot creates auto-configurations and starter

dependencies for it. AOP is a cross-cutting concern, and it is

available by simply adding the spring-boot-starter-aop dependency.

However, this starter dependency is already packing all the required

dependencies to use Spring AOP.

New types of advice in Spring AOPWe have five types of advice in

Spring AOP, these are actions that are taken

before/after/around/returning/throwing a join point. Before advice

runs before a join point, e.g. a method call. It can be utilized to carry

out pre-processing functions like logging input parameters or

checking user permissions. After advice that’s executed after a join

point, regardless of if the join point completes successfully or throws

an exception. This can be handy for post-processing like logging

execution time or releasing resources. Advice is done around a join

point and developer can control the execution of the join point. It can

be used for complex operations, such as transaction management or

caching. Returning advice is executed following the successful

completion of a join point, providing a means to examine the join

point's return value. It can then be used for example to log the return

value or transform the return value.

Multiple-Choice Questions (MCQs)

1. What is the primary purpose of the Spring framework?

a) To develop mobile applications

b) To simplify Java application development

c) To replace SQL databases

d) To manage operating system processes

Answer: b) To simplify Java application development

216
MATS Centre for Distance and Online Education, MATS University

Notes 2. Which of the following is not a type of dependency injection

in Spring?

a) Constructor Injection

b) Setter Injection

c) Interface Injection

d) Field Injection

Answer: c) Interface Injection

3. What does the IOC Container in Spring do?

a) Manages the lifecycle of objects and their

dependencies

b) Executes SQL queries

c) Handles user authentication

d) Provides a user interface

Answer: a) Manages the lifecycle of objects and their

dependencies

4. Which annotation in Spring Boot is used to mark a class as a

Spring Boot application?

a) @SpringApplication

b) @SpringBootApp

c) @SpringBootApplication

d) @BootApp

Answer: c) @SpringBootApplication

5. In Aspect-Oriented Programming (AOP), which advice runs

before the execution of a method?

a) @After

b) @Before

c) @Around

d) @AfterReturning

Answer: b) @Before

Short Answer Questions

a) What are the key advantages of using the Spring framework?

b) Explain the difference between dependency injection and

Inversion of Control (IoC).

c) What are the main components of Spring Boot architecture?

d) How does Spring Boot simplify dependency management?

e) What are the different types of AOP advice in Spring Boot?

Long Answer Questions

217
MATS Centre for Distance and Online Education, MATS University

Notes a) Describe the steps involved in creating a simple Spring

application.

b) Explain the different types of dependency injection with

examples.

c) How do you develop a web application using Spring Boot?

Explain with an example.

d) Compare traditional Spring applications with Spring Boot

applications.

e) Explain Aspect-Oriented Programming (AOP) in Spring Boot

and describe how it improves modularity.

218
MATS Centre for Distance and Online Education, MATS University

Notes References

Java Programming References

Chapter 1: Object-Oriented Programming Concepts and

Implementations

1. Horstmann, C. S. (2021). Core Java, Volume I: Fundamentals

(12th ed.). Pearson.

2. Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley

Professional.

3. Freeman, E., & Robson, E. (2020). Head First Design Patterns

(2nd ed.). O'Reilly Media.

4. Schildt, H. (2021). Java: The Complete Reference (12th ed.).

McGraw-Hill Education.

5. Deitel, P., & Deitel, H. (2020). Java How to Program (11th

ed.). Pearson.

Chapter 2: Java FX Technology

1. Sharan, K. (2017). Learn JavaFX: Building User Experience

and Interfaces with Java (2nd ed.). Apress.

2. Vos, J., Gao, W., Chin, S., & Weaver, J. L. (2017). Pro JavaFX

9: A Definitive Guide to Building Desktop, Mobile, and

Embedded Java Clients. Apress.

3. McKenzie, C. (2014). JavaFX 8: Introduction by Example

(2nd ed.). Apress.

4. Lyon, D. A. (2015). The Definitive Guide to Modern Java

Clients with JavaFX: Cross-Platform Mobile and Cloud

Development. Apress.

5. Hommel, S. (2014). Mastering JavaFX 8 Controls. Oracle

Press.

Chapter 3: Servlet Technology

1. Hall, M., & Brown, L. (2014). Core Servlets and JavaServer

Pages (2nd ed.). Prentice Hall.

2. Basham, B., Sierra, K., & Bates, B. (2008). Head First Servlets

and JSP (2nd ed.). O'Reilly Media.

3. Williams, L. (2018). An Introduction to Servlet Technology.

Springer.

219
MATS Centre for Distance and Online Education, MATS University

Notes 4. Crawford, W., & Hunter, J. (2001). Java Servlet Programming

(2nd ed.). O'Reilly Media.

5. Murach, J., & Urban, M. (2014). Murach's Java Servlets and

JSP (3rd ed.). Mike Murach & Associates.

Chapter 4: JSP Technology

1. Zambon, G., & Sekler, M. (2007). Beginning JSP, JSF, and

Tomcat Web Development. Apress.

2. Bergsten, H. (2003). JavaServer Pages (3rd ed.). O'Reilly

Media.

3. Goodwill, J., & Hightower, R. (2009). Professional Jakarta

Struts. Wrox Press.

4. Mukhar, K., Zelenak, C., Weaver, J. L., & Crume, J. (2006).

Beginning Java EE 5: From Novice to Professional. Apress.

5. Budi Kurniawan. (2012). JSP and Servlets: A Comprehensive

Study. Brainy Software Inc.

Chapter 5: Spring and Spring Boot Framework

1. Walls, C. (2022). Spring in Action (6th ed.). Manning

Publications.

2. Sharma, K. (2020). Building REST APIs with Spring 5.0.

Packt Publishing.

3. Gutierrez, F. (2019). Pro Spring Boot 2: An Authoritative

Guide to Building Microservices, Web and Enterprise

Applications, and Best Practices. Apress.

4. Cosmina, I., Harrop, R., Schaefer, C., & Ho, C. (2017). Pro

Spring 5: An In-Depth Guide to the Spring Framework and Its

Tools. Apress.

5. Prasad Reddy, K. S. (2017). Beginning Spring Boot 2:

Applications and Microservices with the Spring Framework.

Apress.

220

	Page 9

