
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Object Oriented Programming Concepts
Master of Computer Applications (MCA)

Semester - 1

Course Introduction 1

Module 1

Programming Paradigms

7

Unit 1: Programming Language Concepts 8

Unit 2: Types of Programming Language and Its Application Area 13

Unit 3: File Creation, Compilation and Linking 20

Module 2

Classes, Objects, Constructors, and Destructors

41

Unit 4: Object Oriented Programming Concepts, Advantage 42

Unit 5: Object and Class 46

Unit 6: Member Function 53

Module 3

Inheritance and Polymorphism

102

Unit 7: Operator Overloading: Unary and Binary 103

Unit 8: Overloading Binary Operators Using Friends 107

Unit 9: Rules of Overloading Operators, Type Conversion 110

Module 4

Operator Overloading and Type Conversion

140

Unit 10: Pointers 141

Unit 11: Virtual Function, Pure Virtual Function 154

Unit 12: Polymorphism: Compile Time, Run Time 160

Module 5

Exception Handling and File Handling

173

Unit 13: Stream Classes 174

 Unit 14: File Handling in OOP’s 179

References 182

Master of Computer Applications
ODL MCA-101

Object Oriented Programming Concepts

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder Kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Abhishek Guru, Associate Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh.

COURSE PREPARATION

Dr. Abhishek Guru, Associate Professor and Ms. Arifa Khan, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

contents of this course material, this completely depends on AUTHOR’S MANUSCRIPT.

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Printed & published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

any form, by mimeograph or any other means, without permission in writing from MATS University,

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in

(Chhattisgarh)

@MATS Centre for Distance and Online Education, MATS University, Village-Gullu, Aarang, Raipur-

ISBN: 978-93-49916-18-0

March, 2025

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

This Object-Oriented Programming (OOP) using C++ is an

essential course designed to introduce students to modern

programming techniques that enhance code reusability, scalability,

and efficiency. This course provides a strong foundation in object-

oriented concepts such as classes, objects, inheritance, polymorphism,

operator overloading, type conversion, and exception handling. By

learning these concepts, students will be able to design robust and

maintainable software applications. The course is structured into five

Modules, each covering fundamental aspects of OOP using C++.

Module 1: Programming Paradigms

Introduces different programming approaches, including

procedural, object-oriented, functional, and logical

paradigms. It emphasizes the need for object-oriented

programming and explains key OOP principles such as

abstraction, encapsulation, inheritance, and polymorphism.

Students will understand how OOP differs from procedural

programming and why it is widely used in modern software

development.

Module 2: Classes, Objects, Constructors, and

Destructors

delves into the core building blocks of OOP in C++.

Students will learn how to define and use classes and objects

effectively. This Module also explores constructors, which

help initialize objects, and destructors, which manage

resource cleanup. Concepts such as default, parameterized,

and copy constructors are covered to enhance students’

understanding of object creation and memory management.

Module 3: Inheritance and Polymorphism

Focuses on one of the most powerful features of OOP—code

reusability. It covers different types of inheritance, including

single, multiple, multilevel, hierarchical, and hybrid

inheritance. Students will learn how derived classes inherit

properties from base classes, along with function overriding

and virtual functions to achieve runtime polymorphism. The

2
MATS Centre for Distance and Online Education, MATS University

Notes concept of dynamic method dispatch is introduced to enable

flexible and scalable software design.

Module 4: Operator Overloading and Type Conversion

Students explore how operators can be customized to work

with user-defined data types. The Module covers the rules

and restrictions of operator overloading and demonstrates

how unary and binary operators can be overloaded.

Additionally, students will understand type conversion

techniques, including implicit and explicit conversions, and

how they can be applied between basic types and class types

for seamless data manipulation.

Module 5: Exception Handling and File Handling

Students learn the skills to develop robust and error-free

applications. This Module covers the concepts of errors and

exceptions and explains how exception handling

mechanisms such as try, catch, and throw can be used to

manage runtime errors efficiently. Students will also learn

how to handle multiple exceptions and create user-defined

exceptions, ensuring that their programs remain stable even

under unexpected conditions. File handling practices will

also taught to students.

3
MATS Centre for Distance and Online Education, MATS University

MODULE 1

PROGRAMMING PARADIGMS

LEARNING OUTCOMES

By the end of this module, students will be able to:

• Understand programming language concepts and their

significance.

• Identify types of programming languages and their

applications.

• Explain source file creation, compilation, and linking.

• Describe the features and structure of a C++ program.

• Define and differentiate data types, keywords, identifiers,

variables, constants, and operators.

• Implement control statements for branching, looping, and

jumping.

• Understand array declaration, initialization, and element

access.

• Differentiate between types of arrays and their usage.

4
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Programming Language Concepts

1.1 Programming Language Concepts

A programming language is a formal set of instructions that enables

humans to communicate with computers and create software

applications. It provides a structured way to define logic, process data,

and control hardware operations. Over the years, programming

languages have evolved to improve efficiency, readability, and

modularity. This evolution has led to different programming

paradigms, including procedural, object-oriented, functional, and

declarative programming. Understanding the core concepts of

programming languages is crucial for writing efficient, maintainable,

and scalable code. These concepts form the foundation of software

development and enable programmers to solve real-world problems

using computational techniques.

Syntax and Semantics: Every programming language follows a set

of rules that dictate how instructions should be written and

interpreted. These rules are divided into two main aspects:

a) Syntax refers to the grammatical structure of a programming

language. It defines how statements must be written, including

keywords, symbols, and punctuation. For example, in C++, a

statement must end with a semicolon (;).

b) Semantics refers to the meaning behind the written code. It

ensures that a program performs the intended operations

correctly. Even if a program has correct syntax, it may not

produce the desired output if its semantics are flawed.

For instance, consider the following C++ statement:

int x = "Hello"; // Syntax is correct, but semantics are incorrect

(type mismatch)

Here, x is declared as an integer but assigned a string value, which

causes a semantic error.

High-Level vs. Low-Level Languages: Programming languages are

categorized into high-level and low-level languages based on their

abstraction from machine code.

a) Low-Level Languages: These include machine language

(binary code) and assembly language, which are closely

related to hardware instructions. They offer high performance

5
MATS Centre for Distance and Online Education, MATS University

Notes but are difficult to write and maintain. Example: Assembly

language.

b) High-Level Languages: These include languages like C++,

Java, and Python, which provide human-readable syntax and

abstract away hardware details. High-level languages enhance

productivity and ease of development.

Example of an assembly language instruction:

MOV AX, 5 ; Moves the value 5 into register AX

In contrast, a high-level language like C++ simplifies this

operation:

int x = 5;

Compilation and Interpretation: Programming languages are

executed using two primary approaches: compilation and

interpretation.

a) Compiled Languages: Languages like C and C++ require a

compiler to convert the entire code into machine language

before execution. This process improves performance but

makes debugging slower.

b) Interpreted Languages: Languages like Python and JavaScript

use an interpreter to execute code line by line, allowing

immediate feedback but potentially reducing execution speed.

Example of a simple C++ program compiled before execution:

#include <iostream>

using namespace std;

int main() {

 cout << "Hello, World!";

 return 0;

}

Here, the compiler converts the entire program into an executable

file before running it.

Static vs. Dynamic Typing: Programming languages follow different

typing systems to handle variables and data types:

a) Static Typing: In statically typed languages (e.g., C++, Java),

variable types are declared explicitly and checked at compile-

time.

b) Dynamic Typing: In dynamically typed languages (e.g.,

Python, JavaScript), variable types are determined at runtime,

offering flexibility but increasing the risk of runtime errors.

6
MATS Centre for Distance and Online Education, MATS University

Notes Example of static typing in C++:

int num = 10; // The type (int) is explicitly declared

Example of dynamic typing in Python:

num = 10 # Type is inferred dynamically

Object-Oriented vs. Procedural Programming: Programming

languages can follow different paradigms, with two of the most

common being procedural programming and object-oriented

programming (OOP).

a) Procedural Programming: Based on a sequence of instructions

executed step-by-step. It uses functions to break down tasks

but does not encapsulate data. Example: C language.

b) Object-Oriented Programming (OOP): Organizes code into

objects and classes, encapsulating data and behavior. It

supports features like inheritance, polymorphism, and

encapsulation, making code more modular and reusable.

Example: C++, Java, Python.

Example of procedural programming in C:

#include <stdio.h>

void greet() {

 printf("Hello, World!");

}

int main() {

 greet();

 return 0;

}

Example of object-oriented programming in C++:

#include <iostream>

using namespace std;

class Greeting {

public:

 void sayHello() {

 cout << "Hello, World!";

 }

};

int main() {

 Greeting obj;

 obj.sayHello();

 return 0;

7
MATS Centre for Distance and Online Education, MATS University

Notes }

Memory Management: Programming languages handle memory

allocation and deallocation differently:

a) Manual Memory Management: In languages like C and C++,

developers must allocate (new) and free (delete) memory

explicitly.

b) Automatic Memory Management: In languages like Python

and Java, a garbage collector automatically reclaims unused

memory.

Example of manual memory allocation in C++:

int* ptr = new int(10); // Dynamically allocated memory

delete ptr; // Manually deallocated memory

In contrast, in Python, memory is managed automatically:

num = 10 # Memory is allocated and managed by Python’s

garbage collector

Standard Libraries and APIs: Modern programming languages

provide standard libraries and APIs to simplify development:

a) Standard Libraries: Built-in functions for mathematical

operations, file handling, and data structures. Example: C++

Standard Library (STL).

b) Application Programming Interfaces (APIs): Predefined

functions that allow programs to interact with external services

or hardware. Example: REST APIs in web development.

Example of using the C++ Standard Library:

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> numbers = {1, 2, 3, 4, 5};

 for (int num : numbers) {

 cout << num << " ";

 }

 return 0;

}

Programming languages serve as the foundation for software

development, providing structured methods to write, execute, and

manage code efficiently. Understanding key concepts such as syntax,

typing systems, compilation, paradigms, and memory management is

8
MATS Centre for Distance and Online Education, MATS University

Notes essential for mastering software development. This knowledge will

form the basis for learning Object-Oriented Programming (OOP) in

C++, which we will explore in the upcoming sections.

9
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Types of Programming Language and Its

Application Area

1.2 Types of Programming Language and Its Application Area

Programming languages serve as the fundamental medium through

which humans communicate with computers to develop software and

applications. Over the years, these languages have evolved

significantly, leading to the development of various categories based

on abstraction levels, execution models, and programming paradigms.

Each programming language is designed to address specific

computational challenges, making it crucial for software developers to

understand their classifications and application areas. Broadly,

programming languages can be classified into low-level and high-

level languages based on their closeness to machine hardware, and

further into various paradigms such as procedural, object-oriented,

functional, and scripting languages. The correct choice of a

programming language depends on the nature of the task,

performance requirements, and ease of development.

Low-Level and High-Level Languages: Programming languages are

first categorized based on their level of abstraction from the

underlying hardware. Low-level languages, which include machine

language and assembly language, are closer to the hardware, making

them highly efficient but difficult to program. Machine language

consists of binary code (0s and 1s), which is directly executed by the

computer’s CPU without any translation. However, since writing

programs in binary is complex and error-prone, assembly language

was introduced as an improvement. Assembly language uses symbolic

representations, known as mnemonics, to make programming more

readable while still being closely tied to the hardware. Assembly

programs must be translated into machine code using an assembler.

These low-level languages are mostly used in system programming,

embedded systems, and real-time applications where direct hardware

interaction is required. In contrast, high-level languages provide a

greater degree of abstraction and are designed to be more human-

readable. These languages are further categorized into procedural,

object-oriented, functional, scripting, and logic-based languages, each

serving different programming needs and application areas.

10
MATS Centre for Distance and Online Education, MATS University

Notes Procedural Programming Languages: Procedural languages follow

a structured, step-by-step approach to program execution. These

languages focus on how a task should be accomplished by dividing

programs into functions, loops, and conditional statements. A key

feature of procedural programming is the use of functions that enable

code reusability and modularity. Examples of procedural

programming languages include C, Fortran, Pascal, and COBOL.

These languages are widely used in scientific computing, system

programming, and business applications. For instance, C is

extensively used in developing operating systems, while COBOL is

utilized for business applications in the financial sector. Procedural

programming is effective for developing software where a sequential

flow of execution is necessary.

Object-Oriented Programming (OOP) Languages: The object-

oriented programming (OOP) paradigm was introduced to overcome

the limitations of procedural programming by emphasizing real-world

modeling using objects and classes. Object-oriented languages

support essential concepts such as encapsulation, inheritance, and

polymorphism, making them highly suitable for large-scale software

development. OOP provides better modularity, code reusability, and

maintainability. Popular object-oriented languages include C++, Java,

Python, and C#, all of which are widely used in application

development, enterprise software, and game development. For

example, Java is extensively used in Android app development, while

C++ is preferred for high-performance game engines and real-time

applications. By encapsulating data and functions within objects, OOP

promotes cleaner and more manageable code structures, making it a

preferred paradigm for modern software engineering.

Functional Programming Languages: Functional programming

languages take a mathematical approach to problem-solving by

treating functions as first-class citizens. Unlike procedural and object-

oriented programming, which rely on changing states and variables,

functional programming emphasizes immutability and recursion. This

makes it well-suited for applications that require concurrency and

parallel execution. Functional programming languages such as

Haskell, Lisp, Scala, and Erlang are widely used in artificial

intelligence (AI), data science, and financial modeling. A key

advantage of functional programming is that it minimizes side effects,

11
MATS Centre for Distance and Online Education, MATS University

Notes leading to more predictable and reliable code. For example, Erlang is

used in building highly concurrent telecom systems, while Haskell is

preferred for complex mathematical computations. Functional

programming is gaining popularity due to its ability to handle large-

scale distributed systems efficiently.

Scripting Languages: Scripting languages are typically interpreted

rather than compiled, making them easier to learn and use. These

languages are designed for automation, web development, and rapid

prototyping. Unlike compiled languages, which require a separate

compilation step before execution, interpreted languages execute code

line by line, allowing for faster development and debugging. Popular

scripting languages include Python, JavaScript, PHP, Perl, and Bash.

Python is widely used in data science, artificial intelligence, and

machine learning, while JavaScript is essential for web development

and front-end programming. PHP is primarily used for server-side

web development, powering dynamic websites and content

management systems like WordPress. Scripting languages offer

flexibility and ease of development, making them ideal for small-scale

projects and automation tasks.

Logic Programming Languages: Logic programming is a paradigm

based on formal logic, where programs are expressed as a set of rules

and facts rather than step-by-step instructions. Prolog (Programming

in Logic) is the most well-known logic programming language,

widely used in expert systems, natural language processing, and

artificial intelligence applications. In Prolog, a program consists of

rules that define relationships between entities. When a query is made,

the logic engine processes the rules and facts to derive a solution. This

approach makes logic programming well-suited for applications

requiring complex reasoning and decision-making.

Domain-Specific Languages (DSLs): While general-purpose

languages can be used for a wide range of applications, some

languages are designed for specific domains, known as domain-

specific languages (DSLs). These languages are tailored to a particular

problem area, making them highly efficient within their niche.

Examples of DSLs include SQL (Structured Query Language) for

database management, MATLAB for scientific computing, R for

statistical analysis, and HTML/CSS for web development. SQL, for

instance, is the industry standard for managing relational databases,

12
MATS Centre for Distance and Online Education, MATS University

Notes allowing users to perform complex queries efficiently. Similarly, R

and MATLAB are extensively used in academia and research for

statistical modeling and data analysis. By focusing on specific

problem domains, DSLs provide optimized solutions that general-

purpose languages cannot easily achieve.

Compiled vs. Interpreted Languages: Programming languages can

also be classified based on their execution model—whether they are

compiled or interpreted. Compiled languages translate the entire

source code into machine code before execution, resulting in faster

performance. Examples include C, C++, and Java (via the JVM).

Compiled programs run efficiently but require a compilation step

before execution, making debugging more time-consuming. On the

other hand, interpreted languages execute code line by line using an

interpreter, making development faster but execution slower.

Examples of interpreted languages include Python, JavaScript, and

PHP. While interpreted languages provide greater flexibility, they are

generally slower than compiled languages. Some modern languages,

such as Java, use a hybrid approach, where code is first compiled into

an intermediate bytecode and then interpreted by a virtual machine

(JVM).

Table 1.1 Difference between two Languages

Feature Compiled Languages
Interpreted

Languages

Execution

Process

Entire source code is

compiled into machine

code before execution.

Code is executed

line-by-line by an

interpreter.

Speed &

Performance

Faster execution since

the program is already

translated into machine

code.

Slower execution

due to on-the-fly

translation.

Error Handling

Errors are detected at

compile time, requiring

recompilation after

fixing.

Errors are detected

at runtime, making

debugging easier.

Portability

Less portable since

compiled code is

specific to a system’s

architecture.

More portable as the

source code can be

executed on any

system with an

13
MATS Centre for Distance and Online Education, MATS University

Notes interpreter.

Dependency
Requires a compiler for

translation.

Requires an

interpreter to

execute the code.

Examples
C, C++, Java (compiled

to bytecode), Rust, Go

Python, JavaScript,

PHP, Ruby

Use Cases

System programming,

Game development,

Performance-critical

applications

Web development,

Scripting, Rapid

prototyping, Data

analysis

Programming languages have evolved to meet the growing demands

of software development, leading to various paradigms and

classifications. Low-level languages offer efficiency and control,

whereas high-level languages provide abstraction and ease of

development. Procedural and object-oriented programming dominate

mainstream application development, while functional and logic-

based languages serve specialized computational needs. Scripting

languages simplify automation and web development, while domain-

specific languages optimize problem-solving in specialized fields.

Understanding the strengths and application areas of different

programming languages enables developers to select the best tools for

their projects. In the next section, we will explore the process of

source file creation, compilation, and linking, which are essential

steps in executing programs efficiently.

Table 1.2 Classification of programming languages along with their

specific application areas.

Programming

Language

Type

Description Examples
Application

Areas

Low-Level

Languages

Close to

machine

hardware,

offering high

performance but

difficult to

program.

Assembly,

Machine

Code

System

programming,

Embedded

systems,

Hardware

control

14
MATS Centre for Distance and Online Education, MATS University

Notes

Procedural

Languages

Follow a

structured, step-

by-step

approach using

functions and

loops.

C, Fortran,

Pascal,

COBOL

System software,

Scientific

computing,

Business

applications

Object-

Oriented

Programming

(OOP)

Languages

Use classes and

objects to

structure

programs with

encapsulation,

inheritance, and

polymorphism.

C++, Java,

Python, C#

Application

development,

Enterprise

software, Game

development

Functional

Programming

Languages

Emphasize

immutability,

recursion, and

first-class

functions.

Haskell, Lisp,

Scala, Erlang

AI & Machine

Learning, Data

Science, Parallel

computing

Scripting

Languages

Typically

interpreted, used

for automation

and web

development.

Python,

JavaScript,

PHP, Bash,

Perl

Web

development,

System

automation, Data

analysis

Logic

Programming

Languages

Use formal logic

and rule-based

programming

for decision-

making.

Prolog,

Datalog

AI, Expert

systems,

Knowledge-

based reasoning

Domain-

Specific

Languages

(DSLs)

Designed for

specific

application

areas, optimized

for particular

tasks.

SQL, R,

MATLAB,

HTML/CSS

Databases,

Statistical

modeling,

Scientific

computing, Web

design

Compiled

Languages

Convert source

code into

machine code

before execution

C, C++, Java

(JVM-based)

High-

performance

applications,

Operating

15
MATS Centre for Distance and Online Education, MATS University

Notes for better

performance.

systems, Game

engines

Interpreted

Languages

Execute code

line-by-line

using an

interpreter,

making

debugging

easier.

Python,

JavaScript,

PHP

Web

development,

Scripting, Rapid

prototyping

16
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: File Creation, Compilation and Linking

1.3 Source File Creation, Compilation and Linking

C++ is a powerful, general-purpose programming language that

combines the efficiency of procedural programming with the

flexibility of object-oriented programming (OOP). Developed by

Bjarne Stroustrup in the early 1980s as an extension of C, C++

provides robust features that make it suitable for system

programming, game development, large-scale applications, and

performance-critical software. Understanding the features of C++

helps programmers leverage its strengths, while knowing the structure

of a C++ program ensures that code is written in an organized,

readable, and maintainable manner. This section explores the key

features of C++ and provides a detailed breakdown of a well-

structured C++ program.

Features of C++

C++ offers several advanced features that distinguish it from other

programming languages. These features enable programmers to

develop efficient and modular applications with enhanced

performance and flexibility.

• Object-Oriented Programming (OOP): C++ is an object-

oriented language, which means it follows the OOP principles

of encapsulation, inheritance, polymorphism, and abstraction.

These concepts allow for the creation of reusable and modular

code, making software development more scalable and

maintainable.

• High Performance and Efficiency: Since C++ is a compiled

language, it converts source code into machine code before

execution, ensuring faster performance compared to

interpreted languages like Python or JavaScript. Additionally,

C++ provides manual memory management, giving

programmers greater control over resource allocation and

optimization.

• Multi-Paradigm Programming: C++ supports multiple

programming paradigms, including procedural, object-

oriented, and generic programming. This flexibility allows

developers to use the best approach for different types of

applications.

17
MATS Centre for Distance and Online Education, MATS University

Notes • Strongly Typed and Statically Typed Language: C++ is

strongly typed, meaning that type errors must be resolved

before compilation. It is also statically typed, which means

variable types are checked at compile-time rather than

runtime. This helps in reducing runtime errors and improving

performance.

• Memory Management with Pointers: C++ provides pointers

and dynamic memory allocation using operators like new and

delete. This enables efficient memory handling but also

requires careful management to avoid memory leaks.

• Standard Template Library (STL): The Standard Template

Library (STL) in C++ offers a collection of predefined classes

and functions for common programming tasks such as data

structures (vectors, lists, stacks, queues) and algorithms

(sorting, searching). This enhances code efficiency and

reduces development time.

• Operator Overloading: C++ allows operators like +, -, and * to

be overloaded so that they can work with user-defined data

types, enhancing code readability and usability.

• Platform Independence: Although C++ programs need to be

compiled separately for different operating systems, the source

code remains platform-independent, making it portable across

different platforms.

• Low-Level and High-Level Features: C++ supports both low-

level features (like direct memory manipulation) and high-

level abstractions (like classes and objects), making it suitable

for both system programming and application development.

Structure of a C++ Program: A well-structured C++ program

consists of several components, each serving a specific purpose.

Understanding the structure ensures that code is organized, readable,

and efficient.

Basic Structure of a C++ Program

A C++ program generally follows this structure:

// 1. Header Files

#include <iostream>

// 2. Namespace Declaration

using namespace std;

// 3. Global Declarations (if any)

18
MATS Centre for Distance and Online Education, MATS University

Notes // 4. Function Prototypes (if required)

// 5. Main Function

int main() {

 // 6. Variable Declaration

 int num = 10;

 // 7. Function Call (if required)

 cout << "The number is: " << num << endl;

 return 0;

}

// 8. Function Definitions (if any)

Header Files: Header files contain predefined functions, classes,

and macros that can be used in the program. They are included

using the #include directive.

Example:

#include <iostream> // Allows input and output operations

#include <cmath> // Provides mathematical functions like

sqrt(), pow()

Namespace Declaration: Namespaces prevent name conflicts by

organizing code into separate scopes. The standard C++ library

functions reside in the std namespace.

Example:

using namespace std;

Without using namespace std;, we would have to use std::cout and

std::cin instead of cout and cin.

Global Declarations: Global variables are declared outside all

functions and can be accessed from anywhere in the

program.Example:

int globalVar = 100; // Accessible by all functions

Although global variables can be useful, excessive use is discouraged

due to potential side effects and memory consumption.

Function Prototypes: In large programs, function prototypes are

declared before main() to inform the compiler about functions used

later in the program.

Example:

void displayMessage(); // Function prototype

19
MATS Centre for Distance and Online Education, MATS University

Notes Main Function (main()): Every C++ program must have a main()

function, which serves as the program’s entry point. Execution

begins from main().

Example:

int main() {

 cout << "Hello, C++!" << endl;

 return 0;

}

The return 0; statement indicates successful execution to the operating

system.

Variable Declaration: Variables store data that the program

manipulates. C++ supports various data types such as int, float, char,

double, and string.

Example:

int age = 25;

float temperature = 36.5;

char grade = 'A';

Function Calls: Functions are used to modularize the code, making it

reusable and easier to manage. A function is defined separately and

called in main().

Example:

void greet() {

 cout << "Welcome to C++ Programming!" << endl;

}

int main() {

 greet(); // Function call

 return 0;

}

Function Definitions: Functions implement reusable logic and are

defined outside main().

Example:

int add(int a, int b) {

 return a + b;

}

Functions improve code maintainability and readability.

C++ is a feature-rich programming language that provides high

performance, object-oriented capabilities, and extensive libraries.

20
MATS Centre for Distance and Online Education, MATS University

Notes Understanding its features, such as OOP, memory management, STL,

and operator overloading, allows programmers to write efficient and

scalable applications. Additionally, following a structured approach to

writing C++ programs—by including header files, proper variable

declarations, and function modularization—ensures that code remains

organized, readable, and maintainable. In the next section, we will

explore data types, tokens, keywords, identifiers, variables, constants,

and operators, which form the fundamental building blocks of C++

programming.

Table 1.3 Common Compilation Errors and Fixes

Error Type Description Solution

Syntax Error
Incorrect syntax (e.g.,

missing semicolon).

Fix syntax and

recompile.

Linker Error
Undefined reference to a

function.

Ensure proper

function declaration

and linking.

Runtime Error

Issues that occur during

execution (e.g., division

by zero).

Debug and handle

exceptions.

Segmentation

Fault

Accessing invalid

memory (e.g.,

dereferencing null

pointers).

Check pointers and

memory

management.

The source file creation, compilation, and linking process are

fundamental steps in C++ programming. The source file contains the

program logic, which is converted into machine code through the

compilation process. The linker then integrates object files and

external libraries, producing an executable file that can be run on a

computer. Understanding these stages helps programmers debug

errors, optimize performance, and work efficiently on multi-file

projects.

1.3 Features and Structure of C++ Program

C++ is a widely used, high-performance programming language that

blends the features of procedural programming with object-oriented

programming (OOP), making it a powerful tool for software

development. It was developed by Bjarne Stroustrup in the early

1980s as an extension of the C language and has since evolved into a

21
MATS Centre for Distance and Online Education, MATS University

Notes feature-rich language used in various domains, including system

programming, game development, real-time simulations, database

management, and large-scale enterprise applications. One of the key

reasons for C++’s widespread adoption is its ability to provide low-

level memory manipulation while also supporting high-level

abstractions that enhance modularity and code reusability.

To become proficient in C++, it is essential to understand both its

features and structural organization. The features of C++ highlight its

unique capabilities that differentiate it from other programming

languages, while its structure defines the way in which a C++

program is written, organized, and executed. This Module provides a

detailed explanation of the core features of C++ and a structured

breakdown of a typical C++ program, ensuring that students develop a

strong foundation in the language.

1.4.1 Features of C++

C++ has a broad range of features that make it versatile, powerful, and

efficient. These features allow it to be used in various domains, from

low-level system programming to high-level application development.

Below is a detailed discussion of the key features of C++:

1. Object-Oriented Programming (OOP)

One of the most significant advancements in C++ over its

predecessor, C, is the introduction of Object-Oriented Programming

(OOP). OOP is a programming paradigm that models real-world

entities using objects and classes, promoting code reusability,

scalability, and modularity. C++ supports four key principles of OOP:

• Encapsulation: The bundling of data (variables) and methods

(functions) within a class to prevent unauthorized access.

• Inheritance: The ability of one class to acquire the properties

and behaviors of another class, reducing redundancy.

• Polymorphism: The ability of a function or method to behave

differently based on the context in which it is used.

• Abstraction: Hiding implementation details while exposing

only the necessary functionalities to the user.

Example of OOP in C++:

#include <iostream>

using namespace std;

class Car {

22
MATS Centre for Distance and Online Education, MATS University

Notes private:

 string brand;

public:

 Car(string b) { brand = b; } // Constructor

 void display() { cout << "Car Brand: " << brand << endl; }

};

int main() {

 Car myCar("Toyota");

 myCar.display();

 return 0;

}

In this example, the class Car encapsulates data (brand) and behavior

(display() function), demonstrating OOP principles.

2. Multi-Paradigm Support

C++ is a multi-paradigm language, meaning it supports multiple styles

of programming, including:

Table 1.4 Different Types of Paradigm

Paradigm Description
Example

Languages

Procedural
Step-by-step instructions using

functions.
C, Pascal

Object-

Oriented

Uses objects and classes to model real-

world entities.
C++, Java

Generic
Uses templates to write type-

independent functions and classes.
C++, D, Rust

This flexibility allows programmers to select the best programming

paradigm based on the problem they are solving.

3. High Performance and Efficiency

Since C++ is a compiled language, it translates the entire source code

into machine code before execution, leading to faster performance

compared to interpreted languages like Python. Additionally, C++

provides manual memory management, allowing developers to

optimize memory usage and prevent unnecessary resource

consumption. This makes C++ ideal for performance-intensive

applications like gaming, embedded systems, and real-time

simulations.

23
MATS Centre for Distance and Online Education, MATS University

Notes Example of compiled C++ code execution using GCC:

g++ program.cpp -o program

./program

This command first compiles the source code and then executes the

generated binary file.

4. Strongly Typed Language with Static Typing

C++ is a strongly typed language, meaning that each variable must

have a specific type that cannot be changed during execution. It is also

statically typed, meaning that type-checking occurs at compile time

rather than at runtime.

Example:

int num = 10;

num = "Hello"; // Error: Type mismatch

This prevents unexpected errors and improves code reliability.

5. Memory Management with Pointers

Unlike many high-level languages, C++ allows direct memory

manipulation through pointers, providing greater control over memory

allocation and deallocation. This is particularly useful in system

programming and embedded systems, where efficient memory

management is critical.

Example of pointer usage in C++:

#include <iostream>

using namespace std;

int main() {

 int x = 10;

 int *ptr = &x; // Pointer stores the address of x

 cout << "Value of x: " << *ptr << endl; // Dereferencing pointer

 return 0;

}

Here, the pointer ptr stores the memory address of x and accesses

its value using the * operator.

1.4.2 Structure of a C++ Program

A well-structured C++ program consists of several key components

that define its execution flow. Understanding these components is

crucial for writing clean, efficient, and maintainable code.

Basic Structure of a C++ Program

24
MATS Centre for Distance and Online Education, MATS University

Notes // 1. Header Files

#include <iostream>

// 2. Namespace Declaration

using namespace std;

// 3. Global Declarations (if any)

// 4. Function Prototypes (if required)

// 5. Main Function

int main() {

 // 6. Variable Declaration

 int num = 10;

 // 7. Function Call (if required)

 cout << "The number is: " << num << endl;

 return 0;

}

// 8. Function Definitions (if any)

Table 1.5 Explanation of Components

Component Description

Header Files
Contain standard C++ libraries like <iostream>,

<cmath>.

Namespace

Declaration

Allows the use of functions like cout without

std:: prefix.

Global

Declarations

Variables that can be accessed by all functions in

the program.

Function

Prototypes

Declares functions before their definition for

better modularity.

Main Function

(main())

Entry point of the program where execution

starts.

Variable

Declaration
Defines variables to store data in memory.

Function Calls
Executes predefined functions to perform

specific tasks.

25
MATS Centre for Distance and Online Education, MATS University

Notes Function

Definitions
Implements the logic of user-defined functions.

C++ is a powerful, versatile, and high-performance language that

supports object-oriented programming, manual memory management,

operator overloading, and multiple paradigms. These features make it

a preferred choice for system programming, application development,

and real-time computing. A well-structured C++ program follows a

logical organization, starting from header files and function

declarations to variable initialization and function execution. By

mastering these fundamental concepts, students can develop efficient,

scalable, and maintainable C++ applications.

In the next section, we will explore data types, tokens, keywords,

identifiers, variables, constants, and operators, which form the

fundamental building blocks of C++ programming.

Data Types in C++

Data types define the type of data a variable can store. C++ provides

several types of data types:

Table 1.6 Primary Data Types

Data

Type

Size

(Bytes)
Description Example

int 4 Stores integers (whole numbers) int age = 25;

float 4
Stores floating-point numbers

(decimal values)

float price =

99.99;

double 8
Stores large floating-point

numbers

double pi =

3.14159;

char 1 Stores single characters
char grade =

'A';

bool 1
Stores boolean values (true or

false)

bool isPassed

= true;

Derived Data Types

• Array: int arr[5] = {1, 2, 3, 4, 5};

• Pointer: int *ptr;

• Reference: int &ref = x;

User-defined Data Types

• Structure: struct Student { string name; int age; };

• Class: class Car { public: string brand; };

26
MATS Centre for Distance and Online Education, MATS University

Notes • Enumeration (enum): enum Color { RED, GREEN, BLUE };

Tokens in C++

Tokens are the smallest Modules in a C++ program. These include:

1. Keywords

2. Identifiers

3. Variables and Constants

4. Operators

Keywords in C++

Keywords are reserved words in C++ that have predefined meanings.

Some commonly used keywords are:

int, float, double, char, bool, if, else, while, for, switch, case, break,

continue, return, void, struct, class, public, private, protected,

namespace, new, delete, this, virtual, friend, etc.

Identifiers in C++

Identifiers are the names given to variables, functions, arrays, and

objects.

Rules for Identifiers:

• Must begin with a letter (A-Z or a-z) or an underscore _

• Cannot be a keyword

• Must be unique and case-sensitive

Example:

int studentAge; // Valid

float _salary; // Valid

int 2marks; // Invalid (cannot start with a number)

2.3 Variables and Constants in C++

Variables:

A variable is a named storage location in memory.

int age = 20;

float price = 99.99;

Constants:

A constant is a value that does not change during program execution.

• Using const keyword:

const float PI = 3.14159;

• Using #define preprocessor directive:

#define MAX_SIZE 100

Operators in C++

Operators perform operations on variables and values.

27
MATS Centre for Distance and Online Education, MATS University

Notes Types of Operators:

1. Arithmetic Operators: +, -, *, /, %

2. Relational Operators: ==, !=, <, >, <=, >=

3. Logical Operators: &&, ||, !

4. Assignment Operators: =, +=, -=, *=, /=, %=

5. Bitwise Operators: &, |, ^, ~, <<, >>

6. Increment/Decrement Operators: ++, --

7. Ternary Operator: condition ? expr1 : expr2;

8. Type Casting Operator: (dataType)value;

Example:

int a = 10, b = 20;

int sum = a + b; // Addition

bool result = (a < b); // Relational operator

3. Control Statements in C++

Control statements control the flow of execution in a program. These

are categorized into:

1. Branching Statements (Decision Making)

2. Looping Statements (Iteration)

3. Jumping Statements (Control Transfer)

Branching Statements (Decision Making)

Branching statements are used to execute different code blocks based

on conditions.

1. if Statement

if (condition) {

 // Code to execute if condition is true

}

Example:

int num = 10;

if (num > 0) {

 cout << "Positive number";

}

2. if-else Statement

if (condition) {

 // Code if true

} else {

 // Code if false

}

Example:

28
MATS Centre for Distance and Online Education, MATS University

Notes int num = -5;

if (num > 0) {

 cout << "Positive";

} else {

 cout << "Negative";

}

3. if-else-if Ladder

if (condition1) {

 // Code

} else if (condition2) {

 // Code

} else {

 // Code

}

4. switch Statement

Used for multiple conditions.

switch (expression) {

 case value1:

 // Code

 break;

 case value2:

 // Code

 break;

 default:

 // Code

}

Example:

int choice = 2;

switch (choice) {

 case 1: cout << "One"; break;

 case 2: cout << "Two"; break;

 default: cout << "Invalid";

}

Looping Statements (Iteration)

Looping statements execute a block of code multiple times.

1. for Loop

for (initialization; condition; increment/decrement) {

29
MATS Centre for Distance and Online Education, MATS University

Notes // Code to execute

}

Example:

for (int i = 1; i <= 5; i++) {

 cout << i << " ";

}

2. while Loop

while (condition) {

 // Code to execute

}

Example:

int i = 1;

while (i <= 5) {

 cout << i << " ";

 i++;

}

3. do-while Loop

Executes at least once before checking the condition.

do {

 // Code to execute

} while (condition);

Example:

int i = 1;

do {

 cout << i << " ";

 i++;

} while (i <= 5);

Jumping Statements (Control Transfer)

Jumping statements alter the normal sequence of execution.

1. break Statement

Exits the loop or switch statement.

for (int i = 1; i <= 5; i++) {

 if (i == 3) break;

 cout << i << " ";

}

2. continue Statement

Skips the current iteration and moves to the next iteration.

30
MATS Centre for Distance and Online Education, MATS University

Notes for (int i = 1; i <= 5; i++) {

 if (i == 3) continue;

 cout << i << " ";

}

3. goto Statement

Jumps to a labeled statement.

goto label;

label:

cout << "Jumped here";

This Module covers the basics of C++ programming, including data

types, tokens, operators, and control statements with easy-to-

understand explanations and code examples.

Arrays in C++

1. Array Declaration and Initialization

An array is a collection of elements of the same data type stored in

contiguous memory locations. It allows storing multiple values using

a single variable name.

Declaration of an Array

The syntax for declaring an array in C++ is:

data_type array_name[array_size];

Example:

int numbers[5]; // Declaring an array of 5 integers

Here, numbers is an integer array that can hold 5 values.

Array Initialization

Arrays can be initialized at the time of declaration:

int numbers[5] = {10, 20, 30, 40, 50};

If the size is omitted, the compiler automatically determines it based

on the number of elements:

int numbers[] = {10, 20, 30, 40, 50}; // Array of size 5

For character arrays (strings):

char name[] = "Hello"; // Automatically adds '\0' (null character)

2. Accessing Array Elements

Each element in an array is accessed using an index (starting from 0).

Syntax:

array_name[index];

Example:

#include <iostream>

31
MATS Centre for Distance and Online Education, MATS University

Notes using namespace std;

int main() {

 int numbers[5] = {10, 20, 30, 40, 50};

 cout << "First element: " << numbers[0] << endl;

 cout << "Third element: " << numbers[2] << endl;

 return 0;

}

Output:

First element: 10

Third element: 30

We can also modify array elements:

numbers[1] = 25; // Changing the second element to 25

Using Loops to Access Array Elements

To access all elements, we can use a loop:

#include <iostream>

using namespace std;

int main() {

 int numbers[5] = {10, 20, 30, 40, 50};

 for(int i = 0; i < 5; i++) {

 cout << "Element at index " << i << ": " << numbers[i] << endl;

 }

 return 0;

}

3. Types of Arrays

C++ supports different types of arrays:

1. One-Dimensional Array

A simple linear list of elements. Example:

int arr[5] = {1, 2, 3, 4, 5};

2. Two-Dimensional Array (2D Array)

Used to represent a matrix or table of elements.

Declaration:

data_type array_name[rows][columns];

32
MATS Centre for Distance and Online Education, MATS University

Notes Example:

int matrix[3][3] = {

 {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9}

};

Accessing 2D Array Elements:

cout << matrix[1][2]; // Accesses the element at row index 1, column

index 2 (Output: 6)

Using Loops to Print a 2D Array:

#include <iostream>

using namespace std;

int main() {

 int matrix[2][3] = {

 {1, 2, 3},

 {4, 5, 6}

 };

 for(int i = 0; i < 2; i++) {

 for(int j = 0; j < 3; j++) {

 cout << matrix[i][j] << " ";

 }

 cout << endl;

 }

 return 0;

}

3. Multi-Dimensional Array

An array with more than two dimensions. Example (3D Array):

int arr[2][2][3] = {

 {

 {1, 2, 3}, {4, 5, 6}

 },

 {

 {7, 8, 9}, {10, 11, 12}

 }

};

33
MATS Centre for Distance and Online Education, MATS University

Notes 4. Dynamic Arrays (Using Pointers and new Operator)

Arrays with dynamic memory allocation:

int* arr = new int[5]; // Allocates memory for 5 integers

arr[0] = 10;

delete[] arr; // Free memory

MCQs:

1. Which of the following programming paradigms emphasizes the use

of functions and avoids changing state or mutable data?

A. Procedural programming

B. Object-oriented programming

C. Functional programming

D. Logical programming

2. In which programming paradigm are programs typically organized

around objects and classes?

A. Procedural

B. Functional

C. Logical

D. Object-oriented

3. Which of the following is NOT a core principle of Object-Oriented

Programming (OOP)?

A. Abstraction

B. Encapsulation

C. Compilation

D. Inheritance

4. What does encapsulation in OOP primarily help with?

A. Running code faster

B. Hiding internal details and protecting data

C. Writing functional expressions

D. Deriving new classes from existing ones

5. What is the main difference between procedural and object-

oriented programming?

A. Procedural programming uses functions, OOP uses if-else statements

B. Procedural programming focuses on the “what,” OOP focuses on the

“how”

C. Procedural programming structures code as procedures or routines;

OOP structures code around objects and data

D. There is no difference

34
MATS Centre for Distance and Online Education, MATS University

Notes 6. Which OOP principle allows objects to take on many forms through

method overriding or overloading?

A. Inheritance

B. Polymorphism

C. Encapsulation

D. Abstraction

7. Which programming paradigm is based on formal logic and uses

rules and facts to derive conclusions?

A. Object-oriented

B. Functional

C. Logical

D. Procedural

8. Why is Object-Oriented Programming widely used in modern

software development?

A. It executes faster than other paradigms

B. It is only used in mobile app development

C. It promotes code reuse, scalability, and maintainability

D. It doesn't require any planning or design

9. What is abstraction in OOP?

A. Deriving new classes from existing ones

B. Representing only essential features while hiding unnecessary details

C. Storing variables in memory

D. Writing conditional logic

10. In OOP, what is inheritance used for?

A. Reducing function calls

B. Sharing code between unrelated classes

C. Allowing a class to acquire properties and methods from another

class

D. Increasing program speed

Short Questions:

1. What is a programming paradigm?

2. How does procedural programming structure a program?

3. Define object-oriented programming in your own words.

4. What is the main goal of functional programming?

5. How is logical programming different from other paradigms?

6. List two key differences between procedural and object-

oriented programming.

35
MATS Centre for Distance and Online Education, MATS University

Notes 7. Why is object-oriented programming considered suitable for

large and complex software systems?

8. What is abstraction in object-oriented programming? Provide an

example.

9. Explain the concept of encapsulation and how it enhances data

security.

10. What is inheritance in OOP, and how does it promote code

reuse?

11. Describe polymorphism and give a real-world analogy.

12. Mention two advantages of using object-oriented

programming over procedural programming.

Long Questions:

1. Explain the main characteristics of procedural programming.

How does it handle data and functions? Provide examples.

2. Discuss the core concepts of functional programming. How

does this paradigm differ from procedural and object-oriented

approaches?

3. Describe the logical programming paradigm. What is its basis,

and in what types of applications is it most commonly used?

4. Compare and contrast procedural programming and object-

oriented programming. Highlight the strengths and limitations

of each approach.

5. Why has object-oriented programming become the preferred

paradigm in modern software development? Discuss its

advantages with examples.

6. Define and explain the concept of abstraction in object-oriented

programming. Why is it important in managing complexity in

software systems?

7. What is encapsulation in OOP? How does it help in protecting

the internal state of an object and ensuring data integrity?

8. Explain inheritance with the help of a real-world analogy. How

does inheritance contribute to reusability and hierarchical

classification in software design?

9. Define polymorphism in object-oriented programming.

Differentiate between compile-time and run-time

polymorphism with examples.

36
MATS Centre for Distance and Online Education, MATS University

Notes 10. How do the principles of OOP—abstraction, encapsulation,

inheritance, and polymorphism—work together to support

scalable and maintainable code?

11. Discuss how different programming paradigms (procedural,

object-oriented, functional, and logical) address the problem-

solving process. Which paradigm do you think is most

effective, and why?

12. Imagine you are designing a large software application (e.g.,

an online shopping platform). Explain why object-oriented

programming would be a better fit than procedural

programming for this task.

37
MATS Centre for Distance and Online Education, MATS University

Notes
MODULE 2

CLASS, OBJECT, CONSTRUCTOR AND

DESTRUCTOR

LEARNING OfUTCOMES

By the end of this Module, students will be able to:

• Understand Object-Oriented Programming (OOP) concepts

and their advantages.

• Define and differentiate objects and classes in C++.

• Explain the role of member functions in class operations.

• Implement arrays within a class for structured data storage.

• Analyze memory allocation mechanisms for objects.

• Understand the purpose and use of friend functions in C++.

• Explore the concept of local classes and their applications.

38
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Object Oriented Programming Concepts,

Advantage

Paragraph 1: Core Concepts of Object-Oriented Programming

Object-Oriented Programming (OOP) is a paradigm that revolves

around the concept of "objects," which are instances of "classes." A

class acts as a blueprint, defining the properties (attributes) and

behaviors (methods) that its objects will possess. Encapsulation is a

fundamental principle of OOP, where data (attributes) and methods

that operate on that data are bundled together within a single Module,

the object. This bundling not only organizes code but also protects

data from external interference, enhancing security and

maintainability. Access modifiers, such as public, private, and

protected, control the visibility and accessibility of these attributes

and methods. Inheritance is another pivotal concept, enabling the

creation of new classes (derived or child classes) that inherit

properties and behaviors from existing classes (base or parent

classes). This promotes code reusability and establishes a hierarchical

structure, facilitating the modeling of real-world relationships.

Polymorphism, meaning "many forms," allows objects of different

classes to respond to the same method call in their own specific ways.

This is achieved through method overloading (having multiple

methods with the same name but different parameters within a class)

and method overriding (providing a specific implementation of an

inherited method in a derived class). Abstraction is the process of

simplifying complex systems by modeling classes based on their

essential properties and behaviors, hiding unnecessary details from the

user. This allows developers to focus on the relevant aspects of an

object, improving code clarity and reducing complexity. These

concepts collectively form the foundation of OOP, enabling the

creation of modular, maintainable, and scalable software systems that

better represent real-world entities and interactions.

39
MATS Centre for Distance and Online Education, MATS University

Notes Paragraph 2: Advantages of Object-Oriented Programming

The advantages of Object-Oriented Programming (OOP) are

numerous and have contributed significantly to its widespread

adoption in software development. Firstly, OOP promotes code

reusability through inheritance, allowing developers to create new

classes based on existing ones, minimizing redundant code and saving

development time. This reusability extends to the design phase, as

well, where established class hierarchies can be adapted and extended

for new applications. Encapsulation enhances data security by

restricting direct access to an object's internal data, preventing

unintended modifications and ensuring data integrity. This also

simplifies maintenance, as changes to an object's internal

implementation are less likely to affect other parts of the system.

Modularity, another key advantage, is achieved by dividing a complex

system into smaller, self-contained objects, each with its own

responsibilities.

This modular structure makes it easier to understand, debug, and

modify individual components without affecting the entire system.

Polymorphism allows for greater flexibility and extensibility, as

different objects can respond to the same method call in their own

ways, enabling the creation of more adaptable and dynamic software.

This adaptability is crucial in handling varying requirements and

evolving systems. Furthermore, OOP facilitates better problem-

Figure 1 Core Structure of Object-Oriented Programming
[Source: https://www.istockphoto.com]

40
MATS Centre for Distance and Online Education, MATS University

Notes solving by modeling real-world entities and relationships more

accurately. The ability to abstract complex systems into simpler,

manageable objects allows developers to focus on the essential

aspects of a problem, leading to more efficient and effective solutions.

The hierarchical structure provided by inheritance allows for intuitive

organization of complex systems. Overall, OOP improves code

organization, maintainability, and scalability, making it a powerful

paradigm for developing large and complex software applications.

41
MATS Centre for Distance and Online Education, MATS University

Notes Paragraph 3: Practical Application and Real-World Impact of

OOP

The practical application of Object-Oriented Programming (OOP)

extends across diverse domains, demonstrating its versatility and

effectiveness in solving real-world problems.

In software development, OOP is heavily used in building complex

applications, from desktop software to web applications and mobile

apps. Graphical User Interfaces (GUIs) are often built using OOP

principles, where UI elements like buttons, windows, and menus are

represented as objects with specific properties and behaviors. Game

development relies heavily on OOP to model game entities, such as

characters, environments, and items, allowing for complex

interactions and simulations. In data management, database systems

utilize OOP concepts to represent data as objects, enabling efficient

data retrieval and manipulation. Enterprise applications, which often

involve complex business logic and data structures, benefit

significantly from OOP's modularity and reusability. In the realm of

simulation and modeling, OOP is used to create realistic simulations

of physical systems, biological processes, and financial models.

Scientific computing leverages OOP to develop libraries and

frameworks for complex calculations and data analysis. The impact of

OOP is evident in the widespread adoption of languages like Java,

C++, Python, and C#, which are designed to support OOP principles.

These languages have empowered developers to create robust,

scalable, and maintainable software systems that have transformed

industries and improved daily life. The ability to model real-world

entities and relationships accurately has led to more intuitive and user-

friendly software experiences. Furthermore, the modularity and

reusability of OOP have accelerated software development cycles and

reduced maintenance costs, allowing organizations to respond more

quickly to changing market demands. The principles of OOP have

also influenced software design patterns and architectural styles,

contributing to the development of better software engineering

practices. In essence, OOP has become a cornerstone of modern

software development, enabling the creation of complex and

sophisticated systems that address a wide range of real-world

challenges.

42
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Object and Class

2.1 Objects and Classes in C++

1. Introduction to Object-Oriented Programming (OOP)

C++ is an object-oriented programming (OOP) language that

focuses on objects and classes to structure programs efficiently. OOP

concepts include encapsulation, inheritance, polymorphism, and

abstraction, with objects and classes being the foundation.

What is a Class?

A class is a user-defined data type that acts as a blueprint for

creating objects. It defines the attributes (data members) and

behavior (member functions) of an object.

What is an Object?

An object is an instance of a class. When a class is defined, no

memory is allocated until an object is created. Each object has its own

copy of data members but shares the same functions.

2. Declaring a Class in C++

The syntax for defining a class:

class ClassName {

 // Access specifier

 private:

 // Data members (variables)

 public:

 // Member functions (methods)

};

Example: Defining a Class

#include <iostream>

using namespace std;

// Class definition

class Car {

 public:

 string brand;

 int year;

 // Function to display car details

 void showDetails() {

 cout << "Brand: " << brand << ", Year: " << year << endl;

43
MATS Centre for Distance and Online Education, MATS University

Notes }

};

int main() {

 Car car1; // Object creation

 car1.brand = "Toyota";

 car1.year = 2022;

 car1.showDetails(); // Calling function

 return 0;

}

Output:

Brand: Toyota, Year: 2022

3. Access Specifiers in Classes

Access specifiers define the scope of class members. There are three

main types:

1. Private (default)

• Data members are only accessible inside the class.

• Cannot be accessed directly by objects.

class Example {

 private:

 int secretNumber;

};

2. Public

• Members can be accessed directly from outside the class.

class Example {

 public:

 int number;

};

3. Protected

• Similar to private, but accessible in derived classes.

class Example {

 protected:

 int protectedVar;

};

4. Defining and Accessing Class Members

We can define member functions inside or outside the class.

44
MATS Centre for Distance and Online Education, MATS University

Notes Example 1: Inside Class Definition

class Student {

 public:

 string name;

 void display() {

 cout << "Student Name: " << name << endl;

 }

};

Example 2: Outside Class Definition

class Student {

 public:

 string name;

 void display(); // Function declaration

};

// Function definition outside the class

void Student::display() {

 cout << "Student Name: " << name << endl;

}

5. Constructors in C++

A constructor is a special function that initializes objects

automatically when they are created. It has the same name as the

class and no return type.

Types of Constructors

1. Default Constructor

2. Parameterized Constructor

3. Copy Constructor

Example: Default Constructor

class Car {

 public:

 string brand;

 Car() { // Constructor

 cout << "A new car object is created!" << endl;

 }

};

int main() {

45
MATS Centre for Distance and Online Education, MATS University

Notes Car car1; // Constructor is called automatically

 return 0;

}

Output:

A new car object is created!

Example: Parameterized Constructor

class Car {

 public:

 string brand;

 int year;

 Car(string b, int y) { // Constructor with parameters

 brand = b;

 year = y;

 }

 void display() {

 cout << "Brand: " << brand << ", Year: " << year << endl;

 }

};

int main() {

 Car car1("Ford", 2023); // Passing arguments

 car1.display();

 return 0;

}

6. Destructors in C++

A destructor is a special function that is automatically invoked when

an object goes out of scope. It releases resources such as memory. It

has the same name as the class but with a tilde (~) symbol.

Example: Destructor

class Car {

 public:

 Car() {

 cout << "Car object created!" << endl;

 }

 ~Car() {

46
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Car object destroyed!" << endl;

 }

};

int main() {

 Car car1;

 return 0;

}

Output:

Car object created!

Car object destroyed!

7. Objects as Function Arguments

Objects can be passed as parameters in functions.

Example: Passing Object to Function

class Student {

 public:

 string name;

 void display() {

 cout << "Student Name: " << name << endl;

 }

};

// Function to accept an object as parameter

void showStudent(Student s) {

 s.display();

}

int main() {

 Student s1;

 s1.name = "John";

 showStudent(s1); // Passing object

 return 0;

}

8. Array of Objects

We can create an array of objects just like an array of integers.

47
MATS Centre for Distance and Online Education, MATS University

Notes Example: Storing Multiple Objects in an Array

class Car {

 public:

 string brand;

 int year;

 void showDetails() {

 cout << "Brand: " << brand << ", Year: " << year << endl;

 }

};

int main() {

 Car cars[2] = {{"Ford", 2023}, {"BMW", 2022}};

 for (int i = 0; i < 2; i++) {

 cars[i].showDetails();

 }

 return 0;

}

9. Pointers to Objects

Pointers can be used to handle objects dynamically.

Example: Pointer to an Object

class Car {

 public:

 string brand;

 int year;

 void showDetails() {

 cout << "Brand: " << brand << ", Year: " << year << endl;

 }

};

int main() {

 Car *ptr = new Car;

 ptr->brand = "Audi";

 ptr->year = 2024;

 ptr->showDetails();

48
MATS Centre for Distance and Online Education, MATS University

Notes delete ptr; // Free memory

 return 0;

}

• A class is a blueprint for creating objects.

• An object is an instance of a class.

• Access specifiers (public, private, protected) control visibility.

• Constructors initialize objects automatically.

• Destructors free resources when an object is destroyed.

• Objects can be passed to functions and stored in arrays.

• Pointers allow dynamic object management.

This Module provides a detailed guide to Objects and Classes in C++

with examples and syntax, making it easier to understand object-

oriented programming concepts.

49
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Member Function

2.2 Member Functions in C++

In C++, a class is a user-defined data type that can contain data

members (variables) and member functions (methods). Member

functions are functions that belong to a class and operate on its data

members. They provide encapsulation by bundling data and behavior

together.

Member functions are used to manipulate the data members,

provide functionality, and enforce data hiding. They are declared

inside the class and can be defined either inside or outside the class.

Syntax of Member Function

Declaring a Member Function in a Class

class ClassName {

public:

 void functionName() {

 // Function body

 }

};

Example of a Simple Member Function

#include <iostream>

using namespace std;

class Car {

public:

 void display() {

 cout << "This is a car." << endl;

 }

};

int main() {

 Car myCar;

 myCar.display();

 return 0;

}

Output:

This is a car.

50
MATS Centre for Distance and Online Education, MATS University

Notes Types of Member Functions

Member functions can be classified into the following types:

1. Simple Member Function

2. Inline Member Function

3. Outside Class Definition

4. Static Member Function

5. Constant Member Function

6. Friend Function

7. Virtual Member Function

1. Simple Member Function

A normal member function is declared inside the class and defined

inside the class itself.

Example:

#include <iostream>

using namespace std;

class Student {

public:

 void showMessage() {

 cout << "Hello, Student!" << endl;

 }

};

int main() {

 Student obj;

 obj.showMessage();

 return 0;

}

Output:

Hello, Student!

2. Inline Member Function

If a function is small, it can be defined directly inside the class using

the inline keyword.

Example:

#include <iostream>

using namespace std;

51
MATS Centre for Distance and Online Education, MATS University

Notes

class Square {

public:

 inline int calculate(int x) {

 return x * x;

 }

};

int main() {

 Square obj;

 cout << "Square of 4 is: " << obj.calculate(4);

 return 0;

}

Output:

Square of 4 is: 16

3. Member Function Defined Outside the Class

Member functions can also be defined outside the class using the

scope resolution operator ::.

Example:

#include <iostream>

using namespace std;

class Person {

public:

 void display(); // Function declaration

};

// Function definition outside the class

void Person::display() {

 cout << "Hello from outside the class!" << endl;

}

int main() {

 Person obj;

 obj.display();

 return 0;

}

52
MATS Centre for Distance and Online Education, MATS University

Notes Output:

Hello from outside the class!

4. Static Member Function

A static member function can be called without creating an object of

the class. It can only access static data members.

Example:

cpp

CopyEdit

#include <iostream>

using namespace std;

class Counter {

private:

 static int count;

public:

 static void showCount() {

 cout << "Count: " << count << endl;

 }

};

int Counter::count = 5; // Initializing static variable

int main() {

 Counter::showCount(); // Calling static function

 return 0;

}

Output:

Count: 5

5. Constant Member Function

A constant member function ensures that the function does not

modify any data members of the class.

Example:

#include <iostream>

using namespace std;

53
MATS Centre for Distance and Online Education, MATS University

Notes class Demo {

public:

 void show() const {

 cout << "This is a constant function." << endl;

 }

};

int main() {

 Demo obj;

 obj.show();

 return 0;

}

Output:

This is a constant function.

6. Friend Function

A friend function is not a member of the class but has access to

private and protected members.

Example:

#include <iostream>

using namespace std;

class Box {

private:

 int length;

public:

 Box() { length = 10; }

 friend void showLength(Box b);

};

void showLength(Box b) {

 cout << "Length: " << b.length << endl;

}

int main() {

 Box obj;

 showLength(obj);

54
MATS Centre for Distance and Online Education, MATS University

Notes return 0;

}

Output:

Length: 10

7. Virtual Member Function

A virtual function is used in inheritance to achieve runtime

polymorphism.

Example:

#include <iostream>

using namespace std;

class Base {

public:

 virtual void show() {

 cout << "Base class function" << endl;

 }

};

class Derived : public Base {

public:

 void show() override {

 cout << "Derived class function" << endl;

 }

};

int main() {

 Base* basePtr;

 Derived obj;

 basePtr = &obj;

 basePtr->show();

 return 0;

}

Output:

Derived class function

Member functions in C++ enhance encapsulation, data hiding, and

modularity. They are integral to Object-Oriented Programming

(OOP). By understanding different types of member functions such as

55
MATS Centre for Distance and Online Education, MATS University

Notes inline, static, friend, constant, and virtual functions, programmers can

effectively design efficient and structured C++ programs.

2.3 Array within the Class in C++

In C++, an array within a class is used when we need to store multiple

values of the same type as part of an object. Arrays within a class

allow storing multiple elements inside an instance of a class, making

it useful for handling structured data efficiently.

By defining an array as a data member of a class, we can manipulate

the elements using member functions.

1. Declaring an Array Inside a Class

We can declare an array as a member variable inside a class. The

syntax is similar to normal array declaration, but it is defined inside

the class scope.

Syntax:

class ClassName {

 private:

 data_type array_name[size]; // Array as a class member

 public:

 void memberFunction();

};

Key Points:

• The array can be placed under private or public access

specifier.

• The array size should be a constant or fixed at compile time.

• We use member functions to initialize and access array

elements.

2. Example: Array within a Class

Example 1: Storing and Displaying Student Marks

#include <iostream>

using namespace std;

class Student {

private:

 int marks[5]; // Array as a member of class

public:

 void inputMarks() {

56
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Enter 5 subject marks: ";

 for(int i = 0; i < 5; i++) {

 cin >> marks[i]; // Taking input for each element

 }

 }

 void displayMarks() {

 cout << "Student Marks: ";

 for(int i = 0; i < 5; i++) {

 cout << marks[i] << " "; // Displaying array elements

 }

 cout << endl;

 }

};

int main() {

 Student s1; // Creating an object

 s1.inputMarks();

 s1.displayMarks();

 return 0;

}

Output:

Enter 5 subject marks: 78 89 92 85 88

Student Marks: 78 89 92 85 88

Explanation:

• The class Student has an integer array marks[5] as a private

member.

• inputMarks() function takes input for 5 subjects.

• displayMarks() function prints the stored values.

• The main() function creates an object s1, calls both member

functions, and displays marks.

3. Initializing Arrays in a Class Using a Constructor

We can initialize an array inside a class using a constructor.

Example 2: Using Constructor for Initialization

#include <iostream>

using namespace std;

57
MATS Centre for Distance and Online Education, MATS University

Notes

class Numbers {

private:

 int arr[5];

public:

 Numbers() { // Constructor to initialize array

 for(int i = 0; i < 5; i++) {

 arr[i] = i * 10; // Assigning values 0, 10, 20, 30, 40

 }

 }

 void displayArray() {

 cout << "Array Elements: ";

 for(int i = 0; i < 5; i++) {

 cout << arr[i] << " ";

 }

 cout << endl;

 }

};

int main() {

 Numbers obj; // Object created, constructor initializes array

 obj.displayArray();

 return 0;

}

Output:

Array Elements: 0 10 20 30 40

Explanation:

• The constructor initializes the array values.

• The displayArray() function prints the array elements.

4. Array as a Public Member in a Class

Arrays can be public members, allowing direct access from objects.

Example 3: Public Array Access

#include <iostream>

using namespace std;

class Data {

58
MATS Centre for Distance and Online Education, MATS University

Notes public:

 int values[3]; // Public array

 void showValues() {

 cout << "Stored Values: ";

 for(int i = 0; i < 3; i++) {

 cout << values[i] << " ";

 }

 cout << endl;

 }

};

int main() {

 Data obj;

 obj.values[0] = 10;

 obj.values[1] = 20;

 obj.values[2] = 30;

 obj.showValues();

 return 0;

}

Output:

Stored Values: 10 20 30

Explanation:

• The array values[3] is public, so we can assign values directly.

• The function showValues() prints the array elements.

Note: Public arrays allow direct modification but may violate

encapsulation.

5. Array of Objects in a Class

Instead of an array as a class member, we can have an array of

objects.

Example 4: Array of Objects

#include <iostream>

using namespace std;

class Employee {

private:

59
MATS Centre for Distance and Online Education, MATS University

Notes int id;

 string name;

public:

 void setDetails(int empId, string empName) {

 id = empId;

 name = empName;

 }

 void display() {

 cout << "ID: " << id << ", Name: " << name << endl;

 }

};

int main() {

 Employee employees[3]; // Array of objects

 employees[0].setDetails(101, "Alice");

 employees[1].setDetails(102, "Bob");

 employees[2].setDetails(103, "Charlie");

 cout << "Employee Details: " << endl;

 for(int i = 0; i < 3; i++) {

 employees[i].display();

 }

 return 0;

}

Output:

Employee Details:

ID: 101, Name: Alice

ID: 102, Name: Bob

ID: 103, Name: Charlie

Explanation:

• Employee class has setDetails() and display() functions.

• employees[3] is an array of objects, storing multiple

employee records.

60
MATS Centre for Distance and Online Education, MATS University

Notes 6. Dynamic Arrays in a Class

If the array size is unknown at compile-time, we can use dynamic

memory allocation.

Example 5: Using Dynamic Arrays

#include <iostream>

using namespace std;

class DynamicArray {

private:

 int* arr;

 int size;

public:

 DynamicArray(int s) {

 size = s;

 arr = new int[size]; // Dynamically allocating memory

 }

 void inputValues() {

 cout << "Enter " << size << " values: ";

 for(int i = 0; i < size; i++) {

 cin >> arr[i];

 }

 }

 void displayValues() {

 cout << "Stored Values: ";

 for(int i = 0; i < size; i++) {

 cout << arr[i] << " ";

 }

 cout << endl;

 }

 ~DynamicArray() {

 delete[] arr; // Free allocated memory

 }

};

61
MATS Centre for Distance and Online Education, MATS University

Notes int main() {

 DynamicArray obj(3);

 obj.inputValues();

 obj.displayValues();

 return 0;

}

Output:

Enter 3 values: 5 10 15

Stored Values: 5 10 15

Conclusion

• Arrays within a class allow storing multiple values inside an

object.

• We can use constructors, member functions, and dynamic

allocation for better management.

• Encapsulation should be maintained by keeping arrays as

private members.

2.4 Memory Allocation of Objects in C++

Introduction to Memory Allocation in C++

Memory allocation refers to the process of assigning memory space

for variables, objects, and data structures during the execution of a

program. In C++, objects can be allocated memory in two ways:

1. Static Memory Allocation – Memory is allocated at compile

time.

2. Dynamic Memory Allocation – Memory is allocated at

runtime using new and delete.

Understanding memory allocation is crucial for efficient resource

management and avoiding memory leaks.

1. Static Memory Allocation of Objects

In static memory allocation, memory is allocated during compile time,

and the allocated memory remains fixed throughout the program

execution.

Syntax:

class ClassName {

 // Class members

};

int main() {

62
MATS Centre for Distance and Online Education, MATS University

Notes ClassName obj; // Static allocation

}

Example:

#include <iostream>

using namespace std;

class Student {

 public:

 string name;

 int age;

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student s1; // Memory allocated statically

 s1.name = "John";

 s1.age = 20;

 s1.display();

 return 0;

}

Output:

Name: John, Age: 20

Key Points:

• Memory is allocated at compile time.

• Objects are created in the stack memory.

• Memory is automatically deallocated when the object goes out

of scope.

2. Dynamic Memory Allocation of Objects

In dynamic memory allocation, memory is allocated at runtime using

the new keyword, and the object is stored in heap memory. The

allocated memory must be manually deallocated using delete.

Syntax:

ClassName* obj = new ClassName(); // Dynamic allocation

delete obj; // Deallocation

63
MATS Centre for Distance and Online Education, MATS University

Notes Example:

#include <iostream>

using namespace std;

class Student {

 public:

 string name;

 int age;

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student* s1 = new Student(); // Memory allocated dynamically

 s1->name = "Alice";

 s1->age = 22;

 s1->display();

 delete s1; // Deallocating memory

 return 0;

}

Output:

Name: Alice, Age: 22

Key Points:

• Memory is allocated at runtime.

• Objects are stored in heap memory.

• We must use delete to free allocated memory and prevent

memory leaks.

3. Dynamic Memory Allocation for Arrays of Objects

Sometimes, we need to allocate memory dynamically for an array of

objects.

Syntax:

ClassName* objArray = new ClassName[size]; // Allocating an array

delete[] objArray; // Deallocating the array

64
MATS Centre for Distance and Online Education, MATS University

Notes Example:

#include <iostream>

using namespace std;

class Student {

 public:

 string name;

 int age;

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 int n = 3;

 Student* students = new Student[n]; // Array of objects

 students[0].name = "John";

 students[0].age = 20;

 students[1].name = "Emma";

 students[1].age = 21;

 students[2].name = "Mike";

 students[2].age = 19;

 for (int i = 0; i < n; i++) {

 students[i].display();

 }

 delete[] students; // Freeing allocated memory

 return 0;

}

Output:

Name: John, Age: 20

Name: Emma, Age: 21

65
MATS Centre for Distance and Online Education, MATS University

Notes Name: Mike, Age: 19

Key Points:

• We use new to allocate memory for an array of objects.

• delete[] must be used to deallocate memory for arrays.

4. Constructor and Destructor in Dynamic Memory Allocation

When objects are created dynamically, constructors are

automatically called, but we must manually call the destructor by

using delete.

Example:

#include <iostream>

using namespace std;

class Student {

 public:

 Student() {

 cout << "Constructor called!" << endl;

 }

 ~Student() {

 cout << "Destructor called!" << endl;

 }

};

int main() {

 Student* s1 = new Student(); // Constructor is called

 delete s1; // Destructor must be explicitly called using delete

 return 0;

}

Output:

Constructor called!

Destructor called!

Key Points:

• Constructor runs automatically when an object is created.

• Destructor must be invoked manually for dynamically

allocated objects using delete.

66
MATS Centre for Distance and Online Education, MATS University

Notes 5. Memory Leak and Its Prevention

What is a Memory Leak?

A memory leak occurs when dynamically allocated memory is not

deallocated properly, leading to excessive memory usage and

performance issues.

Example of Memory Leak:

void createObject() {

 int* ptr = new int(10); // Memory allocated but not deleted

}

In this case, ptr is allocated memory but is never deleted, leading to a

memory leak.

Preventing Memory Leaks:

Always use delete or delete[] after dynamic memory allocation.

void createObject() {

 int* ptr = new int(10);

 delete ptr; // Properly deallocating memory

}

6. Smart Pointers for Automatic Memory Management

C++ provides smart pointers (available in the <memory> library)

that automatically manage memory, preventing leaks.

Example using unique_ptr:

#include <iostream>

#include <memory>

using namespace std;

class Student {

 public:

 Student() {

 cout << "Constructor called!" << endl;

 }

 ~Student() {

 cout << "Destructor called!" << endl;

 }

};

int main() {

 unique_ptr<Student> s1 = make_unique<Student>(); // No need

for delete

67
MATS Centre for Distance and Online Education, MATS University

Notes

 return 0;

}

Output:

Constructor called!

Destructor called!

Key Benefits:

• No need to use delete, as memory is automatically managed.

• Helps prevent memory leaks.

Conclusion

• Static memory allocation is handled automatically by the

compiler and uses stack memory.

• Dynamic memory allocation uses heap memory and requires

manual deallocation using delete.

• Arrays of objects can also be allocated dynamically using

new[] and must be freed using delete.

• Memory leaks occur when memory is not properly

deallocated, which can be prevented using delete or smart

pointers.

By understanding these concepts, programmers can write efficient and

optimized C++ programs while effectively managing memory.

This explanation provides a detailed yet structured approach to

memory allocation in C++, covering syntax, theory, examples, and

best practices.

2.5 Friend Function in C++

Introduction to Friend Function

In C++, data hiding is an important concept in object-oriented

programming (OOP). The private and protected members of a class

cannot be accessed directly from outside the class. However,

sometimes, we need to access these members from non-member

functions.

To achieve this, C++ provides Friend Functions, which allow access

to private and protected members of a class without being a member

of that class.

A friend function is declared inside the class but defined outside the

class with the keyword friend.

Syntax of Friend Function

The general syntax of a friend function in C++ is:

68
MATS Centre for Distance and Online Education, MATS University

Notes class ClassName {

private:

 int privateData;

public:

 ClassName() : privateData(0) {}

 // Friend function declaration

 friend void friendFunction(ClassName obj);

};

// Definition of friend function

void friendFunction(ClassName obj) {

 cout << "Private data: " << obj.privateData;

}

Key Points in Syntax:

1. The friend function is declared inside the class using the

friend keyword.

2. The friend function is not a member function of the class but

can access private and protected data.

3. The friend function is defined outside the class like a normal

function.

Example: Using Friend Function in C++

Example 1: Accessing Private Members Using a Friend Function

#include <iostream>

using namespace std;

class Sample {

private:

 int secretNumber;

public:

 Sample(int num) : secretNumber(num) {}

 // Friend function declaration

 friend void showSecret(Sample obj);

};

69
MATS Centre for Distance and Online Education, MATS University

Notes

// Friend function definition

void showSecret(Sample obj) {

 cout << "The secret number is: " << obj.secretNumber << endl;

}

int main() {

 Sample obj(42);

 showSecret(obj); // Calling friend function

 return 0;

}

Output:

The secret number is: 42

Explanation:

• The class Sample has a private member secretNumber.

• The function showSecret() is declared as a friend.

• Since showSecret() is a friend function, it can access the

private data of the Sample class.

Friend Function with Multiple Classes

A friend function can be used to access private members of multiple

classes.

Example 2: Friend Function Accessing Two Classes

#include <iostream>

using namespace std;

class ClassB; // Forward declaration

class ClassA {

private:

 int dataA;

public:

 ClassA(int value) : dataA(value) {}

 // Declaring a friend function

 friend void addValues(ClassA objA, ClassB objB);

};

70
MATS Centre for Distance and Online Education, MATS University

Notes class ClassB {

private:

 int dataB;

public:

 ClassB(int value) : dataB(value) {}

 // Declaring the same friend function

 friend void addValues(ClassA objA, ClassB objB);

};

// Friend function definition

void addValues(ClassA objA, ClassB objB) {

 cout << "Sum: " << objA.dataA + objB.dataB << endl;

}

int main() {

 ClassA objA(10);

 ClassB objB(20);

 addValues(objA, objB);

 return 0;

}

Output:

Sum: 30

Explanation:

• ClassA and ClassB each have a private variable.

• The addValues() friend function accesses private members of

both classes and performs an addition.

Friend Function in Operator Overloading

A friend function is commonly used for operator overloading in C++.

Example 3: Overloading the + Operator Using Friend Function

#include <iostream>

using namespace std;

class Number {

private:

 int value;

71
MATS Centre for Distance and Online Education, MATS University

Notes public:

 Number(int v) : value(v) {}

 // Friend function to overload the '+' operator

 friend Number operator+(Number obj1, Number obj2);

 void display() {

 cout << "Value: " << value << endl;

 }

};

// Friend function definition

Number operator+(Number obj1, Number obj2) {

 return Number(obj1.value + obj2.value);

}

int main() {

 Number n1(5), n2(10);

 Number sum = n1 + n2;

 sum.display();

 return 0;

}

Output:

Value: 15

Explanation:

• The + operator is overloaded using a friend function.

• The friend function accesses private members and returns a

new object.

Advantages of Friend Functions

1. Access to Private Data – Friend functions can access private

and protected data of a class.

2. Useful in Operator Overloading – Friend functions are

widely used for operator overloading.

3. Multiple Class Access – A single friend function can be used

to access private members of multiple classes.

4. Encapsulation Is Maintained – Even though a friend

function accesses private members, it does not belong to the

class.

72
MATS Centre for Distance and Online Education, MATS University

Notes Limitations of Friend Functions

1. Breaks Data Hiding – Friend functions break the principle

of encapsulation because they can access private members.

2. Increases Coupling – Since a friend function is not a member

of the class, it increases dependencies between classes.

3. Not Inherited – Friend functions are not inherited by derived

classes.

4. Security Issues – Excessive use of friend functions may

expose sensitive data.

The friend function in C++ allows accessing private and protected

members of a class without being a member of that class. It is

declared inside the class using the friend keyword and defined outside

like a normal function. Friend functions are commonly used for

operator overloading and accessing multiple classes but should be

used carefully to avoid breaking encapsulation.

Key Takeaways

• Declared inside a class using friend but defined outside the

class.

• Not a member function but can access private and

protected members.

• Can be used for multiple classes and operator overloading.

• Should be used carefully to maintain data security.

By understanding friend functions, programmers can effectively

manage data access while maintaining flexibility in object-oriented

design.

2.6 Local Class in C++

In C++, a local class is a class that is defined within a function or a

block scope. Unlike global or member classes, a local class is

accessible only within the function where it is declared. Local classes

are useful for encapsulation and hiding implementation details that

are only relevant within a specific function.

Local classes can be used for:

• Encapsulating helper functionality within a function.

• Avoiding namespace pollution, as they are not accessible

outside the function.

• Enhancing security, since they are not accessible from other

functions.

73
MATS Centre for Distance and Online Education, MATS University

Notes Syntax of Local Class in C++

A local class is defined inside a function, but its methods can be

declared inside or outside the function. The syntax is:

void function_name() {

 class LocalClass { // Local class declaration

 public:

 void display() {

 std::cout << "Inside Local Class" << std::endl;

 }

 };

 LocalClass obj; // Creating an object of the local class

 obj.display(); // Calling the function

}

Key points about local classes:

1. Defined within a function and not accessible outside.

2. Can access only static variables of the enclosing function.

3. Cannot have static data members.

4. Cannot access non-static variables or parameters of the

function.

5. Objects of a local class can be created only within the function

where it is defined.

Example 1: Basic Local Class Usage

#include <iostream>

using namespace std;

void myFunction() {

 class LocalClass { // Local class inside a function

 public:

 void showMessage() {

 cout << "This is a local class function!" << endl;

 }

 };

 LocalClass obj; // Creating an object

 obj.showMessage(); // Calling the function

}

74
MATS Centre for Distance and Online Education, MATS University

Notes int main() {

 myFunction(); // Call function that contains local class

 return 0;

}

Output:

This is a local class function!

Accessing Static Variables of Enclosing Function

Since local classes cannot access non-static variables of the enclosing

function, they can only use static variables.

#include <iostream>

using namespace std;

void myFunction() {

 static int count = 0; // Static variable

 class LocalClass {

 public:

 void increment() {

 count++; // Accessing static variable

 cout << "Count: " << count << endl;

 }

 };

 LocalClass obj1, obj2;

 obj1.increment();

 obj2.increment();

}

int main() {

 myFunction();

 myFunction(); // Calling again to show static behavior

 return 0;

}

Output:

Count: 1

Count: 2

Count: 3

Count: 4

75
MATS Centre for Distance and Online Education, MATS University

Notes Limitations of Local Class

1. Cannot Access Non-Static Variables

• Local classes cannot directly access the non-static

variables of the enclosing function.

#include <iostream>

using namespace std;

void myFunction() {

 int x = 10; // Non-static variable

 class LocalClass {

 public:

 void display() {

 // cout << "Value of x: " << x; // Error: Cannot access non-

static variables

 }

 };

 LocalClass obj;

 obj.display();

}

int main() {

 myFunction();

 return 0;

}

2. Cannot Have Static Data Members

• Unlike normal classes, local classes cannot have static

data members.

#include <iostream>

using namespace std;

void myFunction() {

 class LocalClass {

 public:

 static int x; // Error: Static data members not allowed

 };

}

76
MATS Centre for Distance and Online Education, MATS University

Notes

int main() {

 myFunction();

 return 0;

}

Compiler Error:

Error: Static data members are not allowed in local classes

3. Cannot Use Friend Functions or Templates

• Local classes cannot have friend functions.

• They cannot be used as template arguments directly.

Example 2: Using Local Class with Function Parameters

A local class can work with parameters passed to a function, but it

cannot directly access them unless they are passed to the local class as

arguments.

#include <iostream>

using namespace std;

void calculateSquare(int num) {

 class LocalClass {

 public:

 int square(int x) {

 return x * x;

 }

 };

 LocalClass obj;

 cout << "Square of " << num << " is: " << obj.square(num) <<

endl;

}

int main() {

 calculateSquare(5);

 calculateSquare(7);

 return 0;

}

Output:

Square of 5 is: 25

77
MATS Centre for Distance and Online Education, MATS University

Notes Square of 7 is: 49

Example 3: Using Local Class with Pointers

#include <iostream>

using namespace std;

void pointerExample() {

 class LocalClass {

 public:

 void printMessage(const char* message) {

 cout << "Message: " << message << endl;

 }

 };

 LocalClass obj;

 obj.printMessage("Hello from Local Class!");

}

int main() {

 pointerExample();

 return 0;

}

Output:

Message: Hello from Local Class!

Advantages of Local Class

1. Encapsulation:

• Hides the class implementation inside the function.

2. Memory Efficiency:

• Objects of local classes exist only while the function

executes, saving memory.

3. Better Readability & Maintenance:

• Keeps related logic in one place, reducing global scope

pollution.

Local classes in C++ provide a powerful way to encapsulate logic

within a function, ensuring that certain classes remain hidden from the

rest of the program. However, they come with limitations, such as the

78
MATS Centre for Distance and Online Education, MATS University

Notes inability to have static data members or access non-static variables of

the enclosing function.

2.7 Constructors in C++

A constructor is a special member function in C++ that initializes

objects of a class. It has the same name as the class and is

automatically called when an object is created.

Key Features of Constructors:

• They do not return any value (not even void).

• They are invoked automatically when an object is created.

• They initialize the object’s data members.

• They can be overloaded to handle different types of

initialization.

Types of Constructors in C++

1. Parameterized Constructor

2. Multiple Constructors (Constructor Overloading)

3. Default Argument Constructor

1. Parameterized Constructor

A parameterized constructor is used to initialize an object with

specific values at the time of creation. It takes arguments and assigns

them to object data members.

Syntax:

class ClassName {

public:

 ClassName(data_type param1, data_type param2) {

 // Constructor body

 }

};

Example:

#include <iostream>

using namespace std;

class Student {

private:

 string name;

 int age;

public:

 // Parameterized Constructor

79
MATS Centre for Distance and Online Education, MATS University

Notes Student(string studentName, int studentAge) {

 name = studentName;

 age = studentAge;

 }

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student s1("John", 20); // Passing values at object creation

 Student s2("Alice", 22);

 s1.display();

 s2.display();

 return 0;

}

Output:

Name: John, Age: 20

Name: Alice, Age: 22

In this example:

• The constructor Student(string, int) initializes objects with

values.

• When s1 and s2 are created, their data members are assigned

values.

2. Multiple Constructors (Constructor Overloading)

C++ allows multiple constructors with different parameters in the

same class. This is called constructor overloading.

Syntax:

class ClassName {

public:

 ClassName() { ... } // Default Constructor

 ClassName(int x) { ... } // Parameterized Constructor

 ClassName(int x, int y) { ... } // Another Parameterized Constructor

};

80
MATS Centre for Distance and Online Education, MATS University

Notes Example:

#include <iostream>

using namespace std;

class Rectangle {

private:

 int length, width;

public:

 // Default Constructor

 Rectangle() {

 length = 0;

 width = 0;

 }

 // Constructor with one parameter

 Rectangle(int side) {

 length = width = side; // Square

 }

 // Constructor with two parameters

 Rectangle(int l, int w) {

 length = l;

 width = w;

 }

 void display() {

 cout << "Length: " << length << ", Width: " << width << endl;

 }

};

int main() {

 Rectangle r1; // Calls Default Constructor

 Rectangle r2(5); // Calls Constructor with one parameter

 Rectangle r3(4, 6); // Calls Constructor with two parameters

 r1.display();

 r2.display();

81
MATS Centre for Distance and Online Education, MATS University

Notes r3.display();

 return 0;

}

Output:

Length: 0, Width: 0

Length: 5, Width: 5

Length: 4, Width: 6

Here, the constructor is overloaded to accept zero, one, or two

parameters, allowing different ways to create objects.

3. Default Argument Constructor

A default argument constructor allows assigning default values to

parameters. If no arguments are provided, the default values are used.

Syntax:

class ClassName {

public:

 ClassName(data_type param1 = default_value1, data_type param2

= default_value2) {

 // Constructor body

 }

};

Example:

#include <iostream>

using namespace std;

class Car {

private:

 string brand;

 int price;

public:

 // Default Argument Constructor

 Car(string carBrand = "Toyota", int carPrice = 500000) {

 brand = carBrand;

 price = carPrice;

 }

 void display() {

82
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Brand: " << brand << ", Price: " << price << endl;

 }

};

int main() {

 Car c1; // Uses default values

 Car c2("Honda"); // Uses default price

 Car c3("BMW", 1200000); // Uses provided values

 c1.display();

 c2.display();

 c3.display();

 return 0;

}

Output:

Brand: Toyota, Price: 500000

Brand: Honda, Price: 500000

Brand: BMW, Price: 1200000

In this example:

• If no values are passed, default values ("Toyota", 500000) are

used.

• If one argument is passed ("Honda"), the default price is used.

• If both arguments are passed ("BMW", 1200000), they

override the defaults.

Table 2.1 Comparison of Constructor Types

Constructor Type Definition Usage Example

Parameterized

Constructor

Initializes an

object with

specific values

passed as

arguments.

Student s1("John", 20);

Multiple

Constructors

(Constructor

Overloading)

Different

constructors

handle different

ways of

initializing an

object.

Rectangle r1(); or

Rectangle r2(5,10);

83
MATS Centre for Distance and Online Education, MATS University

Notes

Default Argument

Constructor

Allows setting

default values for

parameters if no

arguments are

provided.

Car c1();, Car

c2("Honda");

Conclusion

• Constructors help in automatic object initialization when an

instance is created.

• Parameterized constructors allow passing values.

• Multiple constructors provide flexibility using constructor

overloading.

• Default argument constructors allow setting default values

while still allowing customization.

2.8 Dynamic Initialization of Objects, Copy Constructor, and

Dynamic Constructor in C++

1. Dynamic Initialization of Objects

Dynamic initialization refers to initializing objects at runtime using

values provided by the user or obtained during program execution.

This is particularly useful when the values needed for initialization are

not known at compile time.

C++ supports dynamic memory allocation using the new operator,

allowing objects to be created in the heap memory. This is useful for

efficient memory management, especially when working with

variable-sized data.

Syntax

class ClassName {

 data_type variable;

public:

 ClassName(data_type value) {

 variable = value; // Dynamic initialization

 }

};

Example: Dynamic Initialization of an Object

#include <iostream>

using namespace std;

class Rectangle {

84
MATS Centre for Distance and Online Education, MATS University

Notes int length, width;

public:

 // Constructor with dynamic initialization

 Rectangle(int l, int w) {

 length = l;

 width = w;

 }

 int area() {

 return length * width;

 }

};

int main() {

 int l, w;

 cout << "Enter length and width: ";

 cin >> l >> w;

 Rectangle r(l, w); // Dynamic Initialization

 cout << "Area of Rectangle: " << r.area() << endl;

 return 0;

}

Output:

Enter length and width: 10 5

Area of Rectangle: 50

Key Points:

• Object values are initialized at runtime using user input.

• Useful when object attributes depend on dynamic conditions.

• Helps in optimizing memory usage.

2. Copy Constructor

Theory

A copy constructor is a special constructor used to initialize an

object using another object of the same class. It creates a new

object by copying the values from an existing object.

By default, C++ provides a default copy constructor that performs

shallow copying. However, in cases where dynamic memory

85
MATS Centre for Distance and Online Education, MATS University

Notes allocation is used, we must define a custom copy constructor to

avoid memory issues like dangling pointers and duplicate memory

deallocation.

Syntax

class ClassName {

public:

 ClassName(const ClassName &obj) {

 // Copy constructor definition

 }

};

Example: Copy Constructor Demonstration

#include <iostream>

using namespace std;

class Student {

 string name;

 int age;

public:

 // Parameterized Constructor

 Student(string n, int a) {

 name = n;

 age = a;

 }

 // Copy Constructor

 Student(const Student &s) {

 name = s.name;

 age = s.age;

 }

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student s1("Alice", 21); // Normal Constructor

 Student s2 = s1; // Copy Constructor

86
MATS Centre for Distance and Online Education, MATS University

Notes

 cout << "Original Object: ";

 s1.display();

 cout << "Copied Object: ";

 s2.display();

 return 0;

}

Output:

Original Object: Name: Alice, Age: 21

Copied Object: Name: Alice, Age: 21

Key Points:

• The copy constructor is called when a new object is

initialized from an existing object.

• If not defined explicitly, the compiler provides a default copy

constructor.

• Required when objects use dynamic memory allocation,

preventing shallow copying issues.

3. Dynamic Constructor

Theory

A dynamic constructor is a constructor that allocates memory

dynamically using the new operator. This is particularly useful when

dealing with variable-sized arrays, strings, or objects with memory

allocated at runtime.

Since memory is allocated dynamically, it must be released manually

using the delete operator inside the destructor to prevent memory

leaks.

Syntax

class ClassName {

 data_type* ptr;

public:

 ClassName(size_t size) {

 ptr = new data_type[size]; // Dynamic memory allocation

 }

 ~ClassName() {

 delete[] ptr; // Releasing allocated memory

87
MATS Centre for Distance and Online Education, MATS University

Notes }

};

Example: Dynamic Constructor in Action

#include <iostream>

using namespace std;

class DynamicArray {

 int *arr;

 int size;

public:

 // Dynamic Constructor

 DynamicArray(int s) {

 size = s;

 arr = new int[size]; // Allocating memory dynamically

 for (int i = 0; i < size; i++) {

 arr[i] = i * 10; // Assigning values dynamically

 }

 }

 void display() {

 for (int i = 0; i < size; i++) {

 cout << arr[i] << " ";

 }

 cout << endl;

 }

 // Destructor to free memory

 ~DynamicArray() {

 delete[] arr;

 }

};

int main() {

 int n;

 cout << "Enter size of array: ";

 cin >> n;

88
MATS Centre for Distance and Online Education, MATS University

Notes DynamicArray dArr(n); // Creating an object dynamically

 cout << "Array elements: ";

 dArr.display();

 return 0;

}

Output:

Enter size of array: 5

Array elements: 0 10 20 30 40

Key Points:

• A dynamic constructor allocates memory at runtime using

new.

• It is useful for dynamic data structures like linked lists,

arrays, and trees.

• The destructor must release memory using delete [] to

prevent memory leaks

Table 2.2 Concepts of Constructor Types

Concept Description Key Feature

Dynamic

Initializati

on

Assigns values to

object attributes at

runtime.

Uses parameterized

constructors.

Copy

Construct

or

Initializes a new

object using an

existing object.

Avoids shallow copy issues

when using dynamic memory

allocation.

Dynamic

Construct

or

Allocates memory

dynamically using

new.

Must use delete in the

destructor to free memory.

When to Use?

• Dynamic Initialization: When values for object properties are

not known at compile time.

• Copy Constructor: When we need to create a duplicate

object while ensuring deep copying.

• Dynamic Constructor: When working with dynamic

memory allocation, such as arrays, linked lists, or large

data structures.

By understanding and implementing these concepts, programmers can

manage object-oriented memory allocation efficiently in C++.

89
MATS Centre for Distance and Online Education, MATS University

Notes 2.9 Destructors in C++

In object-oriented programming, constructors and destructors play a

crucial role in managing the lifecycle of an object. While a

constructor is used to initialize an object, a destructor is used to

clean up resources before an object is destroyed.

A destructor is a special member function in C++ that is

automatically called when an object goes out of scope or is explicitly

deleted. It is primarily used to release memory, close files, or perform

cleanup operations.

1. Destructor Syntax

The destructor in C++:

• Has the same name as the class, but prefixed with a tilde ~.

• Takes no parameters and has no return type (not even void).

• Is automatically invoked when an object is destroyed.

General Syntax:

class ClassName {

public:

 ~ClassName() {

 // Destructor body

 }

};

2. Basic Example of a Destructor

#include <iostream>

using namespace std;

class Demo {

public:

 // Constructor

 Demo() {

 cout << "Constructor is called!" << endl;

 }

 // Destructor

 ~Demo() {

 cout << "Destructor is called!" << endl;

 }

};

90
MATS Centre for Distance and Online Education, MATS University

Notes

int main() {

 Demo obj; // Object created

 return 0;

}

Output:

Constructor is called!

Destructor is called!

Explanation:

• When obj is created, the constructor executes.

• As soon as the program reaches the end of main(), the

destructor is automatically invoked, destroying obj.

3. Destructor in Dynamic Memory Allocation

Destructors are crucial when dynamically allocating memory to

prevent memory leaks.

Example: Using Destructor to Release Heap Memory

#include <iostream>

using namespace std;

class DynamicArray {

private:

 int* arr;

 int size;

public:

 // Constructor - Allocates memory

 DynamicArray(int s) {

 size = s;

 arr = new int[size];

 cout << "Memory allocated for array of size " << size << endl;

 }

 // Destructor - Deallocates memory

 ~DynamicArray() {

 delete[] arr;

 cout << "Memory deallocated" << endl;

 }

};

91
MATS Centre for Distance and Online Education, MATS University

Notes

int main() {

 DynamicArray obj(5);

 return 0;

}

Output:

Memory allocated for array of size 5

Memory deallocated

Explanation:

• The constructor dynamically allocates memory using new.

• The destructor releases the allocated memory using delete[],

preventing memory leaks.

4. When is a Destructor Called?

A destructor is automatically called in the following cases:

1. When a local object goes out of scope (at the end of a block).

2. When a dynamically allocated object is explicitly deleted

using delete.

3. For static objects at program termination.

4. For objects inside another object, when the containing

object is destroyed.

5. Destructor in Inheritance (Base & Derived Class)

In an inheritance hierarchy, destructors are called in reverse

order—first the derived class destructor, then the base class

destructor.

Example: Destructor in Inheritance

#include <iostream>

using namespace std;

class Base {

public:

 Base() { cout << "Base Constructor\n"; }

 ~Base() { cout << "Base Destructor\n"; }

};

class Derived : public Base {

public:

 Derived() { cout << "Derived Constructor\n"; }

 ~Derived() { cout << "Derived Destructor\n"; }

92
MATS Centre for Distance and Online Education, MATS University

Notes };

int main() {

 Derived obj;

 return 0;

}

Output:

Base Constructor

Derived Constructor

Derived Destructor

Base Destructor

Explanation:

• The Base class constructor runs first, followed by the

Derived class constructor.

• On destruction, the Derived class destructor runs first,

followed by the Base class destructor.

6. Destructor in Polymorphism (Virtual Destructor)

If a base class has a non-virtual destructor, deleting a derived class

object using a base class pointer causes undefined behavior.

Wrong Way (Without Virtual Destructor):

#include <iostream>

using namespace std;

class Base {

public:

 ~Base() { cout << "Base Destructor\n"; }

};

class Derived : public Base {

public:

 ~Derived() { cout << "Derived Destructor\n"; }

};

int main() {

 Base* ptr = new Derived();

 delete ptr; // Only Base Destructor is called!

 return 0;

}

93
MATS Centre for Distance and Online Education, MATS University

Notes Output:

Base Destructor

The Derived class destructor is never called!, leading to a memory

leak.

Correct Way (Using Virtual Destructor):

#include <iostream>

using namespace std;

class Base {

public:

 virtual ~Base() { cout << "Base Destructor\n"; }

};

class Derived : public Base {

public:

 ~Derived() { cout << "Derived Destructor\n"; }

};

int main() {

 Base* ptr = new Derived();

 delete ptr; // Both destructors are called correctly

 return 0;

}

Output:

Derived Destructor

Base Destructor

By declaring the destructor in the base class as virtual, C++ ensures

proper destructor chaining, avoiding memory leaks.

7. Destructor and Smart Pointers

C++11 introduced smart pointers to automate memory management.

Example: Using unique_ptr

#include <iostream>

#include <memory>

using namespace std;

class Demo {

public:

 Demo() { cout << "Constructor\n"; }

94
MATS Centre for Distance and Online Education, MATS University

Notes ~Demo() { cout << "Destructor\n"; }

};

int main() {

 unique_ptr<Demo> ptr = make_unique<Demo>();

 return 0;

}

Output:

Constructor

Destructor

Since unique_ptr automatically calls the destructor, no need for

explicit delete.

8. Key Points About Destructors

1. Only one destructor per class (cannot be overloaded).

2. Cannot be declared const, volatile, or static.

3. Should release resources (memory, files, database

connections).

4. Destructor execution order is reverse of constructor

execution.

5. Use virtual destructors in base classes when working with

inheritance.

6. Use smart pointers (unique_ptr, shared_ptr) to avoid

manual memory management.

Destructors in C++ ensure proper resource management by

automatically deallocating memory and releasing resources when

an object is destroyed. Understanding destructors is essential for

writing efficient and memory-safe programs, especially when working

with dynamic memory allocation, inheritance, and polymorphism.

By following best practices such as using virtual destructors in base

classes and leveraging smart pointers, developers can prevent

memory leaks and undefined behavior, leading to more robust and

maintainable C++ applications.

MCQs:

1. What is a class in C++?

A. A function that performs a specific task

B. A collection of variables

C. A blueprint for creating objects

D. A type of loop

95
MATS Centre for Distance and Online Education, MATS University

Notes

2. Which of the following is the correct way to create an object

of a class named Car?

A. Car();

B. object Car;

C. Car car1;

D. create Car;

3. What is a constructor in C++?

A. A function used to destroy an object

B. A special function used to initialize objects

C. A loop that repeats object creation

D. A static method

4. How many constructors can a class have in C++?

A. Only one

B. Only two

C. As many as needed (function overloading applies)

D. None

5. Which of the following constructor types does NOT take any

parameters?

A. Parameterized constructor

B. Copy constructor

C. Default constructor

D. Virtual constructor

6. What is the purpose of a destructor in C++?

A. To create new objects

B. To copy one object to another

C. To initialize member variables

D. To release resources when an object is destroyed

7. What is the symbol used to define a destructor in C++?

A. +

B. *

C. ~

D. !

96
MATS Centre for Distance and Online Education, MATS University

Notes

8. Which of the following statements about constructors is

TRUE?

A. Constructors must have a return type

B. Constructors can be virtual

C. Constructors can be overloaded

D. Constructors cannot be defined inside the class

9. What happens if you do not define a constructor in your

class?

A. The program will not compile

B. An error will be thrown

C. The compiler provides a default constructor

D. The object cannot be created

10. Which constructor is called when an object is initialized

with another object of the same class?

A. Default constructor

B. Destructor

C. Copy constructor

D. Static constructor

Short Questions:

1. What is a class in C++?

2. Define an object in the context of C++ OOP.

3. How do you declare and create an object of a class in C++?

4. What is the main purpose of a constructor in C++?

5. What is a default constructor?

6. Can constructors be overloaded in C++? If yes, how?

7. What is a parameterized constructor?

8. What is a copy constructor? When is it invoked?

9. What is the syntax for defining a destructor in C++?

10. What is the role of a destructor in a class?

11. Can a class have more than one destructor in C++? Why or

why not?

12. What happens if you don’t define a constructor or destructor in

your class?

97
MATS Centre for Distance and Online Education, MATS University

Notes Long Questions:

1. Define a class and an object in C++. How do they relate to each

other in the object-oriented paradigm? Provide an example.

2. Explain how to declare and define a class in C++. Then show

how to create and use an object of that class.

3. What is a constructor in C++? Describe its characteristics, rules,

and how it differs from a regular member function.

4. Write an algorithm that demonstrates the use of a default

constructor. Explain how it is automatically invoked.

5. What is a parameterized constructor? How is it useful in

initializing class members with specific values? Write a C++

example to support your explanation.

6. Describe the concept of constructor overloading in C++. Why is

it important? Provide a code example with at least two

different constructors.

7. What is a copy constructor in C++? When is it called? Write a

program to demonstrate its use and explain its behavior.

8. Define a destructor. Explain its purpose in C++ and how it

differs from a constructor. Provide an example where a

destructor is useful.

9. Can constructors or destructors be overloaded or inherited in

C++? Justify your answer with reasons and examples.

10. Explain how memory management is handled using

constructors and destructors in C++. Why are they crucial in

resource handling?

11. Write a complete C++ program that includes a class with all

types of constructors (default, parameterized, and copy) and a

destructor. Explain how each of them works during program

execution.

12. Discuss the lifecycle of an object in C++ from creation to

destruction. How do constructors and destructors play a role in

this lifecycle? Illustrate with a practical example.

98
MATS Centre for Distance and Online Education, MATS University

Notes
MODULE 3

OPERATOR OVERLOADING AND INHERITANCE

3.0 LEARNING OUTCOMES

By the end of this Module, students will be able to:

• Understand operator overloading (unary & binary) and its

rules.

• Implement binary operator overloading using friend functions.

• Learn type conversion in C++.

• Explore inheritance and its role in derived classes.

• Implement single, multilevel, multiple, hierarchical, and

hybrid inheritance.

• Understand virtual base classes and abstract classes.

• Explain constructors in derived classes and their execution

sequence.

• Learn about member classes and their significance.

99
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Operator Overloading: Unary and Binary

3.1 Operator Overloading in C++

Operator overloading is a feature in C++ that allows redefining the

behavior of operators when applied to user-defined data types

(objects). This enables objects to be manipulated in an intuitive

manner, just like primitive data types.

For example, using + to add two objects of a class makes the code

more readable and natural.

Syntax of Operator Overloading

The syntax for operator overloading is:

return_type operator symbol (parameters) {

 // Function body defining the operation

}

• operator is the keyword used for overloading.

• symbol is the operator being overloaded (+, -, *, etc.).

• The function can be defined inside the class or as a friend

function.

Unary Operator Overloading

Unary operators operate on a single operand. Examples include ++, -

-, -, and !.

Overloading Unary Operators

• When overloading a unary operator, no arguments are passed.

• The overloaded function must be a member function.

Example: Overloading the ++ Operator (Prefix & Postfix)

#include <iostream>

using namespace std;

class Counter {

 int value;

public:

 Counter() { value = 0; }

 void display() {

 cout << "Value: " << value << endl;

 }

 // Overloading Prefix ++

100
MATS Centre for Distance and Online Education, MATS University

Notes void operator++() {

 ++value;

 }

 // Overloading Postfix ++

 void operator++(int) {

 value++;

 }

};

int main() {

 Counter c1;

 cout << "Initial ";

 c1.display();

 ++c1; // Calls prefix operator++

 cout << "After Prefix Increment ";

 c1.display();

 c1++; // Calls postfix operator++

 cout << "After Postfix Increment ";

 c1.display();

 return 0;

}

Explanation

• operator++() handles prefix increment (++c1).

• operator++(int) handles postfix increment (c1++).

• No arguments are passed for prefix overload.

• The postfix version takes an int dummy parameter to

differentiate it from the prefix.

Output

Initial Value: 0

After Prefix Increment Value: 1

After Postfix Increment Value: 2

101
MATS Centre for Distance and Online Education, MATS University

Notes Binary Operator Overloading

Binary operators operate on two operands. Examples include +, -, *,

/, ==, etc.

Overloading Binary Operators

• Binary operators require two operands, so the function

typically takes one argument.

• It can be defined as a member function or a friend function.

Example: Overloading the + Operator

#include <iostream>

using namespace std;

class Complex {

 int real, imag;

public:

 Complex(int r = 0, int i = 0) {

 real = r;

 imag = i;

 }

 // Overloading the + operator

 Complex operator+(Complex obj) {

 Complex temp;

 temp.real = real + obj.real;

 temp.imag = imag + obj.imag;

 return temp;

 }

 void display() {

 cout << real << " + " << imag << "i" << endl;

 }

};

int main() {

 Complex c1(3, 4), c2(1, 2);

 Complex c3 = c1 + c2; // Calls overloaded + operator

 c3.display();

102
MATS Centre for Distance and Online Education, MATS University

Notes return 0;

}

Explanation

• The operator+ function takes an object as a parameter.

• It adds the real and imaginary parts separately.

• The function returns the result as a new object.

Output

4 + 6i

103
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Overloading Binary Operators Using Friends

3.2 Binary Operator Overloading Using Friend Function

A friend function can also be used for operator overloading when

two different objects need to be operated on.

Example: Overloading * Using a Friend Function

#include <iostream>

using namespace std;

class Multiply {

 int value;

public:

 Multiply(int v) { value = v; }

 // Friend function to overload *

 friend Multiply operator*(Multiply obj1, Multiply obj2);

 void display() {

 cout << "Result: " << value << endl;

 }

};

// Definition of the friend function

Multiply operator*(Multiply obj1, Multiply obj2) {

 return Multiply(obj1.value * obj2.value);

}

int main() {

 Multiply m1(4), m2(5);

 Multiply m3 = m1 * m2; // Calls overloaded * operator

 m3.display();

 return 0;

}

Explanation

• The operator* function is a friend function.

• It allows access to private data of objects.

104
MATS Centre for Distance and Online Education, MATS University

Notes • The function multiplies two objects and returns the result.

Output

Result: 20

Overloading Comparison Operators (==, !=, >, <)

Comparison operators (==, !=, >, <) can also be overloaded to

compare objects.

Example: Overloading == Operator

#include <iostream>

using namespace std;

class Compare {

 int num;

public:

 Compare(int n) { num = n; }

 bool operator==(Compare obj) {

 return num == obj.num;

 }

};

int main() {

 Compare c1(10), c2(10), c3(20);

 if (c1 == c2)

 cout << "c1 and c2 are equal" << endl;

 else

 cout << "c1 and c2 are not equal" << endl;

 if (c1 == c3)

 cout << "c1 and c3 are equal" << endl;

 else

 cout << "c1 and c3 are not equal" << endl;

 return 0;

}

Output

c1 and c2 are equal

105
MATS Centre for Distance and Online Education, MATS University

Notes c1 and c3 are not equal

Key Points

✔ Operator overloading allows intuitive operations on objects.

✔ Unary operators (++, --) are overloaded as member functions.

✔ Binary operators (+, -, *, /) take one parameter.

✔ Friend functions are useful when working with two objects.

✔ Comparison operators (==, !=) can be overloaded for object

comparison.

Using operator overloading, we can make custom classes work just

like built-in types, making code more readable, efficient, and

natural.

106
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Rules of Overloading Operators, Type

Conversion

3.3 Operator Overloading and Type Conversion in C++

Operator overloading is a powerful feature in C++ that allows

operators to be redefined and used with user-defined data types.

Similarly, type conversion enables converting one data type into

another, either implicitly or explicitly. This Module covers the rules

of operator overloading and type conversion with theory, syntax,

and examples.

1. Rules of Overloading Operators

Operator overloading allows the same operator to work with user-

defined types (such as objects of a class) while maintaining its

original functionality with built-in types.

Syntax of Operator Overloading

The syntax for operator overloading is as follows:

return_type operator symbol (parameters) {

 // Function body defining the behavior of the operator

}

Example of Operator Overloading

cpp

CopyEdit

#include <iostream>

using namespace std;

class Complex {

public:

 int real, imag;

 Complex(int r = 0, int i = 0) {

 real = r;

 imag = i;

 }

 // Overloading + operator

 Complex operator+(Complex const& obj) {

 Complex result;

 result.real = real + obj.real;

107
MATS Centre for Distance and Online Education, MATS University

Notes result.imag = imag + obj.imag;

 return result;

 }

 void display() {

 cout << real << " + " << imag << "i" << endl;

 }

};

int main() {

 Complex c1(3, 4), c2(1, 2);

 Complex c3 = c1 + c2; // Uses overloaded +

 c3.display();

 return 0;

}

Output:

4 + 6i

Rules for Operator Overloading

1. Only Existing Operators Can Be Overloaded:

o C++ does not allow defining new operators.

o Example: @ cannot be overloaded because it is not a

predefined C++ operator.

2. At Least One Operand Must Be a User-Defined Type

(Class or Struct):

o Example: Overloading + for adding two class objects.

3. Some Operators Cannot Be Overloaded:

o Operators that cannot be overloaded include:

▪ :: (Scope resolution operator)

▪ .* (Pointer-to-member operator)

▪ . (Member access operator)

▪ sizeof (Size operator)

4. Overloaded Operators Follow Default Precedence and

Associativity:

o Even if overloaded, operators follow the standard C++

precedence rules.

5. Overloaded Operators Must Be Either Member or Friend

Functions:

108
MATS Centre for Distance and Online Education, MATS University

Notes o If the left operand is a built-in type, use a friend

function.

6. Unary and Binary Operators Overloading:

o Unary operators (e.g., ++, --) take no arguments.

o Binary operators (e.g., +, -) take one argument if

implemented as a member function and two if

implemented as a friend function.

Example: Overloading Unary Operator (++)

#include <iostream>

using namespace std;

class Counter {

public:

 int value;

 Counter() { value = 0; }

 // Overloading prefix ++

 void operator++() {

 ++value;

 }

 void display() {

 cout << "Value: " << value << endl;

 }

};

int main() {

 Counter c;

 ++c; // Uses overloaded ++

 c.display();

 return 0;

}

Output:

Value: 1

2. Type Conversion in C++

Type conversion refers to changing a value from one data type to

another. It can be:

109
MATS Centre for Distance and Online Education, MATS University

Notes 1. Implicit Type Conversion (Type Promotion)

2. Explicit Type Conversion (Type Casting)

3. User-Defined Type Conversion

o Conversion from basic type to class type

o Conversion from class type to basic type

o Conversion from one class type to another class type

1. Implicit Type Conversion (Automatic Type Promotion)

C++ automatically converts a smaller data type to a larger data type

when needed.

Example:

int a = 5;

float b = a; // Implicit conversion from int to float

2. Explicit Type Conversion (Type Casting)

The user manually converts one data type into another using type

casting.

Syntax:

(data_type) value;

Example:

#include <iostream>

using namespace std;

int main() {

 double num = 10.5;

 int intNum = (int)num; // Explicit conversion from double to int

 cout << "Converted value: " << intNum << endl;

 return 0;

}

Output:

Converted value: 10

3. User-Defined Type Conversion

A. Basic Type to Class Type

Converting primitive data types to class objects.

Example:

#include <iostream>

using namespace std;

110
MATS Centre for Distance and Online Education, MATS University

Notes class Distance {

 int meters;

public:

 Distance(int m) { meters = m; } // Constructor handles conversion

 void display() { cout << "Meters: " << meters << endl; }

};

int main() {

 Distance d = 10; // Converts int to Distance object

 d.display();

 return 0;

}

Output:

Meters: 10

B. Class Type to Basic Type

Converting an object of a class to a primitive data type.

Example:

#include <iostream>

using namespace std;

class Distance {

 int meters;

public:

 Distance(int m) { meters = m; }

 operator int() { return meters; } // Conversion function

};

int main() {

 Distance d(10);

 int meters = d; // Converts Distance object to int

 cout << "Meters: " << meters << endl;

 return 0;

}

Output:

Meters: 10

111
MATS Centre for Distance and Online Education, MATS University

Notes C. Class Type to Another Class Type

Example:

#include <iostream>

using namespace std;

class Fahrenheit {

 float temp;

public:

 Fahrenheit(float t) { temp = t; }

 float getTemp() { return temp; }

};

class Celsius {

 float temp;

public:

 Celsius(float t) { temp = t; }

 // Conversion constructor

 Celsius(Fahrenheit f) {

 temp = (f.getTemp() - 32) * 5 / 9;

 }

 void display() { cout << "Temperature in Celsius: " << temp <<

endl; }

};

int main() {

 Fahrenheit f(98.6);

 Celsius c = f; // Converts Fahrenheit to Celsius

 c.display();

 return 0;

}

Output:

Temperature in Celsius: 37

• Operator overloading allows defining custom behavior for

operators with user-defined types.

• Type conversion enables converting values between data

types, either implicitly, explicitly, or via user-defined

conversions.

112
MATS Centre for Distance and Online Education, MATS University

Notes • Following operator overloading rules ensures correct

implementation without violating C++ constraints.

• User-defined type conversions help in seamless data

transformations between primitive and object types.

This completes the detailed study of operator overloading and type

conversion in C++.

3.4 Inheritance and Derived Classes in C++

Inheritance is one of the most important concepts in Object-Oriented

Programming (OOP). It allows a new class (called the derived class)

to inherit attributes and methods from an existing class (called the

base class). This promotes code reusability and improves

maintainability.

Key Advantages of Inheritance:

• Reduces code duplication.

• Promotes code reusability.

• Helps in achieving hierarchical classification.

• Enhances code readability and structure.

1. Syntax of Inheritance in C++

Basic Syntax:

class BaseClass {

 // Base class members

};

class DerivedClass : access_specifier BaseClass {

 // Derived class members

};

Here, the access_specifier determines how the base class members

are inherited.

Table 3.1 Types of Access Specifiers:

Access

Specifier

Private

Members

Protected

Members

Public

Members

private Not inherited
Inherited as

private

Inherited as

private

protected Not inherited
Inherited as

protected

Inherited as

protected

public Not inherited
Inherited as

protected

Inherited as

public

113
MATS Centre for Distance and Online Education, MATS University

Notes

3.5 Inheritance in C++

Inheritance is a fundamental concept in Object-Oriented

Programming (OOP) that allows a class to derive properties and

behaviors from another class. The class that is inherited is called the

base class (parent class), and the class that inherits is called the

derived class (child class).

Advantages of Inheritance

• Code reusability: Common functionalities can be reused in

different classes.

• Extensibility: Enhances the maintainability of the code.

• Improved readability: Reduces code duplication.

Syntax for Inheritance in C++

class BaseClass {

 // Base class members

};

class DerivedClass : access_specifier BaseClass {

 // Derived class members

};

Here, access_specifier can be:

• public: Public and protected members of the base class remain

the same in the derived class.

• protected: Public and protected members of the base class

become protected in the derived class.

• private: Public and protected members of the base class

become private in the derived class.

1. Single Inheritance

In single inheritance, a derived class inherits from a single base class.

Figure 2 Types of Inheritance

[Source: https://medium.com]

114
MATS Centre for Distance and Online Education, MATS University

Notes Syntax:

class Parent {

public:

 void show() {

 cout << "This is the parent class." << endl;

 }

};

class Child : public Parent {

public:

 void display() {

 cout << "This is the child class." << endl;

 }

};

Example:

#include <iostream>

using namespace std;

class Parent {

public:

 void show() {

 cout << "This is the parent class." << endl;

 }

};

class Child : public Parent {

public:

 void display() {

 cout << "This is the child class." << endl;

 }

};

int main() {

 Child obj;

 obj.show(); // Accessing parent class function

 obj.display(); // Accessing child class function

 return 0;

}

115
MATS Centre for Distance and Online Education, MATS University

Notes Output:

This is the parent class.

This is the child class.

2. Multilevel Inheritance

In multilevel inheritance, a class is derived from another derived

class, forming a chain.

Syntax:

class Grandparent {

 // Base class

};

class Parent : public Grandparent {

 // Derived class

};

class Child : public Parent {

 // Further derived class

};

Example:

#include <iostream>

using namespace std;

class Grandparent {

public:

 void display1() {

 cout << "This is the grandparent class." << endl;

 }

};

class Parent : public Grandparent {

public:

 void display2() {

 cout << "This is the parent class." << endl;

 }

};

class Child : public Parent {

public:

116
MATS Centre for Distance and Online Education, MATS University

Notes void display3() {

 cout << "This is the child class." << endl;

 }

};

int main() {

 Child obj;

 obj.display1();

 obj.display2();

 obj.display3();

 return 0;

}

Output:

This is the grandparent class.

This is the parent class.

This is the child class.

3. Multiple Inheritance

In multiple inheritance, a class inherits from two or more base

classes.

Syntax:

class Parent1 {

 // Base class 1

};

class Parent2 {

 // Base class 2

};

class Child : public Parent1, public Parent2 {

 // Derived class

};

Example:

#include <iostream>

using namespace std;

class Parent1 {

public:

 void show1() {

117
MATS Centre for Distance and Online Education, MATS University

Notes cout << "This is the first parent class." << endl;

 }

};

class Parent2 {

public:

 void show2() {

 cout << "This is the second parent class." << endl;

 }

};

class Child : public Parent1, public Parent2 {

public:

 void display() {

 cout << "This is the child class." << endl;

 }

};

int main() {

 Child obj;

 obj.show1();

 obj.show2();

 obj.display();

 return 0;

}

Output:

This is the first parent class.

This is the second parent class.

This is the child class.

4. Hierarchical Inheritance

In hierarchical inheritance, multiple classes inherit from a single

base class.

Syntax:

class Parent {

 // Base class

};

class Child1 : public Parent {

118
MATS Centre for Distance and Online Education, MATS University

Notes // Derived class 1

};

class Child2 : public Parent {

 // Derived class 2

};

Example:

#include <iostream>

using namespace std;

class Parent {

public:

 void display() {

 cout << "This is the parent class." << endl;

 }

};

class Child1 : public Parent {

public:

 void show1() {

 cout << "This is the first child class." << endl;

 }

};

class Child2 : public Parent {

public:

 void show2() {

 cout << "This is the second child class." << endl;

 }

};

int main() {

 Child1 obj1;

 Child2 obj2;

 obj1.display();

 obj1.show1();

119
MATS Centre for Distance and Online Education, MATS University

Notes obj2.display();

 obj2.show2();

 return 0;

}

Output:

This is the parent class.

This is the first child class.

This is the parent class.

This is the second child class.

5. Hybrid Inheritance

Hybrid inheritance is a combination of two or more types of

inheritance (e.g., multiple and hierarchical).

Example:

#include <iostream>

using namespace std;

class Grandparent {

public:

 void grandparentFunction() {

 cout << "This is the grandparent class." << endl;

 }

};

class Parent1 : public Grandparent {

public:

 void parent1Function() {

 cout << "This is parent 1 class." << endl;

 }

};

class Parent2 : public Grandparent {

public:

 void parent2Function() {

 cout << "This is parent 2 class." << endl;

 }

};

120
MATS Centre for Distance and Online Education, MATS University

Notes class Child : public Parent1, public Parent2 {

public:

 void childFunction() {

 cout << "This is the child class." << endl;

 }

};

int main() {

 Child obj;

 obj.parent1Function();

 obj.parent2Function();

 obj.childFunction();

 return 0;

}

Output:

This is parent 1 class.

This is parent 2 class.

This is the child class.

Inheritance is a powerful feature in C++ that promotes code

reusability and modularity. The different types of inheritance allow

developers to design efficient and structured programs.

This Module covered:

• Single Inheritance (One class inherits from another)

• Multilevel Inheritance (A chain of inheritance)

• Multiple Inheritance (A class inherits from multiple classes)

• Hierarchical Inheritance (Multiple classes inherit from one

base class)

• Hybrid Inheritance (Combination of multiple inheritance

types)

3.6 Virtual Base Classes and Abstract Classes in C++

1. Virtual Base Classes

When a class is derived from multiple base classes, and these base

classes further inherit from a common ancestor, the common base

class can be included multiple times in the final derived class. This

leads to the Diamond Problem, causing ambiguity in data access and

redundancy in memory usage.

121
MATS Centre for Distance and Online Education, MATS University

Notes To solve this issue, C++ provides Virtual Base Classes. By making

a base class virtual, only one copy of the base class members is

inherited, even if multiple paths lead to the derived class.

The Diamond Problem (Before Using Virtual Base Class)

Example Without Virtual Base Class (Problematic Case)

#include <iostream>

using namespace std;

class A {

public:

 int value;

};

class B : public A { }; // Inherits from A

class C : public A { }; // Inherits from A

class D : public B, public C { }; // Multiple Inheritance

int main() {

 D obj;

 // obj.value = 10; // ERROR: Ambiguity (value exists in both B and

C)

 obj.B::value = 10; // Resolving ambiguity by specifying class

 obj.C::value = 20; // Still leads to duplicate copies of A's data

 cout << "Value from B: " << obj.B::value << endl;

 cout << "Value from C: " << obj.C::value << endl; // Different

copies of 'value'

 return 0;

}

Solution Using Virtual Base Class

By making A a virtual base class, C++ ensures only one copy of A is

inherited.

Syntax of Virtual Base Class

class Base {

 // Members

};

class Derived1 : virtual public Base { };

122
MATS Centre for Distance and Online Education, MATS University

Notes class Derived2 : virtual public Base { };

class FinalClass : public Derived1, public Derived2 { };

Example Using Virtual Base Class (No Ambiguity)

#include <iostream>

using namespace std;

class A {

public:

 int value;

};

class B : virtual public A { }; // Virtual Inheritance

class C : virtual public A { }; // Virtual Inheritance

class D : public B, public C { }; // No ambiguity

int main() {

 D obj;

 obj.value = 30; // No ambiguity

 cout << "Value: " << obj.value << endl; // Output: 30

 return 0;

}

Key Advantages of Virtual Base Class

1. Solves the Diamond Problem – Only one copy of the base

class members exists in memory.

2. Prevents Data Redundancy – Saves memory by avoiding

duplicate copies.

3. Removes Ambiguity – No need to specify B::value or

C::value.

2. Abstract Class

An Abstract Class in C++ is a class that cannot be instantiated and

serves as a blueprint for derived classes. It contains at least one

pure virtual function, forcing derived classes to provide an

implementation.

Syntax of Abstract Class

class AbstractClass {

public:

 virtual void pureVirtualFunction() = 0; // Pure Virtual Function

};

123
MATS Centre for Distance and Online Education, MATS University

Notes Here, = 0 indicates that this function must be overridden in derived

classes.

Example of Abstract Class

#include <iostream>

using namespace std;

class Shape {

public:

 virtual void draw() = 0; // Pure Virtual Function (Abstract Method)

};

class Circle : public Shape {

public:

 void draw() override {

 cout << "Drawing a Circle" << endl;

 }

};

class Rectangle : public Shape {

public:

 void draw() override {

 cout << "Drawing a Rectangle" << endl;

 }

};

int main() {

 // Shape obj; // ERROR: Cannot instantiate abstract class

 Circle c;

 Rectangle r;

 c.draw(); // Output: Drawing a Circle

 r.draw(); // Output: Drawing a Rectangle

 return 0;

}

Key Properties of Abstract Classes

1. Cannot create objects of an abstract class.

2. Must have at least one pure virtual function.

124
MATS Centre for Distance and Online Education, MATS University

Notes 3. Derived classes must override the pure virtual function;

otherwise, they remain abstract.

Use Case of Abstract Classes

Abstract classes are commonly used in polymorphism where

multiple derived classes share a common interface.

Example: Abstract Class with Polymorphism

#include <iostream>

using namespace std;

class Animal {

public:

 virtual void makeSound() = 0; // Pure virtual function

};

class Dog : public Animal {

public:

 void makeSound() override {

 cout << "Dog Barks" << endl;

 }

};

class Cat : public Animal {

public:

 void makeSound() override {

 cout << "Cat Meows" << endl;

 }

};

void animalSound(Animal &a) {

 a.makeSound();

}

int main() {

 Dog d;

 Cat c;

 animalSound(d); // Output: Dog Barks

 animalSound(c); // Output: Cat Meows

125
MATS Centre for Distance and Online Education, MATS University

Notes

 return 0;

}

Table 3.2: Difference Between Virtual Base Class and Abstract Class

Feature Virtual Base Class Abstract Class

Purpose
Solves multiple inheritance

issues

Defines an interface for

derived classes

Instantia

tion
Can be instantiated Cannot be instantiated

Inherita

nce

Used to avoid duplicate base

class instances

Used to enforce function

overriding

Contain

s

Normal members, virtual

inheritance

At least one pure virtual

function

• Virtual Base Classes solve multiple inheritance ambiguity

by ensuring only one copy of a base class is inherited.

• Abstract Classes act as blueprints for derived classes,

enforcing function overriding and enabling polymorphism.

• Both concepts are crucial in object-oriented programming

(OOP) to design efficient and scalable C++ applications.

This comprehensive explanation covers theory, syntax, examples,

and key differences, making it easier to understand Virtual Base

Classes and Abstract Classes in C++.

3.7 Constructors in Derived Classes

In object-oriented programming, a derived class inherits properties

and behavior from a base class. When an object of a derived class is

created, both the base class constructor and the derived class

constructor are executed.

The constructor of the base class is executed first, followed by the

constructor of the derived class. This ensures that the base class

members are properly initialized before the derived class adds its own

functionalities.

Syntax of Derived Class Constructor

The constructor of a derived class must first call the constructor of the

base class. This is done using an initializer list in the derived class

constructor.

class Base {

126
MATS Centre for Distance and Online Education, MATS University

Notes public:

 Base() {

 cout << "Base class constructor called" << endl;

 }

};

class Derived : public Base {

public:

 Derived() {

 cout << "Derived class constructor called" << endl;

 }

};

Example 1: Constructor Execution in Inheritance

#include <iostream>

using namespace std;

class Base {

public:

 Base() {

 cout << "Base class constructor called" << endl;

 }

};

class Derived : public Base {

public:

 Derived() {

 cout << "Derived class constructor called" << endl;

 }

};

int main() {

 Derived obj; // Creating an object of the Derived class

 return 0;

}

Output:

Base class constructor called

Derived class constructor called

127
MATS Centre for Distance and Online Education, MATS University

Notes Parameterized Constructor in Derived Class

If the base class has a parameterized constructor, the derived class

must explicitly call it in its initializer list.

#include <iostream>

using namespace std;

class Base {

public:

 Base(int x) {

 cout << "Base class constructor called with value: " << x <<

endl;

 }

};

class Derived : public Base {

public:

 Derived(int y) : Base(y) { // Calling Base class constructor

 cout << "Derived class constructor called with value: " << y <<

endl;

 }

};

int main() {

 Derived obj(10);

 return 0;

}

Output:

Base class constructor called with value: 10

Derived class constructor called with value: 10

Order of Constructor Execution in Multiple Inheritance

If a derived class inherits from multiple base classes, the constructors

of the base classes are executed in the order of inheritance.

#include <iostream>

using namespace std;

class A {

public:

128
MATS Centre for Distance and Online Education, MATS University

Notes A() {

 cout << "Constructor of A" << endl;

 }

};

class B {

public:

 B() {

 cout << "Constructor of B" << endl;

 }

};

class C : public A, public B { // Multiple inheritance

public:

 C() {

 cout << "Constructor of C" << endl;

 }

};

int main() {

 C obj;

 return 0;

}

Output:

Constructor of A

Constructor of B

Constructor of C

2. Member Classes (Nested Classes in C++)

A member class (also called a nested class) is a class that is defined

inside another class. It has access to the private and protected

members of the enclosing (outer) class.

Nested classes are used when a class logically belongs inside

another class. They help in encapsulation and keeping related

functionalities grouped together.

Syntax of Member Class

class Outer {

129
MATS Centre for Distance and Online Education, MATS University

Notes public:

 class Inner { // Nested class

 public:

 void display() {

 cout << "Inside Inner class" << endl;

 }

 };

};

Example 1: Basic Member Class

#include <iostream>

using namespace std;

class Outer {

public:

 class Inner { // Nested class

 public:

 void show() {

 cout << "Inside Inner class" << endl;

 }

 };

};

int main() {

 Outer::Inner obj; // Creating object of Inner class

 obj.show();

 return 0;

}

Output:

Inside Inner class

Example 2: Accessing Private Members of Outer Class

The nested class can access private members of the outer class.

#include <iostream>

using namespace std;

class Outer {

private:

 int data = 100;

130
MATS Centre for Distance and Online Education, MATS University

Notes

public:

 class Inner {

 public:

 void display(Outer &obj) { // Accessing private member

 cout << "Value of data: " << obj.data << endl;

 }

 };

};

int main() {

 Outer obj1;

 Outer::Inner obj2;

 obj2.display(obj1);

 return 0;

}

Output:

Value of data: 100

Example 3: Constructor in Member Class

A nested class can have its own constructor.

#include <iostream>

using namespace std;

class Outer {

public:

 class Inner {

 public:

 Inner() {

 cout << "Inner class constructor called" << endl;

 }

 };

};

int main() {

 Outer::Inner obj;

 return 0;

}

131
MATS Centre for Distance and Online Education, MATS University

Notes Output:

Inner class constructor called

Example 4: Nested Class with Methods Using Outer Class

Members

#include <iostream>

using namespace std;

class Outer {

private:

 int data = 42;

public:

 void showData() {

 cout << "Outer class data: " << data << endl;

 }

 class Inner {

 public:

 void display(Outer &obj) {

 obj.showData(); // Accessing Outer class function

 }

 };

};

int main() {

 Outer obj1;

 Outer::Inner obj2;

 obj2.display(obj1);

 return 0;

}

Output:

Outer class data: 42

Table 3.3 Key Differences: Constructors in Derived Classes vs.

Member Classes

Feature
Derived Class

Constructor

Member Class

Constructor

132
MATS Centre for Distance and Online Education, MATS University

Notes

Definition

Constructor of a derived

class in an inheritance

hierarchy

Constructor inside a

nested class

Execution

Order

Base class constructor →

Derived class constructor

Only the member class

constructor is executed

Access

Can access base class

members

(public/protected)

Can access

private/protected

members of the outer

class

Use Case
Used when a class

inherits from another

Used to define classes

within a class for logical

grouping

• Constructors in derived classes ensure that the base class is

initialized before the derived class.

• Nested (member) classes allow structuring complex programs

by logically grouping related classes together.

• Nested classes can access private members of the outer class

if given proper access.

These concepts are useful in modular programming, encapsulation,

and data abstraction, making C++ an efficient language for object-

oriented programming.

MCQs:

1. What does inheritance in C++ allow you to do?

A. Create multiple constructors

B. Reuse code by deriving a new class from an existing class

C. Declare multiple variables

D. Use templates

2. Which of the following is the correct syntax for public

inheritance in C++?

A. class Derived inherits Base

B. class Derived : public Base

C. class Base -> Derived

D. class Derived extends Base

133
MATS Centre for Distance and Online Education, MATS University

Notes 3. What is a base class in C++?

A. A class that is used only once

B. A class that contains only static members

C. A class from which other classes are derived

D. A class with no constructors

4. Which type of inheritance involves a class being derived

from two or more base classes?

A. Single inheritance

B. Multilevel inheritance

C. Hybrid inheritance

D. Multiple inheritance

5. What does polymorphism mean in object-oriented

programming?

A. Using only one function in a program

B. Using a single interface to represent different types

C. Writing code without any class

D. Accessing private members directly

6. Which of the following enables runtime polymorphism in

C++?

A. Function overloading

B. Operator overloading

C. Virtual functions

D. Static functions

7. What is function overloading an example of?

A. Runtime polymorphism

B. Compile-time polymorphism

C. Dynamic polymorphism

D. Multilevel inheritance

8. What will happen if a derived class overrides a base class

function, but the base function is not declared virtual?

A. The derived class version is always called

B. The base class version is always called when using a base

pointer

134
MATS Centre for Distance and Online Education, MATS University

Notes C. It causes a runtime error

D. Both functions will be executed

9. Which keyword is used to allow a derived class to redefine a

base class function?

A. override

B. virtual

C. friend

D. static

10. What is the benefit of polymorphism in C++?

A. Reduces the size of executable files

B. Improves performance in all cases

C. Allows for flexible and reusable code design

D. Prevents object creation

Short Questions:

1. What is inheritance in C++?

2. Define a base class and a derived class with an example.

3. What are the types of inheritance supported in C++?

4. How does public inheritance differ from private inheritance in

C++?

5. What is multiple inheritance? Give a simple example.

6. What is the main advantage of using inheritance in object-

oriented programming?

7. Define polymorphism in the context of C++ OOP.

8. What is the difference between compile-time polymorphism

and run-time polymorphism?

9. How is function overloading used to achieve polymorphism in

C++?

10. What is the role of the virtual keyword in achieving run-time

polymorphism?

11. What is function overriding, and how does it relate to

polymorphism?

12. What happens if a base class function is not declared virtual

and is overridden in a derived class?

Long Questions:

135
MATS Centre for Distance and Online Education, MATS University

Notes 1. Explain the concept of inheritance in C++. How does it support

code reusability? Provide a code example to illustrate your

answer.

2. Differentiate between single, multiple, multilevel, and

hierarchical inheritance in C++. Give examples of each.

3. What is the syntax for public, protected, and private inheritance

in C++? How does the access level of base class members

change in each case?

4. Describe how constructors and destructors behave in

inheritance. What is the order of constructor and destructor

calls in an inheritance hierarchy?

5. Write a C++ program that demonstrates multiple inheritance.

Explain how ambiguity is resolved when two base classes

have functions with the same name.

6. What is polymorphism in C++? Explain the difference between

compile-time and run-time polymorphism with appropriate

code examples.

7. How does function overloading implement compile-time

polymorphism in C++? Give at least two examples with

different parameter lists.

8. Explain the concept of function overriding in C++. How does it

support run-time polymorphism? Provide a sample program.

9. What is the significance of the virtual keyword in C++? How

does it affect function binding and polymorphism?

10. Write a C++ program to demonstrate run-time polymorphism

using base class pointers and virtual functions. Explain how

dynamic dispatch works.

11. What are pure virtual functions and abstract classes in C++?

How are they used to implement interfaces in object-oriented

programming?

12. Discuss the advantages and potential pitfalls of using

inheritance and polymorphism in object-oriented design. How

can improper use of these features affect software

maintainability?

136
MATS Centre for Distance and Online Education, MATS University

MODULE 4

POINTER, VIRTUAL FUNCTION AND

POLYMORPHISM

4.0 LEARNING OUTCOMES

By the end of this Module, students will be able to:

• Understand pointers and their use in objects and "this" pointer.

• Implement pointers to derived classes for dynamic object

handling.

• Explore virtual functions and pure virtual functions in C++.

• Understand polymorphism, including compile-time and run-

time polymorphism.

• Differentiate between function overloading and function

overriding.

• This Module provides a deep understanding of pointers, virtual

functions, and polymorphism, essential for dynamic and

efficient object-oriented programming.

137
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: Pointers

4.1 Pointers in C++

A pointer is a variable that stores the memory address of another

variable. Pointers are powerful in C++ as they enable dynamic

memory allocation, efficient data manipulation, and object-

oriented programming techniques.

Syntax of a Pointer

data_type* pointer_name; // Declaring a pointer

Example: Declaring and Using a Pointer

#include <iostream>

using namespace std;

int main() {

 int num = 10;

 int* ptr = # // Pointer storing the address of num

 cout << "Value of num: " << num << endl;

 cout << "Address of num: " << &num << endl;

 cout << "Value stored in pointer ptr: " << ptr << endl;

 cout << "Value accessed using pointer: " << *ptr << endl; //

Dereferencing

 return 0;

}

Figure 3 Concept of Pointers in OOP’S
[Source https://www.scholarhat.com]

138
MATS Centre for Distance and Online Education, MATS University

Notes Output

Value of num: 10

Address of num: 0x7ffee7b0b80c

Value stored in pointer ptr: 0x7ffee7b0b80c

Value accessed using pointer: 10

1. Pointers to Objects

In C++, pointers can also store the addresses of objects of a class.

This allows dynamic allocation of objects and facilitates

polymorphism and efficient object handling.

Syntax of Pointers to Objects

class ClassName {

 // Class members

};

ClassName* objPointer; // Pointer to an object of ClassName

Example: Using a Pointer to an Object

#include <iostream>

using namespace std;

class Student {

public:

 string name;

 int age;

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student s1 = {"John", 20}; // Normal object

 Student* ptr = &s1; // Pointer to object

 // Accessing members using the pointer

 cout << "Using pointer: " << ptr->name << ", " << ptr->age <<

endl;

 ptr->display(); // Using -> to access function

139
MATS Centre for Distance and Online Education, MATS University

Notes

 return 0;

}

Output

Using pointer: John, 20

Name: John, Age: 20

Dynamic Memory Allocation for Objects

We can use the new keyword to dynamically allocate objects at

runtime.

#include <iostream>

using namespace std;

class Student {

public:

 string name;

 int age;

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

 }

};

int main() {

 Student* ptr = new Student(); // Dynamically allocating an object

 // Assigning values

 ptr->name = "Alice";

 ptr->age = 22;

 ptr->display();

 delete ptr; // Free allocated memory

 return 0;

}

Output

Name: Alice, Age: 22

140
MATS Centre for Distance and Online Education, MATS University

Notes 2. This Pointer

This pointer is an implicit pointer available in all non-static member

functions of a class. It stores the address of the calling object and

helps in distinguishing between local and member variables when

they have the same name.

Syntax of this Pointer

class ClassName {

public:

 void function() {

 cout << "Address of current object: " << this << endl;

 }

};

Example: Using this Pointer

#include <iostream>

using namespace std;

class Car {

public:

 string brand;

 int price;

 void setValues(string brand, int price) {

 this->brand = brand; // Using this-> to refer to member variable

 this->price = price;

 }

 void display() {

 cout << "Brand: " << brand << ", Price: " << price << endl;

 cout << "Address of current object: " << this << endl;

 }

};

int main() {

 Car c1, c2;

 c1.setValues("Toyota", 20000);

 c2.setValues("Honda", 18000);

141
MATS Centre for Distance and Online Education, MATS University

Notes c1.display();

 c2.display();

 return 0;

}

Output

Brand: Toyota, Price: 20000

Address of current object: 0x61ff08

Brand: Honda, Price: 18000

Address of current object: 0x61ff04

Advantages of this Pointer

1. Avoids naming conflicts between member variables and

function parameters.

2. Used for returning object reference in function chaining.

3. Helps in operator overloading and method chaining.

3. Returning Object using this Pointer

The this pointer can be used to return the current object reference,

enabling function chaining.

#include <iostream>

using namespace std;

class Person {

public:

 string name;

 int age;

 Person* setName(string name) {

 this->name = name;

 return this; // Returning object reference

 }

 Person* setAge(int age) {

 this->age = age;

 return this; // Returning object reference

 }

 void display() {

 cout << "Name: " << name << ", Age: " << age << endl;

142
MATS Centre for Distance and Online Education, MATS University

Notes }

};

int main() {

 Person p1;

 p1.setName("Michael")->setAge(25)->display(); // Chained

function calls

 return 0;

}

Output

Name: Michael, Age: 25

In this Module, we explored pointers in C++, pointers to objects,

and the this pointer.

• Pointers store memory addresses and allow efficient

manipulation of variables and objects.

• Pointers to objects enable dynamic memory allocation and

flexible object handling.

• The this pointer is an implicit pointer referring to the calling

object, helping in method chaining and resolving naming

conflicts.

Pointer to Derived Classes in C++

In C++, pointers play a crucial role in handling objects dynamically.

When working with inheritance, we often use pointers to base and

derived classes to achieve polymorphism. A pointer to a derived

class allows accessing members of both the base and derived classes

using a base class pointer.

143
MATS Centre for Distance and Online Education, MATS University

Notes 4.2 Concept of Pointer to Derived Class

A pointer to a base class can hold the address of a derived class

object. However, when accessed through the base class pointer, it can

only use the members of the base class unless virtual functions are

used.

144
MATS Centre for Distance and Online Education, MATS University

Notes Key Points:

• A base class pointer can point to a derived class object.

• It can access only the base class members (unless

polymorphism is used).

• If virtual functions are present, the derived class function gets

executed (dynamic binding).

1. Syntax of Pointer to Derived Class

The general syntax for creating a pointer to a derived class is:

BaseClass *ptr; // Pointer to Base Class

DerivedClass obj;

ptr = &obj; // Base class pointer pointing to Derived class object

Since the pointer is of the base class type, it can only access base

class members. To access derived class members, we either use type

casting or virtual functions.

2. Example Without Virtual Functions

When a base class pointer points to a derived class object, it only

accesses base class members unless virtual functions are used.

#include <iostream>

using namespace std;

class Base {

public:

 void show() {

 cout << "Base class show function" << endl;

 }

};

class Derived : public Base {

public:

 void show() {

 cout << "Derived class show function" << endl;

 }

};

int main() {

 Base *ptr; // Base class pointer

 Derived obj;

145
MATS Centre for Distance and Online Education, MATS University

Notes ptr = &obj; // Base class pointer points to derived class object

 ptr->show(); // Calls Base class function

 return 0;

}

Output:

Base class show function

Explanation:

• The base class pointer (ptr) stores the address of a derived

class object (obj).

• However, since show() is not virtual, the base class version

is called, ignoring the derived class function.

3. Example Using Virtual Functions

To achieve runtime polymorphism, we use the virtual keyword in

the base class function. This enables dynamic binding, allowing the

derived class function to be called even when accessed via a base

class pointer.

#include <iostream>

using namespace std;

class Base {

public:

 virtual void show() { // Virtual function

 cout << "Base class show function" << endl;

 }

};

class Derived : public Base {

public:

 void show() override { // Overrides base class function

 cout << "Derived class show function" << endl;

 }

};

int main() {

 Base *ptr; // Base class pointer

 Derived obj;

146
MATS Centre for Distance and Online Education, MATS University

Notes

 ptr = &obj; // Base class pointer points to derived class object

 ptr->show(); // Calls Derived class function (Dynamic Binding)

 return 0;

}

Output:

Derived class show function

Explanation:

• The show() function in the base class is declared virtual.

• This enables dynamic binding, so the derived class version

gets executed when called through the base class pointer.

4. Accessing Derived Class Members Using Base Class Pointer

Since a base class pointer cannot access derived class members

directly, we use typecasting.

#include <iostream>

using namespace std;

class Base {

public:

 void showBase() {

 cout << "Base class function" << endl;

 }

};

class Derived : public Base {

public:

 void showDerived() {

 cout << "Derived class function" << endl;

 }

};

int main() {

 Base *ptr; // Base class pointer

 Derived obj;

 ptr = &obj; // Base class pointer points to derived class object

147
MATS Centre for Distance and Online Education, MATS University

Notes

 ptr->showBase(); // Allowed

 // ptr->showDerived(); // Error: Not accessible through base class

pointer

 // Accessing derived class function using typecasting

 ((Derived*)ptr)->showDerived();

 return 0;

}

Output:

Base class function

Derived class function

Explanation:

• The base class pointer (ptr) can access only showBase().

• To access showDerived(), we use typecasting:

((Derived*)ptr)->showDerived();.

5. Pointer to Derived Class in Multiple Inheritance

When using multiple inheritance, a base class pointer can still access

members of the derived class.

#include <iostream>

using namespace std;

class Base1 {

public:

 virtual void show() {

 cout << "Base1 class function" << endl;

 }

};

class Base2 {

public:

 void display() {

 cout << "Base2 class function" << endl;

 }

};

class Derived : public Base1, public Base2 {

148
MATS Centre for Distance and Online Education, MATS University

Notes public:

 void show() override {

 cout << "Derived class function" << endl;

 }

};

int main() {

 Base1 *ptr;

 Derived obj;

 ptr = &obj;

 ptr->show(); // Calls Derived class function

 return 0;

}

Output:

Derived class function

6. Pointer to Derived Class and Virtual Destructor

If a base class has a non-virtual destructor, deleting a derived class

object through a base class pointer causes memory leaks. This is

solved by using a virtual destructor.

#include <iostream>

using namespace std;

class Base {

public:

 Base() { cout << "Base Constructor" << endl; }

 virtual ~Base() { cout << "Base Destructor" << endl; }

};

class Derived : public Base {

public:

 Derived() { cout << "Derived Constructor" << endl; }

 ~Derived() { cout << "Derived Destructor" << endl; }

};

int main() {

 Base *ptr = new Derived(); // Allocates memory for derived class

149
MATS Centre for Distance and Online Education, MATS University

Notes delete ptr; // Calls derived class destructor properly

 return 0;

}

Output:

Base Constructor

Derived Constructor

Derived Destructor

Base Destructor

Explanation:

• Using a virtual destructor ensures the derived class

destructor is called properly, preventing memory leaks.

Summary

Table 4.1 Features and Behavior of Virtual Function

Feature Behavior

Base class pointer Can store derived class object address

Without virtual function Calls base class function

With virtual function
Calls derived class function

(polymorphism)

Accessing derived class

members
Requires typecasting

Virtual destructor Ensures proper cleanup in inheritance

Pointers to derived classes are essential for achieving polymorphism

in C++. Using virtual functions, we ensure that derived class

functions override base class functions correctly. Proper use of

virtual destructors avoids memory leaks when working with

dynamically allocated objects.

This topic is fundamental in object-oriented programming (OOP)

and is widely used in designing reusable and flexible software

architectures.

150
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Virtual Function, Pure Virtual Function

4.3 Virtual Function and Pure Virtual Function in C++

In C++, polymorphism allows objects of different classes to be

treated as objects of a common base class. This is achieved using

virtual functions.

A virtual function is a function in a base class that is overridden in a

derived class and is resolved at runtime using dynamic binding (late

binding). This allows C++ to call the correct function based on the

actual object type rather than the pointer type.

Why Use Virtual Functions?

• To enable runtime polymorphism.

• To ensure that the correct function of the derived class is

called even when accessed through a base class pointer.

• To allow overriding of base class methods in derived classes.

1. Syntax of Virtual Function

A virtual function is declared using the keyword virtual in the base

class.

class Base {

public:

 virtual void display() { // Virtual function

 cout << "Base class display function" << endl;

 }

};

When a derived class overrides the virtual function, C++ ensures that

the correct function is called at runtime.

2. Example of Virtual Function

#include <iostream>

using namespace std;

class Base {

public:

 virtual void show() { // Virtual function

 cout << "Base class show() function" << endl;

 }

};

class Derived : public Base {

151
MATS Centre for Distance and Online Education, MATS University

Notes public:

 void show() override { // Overriding base class function

 cout << "Derived class show() function" << endl;

 }

};

int main() {

 Base* basePtr; // Base class pointer

 Derived derivedObj;

 basePtr = &derivedObj; // Base class pointer points to derived class

object

 basePtr->show(); // Calls Derived class function due to late binding

 return 0;

}

Output:

Derived class show() function

Explanation:

• The show() function is declared as virtual in the Base class.

• The Derived class overrides the show() function.

• When calling basePtr->show(), the derived class function is

called because of dynamic binding (late binding).

3. Virtual Function Behavior

Calling a Virtual Function without a Derived Function

If a virtual function is not overridden in the derived class, the base

class version is called.

#include <iostream>

using namespace std;

class Base {

public:

 virtual void show() {

 cout << "Base class function" << endl;

 }

};

152
MATS Centre for Distance and Online Education, MATS University

Notes class Derived : public Base {

 // No override here

};

int main() {

 Derived obj;

 obj.show(); // Calls Base class function

 return 0;

}

Output:

Base class function

Accessing Base Class Virtual Function

The base class function can still be accessed using scope resolution

operator (::).

basePtr->Base::show();

4. Pure Virtual Function (Abstract Class)

A pure virtual function is a virtual function with no

implementation in the base class.

• Declared using = 0.

• It makes a class abstract, meaning it cannot be instantiated.

• Any derived class must override the pure virtual function.

Syntax of Pure Virtual Function

class Base {

public:

 virtual void show() = 0; // Pure virtual function

};

5. Example of Pure Virtual Function

#include <iostream>

using namespace std;

class Shape {

public:

 virtual void draw() = 0; // Pure virtual function

};

class Circle : public Shape {

public:

 void draw() override {

153
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Drawing a Circle" << endl;

 }

};

class Rectangle : public Shape {

public:

 void draw() override {

 cout << "Drawing a Rectangle" << endl;

 }

};

int main() {

 Shape* shape1 = new Circle();

 Shape* shape2 = new Rectangle();

 shape1->draw();

 shape2->draw();

 delete shape1;

 delete shape2;

 return 0;

}

Output:

Drawing a Circle

Drawing a Rectangle

Explanation:

• Shape is an abstract class with a pure virtual function

draw().

• Circle and Rectangle override the draw() function.

• We create pointers of Shape type but assign Circle and

Rectangle objects.

• The correct function is called at runtime.

6. Key Differences Between Virtual and Pure Virtual Functions

7. Real-Life Example: Employee Salary Calculation

154
MATS Centre for Distance and Online Education, MATS University

Notes Feature Virtual Function Pure Virtual Function

Definition
Declared using

virtual keyword.
Declared using = 0 syntax.

Implementation

in Base Class

Can have a

definition.

No definition (abstract

method).

Derived Class

Requirement

Can be overridden,

but not mandatory.

Must be overridden in

derived class.

Instantiation
Base class can be

instantiated.

Base class cannot be

instantiated (abstract class).

#include <iostream>

using namespace std;

class Employee {

public:

 virtual void calculateSalary() = 0; // Pure virtual function

};

class FullTime : public Employee {

public:

 void calculateSalary() override {

 cout << "Full-time Employee Salary Calculated" << endl;

 }

};

class PartTime : public Employee {

public:

 void calculateSalary() override {

 cout << "Part-time Employee Salary Calculated" << endl;

 }

};

int main() {

 Employee* emp1 = new FullTime();

 Employee* emp2 = new PartTime();

 emp1->calculateSalary();

155
MATS Centre for Distance and Online Education, MATS University

Notes emp2->calculateSalary();

 delete emp1;

 delete emp2;

 return 0;

}

Output:

Full-time Employee Salary Calculated

Part-time Employee Salary Calculated

Conclusion

• Virtual functions allow runtime polymorphism, enabling

C++ to call the correct function dynamically.

• Pure virtual functions enforce mandatory overriding,

making a class abstract.

• Virtual functions make code flexible and scalable by

supporting dynamic dispatch.

156
MATS Centre for Distance and Online Education, MATS University

Notes Unit 12: Polymorphism: Compile Time, Run Time

4.4 Polymorphism in C++

Polymorphism is one of the four fundamental principles of Object-

Oriented Programming (OOP) in C++. The word "Polymorphism"

is derived from the Greek words "poly" (many) and "morph"

(forms), meaning the ability to take multiple forms.

In C++, polymorphism allows a function or an operator to behave

differently in different contexts. It provides flexibility and reusability

in programs, reducing code duplication.

Polymorphism is broadly classified into two types:

1. Compile-time Polymorphism (Static Binding or Early

Binding)

2. Run-time Polymorphism (Dynamic Binding or Late

Binding)

Let’s understand each type with theory, syntax, and examples.

1. Compile-Time Polymorphism (Static Binding)

Compile-time polymorphism is achieved through Function

Overloading and Operator Overloading. In this type, the function

call is resolved at compile time.

Function Overloading

Function Overloading allows multiple functions with the same name

but different parameter lists. The compiler determines which

function to call based on the arguments passed.

Syntax of Function Overloading

return_type function_name(parameter_list1);

return_type function_name(parameter_list2);

Figure 4 Types of Polymorphism

[https://www.tpointtech.com]

157
MATS Centre for Distance and Online Education, MATS University

Notes Example: Function Overloading

#include <iostream>

using namespace std;

class Calculator {

public:

 // Function to add two integers

 int add(int a, int b) {

 return a + b;

 }

 // Function to add three integers

 int add(int a, int b, int c) {

 return a + b + c;

 }

 // Function to add two floating-point numbers

 double add(double a, double b) {

 return a + b;

 }

};

int main() {

 Calculator calc;

 cout << "Addition of 2 and 3: " << calc.add(2, 3) << endl;

 cout << "Addition of 2, 3, and 4: " << calc.add(2, 3, 4) << endl;

 cout << "Addition of 2.5 and 3.5: " << calc.add(2.5, 3.5) << endl;

 return 0;

}

Output:

Addition of 2 and 3: 5

Addition of 2, 3, and 4: 9

Addition of 2.5 and 3.5: 6

Operator Overloading

Operator Overloading allows operators to be redefined for user-

defined types (like classes).

158
MATS Centre for Distance and Online Education, MATS University

Notes Syntax of Operator Overloading

return_type operator symbol (parameters) {

 // Code for overloaded operator

}

Example: Operator Overloading

#include <iostream>

using namespace std;

class Complex {

public:

 int real, imag;

 Complex(int r, int i) {

 real = r;

 imag = i;

 }

 // Overloading the '+' operator

 Complex operator+(Complex c) {

 return Complex(real + c.real, imag + c.imag);

 }

 void display() {

 cout << real << " + " << imag << "i" << endl;

 }

};

int main() {

 Complex c1(3, 4), c2(5, 6);

 Complex c3 = c1 + c2; // Calls the overloaded operator

 c3.display();

 return 0;

}

Output:

8 + 10i

Key Points:

159
MATS Centre for Distance and Online Education, MATS University

Notes • In Function Overloading, multiple functions have the same

name but different parameters.

• In Operator Overloading, operators like +, -, *, etc., can be

redefined for user-defined data types.

• Both these techniques help in achieving compile-time

polymorphism.

2. Run-Time Polymorphism (Dynamic Binding)

Run-time polymorphism is achieved through Function Overriding

and Virtual Functions. In this type, the function call is resolved at

run time using a pointer or reference to the base class.

Function Overriding

Function Overriding allows a derived class to provide a specific

implementation of a function that is already defined in the base

class. The function in the derived class must have the same name

and parameters as in the base class.

Syntax of Function Overriding

class Base {

public:

 virtual void show() {

 cout << "Base class function" << endl;

 }

};

class Derived : public Base {

public:

 void show() override {

 cout << "Derived class function" << endl;

 }

};

Example: Function Overriding

#include <iostream>

using namespace std;

class Base {

public:

 virtual void show() {

 cout << "Base class function" << endl;

 }

160
MATS Centre for Distance and Online Education, MATS University

Notes };

class Derived : public Base {

public:

 void show() override {

 cout << "Derived class function" << endl;

 }

};

int main() {

 Base* ptr;

 Derived obj;

 ptr = &obj; // Base class pointer points to Derived class object

 ptr->show(); // Calls Derived class function

 return 0;

}

Output:

Derived class function

Key Points:

• Virtual functions ensure that the correct function is called for

an object, regardless of the reference type.

• Function Overriding occurs when a derived class provides a

different implementation of a function in the base class.

Table 4.2 Comparison: Compile-Time vs. Run-Time Polymorphism

Feature
Compile-Time

Polymorphism

Run-Time

Polymorphism

Binding Type Early Binding (Static) Late Binding (Dynamic)

Achieved By
Function Overloading,

Operator Overloading

Function Overriding

(Using Virtual

Functions)

Function Call

Resolved At
Compile-Time Run-Time

Speed Faster Slightly Slower

Example Multiple add() functions

Base class pointer

calling a derived class

function

161
MATS Centre for Distance and Online Education, MATS University

Notes Polymorphism is an essential feature of Object-Oriented

Programming (OOP) in C++.

• Compile-Time Polymorphism (Function Overloading,

Operator Overloading) improves code reusability and

efficiency.

• Run-Time Polymorphism (Function Overriding, Virtual

Functions) allows flexibility and dynamic behavior in

programs.

4.5 Overloading and Overriding in C++

In C++, overloading and overriding are two key concepts used in

polymorphism, which allows the same function name or operator to

have different behaviors. These concepts help in making code more

readable, reusable, and efficient.

• Function Overloading allows multiple functions with the

same name but different parameters.

• Operator Overloading enables the redefinition of operators

for user-defined data types.

• Method Overriding allows a derived class to provide a

specific implementation of a base class function.

1. Function Overloading

Function overloading is a feature in C++ that allows multiple

functions with the same name but different parameter lists to exist.

The compiler determines which function to call based on the number

and type of arguments passed.

Syntax

return_type function_name(parameter_list1);

return_type function_name(parameter_list2);

Example of Function Overloading

#include <iostream>

using namespace std;

// Function to add two integers

int add(int a, int b) {

 return a + b;

}

// Function to add three integers

int add(int a, int b, int c) {

162
MATS Centre for Distance and Online Education, MATS University

Notes return a + b + c;

}

// Function to add two floating-point numbers

float add(float a, float b) {

 return a + b;

}

int main() {

 cout << "Addition of 2 and 3: " << add(2, 3) << endl;

 cout << "Addition of 2, 3, and 5: " << add(2, 3, 5) << endl;

 cout << "Addition of 2.5 and 3.5: " << add(2.5f, 3.5f) << endl;

 return 0;

}

Output:

Addition of 2 and 3: 5

Addition of 2, 3, and 5: 10

Addition of 2.5 and 3.5: 6

Rules for Function Overloading

1. Functions must have the same name.

2. Functions must have different parameter lists (number or

type of arguments).

3. Functions cannot be overloaded by return type alone.

2. Operator Overloading

Definition

Operator overloading allows defining the behavior of operators (+, -,

*, /, ==, etc.) for user-defined data types like classes and structures.

Syntax

return_type operator symbol (parameters) {

 // Function body

}

Example of Operator Overloading

#include <iostream>

using namespace std;

class Complex {

 public:

 int real, imag;

163
MATS Centre for Distance and Online Education, MATS University

Notes

 Complex(int r = 0, int i = 0) {

 real = r;

 imag = i;

 }

 // Overloading + operator

 Complex operator + (Complex const &obj) {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void display() {

 cout << real << " + " << imag << "i" << endl;

 }

};

int main() {

 Complex c1(3, 4), c2(1, 2);

 Complex c3 = c1 + c2; // Calls operator overload function

 c3.display();

 return 0;

}

Output:

4 + 6i

Rules for Operator Overloading

1. Only existing operators can be overloaded.

2. Cannot overload *sizeof, ::, ., . or ?:**.

3. Overloaded operators must have at least one user-defined

data type operand.

3. Function Overriding

Definition

Function overriding allows a derived class to provide a specific

implementation of a function that is already defined in its base class.

Syntax

class Base {

164
MATS Centre for Distance and Online Education, MATS University

Notes public:

 virtual void show() {

 cout << "Base class function";

 }

};

class Derived : public Base {

public:

 void show() override {

 cout << "Derived class function";

 }

};

Example of Function Overriding

#include <iostream>

using namespace std;

class Base {

public:

 virtual void display() {

 cout << "Base class function" << endl;

 }

};

class Derived : public Base {

public:

 void display() override { // Overriding base class method

 cout << "Derived class function" << endl;

 }

};

int main() {

 Base* basePtr;

 Derived obj;

 basePtr = &obj;

 basePtr->display(); // Calls derived class method

 return 0;

}

165
MATS Centre for Distance and Online Education, MATS University

Notes Output:

Derived class function

Key Rules for Overriding

1. The function name and parameters must match exactly with

the base class function.

2. The base class function must be marked as virtual to enable

runtime polymorphism.

3. If overridden incorrectly, the base class function gets called

instead of the derived class function.

Table 4.3 Differences Between Overloading and Overriding

Feature Function Overloading Function Overriding

Definition

Multiple functions with

the same name but

different parameters.

Redefining a base class

function in a derived

class.

Where It Occurs Same class.
Different classes (base

and derived).

Parameters Must be different. Must be the same.

Return Type Can be different. Must be the same.

Virtual Keyword Not required.
Requires virtual in the

base class.

Purpose
Achieves compile-time

polymorphism.

Achieves runtime

polymorphism.

Both overloading and overriding are essential concepts in C++ that

help achieve polymorphism:

• Function Overloading enhances code readability and

flexibility by allowing multiple functions with the same name

but different signatures.

• Operator Overloading allows defining custom behaviors for

operators in user-defined classes.

• Function Overriding enables a derived class to modify the

behavior of an inherited function, supporting runtime

polymorphism.

MCQs:

1. What is operator overloading in C++?

A. Replacing built-in operators with macros

166
MATS Centre for Distance and Online Education, MATS University

Notes B. Assigning multiple meanings to an operator based on context

C. Changing the syntax of operators

D. Restricting operator use

2. Which keyword is used to overload an operator in C++?

A. override

B. define

C. operator

D. opload

3. Which of the following operators cannot be overloaded in

C++?

A. +

B. ==

C. =

D. ::

4. How is an overloaded operator function typically defined in

a class?

A. As a constructor

B. As a friend function or member function

C. As a template

D. As a macro

5. What is the return type of a type conversion operator

function in C++?

A. void

B. Same as the class name

C. The target type being converted to

D. Always int

6. What is the correct syntax for defining a conversion

operator in a class?

A. convert() {}

B. operator int() {}

C. int operator() {}

D. type convert operator() {}

7. Which of the following is not a rule of operator

overloading?

A. You can’t change the precedence of operators

B. You can’t create new operators

C. You can overload all operators including ::

D. You can change the meaning of existing operators

167
MATS Centre for Distance and Online Education, MATS University

Notes 8. Which type of operator overloading is used when defining

operations between two different user-defined types?

A. Unary operator overloading

B. Binary operator overloading

C. Relational operator overloading

D. Ternary operator overloading

9. Can constructors be used for implicit type conversion in

C++?

A. Yes

B. No

C. Only with virtual functions

D. Only in templates

10. What is the primary benefit of operator overloading?

A. Code becomes more complex

B. It allows the creation of new operators

C. It increases the size of the program

D. It allows intuitive use of custom data types

Short Questions:

1. What is operator overloading in C++?

2. Which keyword is used to overload an operator in C++?

3. Name any two operators that cannot be overloaded in C++.

4. What is the difference between a member function and a friend

function when overloading operators?

5. What is the general syntax for overloading a binary operator in

a class?

6. What are the rules for operator overloading in C++? Mention

any two.

7. How is unary operator overloading different from binary

operator overloading?

8. What is type conversion in C++?

9. Can a constructor be used for implicit type conversion? Explain

briefly.

10. What is a type conversion operator? Provide an example.

11. How do you define a conversion operator from a class type to

int?

12. Why is operator overloading useful in object-oriented

programming?

168
MATS Centre for Distance and Online Education, MATS University

Notes Long Questions:

1. Explain the concept of operator overloading in C++. Why is it

used in object-oriented programming? Provide an example.

2. Describe the steps and syntax for overloading a binary operator

using a member function. Illustrate with a suitable program.

3. How can friend functions be used to overload operators in C++?

Discuss with a detailed example.

4. Compare and contrast overloading unary and binary operators.

Provide code examples for both.

5. What are the limitations and rules of operator overloading in

C++? Mention at least four important rules.

6. Write a C++ program to overload the + operator for a custom

Complex class to add two complex numbers. Explain the

output.

7. What is a type conversion in C++? Discuss the different types

of type conversions supported in C++.

8. How is a constructor used for single-argument type conversion

in C++? Provide a program to demonstrate this concept.

9. What is a type conversion operator? Write a C++ program to

convert a class type to a built-in type using a conversion

operator.

10. Discuss the importance of type conversion operators in class

design. How do they improve usability of custom data types?

11. Explain with code how to perform conversion from one user-

defined type to another user-defined type in C++.

12. What are the potential pitfalls of operator overloading and type

conversion in C++? How can they be avoided in large-scale

software development?

169
MATS Centre for Distance and Online Education, MATS University

MODULE 5

Exception Handling and File Handling

LEARNING OUTCOMES

By the end of this Module, students will be able to:

• Understand exception operations in C++ for user interaction.

• Learn about input and output streams.

• Implement formatted and unformatted I/O operations.

• Explore file handling concepts, including file streams,

opening, reading, writing, and closing files.

• Understand file modes and their impact on data handling.

• Implement sequential and random file access techniques.

170
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Stream Classes

5.1 Exception Operations and File Handling

Exception Operations and File Handling in C++

1. Introduction to exception Operations

C++ provides powerful functionalities through its standard I/O

library. The most commonly used objects for console input and output

operations are:

• cin* (Standard Input) - Used for reading input from the

keyboard.*

• cout* (Standard Output) - Used for displaying output on the

console.*

• cerr* (Standard Error) - Used for error messages.*

• clog* (Standard Log) - Used for logging information.*

2. Basic Exception operations

***2.1 Output using ***cout

The cout object, defined in the <iostream> header, is used for output.

Syntax:

#include <iostream>

using namespace std;

int main() {

 cout << "Hello, World!";

 return 0;

}

Example:

#include <iostream>

using namespace std;

int main() {

 int a = 10;

 float b = 5.5;

 cout << "Integer: " << a << " and Float: " << b << endl;

 return 0;

}

***2.2 Input using ***cin

The cin object is used for taking input from the user.

171
MATS Centre for Distance and Online Education, MATS University

Notes Syntax:

cin >> variable;

Example:

#include <iostream>

using namespace std;

int main() {

 int age;

 cout << "Enter your age: ";

 cin >> age;

 cout << "Your age is: " << age << endl;

 return 0;

}

***2.3 Using cerr and ***clog

cerr* is used for error messages and does not support buffering,

whereas clog supports buffering.*

Example:

#include <iostream>

using namespace std;

int main() {

 cerr << "Error: Invalid input!" << endl;

 clog << "Log: This is a log message." << endl;

 return 0;

}

3. Manipulators in Console I/O

Manipulators help format the output.

3.1 Common Manipulators

• endl* - Moves to the next line.*

• setw(n)* - Sets the field width.*

• setprecision(n)* - Controls floating-point precision.*

• fixed* - Displays floating-point numbers in fixed-point

notation.*

• showpoint* - Forces decimal points in floating numbers.*

• left* / right - Aligns text to the left or right.*

Example:

#include <iostream>

#include <iomanip>

172
MATS Centre for Distance and Online Education, MATS University

Notes using namespace std;

int main() {

 double pi = 3.14159265;

 cout << fixed << setprecision(2) << pi << endl; // Output: 3.14

 cout << setw(10) << right << "Hello" << endl; // Right aligned

output

 return 0;

}

4. File Handling in C++

File handling allows us to store and retrieve data from files. The

<fstream> library provides three classes:

• ofstream* - Output file stream (write to a file)*

• ifstream* - Input file stream (read from a file)*

• fstream* - File stream (read/write to a file)*

***4.1 Writing to a File using ***ofstream

Example:

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 ofstream file("example.txt");

 if (file.is_open()) {

 file << "Hello, file handling in C++!";

 file.close();

 } else {

 cout << "Unable to open file";

 }

 return 0;

}

***4.2 Reading from a File using ***ifstream

Example:

#include <iostream>

#include <fstream>

using namespace std;

int main() {

173
MATS Centre for Distance and Online Education, MATS University

Notes ifstream file("example.txt");

 string line;

 if (file.is_open()) {

 while (getline(file, line)) {

 cout << line << endl;

 }

 file.close();

 } else {

 cout << "Unable to open file";

 }

 return 0;

}

***4.3 Read and Write Using ***fstream

Example:

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 fstream file("example.txt", ios::in | ios::out | ios::app);

 file << "Appending new data!" << endl;

 file.close();

 return 0;

}

5. File Opening Modes

Table 5.1 Different modes available for file handling

Mode Description

ios::in Opens file for reading

ios::out Opens file for writing

ios::app Appends to a file

ios::ate Moves the write pointer to end

ios::trunc Deletes contents of file if exists

6. Checking File Status

Checking if a file exists or if an operation was successful.

Example:

#include <iostream>

174
MATS Centre for Distance and Online Education, MATS University

Notes #include <fstream>

using namespace std;

int main() {

 ifstream file("example.txt");

 if (file) {

 cout << "File exists." << endl;

 } else {

 cout << "File does not exist." << endl;

 }

 return 0;

}

7. Reading and Writing Objects to Files

Using structures and classes to store object data in files.

7.1 Writing Objects to a File

#include <iostream>

#include <fstream>

using namespace std;

class Student {

public:

 char name[20];

 int age;

};

int main() {

 Student s = {"John", 20};

 ofstream file("student.dat", ios::binary);

 file.write((char*)&s, sizeof(s));

 file.close();

 return 0;

}

7.2 Reading Objects from a File

#include <iostream>

#include <fstream>

using namespace std;

class Student {

175
MATS Centre for Distance and Online Education, MATS University

Notes public:

 char name[20];

 int age;

};

int main() {

 Student s;

 ifstream file("student.dat", ios::binary);

 file.read((char*)&s, sizeof(s));

 cout << "Name: " << s.name << " Age: " << s.age << endl;

 file.close();

 return 0;

}

C++ provides robust console I/O operations using cin, cout, cerr, and

clog. It also offers powerful file handling using fstream, ifstream,

and ofstream. Understanding these concepts helps in building real-

world applications requiring persistent data storage.

Unit 14: File Handling in OOP’s

5.2. Introduction

Object-Oriented Programming (OOP) is a paradigm based on the

concept of objects — which contain data (attributes) and methods

(functions). In file handling, using OOP improves code organization,

reusability, and scalability, especially in larger projects.

By encapsulating file operations inside classes, we can create more

structured and reusable code.

5.3. Why Use OOP for File Handling?

Traditional (procedural) file handling works fine for simple tasks.

However, OOP offers several advantages:

• Encapsulation of file operations.

• Easier maintenance and debugging.

• Promotes code reuse through inheritance.

• Makes it easy to build more complex systems (like file

managers, parsers, etc.).

176
MATS Centre for Distance and Online Education, MATS University

Notes 1. Creating a File Handler Class

Let’s define a class that can handle basic file operations:

class FileHandler:

 def __init__(self, filename, mode):

 self.filename = filename

 self.mode = mode

 self.file = None

 def open_file(self):

 try:

 self.file = open(self.filename, self.mode)

 print(f"File '{self.filename}' opened successfully in

'{self.mode}' mode.")

 except Exception as e:

 print(f"Error opening file: {e}")

 def read_file(self):

 if self.file and not self.file.closed:

 return self.file.read()

 else:

 return "File not open."

 def write_file(self, data):

 if self.file and not self.file.closed:

 self.file.write(data)

 else:

 print("File not open.")

 def close_file(self):

 if self.file:

 self.file.close()

 print(f"File '{self.filename}' closed.")

2. Using the FileHandler Class

Writing to a file

writer = FileHandler("demo.txt", "w")

writer.open_file()

177
MATS Centre for Distance and Online Education, MATS University

Notes writer.write_file("Hello from OOP-based file handler!\n")

writer.close_file()

Reading from the same file

reader = FileHandler("demo.txt", "r")

reader.open_file()

content = reader.read_file()

print("File Content:\n", content)

reader.close_file()

3. Inheritance in File Handling

Let’s extend our class to specialize in handling text files and binary

files separately.

class TextFileHandler(FileHandler):

 def count_lines(self):

 if self.file and not self.file.closed:

 return len(self.file.readlines())

 else:

 return 0

Usage:

reader = TextFileHandler("demo.txt", "r")

reader.open_file()

lines = reader.count_lines()

print("Number of lines:", lines)

reader.close_file()

You can similarly create a BinaryFileHandler for binary file

operations.

4. Exception Handling in OOP File Handling

Add more robust error management with try-except inside class

methods:

def write_file(self, data):

 try:

 if self.file and not self.file.closed:

 self.file.write(data)

178
MATS Centre for Distance and Online Education, MATS University

Notes else:

 print("File not open.")

 except Exception as e:

 print(f"Error writing to file: {e}")

5. Real-World Application: Log File Manager

class LogFileManager(FileHandler):

 def log(self, message):

 from datetime import datetime

 timestamp = datetime.now().strftime("%Y-%m-%d

%H:%M:%S")

 self.write_file(f"[{timestamp}] {message}\n")

Usage:

logger = LogFileManager("log.txt", "a")

logger.open_file()

logger.log("System started")

logger.log("User login successful")

logger.close_file()

5.4 Advantages of OOP-based File Handling

Given are the benefit of the OOP, based on file handling.

Table 5.2 Features and Benefit

Feature Benefit

Encapsulation Keeps file logic isolated and clean.

Inheritance Enables code reuse and extension for different file

types

Polymorphism
Allows different file handlers to share method names

but with different behaviors.

Abstraction Hides complex file logic behind simple method calls.

.

5.5. Best Practices

• Use context managers (with open(...)) inside methods to auto-close

files.

• Always validate the file state before reading/writing.

• Use custom exceptions for better debugging.

• Avoid hardcoding file names; use parameters or configuration files.

179
MATS Centre for Distance and Online Education, MATS University

Notes File handling in OOP allows you to build scalable, readable, and reusable

systems for interacting with files. By wrapping file operations in classes and

methods, you gain the power of modular programming while keeping your

code organized.

MCQs:

1. Which keyword is used to define a block of code that might

throw an exception in C++?

A. throw

B. catch

C. try

D. handle

2. What is the correct keyword to catch an exception in C++?

A. try

B. throw

C. catch

D. except

3. What does the throw keyword do in C++ exception handling?

A. Declares an error

B. Ignores an error

C. Transfers control to the catch block

D. Closes a file

4. Which of the following is the base class for all standard

exceptions in C++?

A. exception

B. error

C. std_error

D. base_exception

5. What happens if an exception is thrown but not caught in C++?

A. Program continues as normal

B. The exception is logged

C. The program terminates

D. The OS handles it automatically

180
MATS Centre for Distance and Online Education, MATS University

Notes 6. Which header file is required for file handling in C++?

A. iostream

B. file.h

C. fstream

D. stdio.h

7. Which C++ stream is used for reading from a file?

A. ofstream

B. fstream

C. ifstream

D. cin

8. What does the eof() function check for in file handling?

A. End of line

B. End of file

C. File not found

D. File open failure

9. What mode is used to append data to a file in C++?

A. ios::in

B. ios::out

C. ios::trunc

D. ios::app

10. Which C++ stream allows both reading and writing to files?

A. fstream

B. ifstream

C. ofstream

D. ofstream with ios::in

Short Questions:

1. What is exception handling in C++?

2. Name the three main keywords used in exception handling in

C++.

3. How do you throw an exception in C++? Give an example.

4. What is the purpose of the catch block in exception handling?

5. What happens if an exception is thrown but not caught in a C++

program?

181
MATS Centre for Distance and Online Education, MATS University

Notes 6. What is the use of catch(...) in C++?

7. What is the try block used for in exception handling?

8. What is the purpose of the fstream header in C++?

9. Differentiate between ifstream, ofstream, and fstream.

10. How do you open a file for both reading and writing in C++?

11. What does the eof() function do in file handling?

12. How can you check if a file was opened successfully in C++?

Long Questions:

1. Explain the concept of exception handling in C++. Why is it

important in object-oriented programming? Provide a simple

example.

2. Describe the use and flow of try, throw, and catch blocks in

C++. How do they work together to handle exceptions?

3. What are the advantages of using exception handling over

traditional error handling methods in C++?

4. Write a C++ program that demonstrates exception handling

using custom exception classes. Explain each part of the code.

5. What is the role of catch(...) in exception handling? When and

why would you use it?

6. Discuss how multiple catch blocks can be used to handle

different types of exceptions. Provide an example.

7. Explain how exception handling can be used to make programs

more robust and maintainable. Give a real-world scenario.

8. What is file handling in C++? Explain how ifstream, ofstream,

and fstream classes are used to perform file I/O operations.

9. Write a C++ program to open a file, read its contents, and

handle any errors that may occur during file operations.

10. Explain different file modes available in C++ file handling,

such as ios::in, ios::out, ios::app, ios::binary, and ios::trunc.

11. How can exception handling be integrated with file handling

in C++ to create safer file operations? Illustrate with an

example.

12. Discuss the common errors that may occur during file

handling in C++. How can these errors be detected and

handled effectively?

182
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Introduction to Object-Oriented Programming

1. Eckel, B. (2006). Thinking in Java (4th ed.). Prentice Hall.

2. Meyer, B. (1997). Object-oriented software construction (2nd

ed.). Prentice Hall.

3. Martin, R. C. (2008). Clean code: A handbook of agile

software craftsmanship. Prentice Hall.

4. Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley

Professional.

5. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).

Design patterns: Elements of reusable object-oriented

software. Addison-Wesley Professional.

Chapter 2: Classes and Objects

1. Horstmann, C. S. (2019). Core Java, Volume I: Fundamentals

(11th ed.). Pearson.

2. Sierra, K., & Bates, B. (2005). Head First Java (2nd ed.).

O'Reilly Media.

3. Deitel, P., & Deitel, H. (2017). Java: How to program (11th

ed.). Pearson.

4. Fowler, M. (2018). Refactoring: Improving the design of

existing code (2nd ed.). Addison-Wesley Professional.

5. Lippman, S. B., Lajoie, J., & Moo, B. E. (2012). C++ primer

(5th ed.). Addison-Wesley Professional.

Chapter 3: Inheritance and Polymorphism

1. Liskov, B., & Guttag, J. (2000). Program development in Java:

Abstraction, specification, and object-oriented design.

Addison-Wesley Professional.

2. Stroustrup, B. (2013). The C++ programming language (4th

ed.). Addison-Wesley Professional.

3. Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J.,

Conallen, J., & Houston, K. A. (2007). Object-oriented

analysis and design with applications (3rd ed.). Addison-

Wesley Professional.

4. Booch, G. (1994). Object-oriented analysis and design with

applications (2nd ed.). Addison-Wesley Professional.

183
MATS Centre for Distance and Online Education, MATS University

Notes 5. Budd, T. (2002). An introduction to object-oriented

programming (3rd ed.). Addison-Wesley.

Chapter 4: Abstract Classes and Interfaces

1. Freeman, E., & Robson, E. (2014). Head First design patterns.

O'Reilly Media.

2. Hunt, A., & Thomas, D. (2019). The pragmatic programmer:

Your journey to mastery (20th anniversary ed.). Addison-

Wesley Professional.

3. Lasater, C. G. (2006). Design patterns. Jones & Bartlett

Learning.

4. McConnell, S. (2004). Code complete: A practical handbook

of software construction (2nd ed.). Microsoft Press.

5. McLaughlin, B. D., Pollice, G., & West, D. (2006). Head First

object-oriented analysis and design. O'Reilly Media.

Chapter 5: Exception Handling and Multithreading

1. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., &

Lea, D. (2006). Java concurrency in practice. Addison-Wesley

Professional.

2. Lea, D. (1999). Concurrent programming in Java: Design

principles and patterns (2nd ed.). Addison-Wesley

Professional.

3. Williams, A. (2019). C++ concurrency in action (2nd ed.).

Manning Publications.

4. Oaks, S. (2014). Java performance: The definitive guide.

O'Reilly Media.

5. Marlow, S. (2013). Parallel and concurrent programming in

Haskell. O'Reilly Media.

184
MATS Centre for Distance and Online Education, MATS University

	Page 2

