
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Database Technologies
Master of Computer Applications (MCA)

Semester - 1

Course Introduction 1

Module 1

Introduction to Database Management System
3

Unit 1: Purpose of Database Systems 4
Unit 2: Data Models 7
Unit 3: Database Architecture, Storage, and Administration 10

Module 2

Relational Data Modeling and Database Design
19

Unit 4: Relational Model and Constraints 20
Unit 5: Theoretical Foundations of Relational Databases 24
Unit 6: Decomposition and Normalization 31

Module 3

SQL and Procedural SQL
42

Unit 7: Control Flow in SQL 43
Unit 8: User-Defined Functions and Stored Procedures 49
Unit 9: Triggers 58

Module 4

Transaction management and Concurrency
65

Unit 10: Transactions 66
Unit 11: Serializability 79
Unit 12: Concurrency Control & Deadlock Handling 83

Module 5

Object-Oriented Database
114

Unit 13: Limitations of RDBMS and Introduction to Advanced
Databases 115

Unit 14: Object-Oriented Features in Relational Databases 119
Unit 15: Object-Oriented Data Models 129

References 160

Database Technologies

ODL MCA-103

Master of Computer Applications

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-20-3

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depend on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

1

COURSE INTRODUCTION

Databases play a crucial role in managing, storing, and retrieving

structured information efficiently. This course provides a

comprehensive understanding of database management systems

(DBMS), covering fundamental concepts, relational modeling, SQL,

transaction management, and object-oriented databases.

Module1: Introduction to Database Management System

This Module lays the foundation by introducing database

management systems, their evolution, key characteristics,

advantages, and real-world applications. It explores different

types of DBMS and their significance in modern computing

environments.

Module2: Relational Data Modeling and Database Design

A well-structured database starts with a robust design. This

Module covers relational data modeling, entity-relationship

(ER) diagrams, normalization techniques, and schema design

principles to ensure data consistency and integrity.

Module 3: SQL and Procedural SQL

Structured Query Language (SQL) is the backbone of

database interaction. This Module introduces fundamental

SQL commands and extends into procedural SQL, covering

stored procedures, triggers, and functions to enhance database

operations.

Module 4: Transaction Management and Concurrency

Data consistency and reliability are essential in multi-user

environments. This Module discusses ACID properties,

transaction processing, concurrency control techniques, and

recovery mechanisms to ensure data integrity in database

systems.

Module 5: Object-Oriented Database

The evolution of data storage has led to object-oriented

databases (OODB), which integrate object-oriented principles

with database management. This Module explores OODB

concepts, advantages, and their application in complex data

structures.

2
MATS Centre for Distance and Online Education, MATS University

Notes By the end of this course, learners will have a strong grasp of database

concepts, design methodologies, and practical SQL skills to manage and

optimize databases efficiently.

1

MODULE 1

INTRODUCTION TO DATABASE MANAGEMENT

SYSTEM

LEARNING OUTCOMES

By the end of this Unit, students will be able to:

• Understand the purpose of database systems, including data

management, integrity, and security.

• Explain data abstraction, data models (relational, E-R, object-

based, semi-structured), and database languages.

• Describe database architecture, data storage, indexing, and

query processing for efficient retrieval.

• Identify the roles of database users and administrators, focusing

on database security, maintenance, and management.

2
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Purpose of Database Systems

1.1 Purpose of Database Systems

It is software used to manage the efficient storage, retrieval, and

manipulation of data. Its A2F architecture guarantees data integrity,

security, and accessibility for all users and applications.

Purpose of Database Systems

Purpose Description

Data Organization &

Management

Stores data in a structured format

(tables, relations) for easy access.

Efficient Data Retrieval Allows quick searching, sorting, and

querying using SQL.

 Data Integrity &

Consistency

Ensures ACID properties (Atomicity,

Consistency, Isolation, and Durability).

Data Security & Access

Control

Restricts access using authentication &

authorization (user roles, permissions).

Concurrency Control Manages multiple users accessing data

simultaneously.

Backup & Recovery Provides automatic backup and disaster

recovery to prevent data loss.

7. Data Independence Separates data storage from

applications, allowing scalability.

8. Elimination of Data

Redundancy

Reduces duplicate data through

normalization.

9. Scalability &

Performance Optimization

Supports large datasets with indexing,

caching, and distributed databases.

3. Example: Database Management System (DBMS)

A DBMS (e.g., MySQL, PostgreSQL, and MongoDB) helps in:

• Storing customer records in an e-commerce site.

• Managing bank transactions securely.

• Handling real-time analytics in businesses.

Modern applications such as banking, healthcare, e-commerce, and

cloud computing demand efficient, secure, and scalable data

management and that is where Database Systems comes into the

picture.

3
MATS Centre for Distance and Online Education, MATS University

Notes 1.2 View of Data: Data Abstraction, Instances and Schemas

A DBMS (database management system) is a software used for

storing, retrieving and managing data. Databases utilize data

abstraction, instances, and schemas to efficiently manage complex

data and to organize and present data in the most effective way.

Data Abstraction

Data Abstraction means displaying only the relevant data while hiding

the background details about how the data is stored and maintained. It

contributes in handling large data bases effectively by dividing the data

representation into three levels.

2.2 Levels of Data Abstraction

Level Description Example

1. Physical Level

(Lowest Level)

Describes how data is

stored in memory

(files, indexes,

pointers).

Data stored as B-trees,

Hash Tables, Blocks on

Disk.

2. Logical Level

(Conceptual

Level)

Describes what data is

stored and

relationships among

data.

Tables: Students (ID,

Name, Course, Age)

3. View Level

(Highest Level)

Provides user-specific

views of the data.

A university student can

see only his/her records,

while an admin can

access all student details.

Example: In a banking system:

• Physical Level: Data is stored as indexed files on a disk.

• Logical Level: Tables store account details like Account_No,

Name, Balance.

• View Level: A customer sees only their transactions, but the

manager sees all accounts.

3. Instances and Schemas

• Eg: The current state of the database at a specific point in time.

• Database keeps updating the instances as the data keeps changing.

Example:

A Students table contains:

➢ ID Name Age Course

4
MATS Centre for Distance and Online Education, MATS University

Notes ➢ 101 Alex 21 CS

➢ 102 Emma 22 IT

• The Students table above is a snapshot of the Students table at this

time.

• The instance changes when a new student joins.

Schema (Structure of the Database)

• Schema is the architecture of the database is stable.

• Describes tables, attributes, relationships, constraints.

For example: A schema for Students table:

CREATE TABLE Students (

ID INT PRIMARY KEY,

Name VARCHAR(50),

Age INT,

Course VARCHAR(50)

);

• All records share the same schema, even though we can add/delete

records

Types of Schemas:

Schema Type Description

Physical Schema Defines storage details (indexes, partitioning).

Logical Schema Defines tables, relationships, constraints.

4. Difference Between Instance and Schema

Feature Instance Schema

Definition Snapshot of data at a given

moment

Blueprint or structure of

the database

Changes Frequently changes Fixed unless modified by

DBA

Example Current rows in Students

table

Table design (ID, Name,

Age, Course)

• Data Abstraction facilitates easier management of database,

separates data storage, structure and how user view.

• Instances contain the most current data, which changes

continuously.

• Schemas dictate the architecture of a database, ownership and

accessibility

5
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Data Models

1.3 Data Models: Relational Model, Entity-Relationship Model,

Object-Based Data Model, semi structured Data Model, Database

Languages

Data models are abstract models that organize the elements of data and

how they relate to one another and to the properties of real-world

entities. Here’s a snapshot of the data models and database languages

you listed:

Data Models

1. Relational Model:

• Description: In contrast, the relational model stores data in

one or more tables (or ‘relations’) that consist of rows and

columns, where each row is uniquely identified by a key.

Rows are referred to as records or tuples, and columns as

attributes or fields.

• What You’ll Learn: Tables, rows, columns, primary keys,

foreign keys, normalization.

• Pros: Easy to use, reliable, flexible, and complex queries.

• Examples: MySQL, PostgreSQL, Oracle.

2. Entity-Relationship Model (ER Model):

• Definition: The ER model is a high-level data model that

provides a conceptual representation of the data structure of a

database. This use ER diagrams for representation of your

entities (tables), attributes (columns), and associations.

• Keywords: Entities, attributes, relationships, cardinality and

participation constraints.

• Strengths: Simple to comprehend and picture, benefits

database design.

• Example(s)-- Usually you will use this during the design

phase before creating a relational database

3. Object-Based Data Model:

• Description: This is an extension of the relational model that

utilizes object-oriented concepts. It supports complex data

type, encapsulation, inheritance and polymorphism.

• Key concepts: Objects, classes, inheritance, encapsulation,

polymorphism.

6
MATS Centre for Distance and Online Education, MATS University

Notes • Benefits: More suited for complex data schemas, compatibility

with object-oriented programming languages

• Examples: PostgreSQL (with object-oriented features), Oracle

4. Semi-Structured Data Model:

• Definition: Semi-structured data can-not be arranged in a

proper structure like the formal structures in data models like

the relational model. It is often defined by not having a fixed

schema and the capability to involve nesting of data.

• Keywords: Tags, elements, nesting, flexible.

• Pros: Flexible management of heterogeneous data, easy

integration with web-based data.

• Examples: Mongo DB, Couchbase, Any NoSQL DB, XML,

JSON etc.

Database Languages

1. Data Definition Language (DDL):

• Description: DDL позволяет задавать и изменять структуру

объектов базы данных. It covers commands for creating,

altering, and deleting database objects such as tables, indexes,

and schemas.

• Examples: CREATE, ALTER, DROP, TRUNCATE.

2. Data Manipulation Language (DML):

• Description: DML is used to manage data in schema objects.

This contains commands for inserting, updating, deleting, and

retrieving data from the database.

• Examples: SELECT, INSERT, UPDATE, DELETE.

3. Data Control Language (DCL):

• Definition: DCL is a language used to control accessibility of

the data in the database. It has commands to add and remove

permissions

• Examples: GRANT, REVOKE.

4. Transaction Control Language (TCL):

• TCL (Transaction Control Language) o Description: TCL is

used to manage transactions in the database. This segment

contains commands to manage the changes performed by

DML statements.

• Examples: COMMIT, ROLLBACK, SAVEPOINT

7
MATS Centre for Distance and Online Education, MATS University

Notes 5. Query Language:

• What is a Query Language? A query language is a data access

language for making queries in databases and information

systems. SQL (Structured Query Language) is the most

widely-used query language.

• for example : SELECT, FROM, WHERE, GROUP BY,

HAVING, ORDER BY

• Relational Model: Data in tables with relations.

• Object-Based Data Model: Use of object-oriented

characteristics

• Semi-Structured Data Model: Allows flexible and schema-less

data representation.

• Database Languages: Data Definition language(DDL), Data

Manipulation

Language(DML), Data Control Language(DCL), Transaction Control

Language(TCL) and Query Languages.

8
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Database Architecture, Storage, and

Administration

1.4 Data Storage and Querying, Database Architecture

1. Data Storage and Querying

Data Storage

In order to access and obtain data quickly, data is stored efficiently on

various storage structures in a database. The two most commons

types of storage are:

Storage Type Description Examples

Primary Storage

(Main Memory)

Stores frequently accessed

data in RAM for quick

access.

Cache memory,

Buffer pool

Secondary Storage

(Disk Storage)

Stores large amounts of data

persistently.

Hard Disk

(HDD), SSD

Tertiary Storage Used for long-term backups

and archival data.

Magnetic tapes,

Cloud storage

How Databases Store Data?

• Heap Storage – Stores unordered records (slow for searches).

• Indexed Storage – Uses B-Trees, Hash Indexes for fast lookup.

• Clustered Storage – Groups related data together for

efficiency.

Querying in Databases

A query is a request to retrieve, insert, update, or delete data. Queries

are written using SQL (Structured Query Language).

Example SQL Queries:

-- Retrieve all students older than 20

SELECT * FROM Students WHERE Age > 20;

-- Insert a new student record

INSERT INTO Students (ID, Name, Age, Course) VALUES (103,

'John', 21, 'CS');

-- Update a student's course

UPDATE Students SET Course = 'AI' WHERE ID = 103;

-- Delete a student record

DELETE FROM Students WHERE ID = 103;

9
MATS Centre for Distance and Online Education, MATS University

Notes Query Optimization:

• Uses indexes, query rewriting, and execution plans to improve

performance.

• EXPLAIN statement in SQL helps analyze query efficiency.

2. Database Architecture

Types of Database Architecture

Database systems are designed based on different architectures:

Architecture

Type

Description Examples

1-Tier

Architecture

The database is directly

accessed by the

application.

Local file databases

(MS Access)

2-Tier

Architecture

Application connects to a

central database (client-

server model).

MySQL, PostgreSQL

3-Tier

Architecture

Uses an intermediate layer

(API/Server) between user

and database.

Web applications

(MySQL +

Django/Node.js)

2.2 Components of Database Architecture

Component Function

Database Stores data in structured format.

DBMS (Database

Management System)

Manages data, queries, and transactions.

Query Processor Converts SQL queries into execution

plans.

Storage Manager Handles data retrieval, indexing, and

optimization.

Transaction Manager Ensures ACID properties (Atomicity,

Consistency, Isolation, Durability).

10
MATS Centre for Distance and Online Education, MATS University

Notes Example: 3-Tier Web Application Architecture

1. Presentation Layer – Web UI (HTML, React)

2. Application Layer – Backend (Python, Java, Node.js)

3. Database Layer – DBMS (MySQL, MongoDB)

• Data Storage: Performance and Scalability in Databases

• For querying, we use SQL (statement for retrieving the data in

SQL)

• Database Architecture that is highly secure, scalable, and efficient.

Designing a high performance application require a proper

understanding of these concepts

1.5 Database Users and Administrators

In line with the database system, there are two kinds of roles, Users,

and Administrators. On that note, here are five types of database users

and administrators along with their responsibilities:

1. Database Administrators (DBAs)

• Responsibilities: Database Administrators (DBAs) oversee the

database system's administration, upkeep, and performance.

• Responsibilities:

• Installation and upgrades of the database software

• Database configuration and optimization tuning

• User access and security management (such as granting or

revoking permissions).

• Failing speed with backup and recovery of data.

• Performance monitoring of database and fix the issues.

• Providing appropriate access controls.

Figure 1.1: Database Administrator

(Source: https://maxdb.sap.com)

11
MATS Centre for Distance and Online Education, MATS University

Notes • For example, a DBA may utilize tools such as Oracle Enterprise

Manager or SQL Server Management Studio (SSMS) to monitor and

manage databases:

2. Database Designers

• Role: Also referred to as the database architect, the database designer

is responsible for designing the database structure and schema.

• Responsibilities:

• Identifying user needs and converting them into a database

schema.

• Develop ER diagrams and their corresponding relational

schemas.

• Normalising the database to avoid redundancy and make it

more efficient.

• Establishing tables, links, conditions and indexes.

• Example: ER Diagrams and DB Schema Sophia (damn every time I

use Sophia feels so real to me) is a database designer, she can use

ERwin or Lucidchart to create ER Diagram and Design DB Schema

3. End Users

Role: The End users are system users who enter into the database using

different applications to retrieve, insert, update, or delete data.

• Types of End Users:

• Casual End Users: Use query languages (for example, SQL) to

access the database on an occasional basis.

• Naive or Parametric End Users: Use existing applications or

forms to access the database (e.g. ATMs, online shopping

carts).

• Advanced End Users: Use specialized tools such as data

analysis software or craft sophisticated queries.

• Responsibilities:

• Platforms that utilize the database for their work (e.g.,

interrogating data,c producing reports).

• Ensuring that data the data inputted into the system is accurate

and complete.

• BOT: AN EXAMPLE We have a sales manager querying the database

to generate a sales report.

12
MATS Centre for Distance and Online Education, MATS University

Notes

4. Application Programmers

• Role: Application programmers design and create software

applications that will communicate with the database.

• Responsibilities:

• Coding into applications to enable the database.

• Connect to the database using Data Access APIs (e.g., JDBC,

ODBC, etcSimple API) or ORM (Object-Relational Mapping)

tools

• Application logic ensuring data consistency and security.

• {Debugging and optimizing database queries in application.

• For instance, a programmer could use SQLAlchemy within a Python

script to pull data from a PostgreSQL database

5. System Analysts

Role: Systems analysts are the link between end users and the database

system. They understand what the user needs and optimize the

database accordingly.

• Responsibilities:

• Collecting and Evaluating User Requirements

• Collaborating with database designers to confirm that the

design aligns with user applications.

• Audit of the DB system to validate the functional &

performance requirements.

• Preparing system specifications and user manuals.

• example: A system analyst helps a healthcare provider design a

database for patient records.

13
MATS Centre for Distance and Online Education, MATS University

Notes Summary of Roles

All the above roles together provide an efficient and secure way of

storing, accessing and managing data in a database system.

Multiple-Choice Questions (MCQs)

1. Which of the following best describes a database?

a) A collection of files stored on a hard drive

b) A systematic collection of data that allows easy access

and management

c) A set of interconnected spreadsheets

d) A software program used for designing web pages

(Answer: b)

2. What is the purpose of data abstraction in databases?

a) To provide a physical representation of data

b) To hide complex details from users and provide a

simplified view

c) To store data in encrypted format only

d) To ensure data is always in a graphical format

(Answer: b)

3. Which of the following is NOT a type of database schema?

a) Logical schema

b) Conceptual schema

c) Flat schema

d) Physical schema

(Answer: c)

Role Primary Responsibility

Database

Administrator

Manages and maintains the database system (e.g.,

performance, security, backups).

Database

Designer

Designs the database schema and structure (e.g., ER

diagrams, normalization).

End Users Interact with the database to perform tasks (e.g.,

querying, updating data).

Application

Programmers

Develop applications that interact with the database

(e.g., APIs, ORM tools).

System

Analysts

Analyze user requirements and ensure the database

meets those needs.

14
MATS Centre for Distance and Online Education, MATS University

Notes 4. What is DDL in databases?

a) Data Derivation Language

b) Data Definition Language

c) Database Deployment Language

d) Dynamic Data Language

(Answer: b)

5. The three-tier database architecture consists of:

a) Client, Application Server, Database Server

b) Front-end, Back-end, Middleware

c) Data Layer, Business Logic Layer, Presentation Layer

d) All of the above

(Answer: d)

6. Which of the following database users is responsible for

managing access control?

a) End users

b) Database Administrator (DBA)

c) System Analyst

d) Data Scientist

(Answer: b)

7. Data mining is used for:

a) Discovering patterns and relationships in large datasets

b) Cleaning redundant data from a database

c) Encrypting sensitive information in a database

d) Physically storing data in warehouses

(Answer: a)

8. What is the primary function of a data warehouse?

a) To store current transactional data

b) To process online transactions in real-time

c) To store historical data for analysis and decision-

making

d) To replace traditional relational databases

(Answer: c)

9. Big Data typically involves:

a) Small-scale structured datasets

b) Large volumes of unstructured or semi-structured data

c) Only relational databases

d) Only cloud-based data storage

Notes

15
MATS Centre for Distance and Online Education, MATS University

Notes (Answer: b)

10. Which of the following is a key feature of Data Analytics?

a) Predicting future trends based on historical data

b) Encrypting databases for security

c) Deleting unnecessary data from databases

d) Creating web pages for data visualization

(Answer: a)

Short Questions

1. Define a database and its primary purpose.

2. What is data abstraction in a database system?

3. Differentiate between schema and instance in databases.

4. What are the two main types of database languages?

5. Define DML and provide one example.

6. What is the difference between two-tier and three-tier database

architecture?

7. Name two key responsibilities of a Database Administrator

(DBA).

8. What is data mining and how is it useful?

9. Explain the concept of a data warehouse.

10. What are the four key characteristics of Big Data?

Long Questions

1. Explain the purpose of a database and its advantages over

traditional file systems.

2. Discuss the three levels of data abstraction with examples.

3. Differentiate between different types of database schemas with

proper explanations.

4. Explain the differences between DDL and DML with

appropriate SQL examples.

5. Describe the components of a three-tier database architecture

and how they interact.

6. Discuss the different types of database users and their roles in

a database system.

7. What is data mining? Explain the various techniques used in

data mining.

8. Define data warehousing and discuss its architecture and

benefits.

16
MATS Centre for Distance and Online Education, MATS University

Notes 9. Explain the concept of Big Data, its challenges, and how it

differs from traditional databases.

10. What is Data Analytics? Discuss its types, importance, and

applications in real-world scenarios.

17

MODULE 2

RELATIONAL DATA MODELING AND DATABASE

DESIGN

LEARNING OUTCOMES

By the end of this Unit, students will be able to:

• Understand relational model concepts and different types of

keys (Super Key, Candidate Key, Primary Key).

• Explain integrity constraints, E.F. Codd’s rules, and functional

dependencies in relational databases.

• Learn decomposition techniques ensuring lossless join and

dependency preservation.

• Apply normalization (1NF, 2NF, 3NF, BCNF, PJNF) to

eliminate redundancy and enhance database efficiency.

18
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Relational Model and Constraints

2.1Relational Model Concepts, Super Key, Candidate Key and

Primary Key

Data is organized as relations with tuples (rows) and attributes

(columns) in tables (relations) by the foundation of relational databases,

the Relational Model. The primary concept of a relational database is

that an entity is defined by each table, and the relationships among these

entities are established through keys. Relational Model is to ensure

data integrity, redundancy, and efficient storage & retrieval of data

through the query language SQL.

Super Key: One or more attribute to identify tuple uniquely. Another

subclass of super key with unnecessary attributes is a super key.

Consider the below example of a "Student" table with an attribute

(Student_ID, Name, Email, Phone) super key would be any attribute

combination that uniquely identifies a student like (Student_ID),

(Student_ID, Name), (Student_ID, Email), (Student_ID, Phone) All of

these could uniquely identify a student, but some have additional

attributes that are not required. A Candidate Key is a minimal super

key or it means that it is the smallest possible set of attributes that will

uniquely identify a tuple in a relation. ["A candidate key does not hold

redundant attributes."] For example, in the same "Student" table, the

minimal keysthat uniquely identify a student could be (Student_ID)

(Email), assuming there will be no two students with same email

address. But (Student_ID, Name) would not be a candidate key

because "Name" doesn't need to be there to make it unique. A Primary

Key is chosen (exists) from the set of candidate keys for a relation. It

provides entity integrity, which means that for a primary key attribute,

each row has a unique and non-null value. For example, in the

"Student" table, Student_ID is typically selected as the primary key of

a relational table since it is unique and does not change over time, but

email addresses might change.To show such concepts on a real-world

dataset, we have the following "Customer" table on an e-commerce

database:

Customer_ID Name Email Phone

C101 Alice alice@email.com 1234567890

C102 Bob bob@email.com 9876543210

19
MATS Centre for Distance and Online Education, MATS University

Notes • Super Key Examples: (Customer_ID), (Email), (Phone),

(Customer_ID, Name), (Customer_ID, Email, Phone)

• Examples of Candidate Keys: (Customer_ID), (Email), (Phone)

• Choosing Primary Key: Normally, we choose Customer_ID as

primary key here since it would never change, email/ phone numbers

can be changed.

Key Takeaways Table (Or simply: Fact) — relation↪ In a nutshell, a

relational model structures data in a systematic way using keys to

guarantee uniqueness and data integrity. have additional attributes

beyond what is needed to satisfy the uniqueness constraint (Super

key)Candidate key is a minimal super keyA primary key is a

candidate key chosen to uniquely identify an entity in the table.

2.2 Constraints: Domain, Key, Entity and Referential Integrity

constraints

Types of Integrity Constraints in RDBMS: Entity, Referential,

Domain, and Key Integrity Constraints This include basically rules that

are used by tables in relational databases in order to verify if the data

inserted to these tables have a sense, when they are updated, deleted,

etc. They limit the values that can be placed within tables and disallow

bad values being entered. The main types of Constraints in a relational

model areDomain ConstraintsKey ConstraintsEntity Integrity

ConstraintsReferential Integrity Constraints

1. Domain Constraints

Domain Constraints restrict the values that a column (attribute) can

take in a table. It validates that it stores only valid data types and

values in the database.

Example: Assuming you have "Student" table with the following

schema (Student_ID, Name, Age, and Email).

• Age is an example of a domain constraint, suppose Age is

integer and Age is allowed only from 18 to 60 that is Age =17

or Age = 65 would violate the domain constraint.

• As another example, if Email is defined as a string that

matches the format "@domain. i.e., student_email.@school.

com" would be rejected

20
MATS Centre for Distance and Online Education, MATS University

Notes 2. Key Constraints

Table: Key Constraint Ensures Each Row is Unique This implies

that two rows cannot possess the same value in a key attribute. Super

Keys Candidate Keys Primary Keys

Example: Consider an "Employee" table having attributes

(Employee_ID, Name, Email) and it is having Employee_ID as the

Primary Key.

• If we attempt to add duplicate Employee_ID (like two

employees with Employee_ID = 101), the Therewould be no

insertion due to key constraint.

3. Entity Integrity Constraint

The Entity Integrity constraint ensures that the primary key of a table

will never have NULL values. This Rule keeps each row in the table

unique and into its own entity.

Example: In a “Product” table with attributes (Product_ID, Name,

Price), the Product_ID is the Primary Key.

• The new product cannot be inserted with NULL as

Product_ID, the entry will be rejected by database system, as

primary key can be NULL.

4. Referential Integrity Constraint

A Referential Integrity Constraint is a set of rules that ensures that

relationships between tables remain consistent. Foreign keys in one

table must reference an existing primary key in another table or be

NULL.

• Definition: A foreign key is a column whose data must match a

primary key in another table Example: Two Tables, Orders,

Customers.

Figure 2.1: Relational Model and Constraints

(Source: https://medium.com)

21
MATS Centre for Distance and Online Education, MATS University

Notes Primary-foreign key relationship constraints (also known as referential

integrity constraint) maintain the consistency between the two tables.

It either has to refer to an existing primary key or NULL.

For example, imagine two tables, "Orders" and "Customers".

o "Customers" Table:

Customer_ID Name Email

C101 Alice alice@email.com

C102 Bob bob@email.com

o "Orders" Table:

Order_ID Customer_ID Product

O201 C101 Laptop

O202 C102 Phone

O203 C105 Tablet

o The Customer_ID column in the "Orders" table is a Foreign Key

referencing the Customer_ID in the "Customers" table. If an order

is placed with Customer_ID = C105, but no such customer exists

in the "Customers" table, the database system will prevent the

insertion to maintain referential integrity.

Constraints ensure data consistency and reliability within a relational

database.

• Domain Constraints Maintain Proper Data Types & Values

• Key Constraints are used to uniquely identify records.

• Primary keys are subject to Entity integrity Constraints would not

allow NULL values.

• Referential Integrity Constraints enforce valid relationships between

tables.

These constraints ensure that data anomalies are avoided and data

integrity is maintained, thus enforcing the stoof reliable data which is

consistent and meaningful.

22
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Theoretical Foundations of Relational Databases

2.3 E.F. Codd’s Rule

In the context of relational databases, Dr. Edgar F. Codd, the father of

the relational database model, defined 12 rules (actually 13, including

Rule 0) to qualify a system as a true relational database management

system (RDBMS) of 1985. In relational databases these rules help keep

data integrity, data consistency and help organize data for better

management.

Rule 0: Foundation Rule

Else, an application can be called RDBMS if it manages data

completely based on relational capabilities. It is actually support for

relational structures (tables, rows and columns), and agree with all

other rules.

Rule 1: Information Rule

Every data in a relational database can only be stored in tables as rows

and columns.

For Example: A "Student" table storing data in structured rows and

columns.

Violation: Unstructured file-based data storage (e.g., text documents

and spreadsheets)..

Rule 2: Guaranteed Access Rule

All data (value) needs to be retrievable by a combination of the table

name, primary key, and the column name.

 For instance in order to get a student email, you can do:

SQL

SQL Query: SELECT Email FROM Students WHERE Student_ID =

101;

 Violation: When we have access to some data using physical

addresses or pointers but not using SQL queries.

Rule 3: Systematic Treatment of NULL Values

NULL values should be handled consistently across the database as to

indicate missing, unknown, or inapplicable data.

 For instance: Suppose a student’s phone number is not known, then

the database must permit NULL in the “Phone” column.

Violation: Replacing NULL with arbitrary negativity (i.e. -1 or 99999).

23
MATS Centre for Distance and Online Education, MATS University

Notes

Rule 4: Dynamic Online Catalog (Metadata Rule)

A relational database must use tables (SQL) to access metadata

(schema, constraints, data types).

Sample: Fetching table structure with Inserting/fetching Create table:

SQL

PARSE_NO_STD_ERRORS_074001=095BD429L2+045C06%BQ+

018F+0B6=2_SELECT * FROM INFORMATION_SCHEMA.

TABLES;

Incorrect: When metadata is part of external files or system logs rather

than tables..

Rule 5: Comprehensive Data Sub-language Rule

At least one complete language (SQL, for example) for data access,

manipulation, and control must be provided by the system.

 e.g.: SQL can insert, delete, update, and retrieve data.

Not even a devil (Can database that have different languages for

different operation, one for query other for updates, etc.)

Rule 6: View Updating Rule

In case a view (virtual table) is constructed from base tables it should

be updatable.

 Example:

SQL

CREATE VIEW StudentEmails AS

-- 2. Retrieving specific columns (SELECT): SELECT Student_ID,

Email FROM Students;

The underlying table must change if we change the StudentEmails

view.

Violation: When views are read only and don't provide updates.

Rule 7: High-Level Insert, Update, Delete

Since inserts, updates, and deletes are performed on RDBMS using

set-based operations and not row-based operations.

Example Updating Multiple Rows in One Query

SQL

 Break: The update will excessive looping through each row

Rule 8: Physical Data Independence

We should be able to change our physical storage (where on disk, the

way we handle indexing, etc.) but this should not affect our ability to

access our data with an SQL query.

24
MATS Centre for Distance and Online Education, MATS University

Notes e.g Moving data from a disk to another disk should not break SQL

queries

 Violation: Moving data means re-writing application code.

Rule 9: Logical Data Independence

Logical structure change (adding/removing columns) should not affect

the exist applications

Adding a column like Date_of_Birth — should not break existing

queries that do not use it.

 Violation: When applications break due to schema changes.

Have you watched “The Fall of the House of Usher”?

Rule 10: Integrity Independence

The integrity constraints (e.g., the primary key, the foreign key, NOT

NULL) must be stored directly in the database and not in application

code.

Example: Primary key constraint in SQL:

SQL

ALTER TABLE Employees ADD CONSTRAINT pk_emp

PRIMARY KEY (Emp_ID);

Violation: When you enforce uniqueness in your application logic

instead of letting the DB do it.

Rule 11: Distribution Independence

A characteristic requirement of RDBMS is support for distributed

databases without changing of SQL statements.

For example, a query should be functional regardless if your data lives

in one server or is sharded across multiple servers.

 Violation: If you need to rewrite queries every time you move data

between different locations.

Rule 12: Non-Subversion Rule

No mechanism to access the data (e.g., system-level commands) is

allowed that bypasses relational security and integrity constraints.

For example: Direct database access through scripts must still respect

constraints (such as NOT NULL, FOREIGN KEY)

Violation: When backend scripts allow a user to enter invalid data.

E.F. Codd’s 12 rules guarantee a database adheres to the relational

model. Most modern relational databases (e.g., MySQL, PostgreSQL,

SQL Server, Oracle) follow most of these rules, though some systems

(e.g., NoSQL databases) do not abide by all of them. With these very

rules the relational databases became reliable and efficient for

25
MATS Centre for Distance and Online Education, MATS University

Notes structured data management, as they allow the database management

system (DBMS) to maintain the well defined integrity rules that

guarantees the correctness of data as well as independent from all

applications and usable format of data.

2.4 Functional dependency, Armstrong’s Inference rules

1. Functional Dependency (FD) in Relational Databases

What is Functional Dependency? Functional Dependency (FD) in a

relational database design is an important concept as it describes the

relationship between attributes in a relation. 3NF (TEACHER,

HEAD_DEPARTMENT, HEAD_DEPARTMENT) or 3NF: A

functional dependency from attributes X to attributes Y in a relation R

is a possibility that X can functionally determine Y. Understanding this

model is essential for maintaining data integrity to prevent redundancy

as well as database normalization.

What Functional Dependency means

Functional Dependency is denoted as:

X→YX \rightarrow YX→Y

where:

• X (determinant): one or more set of attributes.

• Y (dependent) would be another (or group of) attribute.

• There is exactly one Y for every unique value of X.Example of

Functional Dependency

Consider a "Student" table:

Student_ID Name Course Department

101 Alice DBMS CS

102 Bob OS CS

103 Charlie DBMS IT

104 David OS CS

Functional Dependencies in this relation:

1. Student_ID → Name, Course, Department

o If we know the Student_ID, we can determine Name,

Course, and Department.

2. Course → Department

o If we know the Course, we can determine the

Department.

26
MATS Centre for Distance and Online Education, MATS University

Notes o

Types of Functional Dependencies

1. Trivial Functional Dependency

o If X→YX \rightarrow YX→Y, and Y⊆XY \subseteq

XY⊆X, it is called trivial.

o Example: {Student_ID, Name} → Name (Here, Name

is already part of the left-hand side).

2. Non-Trivial Functional Dependency

o If X→YX \rightarrow YX→Y, and YYY is not a

subset of XXX, it is non-trivial.

o Example: Student_ID → Name (Name is not part of

Student_ID).

3. Completely Non-Trivial Dependency

o If X→YX \rightarrow YX→Y, and X and Y do not

overlap, it is completely non-trivial.

o Example: Course → Department.

Importance of Functional Dependency in Normalization

• Used to identify candidate keys.

• Helps in decomposing tables while preserving dependencies.

• Essential for eliminating anomalies in database design.

Functional Dependencies in this relation:

Student_ID → Name | Course | Department

o We can find out Name, Course & Department if we know the

Student_ID.

Course → Department

o We can even find out the Department if we have the Course

Functional Dependencies Types

Trivial Functional Dependency

If X→YX \rightarrow YX→Y, and Y⊆XY \subseteq XY⊆X, it is

trivial.

o For instance: {Student_ID, Name} → Name (Where Name is

already included in the LEFT SIDE).

Non-Trivial Functional Dependency

o That is, if X→YX \rightarrow YX→Y is non-trivial, and Y is not (a

subset of) X (here: YXYXYXYY⊆XXX)

o Example: Student_ID → Name (Name does not lie in Student_ID).

27
MATS Centre for Distance and Online Education, MATS University

Notes Non-Trivial Dependency You ban the initial k elements.

o If X→YX \rightarrow YX→Y and not-overlapping X and Y then

it’s completely non-trivial.

o E.g., Course → Department.

Role of Functional Dependency in Normalization

• It is used to identify the candidate keys.

• Assists decomposition of tables such that dependencies are

preserved.

• Crucial for removing anomalies from the design of the database.

2. Armstrong’s Axioms (Inference Rules for Functional

Dependencies)

Armstrong’s Axioms (proposed by William W. Armstrong in 1974) are

a set of inference rules used to derive all functional dependencies in a

relational schema. These axioms form the basis for closure computation

and normalization in relational databases.

Armstrong’s Inference Rules

1. Reflexivity (Trivial Dependency Rule)

o If Y is a subset of X, then X → Y holds.

o Example: {Student_ID, Name} → Name (since Name is

part of {Student_ID, Name}).

2. Augmentation Rule

o If X → Y, then XZ → YZ (Adding more attributes does

not affect dependency).

o Example: If Student_ID → Name, then (Student_ID,

Course) → (Name, Course).

3. Transitivity Rule

o If X → Y and Y → Z, then X → Z.

o Example: If Student_ID → Course and Course →

Department, then Student_ID → Department.

Additional Derived Rules (Based on Armstrong’s Axioms)

4. Union Rule

o If X → Y and X → Z, then X → YZ.

o Example: If Student_ID → Name and Student_ID →

Course, then Student_ID → (Name, Course).

5. Decomposition Rule

o If X → YZ, then X → Y and X → Z separately.

o Example: If Employee_ID → (Employee_Name, Salary),

then:

28
MATS Centre for Distance and Online Education, MATS University

Notes ▪ Employee_ID → Employee_Name

▪ Employee_ID → Salary.

6. Pseudotransitivity Rule

o If X → Y and WY → Z, then WX → Z.

o Example: If Student_ID → Course and (Course,

Department) → Professor, then (Student_ID, Department)

→ Professor.

Closure of Functional Dependencies (F+)

The closure of a set of functional dependencies is the complete set of

dependencies that can be derived using Armstrong’s Axioms.

• Given F = {A → B, B → C}, the closure F+ includes:

1. A → B (Given)

2. B → C (Given)

3. A → C (By Transitivity)

Example of Computing Closure of an Attribute Set

Given: F = {A → B, B → C, C → D}, find A+ (Closure of A).

1. Start with A+ = {A}.

2. Since A → B, add B → A+ = {A, B}.

3. Since B → C, add C → A+ = {A, B, C}.

4. Since C → D, add D → A+ = {A, B, C, D}.

5. Final result: A+ = {A, B, C, D}.

Finding Candidate Keys Using Closure

• If A+ = All Attributes in Relation, then A is a candidate key.

Example: In R(Student_ID, Name, Course, Department) with FDs:

Student_ID → Name, Course → Department,

• Closure of Student_ID: {Student_ID, Name, Course,

Department} → Student_ID is a Candidate Key.

• Functional Dependency It specifies how attributes relate to maintain

the integrity of the database.

• Using Armstrong’s Axioms, one can derive all the dependencies and

use this for schema normalization.

• \Database design\ : FD Closures and Candidate Key identification

In this article, we present the basic ideas, examples, and application for

Functional Dependencies and Armstrong’s Rules. If you want me to

elaborate on certain parts (for example: more real world examples,

more mathematical proofs or more step by step derivations) just tell

me!

29
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Decomposition and Normalization

2.5 Decomposition of Relations: Lossless Join and Dependency

Preservation property

1. Decomposition of Relations

Decomposition is necessary in database design to address issues such

as:

• Data Redundancy(duplicating the same data several times).

• Anomalies of Insertion, Deletion and Update (inconsistencies when

we modify data).

• Integrity of Data (avoid the inconsistency in data).

Normalization is the process of organizing the columns (attributes) and

tables (relations) of a database to minimize data redundancy and

improve data integrity, and 1NF, 2NF, 3NF, and BCNF normalization

techniques involve decomposing a relation into smaller relations so that

functional dependencies are preserved, and joins are lossless..

Example:

Let us assume the relation R(Student_ID, Name, Course, Instructor,

Department) with the following functional dependencies:

• Student_ID → Name, Course

• Course → Instructor, Department

Here Course → Instructor,Department is BCNF violating, so we

decompose R into:

1. R1(Student_ID, Name, Course)

2. R2(Cours e, In structor, De part ment)

2. Lossless Join Property

Also, when relations decomposed, they can be combined back to the

original collection of tuples without any loss of information: A Lossless

Join Decomposition.

Definition:

A decomposition of a relation RRR into R1,R2,...,RnR1, R2,...,

RnR1,R2,...,Rn is lossless join if:

RR1 \bowtie R2 \bowtie... \bowtie Rn = R R R 1 ⋈ R 2 ⋈... ⋈ R n =

R.Strings are based on the way they are built or arranged.

So it had to not introduce any false (additional) tuples, and not lose any

source data either.

30
MATS Centre for Distance and Online Education, MATS University

Notes

Lossless Join Condition:

A lossless decomposition R1R1R1 and R2R2R2 of relation RRR is

said to be lossless if:

More formally, the common attributes need to be a key for at least one

of the newly generated relations.

Example of Lossless Join Decomposition

Let us consider a relation R(Employee_ID, Name, Department,

Manager) with the following functional dependencies:

• Employee_ID | Name | Department

• Department → Manager

In order to comply with BCNF we break it into:

• R1(Employee ID, Name, Department))

• R2(Department, Manager)

Note that the common attribute Department in R1∩R2R1 \cap

R2R1∩R2 is a key in R2, so this gives us lossless join.

R1⋈R2=R(No information is lost)R1 \bowtie R2 = R \quad \text{(No

information is lost)}R1⋈R2=R(No information is lost)

But what if our decomposition is wrong and we write, for example:

• R1(Employee_ID, Name)

• R2(Employee_ID, Department, Manager)

The join between Department and Manager becomes lossy as we lose

the mapping between them.

3. Dependency Preservation Property

We say a decomposition is dependency preserving, if all functional

dependencies of the original relation are enforceable in the decomposed

relations (without doing joins).

Definition:

A decomposition R1,R2,...,RnR1, R2,..., RnR1,R2,...,Rn of RRR is

said to be dependency preserving if:

(F1∪F2∪...∪Fn)+=F+(F1∪F2∪...∪Fn)+

=(F1∪F2∪...∪Fn)+=F+(F1∪F2∪...∪Fn)+=F+

where:

• FFF is the initial set of functional dependencies.

• F1, F2,... Fn F1,F2,...FnF1,F2,...Fn are functional dependencies

in decomposing relation

• F+F^{+}F+ is the closure of FFF, that is, all derived

dependencies.

31
MATS Centre for Distance and Online Education, MATS University

Notes Why is Dependency Preservation Important?

• It provides a way to enforce integrity constraints (functional

dependencies) in specific tables without the need for potentially

expensive joins.

• If a decomposition loses dependencies, we may have to enforce some

constraints by joins, resulting in loss of efficiency.

Checking for Dependency Preservation

To determine whether decomposition is dependency preserving, we

find the closure of the union of the dependencies in decomposed

relations and check if it is equal to the original closure.

Example of Dependency Preservation

Let's assume you have the relation R(A, B, C) and with the

dependencies

1. A → B

2. B → C

Decomposing into:

• R1(A, B)

• R2(B, C)

Checking closures:

• F1 = {A → B}

• F2 = {B → C}

• Closure (F1 ∪ F2) + (F1 ∪ F2)^{+}(F1 ∪ F2) + contains A → B →

C, hence all dependencies preserved.

Dependency preserved

Non-Dependency Preservation Example

Assuming we decompose R(A, B, C) into:

• R1(A, B)

• R2(A, C)

Since B → C is lost here, we need to perform joins to uphold this.

Not dependency preserving

4. Combining Lossless Join and Dependency Preservation

Ideal Decomposition

A good decomposition should satisfy both properties:

1. No Loss → Should not lose any data or add extra tuples.

2. Dependency Preservation → The functional dependencies

must enforceable without costly joins.

32
MATS Centre for Distance and Online Education, MATS University

Notes However, in some cases, achieving both simultaneously may not be

possible.

Trade-Off Example

Suppose we have a relation R(A, B, C, D, E) Functional

Dependencies:

• A → B

• B → C

• C → D, E

The BCNF decomposition would yield:

• R1(A, B)

• R2(B, C)

• R3(C, D, E)

The first option is lossless but not dependency preserving (because C

→ D, E spans multiple tables).

• Normalizations of database and removal of duplicate is only possible

by means of decomposition.

• Lossless Join means no information is lost if relations are rejoined.

• Dependency Preservation assumes that the functional dependencies

can be enforced without computing joins.

• The ideal decomposition preserves both properties, but compromises

are sometimes necessary.

These tools serve as important checks for not only the viability of the

proposed database schema but also for its performance: by ensuring

that a schema maintains lossless join and dependency preservation,

database designers are able to implement an optimal, normalized, high-

performing database schema.

2.6 Normalization: First, Second, Third, BCNF, PJNF

This means normalization is a systematic approach that organizes an

RDBMS into the tables and columns. The objective of the first one is

mainly to normalize relations (i.e. tables) into smaller, well-structured

relations only such that integrity and dependency of data are met. This

process happens through a set of stages referred to as Normal Forms

(NF), where each stage addresses certain types of anomalies in the data

structure. 1st, 2nd, 3rd, Boyce-Codd Normal Form (BCNF), and

Projection-Join Normal Form (PJNF or 5NF). Normalization leads to

a well-organized data structure which in turn provides the benefit of:

• Consistency of data (reduces redundant storage of same data)

• Data integrity (through constraints, it ensures accuracy).

33
MATS Centre for Distance and Online Education, MATS University

Notes • Query performance (decreases data redundancy and anomalies)

1. First Normal Form (1NF)

A relation is in 1NF(First Normal Form) if:

1. They all contain atomic (or indivisible) values for each

attribute.

2. No multi valued attributes: Each column holds a single value

for each row.

3. This is a primary key requirement as each row must be

uniquely identifiable.

Example of a Non-1NF Table:

Student_ID Name Courses Phone Numbers

101 Alice DBMS, OS 9876543210, 1234

102 Bob OS, Networks 5556677889

Issues in Non-1NF Table:

• Multi-valued attributes: “Courses” and “Phone Numbers” have

multiple values in a single column.

• Repeating groups: Some students have multiple phone numbers in a

single field

Converting to 1NF (Atomic Values & Unique Rows):

Student_ID Name Course Phone Number

101 Alice DBMS 9876543210

101 Alice OS 1234

102 Bob OS 5556677889

102 Bob Networks 5556677889

Now:

• Each column contains atomic values.

• No multi-valued attributes.

• Every single row can be uniquely identified.

2. Second Normal Form (2NF)

Definition:

Second Normal Form (2NF) if − A relation is in

1. It is already in 1NF.

2. partial dependencies). All non-primary attributes are fully

functionally dependent on the primary key (no

34
MATS Centre for Distance and Online Education, MATS University

Notes Example of a Non-2NF Table:

Order_ID Product_ID Product_Name Quantity Order_Date

O101 P01 Laptop 2 2024-01-01

O102 P02 Mouse 5 2024-01-02

Issues in Non-2NF Table:

• Primary Key = (Order_ID, Product_ID) (Composite Key).

• Partial Dependency:

o Product_Name functionally depends on Product_ID, but

not on Order_ID

Converting to 2NF (Eliminating Partial Dependencies):

Order Table:

Order_ID Order_Date

O101 2024-01-01

O102 2024-01-02

Product Table:

Product_ID Product_Name

P01 Laptop

P02 Mouse

Order_Details Table:

Order_ID Product_ID Quantity

O101 P01 2

O102 P02 5

Now:

No partial dependency (all non-key attributes depend on its primary

key, fully).

Data is form correctly into lower tables.

3. Third Normal Form (3NF)

Definition:

A relation is in Third Normal Form(3NF) if:

1. It is already in 2NF.

2. No transitive dependency (a non-key attribute must not

dependent on other non-key attributes).

35
MATS Centre for Distance and Online Education, MATS University

Notes Example of a Non-3NF Table:

Student_ID Name Course Instructor Instructor_Phone

101 Alice DBMS Dr. John 9876543210

102 Bob OS Dr. Smith 5556677889

Issues in Non-3NF Table:

• Transitive Dependency:

o Instructor_Phone depends on Instructor, not on

Student_ID.

Converting to 3NF (Eliminating Transitive Dependency):

Student Table:

Student_ID Name Course Instructor

101 Alice DBMS Dr. John

102 Bob OS Dr. Smith

Instructor Table:

Instructor Instructor_Phone

Dr. John 9876543210

Dr. Smith 5556677889

Now:

No transitive dependency.

colspan="2" Attributes are directly dependent on the primary key.

4. Boyce-Codd Normal Form (BCNF)

Definition:

A relation is in BCNF if:

1. It is already in 3NF.

2. All determinants would be candidate key (We have no partial

or transitive dependency now

Example of a Non-BCNF Table:

Employee_ID Department Manager

101 IT John

102 HR Sarah

103 IT John

36
MATS Centre for Distance and Online Education, MATS University

Notes Issues in Non-BCNF Table:

• Manager depends on Department, not on Employee_ID

(violating BCNF).

Converting to BCNF:

Department Table:

Department Manager

IT John

HR Sarah

Employee Table:

Employee_ID Department

101 IT

102 HR

None of the functional dependencies violates BCNF..

5. Projection-Join Normal Form (PJNF or 5NF)

Definition:

A relation is in 5NF (PJNF) if and only if:

1. It is already in BCNF.

2. There is no join dependency that cannot be enforced by

decomposition of the relation

Example:

Consider a Supplier-Parts-Project relation:

Supplier_ID Part_ID Project_ID

S1 P1 J1

S1 P2 J2

S2 P1 J1

If we decompose into:

• Supplier-Part

• Part-Project

• Supplier-Project

We must ensure that recombining these tables retains all original data.

PJNF eliminates join dependencies and guarantees that there's no

more lossless decomposition to be had.

• 1NF → No multivalues attributes.

• 2NF → No partial dependency.

37
MATS Centre for Distance and Online Education, MATS University

Notes • 3NF → No transitive dependency.

• BCNF → Each determinant is a candidate key.

• PJNF (5NF) → All join dependencies.

The process of normalization adheres to a set of specific criteria,

resulting in efficient databases that are scalable and free from logical

conflicts.

MCQs:

1. What is the first step in database design?

a) Creating tables

b) Identifying requirements and data modeling

c) Writing SQL queries

d) Normalization

2. What does an E-R model primarily represent?

a) Data processing speed

b) Database structure using entities and relationships

c) SQL Queries

d) File management

3. Which symbol is used to represent an entity in an E-R diagram?

a) Circle

b) Rectangle

c) Diamond

d) Triangle

4. Which of the following is a type of constraint in databases?

a) Logical Constraint

b) Primary Key Constraint

c) Software Constraint

d) Physical Constraint

5. In an E-R diagram, relationships are represented using:

a) Ovals

b) Rectangles

c) Diamonds

d) Lines

6. A weak entity set is an entity that:

a) Does not have any attributes

b) Depends on a strong entity and lacks a primary key

c) Has multiple primary keys

d) Cannot participate in a relationship

38
MATS Centre for Distance and Online Education, MATS University

Notes 7. Which of the following is NOT a type of relationship in an E-R

model?

a) One-to-One

b) One-to-Many

c) Many-to-Many

d) Fixed-to-Variable

8. Which constraint ensures that all values in a column are unique?

a) Primary Key

b) Foreign Key

c) NOT NULL

d) DEFAULT

9. A strong entity set is an entity that:

a) Requires a foreign key

b) Does not have sufficient attributes

c) Has a primary key and can exist independently

d) Cannot store any data

10. Which of the following helps in improving database efficiency?

a) Adding redundant data

b) Proper database design using E-R models

c) Using only one large table for all data

d) Avoiding constraints

Short Questions:

1. What is the database design process?

2. Define E-R Model and its purpose.

3. What are the key components of an E-R diagram?

4. Explain the difference between a strong entity and a weak entity.

5. What are cardinalities in an E-R model?

6. Define constraints in a database and provide examples.

7. What is the role of primary and foreign keys in database design?

8. How do one-to-one, one-to-many, and many-to-many relationships

differ?

9. Explain the significance of entity sets in a relational database.

10. What is referential integrity, and why is it important?

Long Questions:

1. Explain the database design process in detail with steps.

2. What is an E-R Model, and how is it used in database design?

39
MATS Centre for Distance and Online Education, MATS University

Notes 3. Describe the different types of relationships in an E-R model with

examples.

4. Discuss the importance of constraints in a relational database.

5. How does an E-R diagram help in designing a database structure?

6. Compare weak entity sets and strong entity sets with examples.

7. Explain the importance of cardinality and participation constraints.

8. Discuss different types of constraints (Primary Key, Foreign Key,

NOT NULL, UNIQUE).

9. Describe the steps involved in converting an E-R model into a

relational model.

10. How does a well-designed E-R model improve database

performance?

40

MODULE 3

SQL AND PROCEDURAL SQL

LEARNING OUTCOMES

• By the end of this Unit, students will be able to:

• Use conditional and iterative statements to control the flow of

SQL execution.

• Create and implement user-defined functions for modular and

reusable SQL code.

• Develop stored procedures with different parameter types (IN,

OUT, INOUT) for efficient database operations.

• Understand and apply triggers, including before and after

triggers, to enforce business rules and maintain data integrity.

41
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Control Flow in SQL

3.1 Conditional statements and Iterative statements

They enable a program to decide based on conditions (which are

expressions evaluating to either true or false). They control how the

flow of execution is made based on the whether a condition is met.

Types of Conditional Statements:

If Statement

Runs code once or multiple times if the condition is true

Syntax (Python Example):

python

age = 18

if age >= 18:

print("You are eligible to vote")

Output:

css

CopyEdit

You are eligible to vote.

If age was 16 nothing is printed.

If-Else Statement

Runs one block when the condition is true, or another one when it is

false.

Syntax:

python

age = 16

if age >= 18:

print("You can vote.")

else:

print("You are not eligible to vote.")

Output:

css

You are not eligible to vote.

If-Elif-Else Statement (Multiple Conditions)

If, else if, else — Used when you have multiple conditions, working

through them in order.

Syntax:

python

marks = 85

42
MATS Centre for Distance and Online Education, MATS University

Notes if marks >= 90:

print("Grade: A")

elif marks >= 80:

print("Grade: B")

elif marks >= 70:

print("Grade: C")

else:

print("Grade: D")

Output:

makefile

Grade: B

Nested If Statement

So yeah, one if statement in another if statement.

Example:

python

num = 10

if num > 0:

print("Positive Number")

if num % 2 == 0:

print("Even Number")

Output:

mathematica

Positive Number

Even Number

Switch-Case (In Some Languages Like C, Java, JavaScript)

The switch statement evaluates an expression once and compares it to

each case.

Example (C Language):

c

#include

int main() {

int day = 3;

switch(day) {

case 1:

printf("Monday");

break;

case 2:

printf("Tuesday");

43
MATS Centre for Distance and Online Education, MATS University

Notes break;

case 3:

printf("Wednesday");

break;

default:

printf("Invalid Day");

}

return 0;

}

Output:

mathematica

Wednesday

Note: while switch-case is not available for Python, the closest way

to it is through match-case (Python 3.10+).

2. Iterative Statements (Loops for Repetition)

Iterative statements cause one a few lines of code to be executed

repeatedly over and another time until a certain condition is met. Loops

assist to eliminate redundancy, making programs run efficiently.

Types of Iterative Statements:

For Loop (Definite Loop)

We use for loop when the number of iterations is known in advance.

Syntax:

python

for i in range(1, 6):

print("Iteration:", i)

Output:

makefile

CopyEdit

Iteration: 1

Iteration: 2

Iteration: 3

Iteration: 4

Iteration: 5

• range(1,6) produces numbers 1 to 5 (upuntill 6 excluded).

Example (Looping through a List)

python

The fruits list on line one would also still be available.

for fruit in fruits:

44
MATS Centre for Distance and Online Education, MATS University

Notes print(fruit)

Output:

nginx

Apple

Banana

Cherry

While Loop (Indefinite Loop)

Simple to parse as all lambdas defined here executed as long the

condition is true.

Syntax:

python

count = 1

while count <= 5:

print("Count:", count)

count += 1

Output:

makefile

Count: 1

Count: 2

Count: 3

Count: 4

Count: 5

• The loop ends when count is greater than 5

Do-While Loop (Supported in C, Java, etc.)

Unlike while, a do-while loop will at least run once before checking

the condition.

Example (C Language):

c

#include

int main() {

int i = 1;

do {

printf("Iteration: %d\n", i);

i++;

} while(i<= 5);

return 0;

}

Output:

45
MATS Centre for Distance and Online Education, MATS University

Notes makefile

Iteration: 1

Iteration: 2

Iteration: 3

Iteration: 4

Iteration: 5

There is no do-while loop in python, however, we can implement a

similar effect using while True and break.

Nested Loops

A framework within another framework, useful in working with

matrices or patterns.

For example: (Multiplication table)

python

for i in range(1, 4):

for j in range(1, 4):

print(f("({i},{j})", end=" ")

print()

Output:

scss

 (1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Loop Control Statements

Break Statement (The program stops the loop immediately)

python

for i in range(1, 6):

if i == 3:

break

print(i)

Output:

1

2

Continue Statement (Skips curr iteration, goes to next file)

for i in range(1, 6):

if i == 3:

continue

print(i)

Output:

46
MATS Centre for Distance and Online Education, MATS University

Notes 1

2

4

5

pass #Not for now code here

python

for i in range(1, 6):

if i == 3:

pass # Does nothing

print(i)

Output:

1

2

3

4

5

Conditional Statements (if, if-else, elif, switch-case) for decision

making in program.

• We have also Iterative statements (for, while, do-while) for

repeated execution.

• Loop control statements (break, continue, pass) change the

execution of loop.

These statements are the foundation of programming, allowing for

flexibility, efficiency, and automation in software development.

47
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: User-Defined Functions and Stored Procedures

3.2 User-defined functions

A function is a chunk of code that is written to do a particular task.

Almost all programming languages offer built-in functions — and

User-Defined Functions (UDFs) enable programmers to make a

function as per their exact needs. Usage of functions leads all

promoting code reusability, modularity, readability and maintenance. It

allows you to write the same logic as many times as you want, and just

call it whenever you want.

1. Defining and Calling a Function

Python Example Function Syntax

“[Inputs] can refer to many different things that you collect through

your [machine] learning algorithms.

Function body

return value # (Optional)

• def → Use to define a function.

• function_name → The name of the function.

• parameters → Values to input (optional).

• return → Returns a value to the caller (optional).

Example 1: Function Without Parameters and Return Value

def greet():

greet() # Function call

Output:

Hi there, Welcome to User Defined Functions!

• The greet() function has no input and returns no value

Example 2: Function with Parameters

def add_numbers(a, b):

sum = a + b

print("Sum:", sum)

Calling with argumentsadd_numbers(5, 10)

Output:

makefile

CopyEdit

Sum: 15

• The function add_numbers() takes two parameters, a, and b, and

prints their sum.

Example 3: Function with Return Value

48
MATS Centre for Distance and Online Education, MATS University

Notes def multiply(x, y):

return x * y

result = multiply(4, 5)

The output will be:So, in this case, the multiply method — which is

an operation on a nums list — will be executed once, and its output

will be used while executing the print method.

Output:

Multiplication Result: 20

• We store the return value of the function multiply() in result.

2. Types of User-Defined Functions

 Function Without Parameters & Without Return Value

• For a function that does something but doesn't require outside

input/return anything.

def welcome_message():

sqlimport sys #mporting a sys Unitused to run statements in a

consoleprint([sys.version, sys.platform])print("Are you interested in

Python Programming?")

welcome_message()

Output:

Welcome to Python Programming

Function is used when a function does something, but does not need

external parameters and doesn't return anything.

def welcome_message():

welcome_message()

Output:

Welcome to Python Programming

Function With Parameters & Without Return Value

• When input values are needed but no return is needed.

def display_name(name):

print("Hello", name)

display_name("Alice")

Output:

Hello Alice

Function With Parameters & With Return Value

• When reading inputs and returning outputs

def square(n):

return n * n

result = square(7)

49
MATS Centre for Distance and Online Education, MATS University

Notes print("Square:", result)

Output:

Square: 49

 Function Without Parameters & With Return Value

• Use if a function returns data but doesn't require input parameters

import random

def get_random_number():

return random. randint(1, 100)

number = get_random_number()

print(f"Random Number: {number}")

Output:

Use of a random number: 37 # (this changes with every execution)

Parameters and Arguments of a Function

3. Function Arguments and Parameters

 Positional Arguments

The values are passed in the same order as defined in function.

def student_details(name, age):

print("Name:", name)

print("Age:", age)

student_details("Bob", 20)

Output:

Name: Bob

Age: 20

Default Arguments

def greet(name="Guest"):

print("Hello", name)

greet() # Uses default value

greet("Alice") # Uses given value

Output:

Hello Guest

Hello Alice

 Keyword Arguments

Parameter names: Arguments are passed by name, regardless of order.

def display_info(name, age):

print("Name:", name)

print("Age:", age)

display_info(name="John", age=25) # Other order

Output:

50
MATS Centre for Distance and Online Education, MATS University

Notes Name: John

Age: 25

 Arbitrary Arguments (*args)

when the number of arguments is unset

def sum_numbers(*numbers):

total = sum(numbers)

print("Sum:", total)

sum_numbers(5, 10, 15, 20)

Output:

Sum: 50

• The function will take n arguments.

 Arbitrary Keyword Arguments (**kwargs)

It is used in cases where we want to accept an unknown number of

named arguments.

def print_info(**details):

for key, value in details. items():

print(key, ":", value)

print_info(Name = "Alice", Age = 22, City = "New York")

Output:

Name : Alice

Age : 22

City : New York

4. Lambda (Anonymous) Functions

Lambda Functions: A lambda function is essentially an anonymous

one line function that can be used for small operations.

Syntax:

lambda arguments: expression

Example:

square = lambda x: x * x

print(square(6))

Output:

36

In-built functions like map(), filter() and sorted() work on lambda

functions.

5. Recursive Functions

Recursive Function: A function that continues to call itself until it

reaches a fundamental base condition.

Respective Example: Factorial Calculation (Recursion)

51
MATS Centre for Distance and Online Education, MATS University

Notes def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n - 1)

You will need to include that definition and import statements.

Output:

Factorial of 5: 120

Working:

• factorial(5) = 5 * factorial(4)

• factorial(4) = 4 * factorial(3)

• … Until factorial(1) = 1 (Base Case).

Be careful! Recursive functions must have a stopping condition to

avoid infinite recursion.

6. Function Scope (Local & Global Variables)

Global Variable (Available All Over the World)

x = 10 # Global Variable

def show_value():

print("Inside function:", x)

show_value()

print("Outside function:", x)

Output:

Inside function: 10

Outside function: 10

Local Variable (Accessible Only Within Function)

def show_value():

x = 5 # Local Variable

print("Inside function:", x)

show_value()

print("Outside function:", x) # ERROR! x is not defined globally

Output:

Inside function: 5

Notice: name 'x' is not defined

7. Benefits of Using Functions

Code Reusability → Functions reduce redundancy.

Modularity → The code is divided into smaller chunks.

Readability → More understandable, more debuggable

Easily scalable → Functions are useful in big applications

52
MATS Centre for Distance and Online Education, MATS University

Notes • User-Defined Functions (UDFs) — Programmers can write custom

logic.

• You can pass parameters to and return values from functions.

• Lambda functions are for quick, inline calculations.

It is helpful but requires all base conditions

• Variable Accessibility — Local and Global scope

Understanding of functions enable programmers to create code that is

efficient, clean, and modular

3.3 Stored Procedures, Parameter types: IN, OUT and INOUT

Introduction to Stored Procedures

A Stored Procedure is a compiled SQL statement collection stored in

the database that can be reused. Adan also helps in performing

complex queries and operation efficiently and enhances performance,

security and code reusability.

Why Use Stored Procedures?

Better performance – The SQL statements are compiled once and

then executed multiple times.

Code Reusability – Means no need to write SQL queries again and

again.

Security – Enforcement of access control can restrict changes to

underlying tables.

Less Network Traffic – You send a procedure call instead of multiple

SQL queries.

2. Creating a Stored Procedure

Basic Syntax (MySQL Example):

DELIMITER //

CREATE PROCEDURE procedure_name(

BEGIN

-- SQL Statements

END //

DELIMITER;

• DELIMITER // sets a new statement terminator (because the

procedure contains;).

• CREATE PROCEDURE defines (creates) the procedure.

• SQL logic is within BEGIN... END

• DELIMITER; resets the default terminator

53
MATS Centre for Distance and Online Education, MATS University

Notes 3. Calling a Stored Procedure

Syntax:

CALL procedure_name();

Example:

DELIMITER //

CREATE PROCEDURE GetEmployees()

BEGIN

SELECT * FROM Employees;

END //

DELIMITER;

CALL GetEmployees();

Explanation:

• When you execute this procedure, it retrieves all the records from

the Employees table.

• Call GetEmployees(); statement runs the procedure.

4. Parameter Types in Stored Procedures

We can also pass parameters to the stored routines. Types of

parameters are 3 types.

1. IN – For passing input values to the procedure.

2. OUT − Used for returning values from the procedure.

3. INOUT – Input and Output.

IN Parameter (Passing Input to Procedure)

• An IN parameter passes a value into the stored procedure.

• An IN parameter cannot be modified by the procedure.

Syntax:

DELIMITER //

CREATE PROCEDURE GetEmployeeByID(IN emp_id INT)

BEGIN

Roughly, if you were to be running SQL commands, your prompt

input would be something like:

END //

DELIMITER;

Calling the Procedure:

CALL GetEmployeeByID(101);

Explanation:

• IN emp_id INT → Takes in an integer (Employee_ID) as input.

• Fetches employee information for a specific employee ID.

OUT Parameter (Returning a Value)

54
MATS Centre for Distance and Online Education, MATS University

Notes • OUT parameter returns a value.

• THE PROCEDURE CHANGES THE VALUE OF OUT

PARAMETER

For Example: Number Of Employees Rehired

DELIMITER //

DELIMITER $$ CREATE PROCEDURE GetEmployeeCount(OUT

total INT)$$ DELIMITER;

BEGIN

SELECT COUNT(*) INTO total FROM Employees;

END //

DELIMITER;

Calling the Procedure:

CALL GetEmployeeCount(@count);

SELECT @count; -- Show the value returned

Explanation:

• OUT total INT stores total employees.

• SELECT COUNT(*) INTO total saves the result to total.

• The CALL GetEmployeeCount(@count); saves the result to

@count.

4.3 INOUT Parameter (Both Input and Output)

• The INOUT modifier is for directly changing value and

returning.

Example: Modify Salary and Retrun updated Value

DELIMITER //

CREATE PROCEDURE UpdateSalary(INOUT emp_salary

DECIMAL(10,2), IN emp_id int)

BEGIN

UPDATE Employees SET Salary = emp_salary WHERE

Employee_ID = emp_id;

SELECT Salary INTO emp_salary FROM Employees WHERE

Employee_ID=emp_id

END //

DELIMITER;

Calling the Procedure:

SET @salary = 50000;

CALL UpdateSalary(101, @salary);

SELECT @salary; -- Updated salary

Explanation:

55
MATS Centre for Distance and Online Education, MATS University

Notes • INOUT emp_salary → input and output salary value

• Modifies the salary, and then reads back the new value.

• SET @salary = 50000; initializes the value

• The new salary is returned and stored in @salary.

5. Dropping a Stored Procedure

• To remove a procedure you are no longer interested in, use:

DROP PROCEDURE procedure_name IF EXISTS;

Example:

DROP PROCEDURE IF EXISTS GetEmployeeByID;

They optimized database operations by efficiency, security, and

reusability.

• IN Parameters → Get input but cannot be changed.

• OUT Parameters ⇒ Return from procedures

• INOUT Parameters → Re-route values by modifying and

returning.

Stored procedures help manage the database more quickly and

securely in an effective and structural way, thus making them one of

the key functions of all modern RDBMS systems.

56
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Triggers

3.4 Triggers: Introduction, Needs, Before trigger and After trigger

1. Introduction to Triggers

Triggers are special types of stored procedures in a database that are

automatically executed when an event occurs on a table. The events

can be INSERT, UPDATE, or DELETE operations.

Business rules, data integrity, automation, and security controls are all

uses of triggers. Triggers are similar to stored procedures in that you

cannot call them manually; they run automatically in response to the

event with which they are associated.

Features of Triggers:

Automatic Execution – Automatically fires on occurrence of

referenced Event.

Event-Driven – Triggers on INSERT, UPDATE, or DELETE.

Validates Business Rules – Prevents Invalid Data Churn

Data Integrity – Ensures consistent data across tables.

Makes Unauthorized Changes Impossible – Data Access and

Validation

2. Need for Triggers

We will use triggers in the database. Triggers are very important in

removing data constraints, audit log creation, or enforce a business

rule automatically. Some key use cases include:

Enforcing Business Rules

Example: Ensuring employees don’t pay salaries under minimum

wage.

Maintaining Data Integrity

Example: automatically updating child records if any parent record is

updated to maintain a foreign key constraint.

Auditing and Logging Changes

Example: Audit trail for changes to sensitive tables like financial

transactions.

Preventing Invalid Transactions

Example: Not allowing account balance updates for negative amounts.

Automating Actions

Example: Send an email notification every time a new user is added to

the system.

57
MATS Centre for Distance and Online Education, MATS University

Notes 3. Types of Triggers

Triggers are classified based on when they execute relative to the

event:

Type

Executes

Before/After

Applies to INSERT,

UPDATE,

DELETE Use Case

BEFORE

Trigger Before the event YES

Validation &

Prevention

AFTER

Trigger After the event YES

Logging &Post-

processing

4. BEFORE Triggers

Definition:

A BEFORE Trigger runs before an INSERT, UPDATE, or DELETE

operation. Its common on use is to verify data and prevent incorrect

alterations.

Example 1: BEFORE INSERT Trigger (Preventing Invalid Salary

Entry)

DELIMITER //

The order of the two is the subject of this post.CREATE TRIGGER

Before_Insert_Employee

BEFORE INSERT ON Employees

FOR EACH ROW

BEGIN

IF NEW. Salary= 30000) THEN SET MESSAGE_TEXT = 'Salary

should be atleast 30000';

END IF;

END //

DELIMITER;

Explanation:

• BEFORE INSERT – Executes before inserting data into the

Employees table.

• NEW.Salary – Refers to the salary value being inserted.

• SIGNAL SQLSTATE '45000' – Throws an error if salary is

less than 30,000.

Calling the Trigger:

INSERT INTO Employees (Employee_ID, Name, Salary)VALUES

(101, 'Alice', 25000);

58
MATS Centre for Distance and Online Education, MATS University

Notes Output:

ERROR Salary Must be Greater Than 30,000

To ensure no invalid salary can be inserted the trigger can be used.

Example 2: BEFORE UPDATE Trigger (Restricting Price Reduction

by More Than 50%)

DELIMITER //

< ` CREATE TRIGGER Before_Update_Product

BEFORE UPDATE ON Products

FOR EACH ROW

BEGIN

IF NEW. Price< (OLD. Price * 0.5) THEN

SIGNAL SQLSTATE '45000'

SET MESSAGE_TEXT = 'Reduced price can't be more than 50%';

END IF;

END //

DELIMITER;

Explanation:

• BEFORE UPDATE – Executes before product prices are updated.

• OLD. Price – Refers to the current price.

• NEW. Price – The new price that is being updated

• The trigger throws an error if the new price is less than 50% of the

old price.

Calling the Trigger:

UPDATE Products SET Price = 20 WHERE Product_ID = 1; --

Previous price 100

Output:

vbnet

The trigger saves us from having to make a drastic price cut.

5. AFTER Triggers

Definition:

An AFTER Trigger runs after INSERT, UPDATE, or DELETE

statement. It is often used to log, audit, and update reference tables.

Example 1: AFTER INSERT Trigger (Logging New Employee

Addition)

DELIMITER //

SQL -- CREATE TRIGGER After_Insert_Employee

AFTER INSERT ON Employees

FOR EACH ROW

59
MATS Centre for Distance and Online Education, MATS University

Notes BEGIN

"INSERT INTO Employee_Log (Employee_ID, Action, Timestamp)

VALUES (NEW. Insert into Table (Employee_ID, 'Inserted',

NOW());

END //

DELIMITER;

Explanation:

• AFTER INSERT – Trigger works after inserting an employee.

• NEW. Employee_ID – Gets the new employee’s Identification.

• NOW() – Saves the current date and time.

• Outputs log entry into Employee_Log table

Calling the Trigger:

INSERT INTO Employees VALUES (102, 'Bob', 50000);

Employee_Log Table (Post Trigger Execution):

Log_ID Employee_ID Action Timestamp

Row Status | ID | Data | Date/Time | 1 Inserted | 2024-03-09 12:30:00

|

The trigger logs the new joins automatically.

Example 2: AFTER DELETE Trigger (Archiving Deleted Orders)

DELIMITER //

CREATE TRIGGER After_Delete_Order

AFTER DELETE ON Orders

FOR EACH ROW

BEGIN

INSERT INTO Order_Archive (Order_ID, Customer_ID,

Order_Date) VALUES

VALUES (OLD. Order_ID, OLD. Customer_ID, OLD. Order_Date);

END //

DELIMITER;

Explanation:

• AFTER DELETE – Triggered post deletion of the order.

• OLD. Order_ID – The Order which has been deleted.

• Deletes orders into an archive table (Order_Archive).

Calling the Trigger:

The trigger also keeps deleted orders in the archive table.

6. Dropping a Trigger

To drop a trigger, which may be, no longer needed:

DROP TRIGGER IF EXISTS trigger_name;

60
MATS Centre for Distance and Online Education, MATS University

Notes Example:

DROP TRIGGER IF EXISTS Before_Insert_Employee;

Triggers increase database automation, security, and integrity by

enforcing business rules at the database level.

• Triggers BEFORE → Validate on execution (BEFORE

INSERT/UPDATE/DELETE).

• AFTER Triggers → Execute after the execution of actions (AFTER

INSERT/UPDATE/DELETE).

Triggers are a major component of data management in relational

databases, allowing automated checks on data, logging, fraud

prevention, and ensuring data consistency.

MCQs:

1. Generalization in a database is the process of:

a) Combining multiple entities into a higher-level entity

b) Splitting one entity into multiple sub-entities

c) Creating foreign keys

d) Deleting redundant data

2. Specialization in an E-R model refers to:

a) Merging two entities into one

b) Creating sub-entities from a higher-level entity

c) Removing attributes from a table

d) Encrypting a database

3. A Super Key is:

a) A key that uniquely identifies a tuple but may have extra attributes

b) A key used for indexing

c) A key with duplicate values

d) A key used only for foreign relations

4. Which of the following is a Candidate Key?

a) A key that can be used as a Primary Key

b) A key that contains duplicate values

c) A foreign key

d) A key that cannot be unique

5. The Primary Key in a relational database:

a) Uniquely identifies each record

b) Can have NULL values

c) Is always a foreign key

d) Must contain duplicate values

61
MATS Centre for Distance and Online Education, MATS University

Notes 6. A Foreign Key is used to:

a) Uniquely identify a record in a table

b) Enforce referential integrity between two tables

c) Store encrypted data

d) Improve query performance

7. Which diagram is used to represent the structure of a relational

database?

a) Flowchart

b) Schema Diagram

c) E-R Diagram

d) UML Diagram

8. What does E-R to Relational Model Conversion involve?

a) Mapping entities and relationships to tables

b) Writing SQL queries

c) Creating indexes for tables

d) Deleting duplicate records

9. Which of the following constraints ensures referential integrity in a

database?

a) Primary Key

b) Foreign Key

c) NOT NULL

d) CHECK

10. The Relational Model consists of:

a) Tables with rows and columns

b) Images and videos

c) Hierarchical data storage

d) Graph-based relationships

Short Questions:

1. What is the difference between Generalization and Specialization?

2. Define Super Key, Candidate Key, and Primary Key.

3. Explain the Relational Model Structure in databases.

4. What are the different types of keys in a relational database?

5. How does a Foreign Key maintain referential integrity?

6. What are the constraints on Specialization in E-R models?

7. Explain how an E-R model is converted into a relational model.

8. What is the role of a Schema Diagram in database design?

9. Define Database Schema and its types.

62
MATS Centre for Distance and Online Education, MATS University

Notes 10. What is the importance of constraints in relational databases?

Long Questions:

1. Explain Generalization and Specialization in the E-R model with

examples.

2. Discuss the role of constraints on Specialization in database design.

3. What is a Relational Model? Explain its structure with examples.

4. Describe the different types of keys and their importance in a

relational database.

5. Explain the concept of Foreign Keys and how they enforce

referential integrity.

6. What is a Schema Diagram, and how does it help in database

design?

7. Describe the process of converting an E-R model into a relational

model.

8. Explain the importance of normalization in relational databases.

9. Compare and contrast Primary Key and Foreign Key.

10. How does a well-designed relational model improve

database efficiency?

• To understand the fundamental concepts of Data Warehousing.

• To explore the architecture of Data Warehouses, including the

three-tier architecture.

• To analyze multidimensional data models such as Data Cubes.

• To examine different schemas used in Data Warehousing.

• To learn about Concept Hierarchies and OLAP operations.

63

MODULE 4

TRANSACTION MANAGEMENT AND CONCURRENCY

LEARNING OUTCOMES

• Understand transactions, their properties, and different

transaction models in database systems.

• Analyze transaction isolation and scheduling techniques (serial

and non-serial schedules) to ensure consistency.

• Learn serializability concepts (conflict serializability) and their

role in maintaining correctness.

• Implement concurrency control protocols (lock-based and

timestamp-based) and deadlock handling techniques for

efficient database performance.

64
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: Transactions

4.1 Transaction: Introduction, Transaction Model

A transaction is a series of one or more SQL operation from a database

that is executed as one logical unit of work. Transactions help maintain

database consistency and reliability in the case of system crashes or

power failures, as well as concurrent user operations. In multi-user

database environments, when several users at the same time perform

operations, data integrity has to be maintained. If transactions were not

handled correctly, partial operations could corrupt or render data

inconsistent. In banking systems, if a customer transfers money from

one account to another, both the debit and the credit operation has to

be successful. If the debit is successful but the credit fails the money

will be lost. Transactions allow you to group both operations so they

either both complete or both fail to prevent this from happening.

Real-Life Example of a Transaction

For instance let's say a bank customer transfers $500 from Account A

to Account B. The transaction involves two operations:

1. Update Accounts Set Balance = Balance - 500 Where

Account_ID = 1; Deduct $500 from Account A.

2. Update Accounts: Add $500 in Account B (UPDATE Accounts

SET Balance = Balance + 500 WHERE Account_ID = 2;).

For consistency, the rollback should be performed in case the second

operation fails, so that no operation will have to revert back

2. Understanding the ACID Properties of Transactions

A transaction must follow four key properties, known as the ACID

properties:

Atomicity (All or Nothing Rule)

• A transaction is either successfully completed or aborted.

• • All changes made in a transaction must either be completed

successfully or rolled back if an error occurs.

• For example, if a payment fails after taking money out from an

account, the amount has to be refunded.

Consistency (Maintaining Database Validity)

• Every transaction should transform the database from one

valid state to another.

• Any changes made need to comply with the database

constraints, rules, and integrity checks

65
MATS Centre for Distance and Online Education, MATS University

Notes • For example, if an order is placed in an e-commerce system,

then the stock count must be decreased accordingly.

Isolation (Preventing Concurrent Transaction Interference)

• Concurrent transactions must not interfere with one another’s

execution.

• All transactions are executed sequentially and the final

outcome must look like transactions were executed

sequentially.

• Illustration: When two users book the last ticket to a movie,

both should fail, but one should succeed.

Durability (Permanent Storage of Committed Data)

• Once a transaction commits, its changes have to be persisted

even in case of a system crash.

• Example: After conducting an online banking transaction,

new balance should not be lost after server crash

3. Transaction Lifecycle and States

A transaction progresses through multiple states during its execution:

Transaction State Description

Active

The transaction has started and is currently

executing.

Partially

Committed

All SQL operations are completed, but not yet

permanently saved.

Committed Changes are successfully stored in the database.

Failed An error occurred, causing the transaction to fail.

Aborted

(Rollback)

The transaction is undone, restoring the database to

its previous state.

State Transitions in a Transaction

1. Execution of a transaction starts in the ACTIVE state.

2. If all operations succeed, changes to PARTIALLY

COMMITTED.

3. Once the COMMIT statement is executed, the transaction is

CONVERTED to COMMITTED, which saves the changes

permanently.

4. If any step fails, the transaction will enter into FAILED state.

5. In the event of a failure, a ROLLBACK command restores the

database, transitioning it to the ABORTED state.

66
MATS Centre for Distance and Online Education, MATS University

Notes 6.

Example of Transaction Lifecycle in SQL

ROLLBACK; -- Undo all changes

START TRANSACTION;

UPDATE Accounts Set Balance = Balance-500 WHERE Account_ID

= 1; -- Decrease money

UPDATE Accounts SET Balance = Balance - 500 WHERE

Account_ID = 1; -- Withdraw money

COMMIT; # Make changes permanent

If any error occurs before the COMMIT, we can roll it back

4. Transaction Models in Database Management Systems (DBMS)

A transaction model specifies the functioning of transactions in a

database system with guarantee of ACID properties. They assist in

managing transactions, concurrency, and failure recovery efficiently.

Flat Transactions (Simple Transactions)

• An abstract model for the simplest transaction in which a

series of operations are performed as a single unit.

• Strictly follows ACID properties: Thus if there is a failure in a

part of transaction, the complete transaction will be rolled

back.

• for instance: Moving currency between bank accounts.

Nested Transactions (Transactions Inside Transactions)

• Sub-transactions which are executed independently within the main

transaction.

• Supports rolling back a single part of a compound transaction if it is

a sub-transaction and the parent transaction can still succeed.

• Example: In case of an online shopping system placing an order is:

1. Minusing money from the customer account (Sub-transaction

1)

2. Stock levels update (Sub-transaction 2)

3. Sending a confirmation mail (Sub-Transaction 3)

Whether Sub-transaction 3 fails or succeeds, the payment and update

of stock will still be valid.

Long-Duration Transactions (Used in Batch Processing & Cloud

Systems)

• Long-running transactions (hours or days)

• Used extensively in scientific computing, cloud applications,

and batch data processing.

67
MATS Centre for Distance and Online Education, MATS University

Notes • Sample: Month-end for payroll processing for thousands of

employees

5. Concurrency Control in Transactions

Data inconsistencies arise when two or more transactions access the

same data and try to change it at the same time. Concurrency control

mechanisms must be implemented in database systems to avoid

conflicts.

Problems Caused by Concurrent Transactions

• lost update → two transactions updating the same data; one

update gets lost.

• Dirty Read → This occurs in case if one transaction reads data

that another transaction has not yet committed.

• Non-Repeatable Read → A transaction is read multiple times

but value change from another transaction.

Techniques for Concurrency Control

• Locking Mechanisms (Shared & Exclusive Locks) → Avoid

two transactions modifying the same data at the same time.

• Timestamp Ordering→ Guarantees the correct sequence of

executing transactions.

• Optimistic Concurrency Control →Freely allows transactions

to execute, checks for conflicts before committing.

6. Handling Failures and Recovery in Transactions

Transaction Failures can be attributed to:

System Crashes → Power failures, OS crashes.

Deadlock → Transaction(s) waiting infinitely for each other.

Concurrency Issues → when multiple transactions conflict with one

another.

Recovery Mechanisms:

1. Undo (Rollback) – Reverts uncommitted changes to ensure

data consistency

2. Redo (Reapply Changes) – it guarantees that committed

transactions are recovered after a system crash.

3. Transaction ambiguity rules – Ensures only valid transactions

are considered, managing rollback overhead.

• Transactions are guaranteed to execute reliably because of ACID

properties.

• Transaction – states and models define the way transactions work.

68
MATS Centre for Distance and Online Education, MATS University

Notes • Concurrency control provides protection against concurrency

conflicts (e.g., in a multi-user environment).

• Ensure atomicity of transactions even in case of system failures

through failure recovery mechanisms.

Transaction handling is a critical aspect of any modern Database

Management System (DBMS), ensuring that operations within a

database are secure, efficient, and free from errors.

4.2 Properties of Transactions

A transaction, in a database, is a series of operations executed as one

work unit. Transactions executed must adhere to ACID properties to

ensure that they have data integrity, consistency, and reliability. These

Properties guarantee that, even during power failures, crashes and

concurrent transactions, the database could be returned to some

previous valid state. The four fundamental properties of a transaction

are:

1. Atomicity – Ensures that all operations in a transaction are

executed completely or not at all.

2. Consistency – Ensures a transaction takes the database from

one valid state to another.

3. Isolation – Guarantees that transactions do not disturb one

another.

4. Durability – Guarantees that once a transaction has been

committed, it will remain so, regardless of what may happen.

These properties together make the ACID model, which is the basis

of a reliable Database Management System (DBMS).

1. Atomicity (All or Nothing Rule)

Atomicity guarantees that a transaction is treated as a single,

indivisible unit. So, either all the operations of the transaction are

performed successfully or none of them are performed at all. Any

failure of any of these operations must trigger a rollback of the entire

transaction to avoid partial updates.

Why is Atomicity Important?

In the absence of atomicity, a transaction may leave data half-

completed in the database, creating corrupted and inconsistent data.

Example of Atomicity

Consider a bank transfer where Alice transfers $500 to Bob. The

transaction consists of:

1. Deduct $500 from Alice’s account

69
MATS Centre for Distance and Online Education, MATS University

Notes 2. Add $500 to Bob’s account

SQL Example:

START TRANSACTION;

UPDATE Accounts SET Balance = Balance + 500 WHERE

Account_ID = 1; -- Add money

UPDATE Accounts SET Balance = Balance - 50 WHERE

Account_ID = 1; -- Withdraw money

COMMIT; -- Commit changes

If the second operation fails (say due to a database crash), atomicity

guarantees the first operation will be undone by rolling back the

transaction:

ROLLBACK; -- undo everything

Effect: It is either fully committed or fully rolled back so no partial

transfer.

2. Consistency (Maintaining Database Validity)

Consistency means that a transaction is valid with respect to any

database constraint before and after running. The database must meet

all conditions, rules, and relationships.

Why is Consistency Important?

To prevent creating corrupt or invalid data that breaks business rules

and constraints through transactions, consistency is important.

Example of Consistency

Consider an e-commerce system where a customer places an order:

1. Deduct stock quantity from inventory

2. Generate an invoice for the order

The order should not be processed if the stock is not available, so the

database should be consistent.

SQL Example (Consistency in Order Placing):

START TRANSACTION;

This SQL query deducts one stock for a product with Product_ID of

101, if there is stock available, Sequelize would be Genetrating a

query similar to the one below.

INSERT INTO Orders (Order_ID, Product_ID, Customer_ID)

VALUES (5001, 101, 2001);

COMMIT;

If the stock quantity is zero, the transaction fails and does not place

the order, maintaining consistency.

70
MATS Centre for Distance and Online Education, MATS University

Notes The consequence is that the database is always in a valid state during

and after the transaction.

3. Isolation (Ensuring Independent Execution of Transactions)

Definition:

Isolation is what makes sure that when transactions are being

processed, they do so without stepping on one another. Changes made

by a transaction may not be visible to other transactions until the

transaction is committed.

Why is Isolation Important?

Without isolation, concurrent transactions can lead to issues such as:

• Lost updates – One transaction overwrites changes made by

another.

• Dirty reads – A transaction reads uncommitted data from

another transaction.

• Non-repeatable reads – A transaction sees different results for

the same query due to another transaction's modifications.

Example of Isolation

Consider two customers trying to book the last available flight seat at

the same time:

1. Customer A initiates booking.

2. Customer B initiates booking at the same time.

If the database does not implement isolation, both customers can be

assigned to the same seat, which will cause a conflic.

SQL Example (Using Isolation to Prevent Booking Conflicts):

SQL Example (Utilising Isolation to Avoid Overbooking)---

START TRANSACTION;

SELECT Seats_Available FROM Flights WHERE Flight_ID = 301

FOR UPDATE; // Locks the row

UPDATE Flights SET Seats_Available = Seats_Available - 1

WHERE Flight_ID = 301

COMMIT;

• The seat availability is locked due to the FOR UPDATE

statement until that transaction is done.

• Then no other user will be able to access the seat until the

transaction is committed.

Outcome: A single customer gets the seat, no conflicts.

71
MATS Centre for Distance and Online Education, MATS University

Notes 4. Durability (Permanent Data Storage After Transaction

Completion)

Definition:

Durability: Once some transaction has been committed, the updates

made by that transaction should be permanent.

Why is Durability Important?

In the absence of durability, there could be a potential loss of

committed transactions in the event of a power outage or a system

crash/abrupt shutdown, resulting in data loss.

How is Durability Ensured?

• Write-Ahead Logging (WAL): This mechanism ensures that the

database can recover after a crash by writing transaction logs before

applying any changes.

• Commit Operation: Changes are available in persistent storage

(disk, SSD, or cloud storage) after they are committed.

Example of Durability

Let us consider a customer who placed an order online, for instance:

1. Fill stock inventory by reducing stock quantity

2. An order with 'Confirmed' status

Persist the order once it is confirmed, the order should be stored

permanently, even if the system crashes.

SQL Example (Ensuring Durability in Order Confirmation):

START TRANSACTION;

UPDATE Products SET Stock = Stock - 1 WHERE Product_ID =

102;

INSERT INTO Orders (Order ID, Product ID, Customer ID, Status)

VALUES (6001, 102, 3001, 'Confirmed')INSERT INTO Orders

(Order_ID, Product_ID, Customer_ID, Status) VALUES (6001, 102,

3001, 'Confirmed');

COMMIT;

• If the system fails after the COMMIT statement, the order will still

be confirmed (when the system restarts).

• Committed changes are sustainable, even after failures, through

database logging.

OUTPUT: the order is stored permanently (Durability).

These four properties, Atomicity the A, Consistency the C, Isolation

the I, and Durability the D, ensure the reliability, integrity, and

consistency of the database.

72
MATS Centre for Distance and Online Education, MATS University

Notes ACID

Property Ensures That... Example

Atomicity

A transaction is fully

completed or fully rolled

back

Money transfer: Debit and

credit both succeed or both

fail

Consistency

The database remains

valid before and after

transactions

Preventing orders if stock

is unavailable

Isolation

Transactions do not

interfere with each other

Preventing two customers

from booking the same

flight seat

Durability

Committed transactions

remain permanent

Orders stay confirmed

even after a system crash

Databases ensure that applications like business applications, financial

systems, e-commerce platforms, etc., work correctly without errors or

inconsistencies.

4.3 Transaction isolation, Schedules: Serial, Non-Serial Schedules

1. Transaction Isolation in Databases

Transaction isolation prevents interference from concurrent

transactions, preserving the database's consistency and integrity.

Multiple versions of a row is a core concept in concurrency control,

which avoids issues like dirty reads, lost updates, and inconsistent

reading. A multi-user database allows multiple transactions to overlap

in time. Promiscuous interaction may lead to corrupt, out-of-sync, or

missing data. Isolation guarantees the correct outcome of each

transaction as if it executed in isolation.

Example of Transaction Isolation

Consider two customers booking the last available train ticket

simultaneously:

1. Transaction A queries availability and sees 1 seat available.

2. Transaction B, which checks availability at the same time,

also sees 1 seat left.

3. Both the transactions book the seat.

4. Now they have two customers with the same seat and, hence,

a conflict.

73
MATS Centre for Distance and Online Education, MATS University

Notes Transaction isolation mechanisms prevent both incorrect updates and

ensure the consistency of data to avoid this situation.

2. Isolation Levels in Database Systems

The level of isolation between one transaction and other concurrent

transactions is defined by different isolation levels. The more isolation

you have, the more accurate (but slower) you will be, the less

isolation, the faster (but potentially inaccurate) you will be.

Isolation Level

Dirty

Read

Non-

Repeatable

Read

Phantom

Read Use Case

Read

Uncommitted Allowed Allowed Allowed

Fastest, but

least safe

Read

Committed

Prevented Allowed Allowed

Standard for

many

databases

Repeatable

Read

Prevented Prevented Allowed

Ensures

consistent

reads

Serializable

Prevented Prevented Prevented

Highest safety,

but slowest

Common Problems in Isolation Levels

1. Dirty Read (Reading Uncommitted Data)

This happens when a transaction reads data that has been modified by

yet another transaction but has not yet been committed

Example:

• Transaction A: Increase salary, not yet committed.

• Transaction B: Fetches the new salary.

• Transaction A: Rollback, reverting change.

• Transaction B: Is now corrupt and has the wrong data.

2. Non-Repeatable Read (Different Results in the Same Transaction)

When transaction reads the same row twice but gets different values

due to another transaction updating it in between.

Example:

• Transaction A: Reads a product price to be $100.

• Transaction B: Changes the price to $120 and commits.

• Transaction A: Reads the price again: $120 instead of $100.

74
MATS Centre for Distance and Online Education, MATS University

Notes 3. Phantom Read (New Rows Appearing in Subsequent Reads)

This happens when an inserted/deleted row is returned in a new read

through the same transaction.

Example:

Transaction A : Get All Orders for Customer 101(5 records)

• Transaction B: Create new ORD for Customer 101 and commit.

• Transaction A: Reads again, there are 6 records now.

3. Transaction Schedules: Serial and Non-Serial Schedules

Scheduler is a way of executing multiple transaction in a database in a

serial manner. This order of execution affects the consistency and

correctness of the data.

Serial Schedule (Fully Isolated Transactions)

A serial schedule is one where transactions are executed one after

another, with no overlaps.

Slow but certain — every transaction must wait for the previous one

to complete.

Example:

Let us consider two transactions, T1 and T2:

• T1: Account balance update.

• T2: Reads account balance.

Serial Execution:

T1: Read Balance

T1: Update Balance

T1: Commit

T2: Read Updated Balance

T2: Commit

Pro: Guarantees consistency and free from concurrency issues.

X Drawback: Slow, because transactions do not overlap

Non-Serial Schedule (Concurrent Transactions)

In contrast, a non-serial schedule permits transactions to run

concurrently, interleaving their operations.

Works great and boost performance but might create inconsistency.

Example:

T1: Read Balance

T2: Read Balance

T1: Update Balance

T2: Update Balance

T1: Commit

75
MATS Centre for Distance and Online Education, MATS University

Notes T2: Commit

Problem: Lost updates—T2 reading before T1 commits will

overwrite T1’s changes.

4. Types of Non-Serial Schedules

However, not all non-serial schedules are of concern. Others are

accurate but perform worse.

Conflict Serializable Schedule

⦁ Concurrent execution of transactions but final result matches a

serial execution.

• Correctness is preserved and permits parallel execution.

• Utilized for optimistic concurrency control.

Example:

T1: Read Balance

T1: Update Balance

T2: Read Balance

T2: Update Balance

T1: Commit

T2: Commit

Since T1 finishes before the effects of T2’s changes are seen, the

outcome is the same as that of a serial schedule.

View Serializable Schedule

• Transaction produces a final result as in serial execution,

although operations may differ.

• Much more permissive than conflict serializability.

Example:

For example, two transactions update a price list, but their final effect

is correct: the operations are reordered.

5. Ensuring Correct Schedules: Concurrency Control

Databases use the following concurrency control techniques to avoid

errors in non-serial schedules:

1. Two-Phase Locking (2PL) → Set locks earlier than accessing

resources and eventuates in serializability.

2. Timestamp Ordering → Each transaction is assigned a

timestamp, and according to their timestamp, transactions are

executed.

3. Optimistic Concurrency Control (OCC) → No lock

mechanism, transactions run freely then checked before

76
MATS Centre for Distance and Online Education, MATS University

Notes committing. Transaction isolation means transactions execute

properly without interfering with each other.

• READ_COMMITTED is Isolation levels (Read Uncommitted,

Read Committed, Repeatable Read, Serializable) (if we want

to allow how much concurrency?)

• A schedule is the order of execution of transactions, which

has an impact on consistency.

• Serial schedules are always accurate, but slow, and non-serial

schedules optimize the speed, but expect for conflicts.

• Concurrency control methods maintain data integrity in non-

serialized schedules.

With a sound grasp of isolation levels and transaction schedules,

database administrators can achieve a good balance of performance

and consistency, enabling reliable database operations in multi-user

settings.

77
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Serializability

4.4 Serializability, Conflict Serializability

1. Introduction to Serializability

Millions of transaction attempts are submitted to the database

concurrently every second, and a vital concept you need to be aware

of is something called serializability. If the effect of a schedule (the

order in which transactions operations are carried out) is equivalent to

the effect of some serial schedule then it is called as serializable

schedule.

Why is Serializability Important?

• In multi-user databases, several transactions may be working

concurrently to enhance performance.

• Inconsistent data, lost updates, or incorrect results may happen

when transactions are not adequately controlled.

• Sequentializability guarantees correctness under concurrency

and prevents execution at the same time conflicting

Example: Serial vs. Non-Serial Execution

Consider two transactions, T1 and T2:

• T1: Withdraws $100 from a bank account.

• T2: Checks the balance.

Serial Execution (Correct & Safe)

T1: Read Balance ($1000)

T1: Update Balance ($900)

T1: Commit

T2: Read Balance ($900)

T2: Commit

T2 sees the correct updated balance of $900.

Non-Serial Execution (Unsafe)

T1: Read Balance ($1000)

T2: Read Balance ($1000)

T1: Update Balance ($900)

T1: Commit

T2: Commit

T2 reads an incorrect balance of $1000 instead of $900!

Serializability defines a contract to ensure that, despite running

concurrently, transactions will execute such that they are equivalent to

a serial execution order, preventing this type of inconsistency.

78
MATS Centre for Distance and Online Education, MATS University

Notes 2. Types of Serializability

. Conflict Serializability

• Ensures that transactions can be reordered into a serial

schedule by checking for conflicts.

• Conflict serializability is verified using a precedence graph (or

dependency graph).

View Serializability

• Ensures that final results of transactions match those of a serial

execution, even if operations are reordered.

• More relaxed than conflict serializability.

3. Conflict Serializability

What is Conflict Serializability?

What is conflict serializable: A schedule is conflict serializable if it is

possible to convert it into a serial one by exchanging non-conflicting

operations without modifying the final outcome.

What Causes a Conflict?

Two operations conflict if they:

1. Belong to different transactions (T1 and T2).

2. Operate on the same data item (e.g., X).

3. At least one of them is a WRITE operation.

Types of Conflicting Operations

Operation

1

Operation

2

Same

Transaction?

Same

Data

Item?

At Least

One

WRITE? Conflict?

Read(X) Read(X) No Yes No No

Read(X) Write(X) No Yes Yes Yes

Write(X) Read(X) No Yes Yes Yes

Write(X) Write(X) No Yes Yes Yes

 Checking Conflict Serializability Using a Precedence Graph

A Precedence Graph (or Dependency Graph) is used to show if a

schedule is conflict serializable.

Steps to Check Conflict Serializability:

1. Create a directed graph with transactions as nodes.

2. Add a directed edge from Ti to Tj if Ti performs an operation

before Tj that conflicts.

79
MATS Centre for Distance and Online Education, MATS University

Notes 3. Check for cycles in the graph:

o If the graph has NO cycles, the schedule is conflict

serializable.

o If the graph has a cycle, the schedule is not conflict

serializable.

4. Example of Conflict Serializability

Example 1: Conflict Serializable Schedule

Consider the following schedule:

Time Transaction Operation

1 T1 Read(X)

2 T2 Read(X)

3 T1 Write(X)

4 T2 Write(X)

Step 1: Identify Conflicts

• T1: Read(X) vs. T2: Read(X) → No conflict

• T1: Write(X) vs. T2: Read(X) → Conflict (T1 → T2)

• T1: Write(X) vs. T2: Write(X) → Conflict (T1 → T2)

Step 2: Build Precedence Graph

T1 → T2

• No cycle exists → The schedule is conflict serializable.

Step 3: Equivalent Serial Schedule

The transactions can be executed in the order T1 → T2.

The schedule is conflict serializable (and equivalent to the serial

execution of T1 followed by T2).

Example 2: Non-Conflict Serializable Schedule

Consider this schedule:

Time Transaction Operation

1 T1 Read(X)

2 T2 Write(X)

3 T1 Write(X)

Step 1: Identify Conflicts

• T1: Read(X) vs. T2: Write(X) → Conflict (T1 → T2)

• T2: Write(X) vs. T1: Write(X) → Conflict (T2 → T1)

80
MATS Centre for Distance and Online Education, MATS University

Notes Step 2: Build Precedence Graph

T1 → T2

T2 → T1 (Cycle detected)

• A cycle exists → The schedule is not conflict serializable.

The schedule is not conflict serializable because T1 and T2 cannot be

reordered into a serial sequence.

5. Conflict Serializability vs. View Serializability

Feature Conflict Serializability View Serializability

Definition

Transactions can be

reordered into a serial

schedule using conflict

rules

Transactions produce the

same final result as a

serial execution

Check

Method

Precedence Graph (Check

for cycles) Compare final results

More

Restrictive? Yes (Stronger condition) No (More relaxed)

Practical Use

Most databases enforce

conflict serializability

View serializability is

rarely used

• Serializability verifies correct result of concurrent transaction is

equivalent to that of serial execution.

• The conflict serializability is the most popular method that is used

to ensure the safe concurrent executions.

• Conflict serializability of a schedule can be tested through

Precedence Graphs.

• If a schedule has a cycle, it is NOT conflict serializable.

• Conflict serializability is stricter than view serializability, but

simpler to implement.

Conflict serializability is a key concept in database management

systems that ensures transactions are executed in a manner that

preserves the desired properties of the database.

81
MATS Centre for Distance and Online Education, MATS University

Notes Unit 12: Concurrency Control & Deadlock Handling

4.5 Concurrency Control

1. Introduction to Concurrency Control

Concurrency control refers to the methods used by a DBMS to ensure

the correct operation of simultaneous transactions. It handles dirty

read, lost update, and inconsistency problems when multiple users are

trying to access the database at the same time.

Why is Concurrency Control Important?

In a multi-user database system, multiple transactions may execute

concurrently, leading to potential conflicts. Concurrency control

ensures that:

 Data integrity is maintained despite concurrent operations.

 ACID properties (Atomicity, Consistency, Isolation, Durability) are

preserved.

 Correct execution order of transactions is maintained.

 Performance and throughput are optimized without sacrificing

correctness.

Example Without Concurrency Control (Lost Update Problem)

Consider two transactions, T1 and T2, updating the same data item

(bank balance = $1000):

Without Concurrency Control:

T1: Read Balance ($1000)

T2: Read Balance ($1000)

T1: Update Balance to ($900)

T2: Update Balance to ($950)

T1: Commit

T2: Commit

Final Balance = $950 instead of $900 (T1’s update is lost).

With Concurrency Control:

T1: Read Balance ($1000)

T1: Update Balance ($900)

T1: Commit

T2: Read Balance ($900)

T2: Update Balance ($950)

T2: Commit

Final Balance = $950 (Correct result achieved).

82
MATS Centre for Distance and Online Education, MATS University

Notes 2. Problems Due to Lack of Concurrency Control

Problem Description Example

Dirty Read

A transaction reads

uncommitted changes made

by another transaction.

T1 updates salary, T2

reads new salary before

T1 commits, but T1 rolls

back. T2 now has

incorrect data.

Lost Update

One transaction overwrites

another transaction’s

changes.

T1 and T2 read the same

balance, T1 updates it,

then T2 updates it,

ignoring T1’s change.

Non-

Repeatable

Read

A transaction reads the

same row twice but gets

different values due to

another transaction’s

update.

T1 reads product price, T2

updates the price, T1 reads

again and gets a different

value.

Phantom

Read

A transaction reads a set of

rows, but another

transaction inserts/deletes

rows in between.

T1 counts total

employees, T2 inserts a

new employee, T1 re-

executes and gets a

different count.

3. Concurrency Control Techniques

To prevent the above problems, DBMSs implement concurrency

control mechanisms that ensure correct transaction execution. The

most widely used techniques are:

1. Lock-Based Protocols (Pessimistic Concurrency Control)

2. Timestamp-Based Protocols

3. Optimistic Concurrency Control (OCC)

4. Multiversion Concurrency Control (MVCC)

4. Lock-Based Concurrency Control (Using Locks)

What are Locks?

Locks mechanisms that prevent concurrent access to the same data by

multiple transactions. Locks guarantee that a transaction has to

relinquish a lock before another transaction can use the data item.

83
MATS Centre for Distance and Online Education, MATS University

Notes Types of Locks

Lock Type Purpose Example

Shared Lock

(S-Lock)

Allows multiple

transactions to read but not

write.

T1 and T2 both read the

same row at the same

time.

Exclusive

Lock (X-Lock)

Allows only one

transaction to read and

write at a time.

T1 updates a row,

preventing T2 from

accessing it.

Two-Phase Locking (2PL) Protocol

The Two-Phase Locking (2PL) protocol ensures conflict serializability

by dividing transactions into two phases:

1. Growing Phase:

o A transaction acquires locks but does not release any

locks.

2. Shrinking Phase:

o A transaction releases locks but does not acquire any

new locks.

Advantage: Ensures serializability.

 Disadvantage: Can lead to deadlocks (two transactions waiting

indefinitely for each other’s locks).

Example of Two-Phase Locking

T1: Lock(X)

T1: Read(X)

T1: Lock(Y)

T1: Read(Y)

T1: Unlock(X)

T1: Update(Y)

T1: Unlock(Y)

Ensures correct execution by preventing lost updates and dirty reads.

5. Timestamp-Based Concurrency Control

What is Timestamp Ordering?

• Every transaction is assigned a unique timestamp when it

starts.

• Transactions execute in order of their timestamps.

84
MATS Centre for Distance and Online Education, MATS University

Notes How Timestamp-Based Concurrency Control Works

Each data item has:

1. Read Timestamp (RTS): The largest timestamp of any

transaction that has read the item.

2. Write Timestamp (WTS): The largest timestamp of any

transaction that has written the item.

If a newer transaction tries to access an older version of data, it is

aborted and restarted.

Advantage: Prevents deadlocks.

 Disadvantage: Transactions may be aborted frequently, reducing

performance.

6. Optimistic Concurrency Control (OCC)

 What is OCC?

• OCC assumes transactions rarely conflict and allows them to

execute freely.

• Before commit, the system checks if conflicts occurred.

• If a conflict is found, the transaction is aborted and restarted.

 Phases in OCC

1. Read Phase: Transaction reads data without locking.

2. Validation Phase: Before committing, checks if another

transaction modified the data.

3. Write Phase: If no conflict, changes are written to the

database.

Advantage: Faster in systems with low conflicts.

 Disadvantage: Rollback may happen frequently in high-concurrency

environments.

7. Multiversion Concurrency Control (MVCC)

What is MVCC?

• MVCC stores multiple versions of data instead of locking it.

• Each transaction gets a consistent snapshot of the database at

the time it starts.

• Readers don’t block writers, and writers don’t block readers.

How MVCC Works:

1. Read transactions get a snapshot of old data (ensuring

consistent reads).

2. Write transactions create a new version of the data instead of

modifying the old one.

3. Older versions are removed when no transactions need them.

85
MATS Centre for Distance and Online Education, MATS University

Notes Advantage: Eliminates locking overhead and increases performance.

 Disadvantage: Uses more storage because multiple versions of data

are kept.

8. Deadlock Handling in Concurrency Control

Deadlock happens when two or more transactions are keeping each

other waiting indefinitely for each other to release locks The two

most common ones are.

Deadlock Prevention Strategies:

1. Timeout: If a transaction waits too long, it is aborted.

2. Wait-Die Scheme: Older transactions wait; younger

transactions restart.

3. Wound-Wait Scheme: Older transactions force younger ones to

restart.

Deadlock handling ensures transactions do not block indefinitely.

Concurrency control is necessary to ensure the correct, consistent,

and efficient execution of transactions in a multi-user database.

Technique Advantage Disadvantage

Lock-Based

Protocols (2PL)

Prevents lost updates

& dirty reads Can cause deadlocks

Timestamp

Ordering

Ensures transactions

execute in correct

order

May abort transactions

frequently

Optimistic

Concurrency

Control (OCC)

Best for low-conflict

environments

Rollbacks may be

frequent in high

concurrency

MVCC

Improves performance

(no blocking) Uses more storage

Features of databases:[/heading]Through effective concurrency

control, databases maintain a balance between consistency, isolation

and performance, ensuring that multiple users can work on them

simultaneously, without corrupting data.

4.6 Concurrency Control Protocols: Lock based and Timestamp

based

Concurrency Control Protocols: Lock-Based and Timestamp-Based

86
MATS Centre for Distance and Online Education, MATS University

Notes 1. Introduction to Concurrency Control Protocols

In Database Management Systems (DBMS), concurrency control is

the process of managing simultaneous operations without conflicting

with each other. They guarantee that the operations execute correctly

and comply with isolation, consistency, and serializability.

Why Are Concurrency Control Protocols Needed?

In multi-user databases, several transactions execute simultaneously

to enhance performance. Without adequate concurrency management,

read anomalies return, which include dirty reads, lost updates, and

inconsistent data reads.

Concurrency control protocols prevent conflicts by ensuring that

transactions execute in a controlled manner.

Types of Concurrency Control Protocols

The two most commonly used concurrency control protocols are:

1. Lock-Based Protocols – Transactions acquire locks to control

data access.

2. Timestamp-Based Protocols – Transactions are ordered using

timestamps to ensure serial execution.

2. Lock-Based Concurrency Control Protocols

. What Are Lock-Based Protocols?

Lock-based protocols use locks to restrict multiple transactions from

accessing the same data simultaneously.

2.2. Types of Locks

Lock Type Description Example

Shared Lock

(S-Lock)

Allows multiple

transactions to read the

same data but prevents

writes.

Multiple users can view a

bank balance at the same

time.

Exclusive

Lock (X-

Lock)

Allows only one

transaction to read and

write the data.

A user transferring money

should prevent others from

modifying the same

account.

Shared Locks allow reading but prevent writing.

Exclusive Locks prevent all access except for the locking transaction.

2.3. Two-Phase Locking (2PL) Protocol

What is 2PL?

87
MATS Centre for Distance and Online Education, MATS University

Notes The Two Phase Locking (2PL) protocol is one of the most common

methods to achieve serializability; it does so by separating the

transaction into two distinct phases:

1. Growing Phase: A transaction acquires locks but does not

release any.

2. Shrinking Phase: A transaction releases locks but does not

acquire any new ones.

 Guarantees serializability.

 Can lead to deadlocks if transactions wait indefinitely for each

other’s locks.

Example of Two-Phase Locking (2PL)

css

CopyEdit

T1: Lock(A)

T1: Read(A)

T1: Lock(B)

T1: Read(B)

T1: Unlock(A)

T1: Write(B)

T1: Unlock(B)

 Correct execution: Ensures consistent transaction execution.

Strict Two-Phase Locking (Strict 2PL)

• Locks are held until the transaction commits or aborts.

• Prevents cascading rollbacks (when an aborted transaction

forces multiple rollbacks).

 Safer than basic 2PL because transactions only release locks

after committing.

Deadlock and Starvation in Lock-Based Protocols

Problem Description Solution

Deadlock

Two or more transactions wait

indefinitely for each other’s locks.

Timeouts, Wait-Die,

Wound-Wait schemes

Starvation

A transaction never gets a lock

because other transactions always

get priority.

Fair scheduling

policies

 Deadlocks occur when transactions form a circular wait.

 Starvation happens when low-priority transactions never execute.

3. Timestamp-Based Concurrency Control Protocols

88
MATS Centre for Distance and Online Education, MATS University

Notes What Are Timestamp-Based Protocols?

Timestamp-based protocols order transactions based on their

timestamps to ensure serializability.

How It Works

• Each transaction T is assigned a unique timestamp (TS) when

it starts.

• Each data item has:

1. Read Timestamp (RTS): Latest timestamp of a

transaction that read the data.

2. Write Timestamp (WTS): Latest timestamp of a

transaction that wrote to the data.

 Ensures that older transactions execute before newer ones.

3.3. Basic Timestamp Ordering Protocol

• If a transaction T wants to read X:

o If TS(T) < WTS(X) → T is aborted (because a newer

transaction already updated X).

o Else, T reads X, and RTS(X) is updated.

• If a transaction T wants to write X:

o If TS(T) < RTS(X) or WTS(X) → T is aborted

(because older reads or writes exist).

o Else, T writes X, and WTS(X) is updated.

 Prevents dirty reads and lost updates.

 Transactions may be aborted frequently, reducing performance.

3.4. Thomas’s Write Rule (Optimized Timestamp Protocol)

• If TS(T) < WTS(X), ignore the write instead of aborting T.

 Reduces unnecessary transaction rollbacks.

4. Comparison: Lock-Based vs. Timestamp-Based Protocols

Feature Lock-Based Protocols

Timestamp-Based

Protocols

How It Works

Uses locks to control

access

Uses timestamps to order

transactions

Handling

Concurrency

Prevents conflicts by

locking resources

Allows transactions to

execute but aborts if

conflicts occur

Risk of

Deadlock? Yes No

89
MATS Centre for Distance and Online Education, MATS University

Notes Risk of

Starvation? Yes Yes (Frequent rollbacks)

Performance Slower due to locks

Faster but can lead to

frequent restarts

Best Used For

Systems with high

contention (e.g.,

banking, ticketing)

Systems with high read-to-

write ratio (e.g., analytics,

reporting)

 Lock-based protocols prevent conflicts but can cause deadlocks.

 Timestamp-based protocols avoid deadlocks but may require frequent

transaction rollbacks.

Concurrency control protocols are used for the correct execution of

transactions in multi-user databases.

• Lock-based methods (2PL, Strict 2PL) avoid conflict and

deadlock issues.

• Timestamp-based protocols (Basic Timestamp Ordering,

Thomas’s Write Rule) make serializability guarantee without

deadlocks but may result in frequent rollbacks.

• Selecting appropriate protocols will be aligned with specific

performance requirements as per transaction type.

Database systems are then able to efficiently leverage efficient

concurrency control protocols to strike a balance between isolation,

consistency, and performance, as multiple transactions are able to

execute concurrently and safely.

4.7 Deadlock Handling: Detection and Prevention

This leads to a situation of circular dependency, in which processes

cannot continue execution, and thus, parts of the system come to a halt.

Deadlocks are one of the hardest problems in operating systems,

database management systems, and distributed computing

environments. Therefore, it is critical to understand, identify and

resolve deadlocks because they may cause a noticeable drop in system

performance, useless resource consumption or even system deadlocks

that require manual restart of the system. This guide will explore the

key principles behind deadlocks, the conditions that result in them, how

they can be detected, prevented, avoided, and recovered from. We will

also link to practical implementations in different contexts of

computing, analyze the trade-offs of proposed solutions, and explore

90
MATS Centre for Distance and Online Education, MATS University

Notes research directions for the evolution of deadlock avoidance/avoidance

in modern paradigms of computing.

Fundamental Concepts of Deadlocks

Deadlock is a particular state in concurrent programming in which

processes are forever blocked in their wait for resources, so it is a

condition where, without outside intervention, the system enters a state

it cannot recover from. The resource allocation systems where

deadlocks happen need to be understood to fully comprehend this

phenomenon. In these systems, processes request resources, use them

to calculate and then release them to other processes. Resources can

either be preemptable (can be taken away from a process) or non-

preemptable (the holding process must explicitly release it). Deadlocks

are mainly because of non-preemptable resources because pre-

emptable resources can hardly lead to deadlock conditions. Resource

Allocation Graphs The Resource allocation graph is another data

structure that visually depicts resource allocation and requests in a

system. In this directed graph, we have processes and resources as

nodes, and the edges are allocated resources or requests. Haven’t heard

of deadlock detection? This description should give a better idea about

the format of resource allocation graph and how swill be interpreted.

The Four Necessary Conditions for Deadlock

The Coffman conditionsE. G. Coffman: A look at Deadlock are four

conditions that must hold for a deadlock to occur, they form the basis

of understanding a deadlock situation and E. G. Coffman formalized

this concept. The first condition for mutual exclusion states that at least

one resource should be held in a non-sharable mode such that only one

process can be using it at any specific interval. Deadlocks could never

occur if every resource in the system could be shared among all

processes at the same time. The other condition, hold and wait (or

resource holding) arises when a process that is holding at least one

resource is waiting to attain additional resources that are held by other

processes. This provides a scenario where processes will wait for other

processes to release resources while already holding resources, thereby

potentially paving the way for circular dependencies. The third

condition, no preemption, says that resources cannot be forcibly

removed from a process; the process that has the resource must

explicitly give it up. The system could preempt resources to prevent

deadlocks by reallocating them from a waiting process. The fourth

91
MATS Centre for Distance and Online Education, MATS University

Notes condition, circular wait, occurs when there is a set of processes such

that every process is waiting for a resource held by another process in

the set, forming a circle of processes. A deadlock can occur when all

four of the following conditions hold simultaneously. Alternatively, if

all of these conditions are precluded the system can avoid deadlock

completely. These insights lay the groundwork for a class of deadlock

prevention schemes all of which attempt to eliminate one of the four

conditions that are needed to allow deadlocks to occur within the

system.

Resource Allocation Graphs and Deadlock Representation

A visual model to explain optimal resource allocation in based on

resource allocation graphs (RAG) in a powerful way. A representational

element of a resource allocation graph contains two kinds of nodes (

circles, process nodes and squares or rectangles, resource nodes).

Directed edges link these nodes, indicating resource requests or

allocations. The edge from a process to a resource indicates that the

process has requested that resource, but not yet been granted it. An edge

from a resource to a process means that the resource has been allocated

to that process. Abstract resources(0): In systems where there are

several instances of a single resource type, the representation is

complex, for example it may to have to be notated the number of

instances requested or allocated. Resource allocation graphs are not so

much useful for detecting deadlock: a cycle in a resource allocation

graph with only one instance of each resource type means a deadlock

has occurred. But cycles are an essential yet not sufficient condition

for deadlocks in most resource arrangement models.

 In such systems, special algorithms must be applied to determine

92
MATS Centre for Distance and Online Education, MATS University

Notes whether a cycle actually represents a deadlock. Additionally, these

resource allocation graphs can be dynamic since processes are able to

request new allocations and release resources as needed. By tracking

these changes and examining the structure of the resulting graph,

systems can detect impending deadlocks before they completely

manifest or can discover full deadlocks for resolution. Resource

allocation graphs are especially helpful in visualizing and explaining

deadlock states, making them a tool for understanding as well as

education in concurrent systems.

Deadlock Detection Mechanisms

Deadlock detection describes algorithms and techniques allowing

systems to detect when a deadlock has occurred. These will be required

in systems where deadlock prevention or avoidance strategies are not

implemented, or as a backup to fallback strategies that fail. Detection

algorithms commonly check resource allocation state and process

requests to search for circular wait states. If we consider a single-

instance resource type, detection can be simple — it is equivalent to

searching for cycles within the resource allocation graph. (N) To avoid

deadlock in multi-instance resource systems, more complex methods

needed, such as the banker's algorithm or derivatives thereof, exploring

possible resource allocation paths to determine if safe sequences exist.

Deadlock detection is done periodically or when certain events occur

Figure 4.1: Deadlock Detection

(Source: https://cstaleem.com)

93
MATS Centre for Distance and Online Education, MATS University

Notes such as a resource is requested or allocation failed. Detections happen

relatively infrequently; there is always a trade-off: with more frequent

detections you get more overhead but an earlier detection and

response, whereas with less frequent detections you get less overhead

but potentially longer deadlocks.

 As soon as a deadlock is detected, the system needs to follow recovery

procedures that it has in place to break the deadlock and allow those

processes involved in the deadlock to continue. Approaches such as

those used by operating systems and database systems involve

advanced detection methods that minimize false positives and

negatives while providing timely responses that do not unduly degrade

system performance.

Algorithms for Single-Instance Resource Deadlock Detection

Detecting deadlocks can be done with graph-based algorithms,

comparatively easy, in systems in which every resource has a single

instance. The typical method is to create and examine what is called a

wait-for graph which is a simplified version of the resource allocation

graph where the process nodes are connected directly by edges denoting

wait relationships. This graph edge from process P1 to process P2

means that process P1 is waiting for a resource that is currently held by

process P2. Detecting deadlocks subsequently boils down to cycle

detection in this directed graph which can be done using classical

graph algorithms e.g., depth-first search (DFS) or breadth-first search

(BFS). The detection algorithm usually works in three steps: First,

build the wait-for graph from the current resource allocation and

request; Second, check if the graph has cycle either with DFS or BFS;

And thirdly, if any cycle has found, Then declare a dead-lock involving

the processes in the cycle. The time complexity is generally O(n²)

(where n is the number of processes that need to be executed) making

this approach computational efficient and suitable for normal

execution, for instance in a small system with no more than 60

processes. A single-instance detection algorithm can also be applied at

the resource type level instead of the add instance level, grouping

similar resources together. Further optimization: we can do so less

frequently, based on system activity patterns (e.g. detecting when two

processes cycle back on holding resources), and further focus detection

on when deadlocks are more likely, e.g. within the periods after

94
MATS Centre for Distance and Online Education, MATS University

Notes sequences of resource requests and when processes claim to be waiting

past a threshold period of time.

Detection Algorithms for Multiple-Instance Resources

We have already said that deadlocks in systems where multiple

instances of resources exist are more complex than with systems with

a single instance. So from what it follows: Not having cycles in a

resource allocation graph no longer implies that there are no deadlocks,

because it may be the case that there are other types of instances of a

resource that have not yet been allocated, making at least one process

to finish and freeing some resources. There are multiple algorithms

developed for this purpose, of which, the most notable ones are - the

banker's algorithm and deadlock detection algorithm. The multiple-

instance resources deadlock detection algorithm generally checks for

the possibility of some sequence of resource acquisitions enabling all

the processes to execute. This means keeping data structures that keep

track of: available resources (ones that are not currently allocated to any

process), allocated resources (ones that are currently held by each

process), and requested resources (ones that each process is waiting to

get). The algorithm then tries to find a hypothetical execution

sequence, repeatedly finding processes whose resource requests can be

satisfied with the current available resources. If such processes are

discovered, the algorithm simulates such processes starting and

releasing the resources they had, putting their allocated resources back

into the pool. This is repeated until we are either out of processes (no

deadlock) or we run out of eligible processes (indicating a deadlock

involving the remaining processes). Since m is the number of resource

types and n is the number of processes, this algorithm has O(m × n²)

time complexity which is usually more computationally intensive than

single-instance detection. Such overhead can be minimized using

several optimizations like incremental detection with processes and

resources their state has changed since last detection cycle or priority-

based approaches that considers process that are more likely to cause

deadlocks before others.

95
MATS Centre for Distance and Online Education, MATS University

Notes Distributed Deadlock Detection

The problem of deadlock detection in distributed systems has its own

complexity that doesn’t appear in centralized systems. A distributed

system is one in which resources and processes are spread across

multiple nodes or sites, and no single entity has complete knowledge of

the global state of the system. This distributed nature makes it

challenging to build an overall resource allocation graph and requires

specific algorithms for effective deadlock detection. Three general

types of methods have been proposed for the distributed detection of

deadlocks: path-pushing, edge-chasing, and global state detection

methods. Similarly, path-pushing algorithms propagate the

dependencies between the processes along the paths in the wait-for

graph, with the eventual goal of being able to tolerate cycles that span

multiple nodes. Edge chasing algorithms employ special “probe”

messages that move along the edges of the wait-for graph, which return

to their originators to signal a cycle. Global state detection methods try

to make a global view of the system state at all nodes and analyze the

global state for deadlocks with the help of centralized algorithms. Such

distributed detection algorithms face additional complexities like

message delays, partial failures, false positives or false negatives owing

to dynamic nature of system. Additionally, they should incur little

communication overhead; even small amounts of message passing to

perform deadlock detection can be detrimental to system performance.

Indeed, many distributed systems operate with hierarchical strategies

that integrate local detection among nodes with global coordination

across nodes, thereby balancing detection accuracy and communication

efficiency.

Deadlock Prevention Strategies

Deadlock prevention involves designing a system with resource

allocation policies that prevent at least one of the four necessary

conditions for deadlock. These strategies ensure that deadlocks are

structurally impossible in the system by guaranteeing at least one

condition cannot occur. Prevention strategies are conservative by nature

and involve placing restrictions on the ways processes are allowed to

request and hold onto resources. In most resources question of mutual

exclusion prevention is very rare, however minimum number of

resources should be made non-shareable by the system designers.

Preventing hold and wait generally leads processes to either have to

96
MATS Centre for Distance and Online Education, MATS University

Notes request for all resources required by them before they can proceed, or

to release all of the resources they hold before they can request more.

This means that these systems may need to take away resources from a

process when it runs out of other options, in what is called forced

reclaiming. Circular wait can typically be prevented by defining a total

ordering for resource types and forcing processes to request resources

in that order. Although prevention strategies offer the strongest

guarantee against deadlocks, they often incur a significant cost in

terms of resource utilization, system performance, and programming

complexity. This composite of trade-offs is what makes prevention

strategies well-suited for critical systems in which deadlocks are simply

unacceptable under any conditions, but less so for the general-purpose

computing environments where more well-rounded approaches may be

preferred.

Eliminating Mutual Exclusion

One of the base yet difficult methods for deadlock prevention is to

remove the mutual exclusion condition. This strategy is designed from

the perspective of systems approach, and aims to design systems where

resources can be simultaneously shared among two or more processes,

hence breaking the contention that creates the basis of deadlocks. In

practice, completely avoiding mutual exclusion is not possible for

many types of resources that are inherently non-shareable (e.g.

printers, tape drives, database locks). Yet, some strategies can mitigate

this impact by designing systems such as spooling where resource-

executing processes interact with processes running on virtual

resources instead of the actual resources themselves. Print spooling, for

instance, enables multiple processes to send data to a print job queue as

opposed to needing direct access to the printer hardware. In much the

same way, virtualization technologies allow multiple virtual machines

to share the same physical hardware, de-stabilizing exclusive resources

for shared ones at a higher level of abstraction. Another response is to

redesign resources or the patterns in which they are accessed to allow

concurrent usage, for instance through reader-writer locks in which

multiple processes can read the data concurrently whilst still allowing

exclusive access for writing. Asynchronous data structure, lock-free

and wait-free -- Among the ways to decrease mutual exclusion is the

devel- opment of lock-free and wait-free data structures. Although it is

impossible to eliminate mutual exclusion for every type of resource, it

97
MATS Centre for Distance and Online Education, MATS University

Notes is possible to look at some resources and determine if they can be made

into shareable resources and reduce the potential deadlocks in a system.

Preventing Hold and Wait

Hold and Wait − In this condition, a process holds a resource while

waiting to acquire additional ones. To prevent this condition, we need

to design resource allocation policies that guarantee that processes will

never concurrently possess some resources while it is waiting for

others. There are two common methodologies in pursuing this end.

This way all resources required by each process should be requested at

the beginning of execution. This means that when a process requests

resources, the system will give either all resources or nothing, in this

way, it does not allow a process to hold some resources while in wait

for others. Although conceptually simple, this strategy requires

processes to specify all of their resource needs ahead of time, something

that may not always be realistic for practical applications that can

develop dynamic resource requirements. It can further cause the waste

of resources since resources that are reserved at a very early point in a

process lifecycle can go unused for a long time. The second approach

allows processes to request resources incrementally but forces them to

relinquish all currently held resources upon a denied request. Then, the

process tries to grab all necessary resources at once in a next request.

This is more flexible, but leads to complexities including the potential

for starvation (if a process repeatedly fails to acquire all the resources

it needs) and the extra cost of repeatedly releasing & reacquiring

resources. Both strategies can be improved upon, such as using

resource reservation in which processes inform the system in advance

of their expected future demands for resources without actually

requesting the resources, allowing the system to plan allocations and

reduce waiting whenever possible. Furthermore, pooling of resources

together can be used where similar resources are grouped, and

operations are less, again reducing the chances of hold and wait

condition occurring.

Allowing Resource Preemption

No-preemption: The system should be designed in such a way that

resources cannot be forcibly taken away from the processes holding

them, which is one of the necessary conditions for deadlocks. In the

context of preemption, if a process requests a resource that it cannot yet

access, the system checks whether preempting resources from other

98
MATS Centre for Distance and Online Education, MATS University

Notes processes might help to avoid a potential deadlock. If we identify any

of our resources on which a suitable candidate for preemption would

be found, we can release it and grant the requesting process the

resource, breaking the formation of a deadlock before it can even

materialize. There are a number of approaches to making preemption

work. These include process priority schemes, where higher-priority

processes can preempt one or more resources from lower-priority

processes. A second approach uses resource age or holding time as its

criteria and preempts resources holding for a while. This is not a bad

description of a one-shot preemption/cancel paradigm, checkpoint-

based preemption is a better fit because a process periodically saves its

execution check pointed state, allowing it to be rolled back to a sort of

consistent state after preemption of its resources. This makes

preemption a complex topic that requires careful design of the system

implementing it. Such a system must ensure the safe aspects of the

process context saving, the performance costs of saving process state

when preempting processes, and starvation policies to stop processes

from being repeatedly preempted in to sensibly afford a system which

ensures progress in userspace. The system also needs some policies on

how to choose which resources to preempt, where there are multiple

candidates, e.g. the system should try to minimize the disruption to the

processes, should provide fairness and let the processes make progress.)

Indeed, many modern operating systems employ some forms of

resource preemption, and for some resource types—especially memory,

CPU time, and some I/O resources—there are practical ways to

implement this process, even if it is not easy.

Avoiding Circular Wait

Out of the deadlock prevention strategies, preventing circular wait is

one of the most commonly used strategies since it is easier to

implement than removing other necessary conditions. The basic

method is to develop a total ordering of all classes of resources and

require processes to request resources in this order. This phone work

eliminating circular dependencies between processes at the level

structure. By never requesting resources except in order. To implement

this strategy, however, the following steps are required: (1) assign a

unique numerical identifier to each resource type; (2) require that

processes request resources strictly in increasing (or decreasing) order

of identifiers; (3) enforce this ordering in system calls or middleware

99
MATS Centre for Distance and Online Education, MATS University

Notes that validates resource request sequences. For instance, if there are

resource R1, R2, and R3 with identifiers 1, 2, and 3, a process must ask

for them in the order R1, R2, R3 This avoids creating cycles within the

resource allocation graph ensuring that processes can only wait on

resources than have identifiers greater than those that they currently

possess. While simple in principle, this technique can be difficult in

practice. The processes in the system must be designed or modified to

acquire the resources in the specified sequence, which may conflict

with their actual operational order. It also needs to find a logical

ordering of resources such that processes do not have to request

resources out-of-order. By deciding hierarchies of related resources to

work with can ease some of these problems, where stabilization can be

at a classification level rather than a direct resource. There are dynamic

resource hierarchies of resources that dynamically adjust the ordering

of resource accesses based on observed usage patterns, hopefully

matching the application requirements better while still avoiding

circular wait conditions.

Deadlock Avoidance Algorithms

Deadlock avoidance is a halfway house between the very restrictive

prevention and the more reactive detection and recovery. These

algorithms adopt an approach where processes can make incremental

resource requests, without taking the system to an unsafe state that

might independently bring about deadlock. They work based on extra

information about the resources needed for processes, usually

expressed as predetermined maximum resource demands. Based on this

information, the system can decide on each resource request whether it

can grant it or might place the system in a potential deadlock state in

the future. The banker's algorithm, one of the most popular deadlock

avoidance algorithms, designed by Edsger Dijkstra, simulates a

tentative allocation of resources to find out if, there is a sequence of

processes that can be executed without deadlock. This solution is safe

because all processes can finish even if they request their maximum

remaining resources right away. A request is denied if after the

allocation there is no safe sequence and the requesting process blocks

until resources can be granted. The main contribution of this paper is

an alternative model to the banker's algorithm, called the resource-

trajectory approach, in which the sequence of resource allocations and

deallocations is modeled as a trajectory through a multidimensional

100
MATS Centre for Distance and Online Education, MATS University

Notes space, that is, the resource space, and a safe resource allocation is one

that never allows the trajectory to enter unsafe regions. Avoidance

algorithms offer stronger correctness guarantees than detection and

recovery with much less severe restrictions than prevention strategies,

but present their own challenges such as the overhead of safety

checking to ensure avoidance, the need to know beforehand how much

of a resource is needed, and, potentially, less than optimal use of

resources due to conservative allocation policies.

The Banker's Algorithm and its Variants

Deadlock avoidance The single most important approach to deadlock

avoidance is the banker’s algorithm that was originally formulated by

Edsger Dijkstra and is so named because of its analogy to banking

systems. This algorithm uses a few data structures to maintain the state

of resources that are allocated: the maximum resources still needed by

each process — the resources currently allocated to each process —

and the missing resources needed by each process. The algorithm

simulates the allocation of processes' requests and looks for a "safe

sequence" of process executions that would allow all processes to finish

running without a deadlock. If an such a sequence, does exist the state

is said to be safe and the request is granted; otherwise the request is

denied and the process that made the request has to wait. The banker's

algorithm forms the basis of several extended and optimized variants

tailored to specific system needs. We can simplify the original Handle

Algorithm into its single-resource version for the case of only one

resource type, which reduces the computational complexity. Instead

posing the bankers algorithm to hierarchal resources system, as in tree

(parent-child) hierarchy. The distributed banker algorithm works

similar in nature as the banker's algorithm but it does not work with

the centralized method, instead it uses a distributed matter to prevent

deadlock, The process of allocation takes place in a distributed manner.

There are also variants of the banker's algorithm that are dynamic,

meaning they take resource requests that come up during execution of

a process into consideration, thus avoiding one of the main problems of

the original algorithm. Therefore, with a theoretically sound approach

proposed with the banker's algorithm, the practical implementation can

be difficult due to the safety need to be checked for every resource

request, processes should declare their maximum needs in advance

(which in many cases may be difficult to evaluate), resources may

101
MATS Centre for Distance and Online Education, MATS University

Notes remain underutilized due to conservative allocation policies. These

constraints have driven many general-purpose operating systems to

prefer different strategies for deadlock management, but it provides a

useful way in very specific contexts, where resource requests are

measurable ahead of time and a high reliability is fundamental.

Resource Trajectory Methods

An alternative to deadlock avoidance are resource trajectory methods,

which model resource allocation as a path through a multi-dimensional

resource space. The axes in this model represent different types of

resources, while a point in space reflects how many of those resources

are currently dedicated to a process. The system moves through this

space along a trajectory as processes request and release resources.

Some areas of the space correspond to unsafe allocations that can cause

deadlocks, and others represent safe allocations. For resource trajectory

methods, the key ideas are to keep the state trajectory in a safe region.

A key aspect of this approach is identifying the critical boundaries that

delineate the safe from the unsafe regions in resource space. This is

when a process requests resources and the system assesses whether

granting the request would cross a dangerous threshold into an unsafe

space. If so the request is denied, if not the request is granted. There

have been various mathematical formulations proposed for defining

such critical boundaries, as well as for more efficient identifications of

these boundaries. The first-run single-resource trajectory approach

streamlines the analysis, applying to systems with a single resource

type. The claim-and-release trajectory method utilizes knowledge of

future resource releases to model a tighter safe region. The process-

interaction trajectory approach focuses directly on interactions between

specific processes, as opposed to the global system state, which could

enable more concurrency for resource allocation. In some cases,

resource trajectory approaches can be more advantageous for certain

situations than the banker's algorithm, particularly potentially

displaying a more accurate representation of safe and unsafe

conditions, lower computational complexity for specific

configurations of the system, and more intuitive visualization of safety

of the system. Nonetheless, they suffer from similar limitations to other

avoidance strategies (Table 2): They require prior knowledge of

resource needs, and conservative allocation will underutilize resources

(catch recovery too late).

102
MATS Centre for Distance and Online Education, MATS University

Notes Deadlock Recovery Techniques

In cases where deadlock prevention, avoidance, and detection

mechanisms fail or are not applied, systems must instead rely on

recovery strategies to address deadlocks once they have manifested.

Deadlock recovery is where the system detects the deadlock and takes

action to break it, e.g. by killing a process. Process termination

techniques choose one or more competing processes in a deadlock to

abort, freeing them of their held resources, and allowing potential

continuation with other processes. For mustering process termination

candidates, priority (w/o) process execution time, resources held and

remaining work, may provide selection criteria. Resource preemption

typically requires saving the state of the processes being preempted,

identifying which resources to preempt, and dealing with the possible

cascading effect. Since partial execution is an issue, both approaches

need to cater for recovery, since aborted or preempted processes might

have been state-changing and therefore need to be undone or

compensated. Transaction rollback mechanisms in database systems

offer a systematic way to reverse the effects of partially completed

operations in the event of deadlock recovery. Current systems use

hybrid recovery strategies that involve a combination of process

termination and resource preemption, which chooses the appropriate

strategy given a certain deadlock condition. Recovering from the

deadlock allows systems to continue, but these techniques tend to have

high penalties of lost work, degraded performance, and the prospect of

data inconsistency, making recovery techniques sometimes a preferred

strategy, but more often a strategy of last resort.

Process Termination Strategies

One of the most straightforward strategies for deadlock recovery is the

termination of processes, in which one or more processes in the

deadlock is/are chosen and aborted. These processes once terminated

release all the resources they have if they were not previously finished,

thus eliminating the circular wait condition and enabling other

processes to make progress. There are several strategies for deciding

which processes to kill when a deadlock is detected. Selection of

victims tends to balance several elements so as to minimize the impact

on the overall system. This strategy -known as the minimum disruption

strategy- consists of terminate the minimum number of processes that

is necessary to break the deadlock and generally reports a set of

103
MATS Centre for Distance and Online Education, MATS University

Notes processes that, by terminating them, will release the resources needed

to satisfy the needs of the remaining processes involved in the deadlock.

In a cost-based approach, processes are assigned a termination cost

based on dispatching priority, the amount of computation they have

performed to date, resources they hold, and even the amount of work

left to do. It then picks the processes that are cheapest to terminate. The

resource utilization method aims at processes that hold many resources,

specifically the ones that are used by several other processes, because

killing them anyway unblocks more processes. Clearly, this kind of

framework is quite conservative, as it terminates only the victims one-

by-one and checks if the deadlock has been cleared before going after

more victims: Incremental termination. For a system to achieve clean

termination, things can get complex, since it needs to make sure to free

up all previously allocated resources, correctly handle any shared data

structures between the affected processes, inform dependent software,

and potentially even hang onto some data to support restart. In systems

that have transactional semantics, like databases, the termination of

processes relies on the transaction undo mechanism to recover the

system from operations that only partially execute, preventing the

system from becoming inconsistent. Though terminating processes will

resolve deadlock, this results in substantial loss of computation and the

potential of user created frustration especially if the process in question

is interactive. As such, its cost means it is most appropriate as a last

resort in systems where other deadlock management mechanisms have

been unsuccessful or are not feasible.

Resource Preemption Methods

One technique of deadlock recovery that would fall under this method

is resource preemption. This provides a more fine-grained way to

intervene than terminating processes (which may lose more work and

be more disruptive). There are several key challenges that need to be

addressed for effective resource preemption. First, it must decide which

resources to preempt, most often choosing those that will end the

deadlock without a significant cost. The importance of the resource, the

length of time it has been retained, progress in the holding process, and

how many processes could be enabled by releasing it are among

possible criteria. Second, the system must have means of saving the

state of processes that have their resources preempted, so that they can

resume execution later when the resources are available again. Third,

104
MATS Centre for Distance and Online Education, MATS University

Notes the system has to deal with the complications of rolling back any

partially executed operations that relied on the preempted resources in

order to keep the data consistent. Different types of resource

preemption strategies have been developed for different computing

environment. Checkpoint-based preemption utilizes process

checkpointing protocols to capture the execution state before

preempting resources, enabling a clean restoration when the resources

are reallocated. In priority-based preemption, processes with higher

importance are preferred, and each resource is preempted from lower-

priority processes to meet the demands of higher-priority ones. Cost-

minimization preemption aims to characterize the cost of preempting

various resources and chooses those with the lowest aggregate system

cost. Preemption is a practical construct that can be applied for some

types of resources such as memory pages, CPU time slices and some

locks which are eligible for a clean preemption and being less

applicable for resources that cannot be restored easily like open

network connections or exclusive device controls. Resource

preemption is effective mainly in systems capable of adequately

capturing, and restoring process state, which makes it a more feasible

solution in systems that provide rich facilities for checkpoint-restore.

Handling Partial Execution and Rollback

In many systems in which deadlocks are solved by killing processes,

or by preempting their resources, the system faces the problem of

partially executed operations. In scenarios of deadlocks, processes

involved might have previously finished some parts of their work,

modifying state of system, data structures or external systems in ways

which need to be handled in the process of recovery. Transaction

Rollback Mechanisms Some systems, especially database systems and

systems with transactional semantics, implement transaction rollback

mechanisms that logically associate a series of operations with a

transaction. These systems log enough information about commands

to be able to cancel them, usually using write-ahead logging, shadow

paging or journaling techniques. Since, during a deadlock recovery

action, when a process is terminated or preempted, the transaction

associated with it would need to be rolled back and thus restoring the

system to a consistent state, as if the transaction had not started at all.

In systems not supporting a fully-fledged transaction interface,

compensating actions can be needed to cancel the effects of partial

105
MATS Centre for Distance and Online Education, MATS University

Notes operations. These might be application-specific cleanup procedures,

restoring modified data to their original values, releasing resources

consumed and notifying dependent services of the failed operation.

Checkpointing is another solution to the partial-execution problem, and

involves processes periodically storing their state such that it is possible

to return to that point (but note that checkpointing solutions often only

deal with the data space of the processes). It can shrink the amount of

work lost during deadlock recovery as well as improve deadlock

recovery cleanliness relative to a crash/restart of the whole process.

Some systems use speculative execution in systems where they allow

an operation to proceed on an optimistic basis, but preserve enough

information so they can back out the changes if there is contention for

those changes, or a dead-lock occurs. The overall cost of deadlock

recovery is heavily affected by the handling of partially executed

actions. Rollback capabilities: Well extolled systems can roll back more

gracefully from deadlocks, and poorly–designed ones may create data

inconsistency, resource leakes or other side effects that must be cleaned

up manually — which itself may lead to cascading failures.

Practical Implementations in Operating Systems

Deadlocks can be handled in many different ways by many different

operating systems (OS), and some OS don't even bother trying to

prevent a deadlock. Unix-like systems like Linux tend to be minimalist

in nature, relying on timeouts and human rescues instead of robust

deadlock prevention or detection tools. Most of these systems use closet

timeout-based resolution for some resource types and provide

administrative tooling to help identify and resolve deadlocks manually.

In Windows operating systems, deadlocks are handled in a more

structured approach, especially for synchronization objects like

mutexes or semaphores, including wait chains traversal to detect cycles

of dependency. Strict deadlock prevention is commonly introduced in

real-time operating systems as they are time critical and this is typically

done using priority inheritance protocols and resource reservation to

eliminate priority inversion/deadlock conditions. Custom deadlock

handling strategies tailored to specific hardware and application

domains may be implemented by specialized embedded operating

systems. Internal deadlock prevention mechanisms for services that are

critical to operating system kernels typically use hierarchical locking,

lock-free algorithms or careful ordering of resource acquisition. There

106
MATS Centre for Distance and Online Education, MATS University

Notes are some specific problems for deadlock handling at the file system

level, where contemporary designs employ things like delayed

allocation, intent logging and non-blocking algorithms to limit

deadlock risk. It is the responsibility of low-level memory management

subsystems — via paging, virtual memory and the like — to prevent

deadlock by treating physical memory as a preemptable resource. As

you learn the approaches to implement this rather theoretical topic, you

get to understand what happens at system design perspective when you

are forced to go with a solution that constructs a trade-off between

theory and logistics.

Unix and Linux Approaches

As for Linux and other Unix-like operating systems, historically they

use a relatively minimalist policy when it comes to deadlock detection

and resolution compared to more elaborate policies explored in theory.

They provide a time out and other features from careful system design

and user level intervention, rather than avoiding, detecting or

recovering from deadlock through complex system level mechanisms.

Another way of saying this, and one that is very Unix systems-like, is

to “give me a lever and a place to stand” — offer hooks and ways to do

things instead of trying to synthesize the thing you want right out of the

core of the OS; this also fits with other Unix design principles: offer

mechanisms, not policies, minimize overhead for common we-do-an-

operating-and-a-some users operations, and — where it is at all

possible — push complexity out into user space. Unix systems

generally implement prevention strategies for specific classes of

internal resources at the kernel level through careful lock ordering and

acquisition protocols. Kernel synchronization primitives such as

mutexes, semaphores and reader-writer locks are generally designed for

deadlock prevention, using hierarchical locking schemas or lock

dependency checkers to ensure consistent acquisition order. Unix

systems also provide timeouts on many resource acquisition operations

for user-level processes, allowing processes to detect when they are

waiting too long for resources and to initiate appropriate recovery.

Signal mechanisms allow blocked system calls to be interrupted,

enabling applications to perform their own timeout-based recovery

strategies. Resource limits and quotas ensure no single process can

monopolise the system resources in such a way as to create a

widespread deadlock. Linux itself has also built on top of this,

107
MATS Centre for Distance and Online Education, MATS University

Notes introducing additional deadlock features including pthread mutexes

that detect deadlocks, a kernel lock validator called "lockdep" that

seeks to guarantee that no deadlocks can occur, and process monitors

to determine which processes might be competing for shared resources.

The watchdog facility in systemd is a promising feature since modern

Linux distributions ship with it, and if it detects that an application is

hung, it tries to restart it which can also bring the system out of

deadlock by terminating and restarting affected processes. The practical

concurrency model of Unix, with its ad-hoc approach to deadlock,

captures both the challenge of implementing full deadlock detection

and recovery in a general-purpose operating system and the Unix ethos

to give application developers freedom — and responsibility — to

design suitable deadlock strategies for their own use cases

Windows Operating System Deadlock Management

Differences in deadlock handling – The Windows OS uses a slightly

more structured approach to deadlock management than any of the

Unix-like OS systems, particularly with regards to synchronization

objects and system resources. Similar to e.g. POSIX, Windows has a

rich set of synchronization primitives (all with built-in timeout-based

acquisition support), so that applications do not have to block

indefinitely waiting for resources. Operating systems include timeout

parameters as part of their wait functions, allowing processes to

specify how long they will wait for a resource and thus provide a

mechanism to detect and recover from potential deadlock situations.

Windows has a sophisticated wait chain transverser, capable of

detecting circular dependencies in threads waiting on synchronization

objects. This functionality is also exposed through programmatic

interfaces and administrative tool such as Resource Monitor, allowing

developers and system administrators to identify deadlocks involving

Windows synchronization primitives. Windows applies internal

deadlock prevention mechanisms for critical system resources: Kernel

code is written to acquire locks in a consistent order and to follow

hierarchical access patterns. The Windows memory management and

process scheduling subsystems use resource reservation and

preemption techniques to decisively limit the potential for system-wide

resource deadlocks and to ensure that deadlocks can never take the

entire system down. They offer a complementary technique to the

timeout-based resource acquisition within an application, making the

108
MATS Centre for Distance and Online Education, MATS University

Notes application capable of achieving graceful degradation thanks to

structured exception handling implemented by the OS. Deadlock

detection and resolution capabilities for distributed transactions across

multiple resource managers are built into Windows via the Microsoft

Distributed Transaction Coordinator (MS DTC), which integrates with

database applications. With features like fair share CPU scheduling and

resource metering, Windows Server editions provide additional

resource governance to prevent resource monopolization that could

cause deadlocks. Windows does not enforce global deadlock avoidance

algorithms like banker's algorithm but its strategy of limiting resource

access to short time frames, traversing wait chains, and providing

administrative tools offer the system a practical approach to deadlock

management that balances performance overhead with system

reliability requirements.

Real-Time Operating Systems (RTOS)

The subject of this article is deadlock handling in real-time operating

systems. Contrarily, in an RTOS environment, deadlocks can severely

disrupt system functionality and directly encroach upon time

constraints, causing disaster scenarios in critical applications

(aerospace systems, medical devices, automotive control units, etc.).

Thus, RTOS implementations tend to use stricter deadlock prevention

techniques compared to general-purpose operating systems. One of the

fundamental deadlock prevention mechanisms implemented in many

RTOS is priority inheritance protocols that prevent priority inversion

problems. The dynamic priority of a process holding a resource,

therefore it would be adjusted to be equal to the highest priority of any

process waiting for a resource. The priority ceiling protocol generalizes

this idea by associating with every resource its priority ceiling (the

highest priority of any process that may request the resource), and

temporarily raising the priority of the process that successfully acquires

the resource to its ceiling. Another common feature in RTOS

environments is deterministic resource allocation policies where

resources are allocated in fixed predictable patterns as opposed to

dynamic decisions that could potentially lead to deadlock. No dynamic

resource allocation means that the system is more rigid, with all

resources being assigned to processes when the system is created, and

thus many forms of deadlock are avoided at the expense of flexibility.

Another RTOS paradigm is time-bounded resource acquisition; that is,

109
MATS Centre for Distance and Online Education, MATS University

Notes every resource acquisition must finish within a fixed time limit, and

timeout-based failure recovery mechanisms ensure that processes do

not stall indefinitely. Commercial implementations such as VxWorks,

QNX and FreeRTOS have these mechanisms as well as other

specialized features such as deterministic scheduling, memory

protection, and fault isolation to preserve system integrity in the event

that part of the system fails. Due to the influence of time constraints on

real-time systems, the potential consequence of uncontrolled deadlock

may justify the overhead and increased complexity incurred by more

extensive deadlock prevention, making them an interesting avenue for

practical deadlock prevention and handling evaluation.

MCQs:

1. Which SQL command is used to create a new database?

a) MAKE DATABASE

b) CREATE DATABASE

c) NEW DATABASE

d) ADD DATABASE

2. Which command is used to delete an entire database permanently?

a) DROP DATABASE

b) DELETE DATABASE

c) REMOVE DATABASE

d) TRUNCATE DATABASE

3. Which SQL command is used to remove all records from a table but

keep the

structure?

a) DELETE

b) DROP

c) TRUNCATE

d) ALTER

4. Which of the following is a valid SQL data type?

a) STRING

b) TEXT

c) CHAR

d) NUMERIC

5. Which command is used to change the structure of an existing table?

a) MODIFY TABLE

b) CHANGE TABLE

110
MATS Centre for Distance and Online Education, MATS University

Notes c) ALTER TABLE

d) EDIT TABLE

6. What does the NOT NULL constraint do?

a) Ensures that a column does not contain duplicate values

b) Prevents a column from having NULL values

c) Sets a default value for the column

d) Creates a new table

7. Which of the following statements about PRIMARY KEY is true?

a) A table can have multiple primary keys

b) A primary key column can contain duplicate values

c) A primary key ensures uniqueness and cannot be NULL

d) A primary key can be removed using DELETE

8. Which SQL command is used to modify existing records in a table?

a) MODIFY

b) CHANGE

c) UPDATE

d) ALTER

9. What does the CHECK constraint do?

a) Ensures values in a column meet a specific condition

b) Automatically fills a column with a default value

c) Allows NULL values in a column

d) Creates a new table

10. Which command is used to remove a table completely, including its

structure?

a) DROP TABLE

b) DELETE TABLE

c) REMOVE TABLE

d) TRUNCATE TABLE

Short Questions:

1. What is the purpose of the CREATE DATABASE command?

2. How does the DROP DATABASE command work?

3. What is the difference between DELETE, DROP, and TRUNCATE?

4. What are the different data types available in SQL?

5. Explain the difference between CHAR and VARCHAR.

6. How does the ALTER TABLE command work?

7. What is the function of NOT NULL and UNIQUE constraints?

8. How can we update records in a table using SQL?

111
MATS Centre for Distance and Online Education, MATS University

Notes 9. What is the purpose of the CHECK constraint?

10. How does the DEFAULT constraint work in SQL?

Long Questions:

1. Explain the process of creating and deleting a database in SQL.

2. Discuss the different SQL commands used to manage tables.

3. What are SQL data types, and how are they used in table creation?

4. Explain the differences between DELETE, DROP, and TRUNCATE

with examples.

5. How does the ALTER TABLE command modify table structures?

6. Describe the different types of constraints used in database design.

7. Explain how the PRIMARY KEY and FOREIGN KEY constraints

enforce data integrity.

8. What is the purpose of the CHECK constraint, and how is it

implemented?

9. Write SQL queries to insert, update, and delete records from a table.

10. Discuss the importance of constraints in database security and

integrity.

112

MODULE 5

OBJECT-ORIENTED DATABASE

LEARNING OUTCOMES

• Identify the limitations of RDBMS and the need for Object-

Oriented Database Management Systems (OODBMS).

• Differentiate between OODBMS and ORDBMS and their

applications in modern databases.

• Understand techniques for storing and accessing objects in

relational databases.

• Learn the principles of Object-Oriented Database Design and

how they enhance data modeling.

• Explore Object-Oriented Data Models and their advantages in

handling complex data structures.

113
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Limitations of RDBMS and Introduction to

Advanced Databases

5.1 Limitations of RDBMS

For several decades, structured data storage and retrieval have relied on

Relational Database Management Systems (RDBMS). They provide

many advantages like ACID (Atomicity, Consistency, Isolation,

Durability) compatibility, SQL Sizes, and data integrity properties.

However, despite widespread adoption and capability, there are a few

downsides to RDBMSS. With advances in technology, new problems

have arisen that highlight the limitations of traditional relational

databases. Some of these constraints affect the performance, scalability,

flexibility, and usability especially in the modern applications where

massive data. These limitations are important for database architects,

developers, and organizations to consider when making data

management strategies. Scalability is one of the major limitations of

RDBMS. Traditional relational databases were built for vertical

scaling, which refers to increasing the strength of a single server by

provisioning additional CPU, memory, or storage. This technique

works great for moderate workloads but becomes very expensive and

illogical as data volume starts to increase exponentially. Since RDBMS

relies on strict table structure and complex joins to access data

organized into related tables, horizontal scaling—i.e. spreading data

over many machines—is fundamentally difficult. As a result,

distributed systems and NoSQL databases gained notoriety as an

alternative, since they can scale out well across clusters of low-cost

hardware. RDBMS solutions, on the other hand, need extensive

architectural changes like sharding and partitioning to scale to this

level, leading to added complexity and maintenance costs. Another

critical problem of RDBMS that pinpoints its ineffectiveness

especially in high-throughput environments is performance. Since the

Regular databases query execution involves joins, indexes,

transactions, etc. Although indexes can enhance read performance,

they can also increase the time taken for write operations because of the

overhead of maintaining multiple indexes. Query performance over a

growing dataset can degrade considerably, giving longer response times

and less effective operation. Furthermore, real-time data processing

requirements are challenging for RDBMSs, which are designed for

114
MATS Centre for Distance and Online Education, MATS University

Notes transactional consistency instead of speed and live analytics. RDBMS

usually are not able to provide the low-latency requirements of

applications like recommendation engines, financial trading engines,

and IoT applications. On the other hand, NoSQL is focused on

optimizing performance for certain use cases like key-value stores for

fast lookups, or columnar databases for analytical workloads. This is

another place where RDBMS is lacking, flexibility. RDBMSs enforce

strict schema, which means that you need to define the structure of

tables (columns and their types) before you store any data. While this

rigidity guarantees well-defined measures of data consistency and

integrity, it can be a massive limitation in the use case of changing data

requirements. Changing an existing schema may be a painful process

and need downtime and long data migrations. Another very important

aspect is being able to adapt to changing business requirements.

Designed to cater to the needs of big data and cloud storage, NoSQL

databases are schema-less, which provides developers with the ability

to store unstructured or semi-structured content without needing to

define a schema beforehand.

RDBMS have another biggest disadvantage that it cannot store

unstructured data in enough wide scale. Common applications in

modern systems generate a variety of data types: text, images, videos,

logs, sensors. RDBMSs are optimized for structured data with well-

defined relationships, making storing and processing such data

inefficient in a relational database. Although some relational databases

offer a special field type called Binary Large Objects (or BLOBs) to

store unstructured data, querying and accessing them can be slow and

resource-consuming. Key features: NoSQL databases, including

document stores and graph databases, are structured to handle

unstructured and semi-structured information more rapidly, ideal for

applications such as content management systems (CMS), big data

analytics, or a machine learning workload. One more major drawback

of RDBMS is the difficulty in managing relationships, and keeping

data consistent. Though the performance is good, maintaining data

integrity which is very important in transactional applications is

achieved with relational databases utilizing foreign keys and

normalization techniques. As the database grows and the behind-the-

scenes maintenance of these relationships can become complex, which

can cause performance bottlenecks. Joins are a necessary part of why

115
MATS Centre for Distance and Online Education, MATS University

Notes relational databases are so powerful, but they can be computationally

heavy, especially at scale. As a result, queries that perform multiple

joins can become slow and inefficient, affecting application

performance. On the other hand, graph databases and NoSQL databses

are able to accommodate highly connected data, making them useful in

scenarios like social networks, recommendation engines, and fraud

detection systems. One more major limitation of RDBMS is its high

maintenance and admin cost. Maintaining a relational database

effectively takes an understanding of database design, indexing

techniques, query optimization, and performance mitigation — and,

honestly, this is a full-time job in itself. This increases operational costs

and SQL database administrators (DBAs) have a vital role in keeping

the database performing smoothly. Database management systems, or

RDBMS, require thoughtful planning and execution of backup and

recovery, replication, and security management. Scaling an RDBMS

solution across many nodes multiplies these administrative challenges

and necessitates Replication / Sharding, challenges that have their own

complexity. On the other hand, spherical NoSQL databases listen to

availability and scalability by automating the process of scaling with

auto-scaling, automated replication and replication recovery

mechanisms.

RDBMS also has challenges with concurrency control and transaction

management. Although the ACID properties guarantee the integrity of

the data, they can also come with performance overhead, especially in

situations involving high transaction concurrency. By using locking

mechanisms to maintain consistency, contention issues can occur since

several transactions try to grab the same resources, resulting in

bottlenecks and reduced throughput. This is especially problematic in

distributed systems where one may have multiple nodes, maintaining

strong consistency can lead to higher latency. NoSQL databases

typically follow an eventual consistency model, trading off full ACID

compliance for better performance and scalability. Not all applications

are suited for this, but it certainly provides many benefits for anything

with high availability and fault tolerance requirements. Another

important aspect that needs to be taken care of by organizations is the

cost of implementing and maintaining an RDBMS. Commercial

relational database solutions like Oracle, Microsoft SQL Server, and

IBM Db2 are costly due to hefty licensing fees; this proves to be too

116
MATS Centre for Distance and Online Education, MATS University

Notes expensive for small and medium-sized businesses. Even open-source

alternatives come with a hefty investment in infrastructure, expertise,

and ongoing maintenance, with potential pitfalls similar to those of

DynamoDB for scaling products. Moreover, scaling an RDBMS

solution becomes more and more costly, as data volume increases, as it

requires a high-performance hardware, storage, and networking

resources in the most sense. On the other hand NoSQL databases are

generally more economical because of their distributed architectures

which let organizations take advantage of commodity hardware and

cloud-based resources to scale effectively. RDBMSs also have

limitations in terms of security and compliance. However, relational

databases offer solid security features, such as authentication,

authorization, and encryption, but configuring and managing them is

not a trivial task. Ensuring compliance with industry regulations like

GDPR, HIPAA, and PCI-DSS is necessitating stringent access controls,

audit logging, and data encryption mechanisms. In an RDBMS

environment, enforcing compliance can be difficult because

distributed architectures are increasingly common. And for big data

analysis, traditional relational databases are more prone to SQL

injection, which is an attack when attackers can manipulate poorly

designed queries. NoSQL databases are not without their own security

risks, but can offer alternative security models to address specific

threats. To sum up, even though RDBMSs are an initial basic part of

big data management, their scopes have revealed themselves due to the

new data paradigms. All the issues mentioned in terms of scalability,

performance, flexibility, unstructured data handling, administrative

complexity, concurrency control, cost, and security have created more

need for alternative database solutions. As a result, NoSQL databases,

cloud-based storage solutions, and distributed data architectures have

developed as valid options and provide more scalability, performance,

and flexibility for modern applications. So, you know you must

consider their particular use cases and needs when deciding whether an

RDBMS has the best fit, or some of alternative database technologies

offers the best solution for the organization. Knowing these constraints

allows businesses to make informed decisions to streamline their data

management strategies, helping them cope better with their evolving

data requirements.

117
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: Object-Oriented Features in Relational

Databases

5.2 Introduction: OODBMS and ORDBMS

OODBMS and ORDBMS

Database management systems have made great strides in recent years

and two of the most notable evolutions beyond RDBMS are Object-

Oriented Database Management Systems and Object-relational

Database Management Systems. The RDBMS was not without its

limitations, particularly when it came to dealing with complex data

structures, multimedia applications, and systems that required a tight

coupling between the object-oriented programming language used for

application development and the underlying database technology.

Object-Oriented Database Management System (OODBMS)

An Object-Oriented Database Management System (OODBMS) is a

database management system that supports the modeling and creation

of data as objects. This is in contrast to RDBMS architecture where data

is structured in the form of rows and columns in tables, OODBMS

stores data in the form of objects in a similar way just like data is

represented in object-oriented programming languages like Java, C++,

and Python. It provides a better way of dealing with complex data like

images, audio-visual data, and nested structures, as they support object-

oriented features. Suitable for CAD, multimedia database, real-time

system, and AI applications. OODBMS supports inheritance,

encapsulation and polymorphism, allowing developers to directly

work with objects without being forced to convert them to relational

tables. This eliminates the O/R Mapping (which is needed when using

RDBMS over any OO language). Yet OODBMS is not as widely used

as RDBMS because of compatibility issues, a lack of standards, and a

steep learning curve for many developers who are used to working in

traditional relational models.

Object-Relational Database Management System (ORDBMS)

ORDBMS (Object Relational Database Management System): It is a

combination of RDBMS and OODBMS. It preserves the traditional

SQL and ACID (Atomicity, Consistency, Isolation, Durability) aspects

of relational databases, while also allowing for the use of object-

oriented techniques, such as user-defined types (UDTs), inheritance,

and complex data types.

118
MATS Centre for Distance and Online Education, MATS University

Notes ORDBMS provides the ability to store and manipulate complex

objects such as array, multimedia, geographical data, and application-

defined data types without having to convert these into normal

relational types. This makes well suited for applications such as

geographic information systems (GIS), data warehousing, and

scientific computing. Widely used ORDBMS systems include

PostgreSQL, Oracle and IBM Db2 that provide object-oriented

features while maintaining the performance and familiarity of SQL-like

relational databases.

While both OODBMS and which are O/R DBMS exist to handle for all

those complex data that the regular RDBMS simply do not work for.

OODBMS would be best suited where there is a need to integrate a lot

with an object-oriented programming environment, while ORDBMS

can be used as a middle ground between the relational and object-

oriented paradigms, which is useful for enterprises looking to extend

their existing relational databases. Organizations can determine the best

database system for their needs by examining the complexity and

scalability of their data and the purpose of their application through

these database models.

5.3 Storing and Accessing Objects in a Relational Database

Relational database management systems (RDBMS) follow the table

structure, making it look difficult to store and access objects since

generally the objects are directly used in object-oriented programming.

Nonetheless, as object-oriented programming languages like Java,

Python and C++ became more widely used, the definition of an

RDBMS changed, as most modern RDBMSs now support object

storage and retrieval in one way or the other. Object-Relational

Mapping (ORM), serialization, and structured storage techniques are

commonly used for storing and accessing objects in a relational

database.

1. Object-Relational Mapping (ORM)

Object-Relational Mapping (ORM) is a common technique that maps

objects to their corresponding records in relational databases. ORM

tools (Object Relational Mapping tools) are used to create mapping

between objects in programming languages and relational database

tables.

119
MATS Centre for Distance and Online Education, MATS University

Notes • In ORM-based approaches, each class of the object-oriented language

corresponds to a table in the database, and each instance of that class

corresponds to a row in that table.

• ORM Libraries: Hibernate (java), SQLAlchemy (python), Entity

Framework (. In.NET, Hibernate (Java), and Django ORM (Python),

the conversion between objects and database records is handled

automatically.

• By avoiding manual SQL query writing, this method increases

productivity and lowers the risk of SQL injection attacks.

• While ORMs provide significant development benefits, they also

come with a performance trade-off related to the necessity for query

translation, affecting the efficiency of complex queries and large scale

data operations.

2. Storing Objects as Serialized Data

Alternative ways of persisting objects in a relational database can be

achieved through serialization, which involves transforming the objects

into a format that can be persisted in a database column and

reconstructed when pulled from the database.

• Serialization format: JSON, XML, YAML, or binary

formats (e.g., Protocol Buffers, Avro)

• Usually the serialized object is stored in a BLOB (Binary

Large Object) or TEXT field in the database.

• JSON and XML formats enable semi-structured storage and

simplify retrieval using built-in database functions like

PostgreSQL’s JSONB type or MySQL’s JSON functions.

• Even though serialization provides flexible storage, the

serialized data is not efficient to query since relational

databases are optimized for structured tabular data not

embedded hierarchical structures.

3. Storing Objects in Relational Tables

Objects can be persisted through a normalized relational structure for

performance, storage or data integrity. In this method:

• Normalized — these are complex objects that are broken into

2+ relational tables and result in foreign key relationships.

• Objects are kept associated through primary or foreign keys,

ensuring referential integrity.

120
MATS Centre for Distance and Online Education, MATS University

Notes • For example, an embedded Address object in an object Person

will have a separate Address table with a foreign key reference

from Address to Person.

• Using this approach allows for fast querying and consistency,

though retrieving the object will require JOIN operations to

restore it.

4. Using Object-Relational Features in ORDBMS

Some Object-Relational Database Management Systems (ORDBMS),

such as PostgreSQL, Oracle, and IBM Db2, offer built-in support for

storing objects with object-oriented features like:

• User-Defined Data Types (UDTs): Allow defining custom data

structures in the database.

• Nested Tables and Arrays: Support for multi-valued attributes

within relational tables.

• Inheritance: Enables table hierarchies similar to object-oriented

class inheritance.

• Table Functions: Allow querying objects as structured entities

instead of flat tables.

These features allow for more natural object storage while maintaining

the advantages of relational databases, such as data consistency and

ACID compliance.

Accessing Stored Objects in a Relational Database

Once objects are stored, they must be accessed efficiently for retrieval

and manipulation. Common methods include:

1. Using SQL Queries:

o Standard SQL queries (SELECT, JOIN, WHERE) are used

to retrieve object-related data from multiple tables.

o Indexed queries improve performance when retrieving

objects with complex relationships.

2. ORM Query Methods:

o ORM frameworks provide high-level query abstractions

such as find(), filter(), or get() methods to fetch objects

without writing SQL manually.

o Example using SQLAlchemy in Python:

person = session.query(Person).filter_by(id=1).first()

print(person.name)

121
MATS Centre for Distance and Online Education, MATS University

Notes 3. Deserialization for Stored Objects:

o Serialized objects stored as JSON/XML/BLOB need to be

deserialized before being used in the application.

o Example of JSON deserialization in Python:

import json

data = json.loads(json_string)

print(data["name"])

4. Querying JSON/XML Fields in Modern RDBMS:

o Databases like PostgreSQL and MySQL allow direct

querying within JSON fields using SQL functions:

SELECT data->>'name' FROM person_table WHERE id = 1;

Storing and accessing objects in relational databases requires a

combination of ORM techniques, serialization, relational structuring,

or object-relational extensions. While relational databases are

optimized for structured data, modern enhancements like JSON support

and ORM frameworks have made it easier to handle objects efficiently.

The choice of method depends on application requirements,

performance considerations, and scalability needs.

5.4 Object-Oriented Database Design

Object-Oriented Database Design (OODD) is a methodology for

designing databases that align with the principles of Object-Oriented

Programming (OOP). Unlike traditional relational database design,

which relies on tables, rows, and columns, object-oriented database

design structures data as objects, encapsulating both attributes (data)

and behaviors (methods). This approach is particularly beneficial for

applications that handle complex data types, multimedia content, real-

time processing, and hierarchical relationships.

Object-Oriented Database Management Systems (OODBMS) such as

ObjectDB, db, Versant, and GemStone/S support this design paradigm,

enabling direct storage and retrieval of objects without the need for

Object-Relational Mapping (ORM). Additionally, Object-Relational

Database Management Systems (ORDBMS) like PostgreSQL and

Oracle provide hybrid solutions that integrate object-oriented features

into relational models.

Key Concepts of Object-Oriented Database Design

1. Objects and Classes

In OODD, data is modeled as objects, which are instances of classes.

122
MATS Centre for Distance and Online Education, MATS University

Notes • Objects store both data (attributes) and methods (behavior) in

a single entity.

• Classes define a blueprint for objects, specifying attributes and

behaviors.

• Objects persist in the database in the same way they exist in

object-oriented programming, reducing the need for

transformation.

Example of an Object in OODBMS

class Employee {

 String name;

 int employeeID;

 Address address; // Reference to another object

 void calculateSalary() {

 // Method logic

 }

}

Here, the Employee object contains attributes (name, employeeID)

and a method (calculateSalary). It also contains a reference to another

object (Address), demonstrating object composition.

2. Encapsulation

Encapsulation ensures that data is bundled with methods that operate

on it, preventing unauthorized access.

• In an OODBMS, objects maintain their own states and

behaviors, allowing operations to be performed directly on

them rather than using SQL queries.

• This reduces complexity by allowing direct object

manipulation instead of translating objects into relational data

structures.

3. Inheritance

Inheritance allows new classes to derive properties and behaviors

from existing classes, promoting code reusability.

• OODD supports hierarchical data modeling, where subclasses

inherit attributes and methods from a parent class.

• This eliminates data redundancy and enables efficient data

organization in the database.

Example of Inheritance in OODD

class Person {

 String name;

123
MATS Centre for Distance and Online Education, MATS University

Notes int age;

}

class Employee extends Person {

 int employeeID;

 double salary;

}

Here, Employee inherits properties (name, age) from Person, reducing

redundancy.

4. Polymorphism

Polymorphism allows objects of different types to be treated

uniformly through method overriding or overloading.

• In an OODBMS, polymorphism ensures that queries and

operations can be applied to objects of different subclasses

seamlessly.

• This makes applications more adaptable to changing

requirements.

Example of Polymorphism in OODD

class Shape {

 void draw() {

System.out.println("Drawing a shape");

 }

}

class Circle extends Shape {

 void draw() {

System.out.println("Drawing a circle");

 }

}

A draw() method can be called on any Shape object, whether it is a

Circle or another shape, demonstrating polymorphism.

5. Object Identity (OID) and Relationships

Each object in an OODBMS has a unique Object Identifier (OID),

which is independent of the object’s data.

• OID is used instead of primary keys (as in relational

databases) to maintain object uniqueness.

• Objects can be related using one-to-one, one-to-many, or

many-to-many relationships.

124
MATS Centre for Distance and Online Education, MATS University

Notes Example of Object Relationships

• An Order object may contain multiple Product objects,

forming a one-to-many relationship.

• Unlike relational databases, these relationships are maintained

via direct object references rather than foreign keys, improving

retrieval efficiency.

Steps in Object-Oriented Database Design

Step 1: Requirement Analysis

• Identify the entities (objects) that need to be stored in the

database.

• Define the behaviors associated with each entity.

• Understand data relationships and constraints.

Step 2: Identify Classes and Attributes

• Define classes corresponding to real-world objects.

• Identify attributes and categorize them as simple types

(integers, strings) or complex types (nested objects).

• Specify methods that belong to each class.

Step 3: Define Inheritance Hierarchies

• Identify common properties among classes and define

superclasses.

• Establish subclass relationships to minimize redundancy.

Step 4: Establish Associations and Aggregations

• Define relationships between objects.

• Use aggregation (whole-part relationships) and composition

(strong association) where necessary.

Step 5: Assign Object Identifiers (OIDs)

• Ensure each object has a unique identifier.

• OIDs remain constant even if object attributes change, unlike

primary keys in relational databases.

Step 6: Normalize the Object Schema

• Avoid redundant attributes by following object normalization

techniques similar to database normalization.

• Convert redundant objects into reusable components.

Step 7: Implement Methods and Constraints

• Define object methods that enforce business logic.

• Implement constraints (e.g., salary cannot be negative) at the

object level.

125
MATS Centre for Distance and Online Education, MATS University

Notes Step 8: Optimize for Performance

• Use indexing techniques for efficient retrieval.

• Apply caching to store frequently accessed objects in memory.

• Consider partitioning large object collections.

Advantages of Object-Oriented Database Design

 Better Handling of Complex Data

OODBMS efficiently stores multimedia, CAD models, XML, and

hierarchical data, which is difficult in relational databases.

 No Impedance Mismatch

Since objects are stored directly, there is no need for Object-

Relational Mapping (ORM), reducing overhead.

 Encapsulation and Reusability

Encapsulation keeps data and behavior together, while inheritance

promotes code reuse.

 Efficient Query Performance

Objects are retrieved using direct references (OIDs) rather than

expensive JOIN operations in relational databases.

 Scalability and Flexibility

OODBMS allows schema evolution, making it easier to accommodate

changes without restructuring entire tables.

Challenges of Object-Oriented Database Design

 Lack of Standardization

Unlike SQL-based relational databases, OODBMS lacks a universally

accepted query language.

 Steep Learning Curve

OODD requires familiarity with object-oriented programming

concepts, making it difficult for traditional database administrators.

 Limited Adoption

Due to wide enterprise reliance on RDBMS, many applications still

require Object-Relational Mapping (ORM) rather than a full switch to

OODBMS.

Object-Oriented Database Design (OODD) provides an efficient,

flexible, and scalable approach to managing complex data structures by

aligning with object-oriented programming principles. It overcomes

limitations of relational databases, such as impedance mismatch and

rigid schema structures, making it ideal for applications involving

multimedia, CAD, IoT, and real-time systems. However, challenges

such as lack of standardization, steep learning curve, and limited

126
MATS Centre for Distance and Online Education, MATS University

Notes industry adoption must be considered before choosing an OODBMS

over traditional RDBMS or ORDBMS solutions. As software

development continues to embrace object-oriented paradigms, the

demand for integrated object-oriented database systems is expected to

grow.

127
MATS Centre for Distance and Online Education, MATS University

Notes Unit 15: Object-Oriented Data Models

5.5 Introduction to Object-Oriented Data Models

The Object-Oriented Data Model (OODM) represents a significant

evolution in database management systems, integrating the principles

of object-oriented programming (OOP) with data storage and retrieval.

Unlike traditional Relational Database Management Systems

(RDBMS), which organize data into structured tables of rows and

columns, the object-oriented model structures data as objects, similar

to those used in programming languages such as Java, C++, and

Python. These objects encapsulate both data attributes and behavioral

methods, facilitating a more natural representation of real-world

entities. The Object-Oriented Database Management System

(OODBMS) extends this model by enabling direct storage and retrieval

of objects without requiring conversion into relational tables. This

approach eliminates the need for Object-Relational Mapping (ORM),

which is necessary when using an RDBMS with object-oriented

programming. As a result, OODM offers a more seamless integration

between applications and databases, making it particularly suitable for

complex data structures, multimedia applications, hierarchical data,

and real-time systems.

Key Features of the Object-Oriented Data Model

1. Objects as Fundamental Data Units

In an Object-Oriented Data Model, data is represented as objects, which

are instances of classes. These objects store both attributes (data) and

methods (functions), encapsulating behavior alongside data storage.

This design facilitates a more intuitive and flexible representation of

entities within a system. For example, an Employee object may contain

attributes such as name, employeeID, and salary, along with methods

such as calculateBonus(). Unlike relational databases, where attributes

and behavior are separated, OODM allows objects to self-manage their

behavior and state, enhancing modularity and reusability.

2. Classes and Object Instances

The class serves as a blueprint for creating objects, defining their

attributes and behaviors. Each instance of a class represents an

individual object containing specific data values. For instance, a Car

class may define attributes such as model, color, and speed. An instance

128
MATS Centre for Distance and Online Education, MATS University

Notes of this class could be a Tesla Model S, characterized by a red color and

a top speed of 200 km/h.

3. Encapsulation and Data Integrity

Encapsulation is a key principle of the object-oriented model, ensuring

that data is bundled with its associated methods and protected from

unauthorized access. Objects expose data through controlled interfaces,

typically via getter and setter methods.

For example, in Java:

class Student {

 private String name;

 public String getName() { return name; }

 public void setName(String n) { name = n; }

}

Here, the name attribute is private, ensuring that it can only be

accessed or modified through controlled methods. This design

enhances data security, integrity, and modularity.

4. Inheritance and Code Reusability

The Object-Oriented Data Model supports inheritance, a mechanism

that enables new classes to derive attributes and methods from existing

classes. This feature promotes code reusability and hierarchical

organization, reducing redundancy and improving maintainability. For

example, a Manager class may inherit common properties from an

Employee class, eliminating the need for redundant definitions.

class Employee {

 String name;

 int employeeID;

}

class Manager extends Employee {

 double bonus;

}

Here, the Manager class automatically inherits attributes from

Employee, extending functionality without redefining common

properties.

5. Polymorphism and Dynamic Behavior

Polymorphism allows different objects to respond to the same function

call in multiple ways, enhancing flexibility and adaptability. This is

particularly useful in object-oriented queries and dynamic data

processing.

129
MATS Centre for Distance and Online Education, MATS University

Notes For instance, a draw() method can be applied to different shapes

(Circle, Rectangle), each implementing its own version of the method:

class Shape {

 void draw() { System.out.println("Drawing a shape"); }

}

class Circle extends Shape {

 void draw() { System.out.println("Drawing a circle"); }

}

Here, invoking draw() on a Shape object may execute different

behaviors based on the actual object type, demonstrating method

overriding in polymorphism.

6. Object Identity (OID) and Unique Identification

Every object in an OODBMS is assigned a unique Object Identifier

(OID), which remains constant throughout the object's lifecycle, even

if attribute values change. Unlike primary keys in relational databases,

OIDs provide efficient object retrieval and referencing without relying

on external keys. For instance, a Customer object with OID C123 may

reference an Order object with OID O456, creating a direct object

relationship without foreign keys.

7. Relationships and Data Associations

Objects in an object-oriented database can be related through various

associations:

• One-to-One: A Student object is linked to a LibraryCard

object.

• One-to-Many: A Department contains multiple Employees.

• Many-to-Many: A Student can enroll in multiple Courses, and

a Course can have multiple students.

Unlike relational databases, where relationships require foreign key

constraints, OODBMS maintains direct references between objects,

improving data retrieval efficiency.

Advantages of Object-Oriented Data Models

1. Enhanced Representation of Complex Data:

o Supports multimedia, CAD models, hierarchical data,

and real-world relationships.

2. Seamless Integration with Object-Oriented Programming:

o Eliminates the need for Object-Relational Mapping

(ORM), reducing conversion overhead.

130
MATS Centre for Distance and Online Education, MATS University

Notes 3. Reusability and Maintainability:

o Inheritance, encapsulation, and polymorphism

facilitate efficient system design.

4. Efficient Data Retrieval:

o Direct object references and OID-based indexing

improve query performance compared to relational

joins.

5. Flexibility and Scalability:

o Objects can evolve dynamically, supporting schema

evolution without requiring major restructuring.

Challenges and Limitations

1. Lack of Standard Query Language:

o Unlike SQL, there is no universally accepted query

language for OODBMS, making it less standardized.

2. Steeper Learning Curve:

o Requires expertise in object-oriented programming and

database management.

3. Limited Enterprise Adoption:

o Many businesses rely on RDBMS solutions due to

their mature ecosystem and widespread support.

4. Complex Implementation:

o Object-oriented databases require efficient indexing

and caching strategies to handle large datasets

effectively.

The Object-Oriented Data Model (OODM) represents a paradigm shift

in database management, offering a natural and intuitive approach to

data storage by aligning with object-oriented programming principles.

By encapsulating data and behavior within objects, it provides a

flexible, scalable, and efficient solution for applications that require

complex data modeling and hierarchical relationships. However,

despite its advantages, the lack of standardization and the dominance

of relational databases have limited its widespread adoption.

Nonetheless, as modern applications increasingly demand dynamic and

flexible data storage, OODBMS and hybrid Object-Relational

Database Systems (ORDBMS) continue to gain traction, paving the

way for next-generation data management solutions.

131
MATS Centre for Distance and Online Education, MATS University

Notes MCQs:

1. Which SQL statement is used to retrieve data from a database?

a) FETCH

b) GET

c) SELECT

d) RETRIEVE

2. Which SQL clause is used to sort records in ascending or

descending order?

a) SORT

b) ORDER BY

c) ARRANGE

d) GROUP BY

3. Which SQL operator is used to filter results based on a range of

values?

a) IN

b) BETWEEN

c) LIKE

d) OR

4. Which function is used to find the highest value in a column?

a) COUNT()

b) MAX()

c) SUM()

d) AVG()

5. What type of JOIN returns only matching records from both tables?

a) LEFT JOIN

b) RIGHT JOIN

c) INNER JOIN

d) FULL JOIN

6. Which SQL function is used to count the number of records in a

table?

a) COUNT()

b) TOTAL()

c) NUMBER()

d) RECORDS()

7. What does the WHERE clause do in SQL?

a) Sorts data

b) Filters records based on a condition

c) Deletes records

132
MATS Centre for Distance and Online Education, MATS University

Notes d) Modifies table structure

8. Which SQL operator is used to search for a pattern in a column?

a) LIKE

b) IN

c) IS NULL

d) AND

9. A subquery is:

a) A query inside another query

b) A duplicate query

c) A function call

d) A SQL join

10. Which clause is used to filter records after grouping them?

a) GROUP BY

b) WHERE

c) HAVING

d) ORDER BY

Short Questions:

1. What is the purpose of the SELECT statement in SQL?

2. Explain the ORDER BY clause and how it works.

3. What is the difference between WHERE and HAVING clauses?

4. How do you filter records using BETWEEN and IN operators?

5. Define numeric functions in SQL with examples.

6. What are string functions? Give examples.

7. How do joins work in SQL? Explain different types.

8. What are aggregate functions, and how are they used?

9. Explain the difference between INNER JOIN and LEFT JOIN.

10. What is a subquery, and when is it used?

Long Questions:

1. Explain the SELECT statement with multiple examples.

2. Discuss the different SQL operators and their uses.

3. How do numeric, string, and date functions work in SQL? Provide

examples.

4. Explain different types of joins with real-world examples.

5. How do aggregate functions work? Explain GROUP BY, HAVING,

MIN(), MAX(), AVG(),

SUM(), COUNT().

133
MATS Centre for Distance and Online Education, MATS University

Notes 6. What is the difference between WHERE and HAVING clauses?

7. Explain ORDER BY and LIMIT in SQL.

8. Discuss subqueries and how they can be used to filter data.

9. Write SQL queries to demonstrate different JOIN operations.

10. Explain how data manipulation queries improve database

performance.

134

SCENARIO BASED PRACTICAL PEOBLEM

Exp.

Objective Remarks

Unit1

1. To demonstrate a simple conditional IF

statement in MySQL stored procedure.

Book availability in

library

2. To demonstrate how to use conditional

statements in MySQL stored

procedure. (If then else structure)

Customer’s

categorization on

their payment

history

3. Demonstrates the use of IN, OUT, and

INOUT parameters in MySQL stored

procedure.

Bank account

transactions

(Balance, Deposit,

Withdraw)

4. To demonstrate how to use conditional

statements in MySQL stored

procedure. (Searched CASE structure)

Student Grading

System

5. To demonstrate how to use conditional

statements in MySQL stored

procedure. (Simple CASE structure)

Department

Management

System

6. To demonstrate how to use iterative

statements in MySQL stored

procedure. (WHILE loop)

Salary Increment

System

7. To demonstrate how to use iterative

statements in MySQL stored

procedure. (WHILE loop)

Online Store

Management

System

Experiment 1

Objective: To demonstrate a simple conditional IF statement in

MySQL stored procedure.

135
MATS Centre for Distance and Online Education, MATS University

Notes Scenario:

You are managing a small library system where users can borrow

books. To ensure that the borrowing process is efficient, the library

wants to implement a stored procedure that checks if a book is available

before a user can borrow it. If the book is available (i.e., not already

borrowed), the procedure should mark the book as borrowed. If the

book is unavailable, it should return a message indicating the

unavailability.

Your task is to create a stored procedure that uses a conditional

statement to check the availability of a book before allowing it to be

borrowed.

Problem Statement:

Write a MySQL stored procedure named BorrowBook that uses a

conditional (IF) statement to check if a book is available. The procedure

should:

1. Accept p_book_id and p_user_id as input parameters to identify

the book and the user.

2. Check whether the book is available (i.e., its is_borrowed flag

is set to 0 in the Books table).

3. If the book is available, update the is_borrowed flag to 1 to mark

it as borrowed and insert a record into the Borrowings table.

4. If the book is unavailable, return a message indicating that the

book is already borrowed.

Table Structure:

Assume you have the following Books and Borrowings tables:

CREATE TABLE Books (

 book_id INT PRIMARY KEY,

 title VARCHAR(100),

 is_borrowed BOOLEAN DEFAULT 0

);

INSERT INTO Books (book_id, title, is_borrowed) VALUES (101,

'Transforming India', 0);

136
MATS Centre for Distance and Online Education, MATS University

Notes INSERT INTO Books (book_id, title, is_borrowed) VALUES (102,

'Vision 2047', 1);

CREATE TABLE Borrowings (

 borrowing_id INT AUTO_INCREMENT PRIMARY KEY,

 user_id INT,

 book_id INT,

 borrow_date DATE,

 FOREIGN KEY (book_id) REFERENCES Books(book_id)

);

Steps:

1. Create a stored procedure named BorrowBook that:

o Takes p_book_id (INT) and p_user_id (INT) as IN

parameters.

o Uses a conditional IF statement to check if the book is

available by checking the is_borrowed column in the

Books table.

o If the book is available, updates the is_borrowed column

and inserts a record into the Borrowings table.

o If the book is unavailable, returns a message indicating

that the book is already borrowed.

Sample SQL Stored Procedure:

DELIMITER //

CREATE PROCEDURE BorrowBook(IN p_book_id INT, IN

p_user_id INT)

BEGIN

 DECLARE book_status BOOLEAN;

 -- Check if the book is available

 SELECT is_borrowed INTO book_status

 FROM Books

 WHERE book_id = p_book_id;

137
MATS Centre for Distance and Online Education, MATS University

Notes

 -- Conditional logic to check book availability

 IF book_status = 0 THEN

 -- If the book is available, mark it as borrowed

 UPDATE Books

 SET is_borrowed = 1

 WHERE book_id = p_book_id;

 -- Insert a record into the Borrowings table

 INSERT INTO Borrowings (user_id, book_id, borrow_date)

 VALUES (p_user_id, p_book_id, CURDATE());

 SELECT CONCAT('Book ID ', p_book_id, ' has been successfully

borrowed by User ID ', p_user_id) AS message;

 ELSE

 -- If the book is already borrowed, return a message

 SELECT CONCAT('Book ID ', p_book_id, ' is already borrowed.')

AS message;

 END IF;

END//

DELIMITER ;

Test Cases:

1. For a book that is available:

Assume book 101 is available for borrowing.

CALL BorrowBook(101, 1);

Expected Output:

Book ID 101 has been successfully borrowed by User ID 1

2. For a book that is already borrowed:

Assume book 102 is already borrowed.

CALL BorrowBook(102, 2);

Expected Output:

138
MATS Centre for Distance and Online Education, MATS University

Notes Book ID 102 is already borrowed.

Experiment 2

Objective: To demonstrates how to use conditional statements in

MySQL stored procedure.

Scenario:

You are working as a database administrator for a company that offers

subscription-based services. The company wants a system to

automatically categorize customers based on their payment history. A

stored procedure needs to be created that categorizes customers as

Active, Inactive, or Delinquent based on the number of days since

their last payment. The categorization will help customer service and

marketing teams manage customer relationships more effectively.

The conditions for categorization are as follows:

• Active: Last payment was made within the last 30 days.

• Inactive: Last payment was made between 31 and 60 days ago.

• Delinquent: Last payment was made more than 60 days ago.

Your task is to create a stored procedure in MySQL that categorizes a

customer based on their payment history using conditional statements.

Problem Statement:

Write a MySQL stored procedure named CategorizeCustomer that uses

conditional statements (IF) to categorize a customer based on the

number of days since their last payment. The procedure should:

1. Accept p_customer_id as an input parameter to identify the

customer.

2. Retrieve the number of days since the customer’s last payment

from the Payments table.

3. Use conditional logic to categorize the customer as Active,

Inactive, or Delinquent based on the number of days since the

last payment.

4. Return the customer's category as output.

Table Structure:

Assume you have the following Customers and Payments tables:

CREATE TABLE Customers (

139
MATS Centre for Distance and Online Education, MATS University

Notes customer_id INT PRIMARY KEY,

 customer_name VARCHAR(100)

);

CREATE TABLE Payments (

 payment_id INT PRIMARY KEY,

 customer_id INT,

 payment_date DATE,

 FOREIGN KEY (customer_id) REFERENCES

Customers(customer_id)

);

insert into customers values(101, 'Ajay');

insert into payments values(1, 101, '2024/01/01');

insert into customers values(102, 'Vijay');

insert into payments values(4, 102, '2024/10/01');

insert into customers values(103, 'Vijay');

insert into payments values(5, 103, '2024/09/01');

Steps:

1. Create a stored procedure named CategorizeCustomer that:

o Takes p_customer_id as an IN parameter.

o Retrieves the number of days since the customer’s last

payment using the DATEDIFF function.

o Uses an IF statement to categorize the customer as

Active, Inactive, or Delinquent based on the number of

days.

o Returns the category as an output.

Sample SQL Stored Procedure:

DELIMITER //

CREATE PROCEDURE CategorizeCustomer(IN p_customer_id INT,

OUT p_category VARCHAR(20))

BEGIN

140
MATS Centre for Distance and Online Education, MATS University

Notes DECLARE days_since_last_payment INT;

 -- Retrieve the number of days since the last payment for the

customer

 SELECT DATEDIFF(CURDATE(), MAX(payment_date)) INTO

days_since_last_payment

 FROM Payments

 WHERE customer_id = p_customer_id;

 -- Check if any payments are found

 IF days_since_last_payment IS NULL THEN

 SET p_category = 'No Payment History';

 ELSE

 -- Conditional logic to categorize the customer

 IF days_since_last_payment <= 30 THEN

 SET p_category = 'Active';

 ELSEIF days_since_last_payment BETWEEN 31 AND 60 THEN

 SET p_category = 'Inactive';

 ELSEIF days_since_last_payment > 60 THEN

 SET p_category = 'Delinquent';

 END IF;

 END IF;

END//

DELIMITER ;

Explanation of Conditional Statements:

• The IF and ELSEIF statements are used to apply conditional

logic for categorizing the customer based on the value of

days_since_last_payment.

• The IF checks if the customer is Active, Inactive, or

Delinquent, and assigns the appropriate value to the p_category

output parameter.

141
MATS Centre for Distance and Online Education, MATS University

Notes • An additional condition checks if there is no payment history

for the customer (NULL value), categorizing them as "No

Payment History."

Test Cases:

1. For a customer with recent payments (Active):

Assume customer 101 made a payment 10 days ago.

SET @category := '';

CALL CategorizeCustomer(101, @category);

SELECT @category AS Customer_Category;

Expected Output:

Customer_Category: Active

2. For a customer with older payments (Inactive):

Assume customer 102 made a payment 45 days ago.

SET @category := '';

CALL CategorizeCustomer(102, @category);

SELECT @category AS Customer_Category;

Expected Output:

Customer_Category: Inactive

3. For a customer with long overdue payments (Delinquent):

Assume customer 103 made a payment 75 days ago.

SET @category := '';

CALL CategorizeCustomer(103, @category);

142
MATS Centre for Distance and Online Education, MATS University

Notes

SELECT @category AS Customer_Category;

Expected Output:

Customer_Category: Delinquent

4. For a customer with no payment history:

Assume customer 104 has no payment history.

SET @category := '';

CALL CategorizeCustomer(104, @category);

SELECT @category AS Customer_Category;

Expected Output:

Customer_Category: No Payment History

Experiment 3

Objective: Demonstrates the use of IN, OUT, and INOUT parameters

in MySQL stored procedure.

Scenario:

You are working for a banking system, and you need to implement a

stored procedure that performs multiple tasks related to a customer's

bank account. The stored procedure should be able to:

1. Accept the account number as input (IN parameter).

2. Return the current balance of the account (OUT parameter).

3. Adjust the balance by adding or deducting a specified amount

(INOUT parameter).

This will allow the bank staff to easily view the current balance of an

account, adjust the balance for transactions like deposits or

withdrawals, and return the updated balance all in one step.

143
MATS Centre for Distance and Online Education, MATS University

Notes Problem Statement:

Write a MySQL stored procedure named ManageAccountBalance that

demonstrates the use of IN, OUT, and INOUT parameters. The

procedure should:

1. Take an IN parameter p_account_number to identify the

customer’s account.

2. Use an OUT parameter p_current_balance to return the current

balance of the account.

3. Use an INOUT parameter p_adjustment to adjust the balance by

adding (for deposits) or deducting (for withdrawals) a specified

amount, and then return the updated balance.

Table Structure:

CREATE TABLE Accounts (

 account_number INT PRIMARY KEY,

 account_holder VARCHAR(100),

 balance DECIMAL(10, 2)

);

Steps:

1. Create a stored procedure named ManageAccountBalance that:

o Takes p_account_number (INT) as an IN parameter to

identify the account.

o Takes p_current_balance (DECIMAL) as an OUT

parameter to return the current balance of the account.

o Takes p_adjustment (DECIMAL) as an INOUT

parameter to adjust the balance by the specified amount

and then return the updated balance.

2. Inside the procedure:

o Check if the account no p_account_number exists.

o Retrieve the current balance based on

p_account_number.

144
MATS Centre for Distance and Online Education, MATS University

Notes o If the account exists, return the current balance using the

OUT parameter and apply the adjustment (either deposit

or withdrawal) using the INOUT parameter.

o If the account does not exist, return an appropriate

message.

Sample SQL Stored Procedure:

DELIMITER //

CREATE PROCEDURE ManageAccountBalance(

 IN p_account_number INT,

 OUT p_current_balance DECIMAL(10, 2),

 INOUT p_adjustment DECIMAL(10, 2)

)

BEGIN

 DECLARE account_exists INT;

 -- Check if the account exists

 SELECT COUNT(*) INTO account_exists

 FROM Accounts

 WHERE account_number = p_account_number;

 -- If the account exists, retrieve the balance and apply the adjustment

 IF account_exists > 0 THEN

 -- Get the current balance

 SELECT balance INTO p_current_balance

 FROM Accounts

 WHERE account_number = p_account_number;

 -- Adjust the balance by the given p_adjustment (deposit or

withdrawal)

 SET p_current_balance = p_current_balance + p_adjustment;

 -- Update the balance in the Accounts table

145
MATS Centre for Distance and Online Education, MATS University

Notes UPDATE Accounts

 SET balance = p_current_balance

 WHERE account_number = p_account_number;

 -- Return the updated balance through the INOUT parameter

 SET p_adjustment = p_current_balance;

 ELSE

 -- If account does not exist, set the current balance to NULL and

return an error message

 SET p_current_balance = NULL;

 SET p_adjustment = NULL;

 SELECT CONCAT('Account with number ', p_account_number, '

does not exist.') AS message;

 END IF;

END//

DELIMITER ;

Explanation of Parameters:

• IN p_account_number: Used to input the account number to

identify which account's balance needs to be checked and

updated.

• OUT p_current_balance: Used to output the current balance of

the specified account.

• INOUT p_adjustment: Used to input the amount to be added or

subtracted from the current balance and then return the updated

balance after the adjustment.

Test Cases:

1. For an account that exists (deposit example):

Assume there is an account with account_number = 101 and balance =

1000.00.

SET @balance := 0;

146
MATS Centre for Distance and Online Education, MATS University

Notes SET @adjustment := 200.00; -- Deposit amount

CALL ManageAccountBalance(101, @balance, @adjustment);

SELECT @balance AS Current_Balance, @adjustment AS

Updated_Balance;

Expected Output:

Current_Balance: 1000.00

Updated_Balance: 1200.00

2. For an account that exists (withdrawal example):

Assume there is an account with account_number = 101 and balance =

1000.00.

SET @balance := 0;

SET @adjustment := -300.00; -- Withdrawal amount

CALL ManageAccountBalance(101, @balance, @adjustment);

SELECT @balance AS Current_Balance, @adjustment AS

Updated_Balance;

Expected Output:

Current_Balance: 1000.00

Updated_Balance: 700.00

3. For an account that does not exist:

SET @balance := 0;

SET @adjustment := 100.00;

CALL ManageAccountBalance(999, @balance, @adjustment);

SELECT @balance AS Current_Balance, @adjustment AS

Updated_Balance;

Expected Output:

Account with number 999 does not exist.

Current_Balance: NULL

Updated_Balance: NULL

Experiment 4

Objective: To demonstrate how to use conditional statements in

MySQL stored procedure. (Searched CASE structure)

Scenario:

147
MATS Centre for Distance and Online Education, MATS University

Notes You are developing a Student Grading System for a university. The

system needs to categorize students' performance based on their marks

using a stored procedure. The grades should be assigned according to

the following criteria:

• Grade 'A': Marks >= 85

• Grade 'B': Marks between 70 and 84

• Grade 'C': Marks between 50 and 69

• Grade 'F': Marks below 50

To efficiently assign grades, you will use the CASE statement inside a

MySQL stored procedure to determine the grade based on the

student's marks.

Problem Statement:

Write a MySQL stored procedure that accepts a student's marks as an

input parameter and returns the corresponding grade using a CASE

conditional statement. The procedure should perform the following

tasks:

1. Accept the student's marks as an input parameter.

2. Use a CASE statement to evaluate the marks and assign a

grade:

o A for marks 85 and above.

o B for marks between 70 and 84.

o C for marks between 50 and 69.

o F for marks below 50.

3. Return the calculated grade as the output.

Example Operation:

1. Input Marks: The student’s marks will be provided as input

to the stored procedure.

2. Grade Assignment: Based on the marks, the appropriate

grade is assigned using the CASE statement.

3. Return Grade: The grade is returned to the user.

148
MATS Centre for Distance and Online Education, MATS University

Notes SQL Code:

Step 1: Creating the Stored Procedure

DELIMITER //

CREATE PROCEDURE CalculateGrade(IN student_marks INT,

OUT student_grade CHAR(1))

BEGIN

 CASE

 WHEN student_marks >= 85 THEN

 SET student_grade = 'A';

 WHEN student_marks >= 70 AND student_marks < 85 THEN

 SET student_grade = 'B';

 WHEN student_marks >= 50 AND student_marks < 70 THEN

 SET student_grade = 'C';

 ELSE

 SET student_grade = 'F';

 END CASE;

END //

DELIMITER ;

Step 2: Calling the Stored Procedure

To call the procedure and get the grade for a specific student, use the

following SQL code:

-- Declare a variable to store the grade

SET @grade = '';

-- Call the stored procedure with 92 marks

CALL CalculateGrade(92, @grade);

-- Output the grade

SELECT @grade AS Grade;

149
MATS Centre for Distance and Online Education, MATS University

Notes Example Outputs:

1. For marks = 92:

CALL CalculateGrade(92, @grade);

SELECT @grade AS Grade;

Output:

Grade

A

2. For marks = 75:

CALL CalculateGrade(75, @grade);

SELECT @grade AS Grade;

Output:

Grade

B

3. For marks = 58:

CALL CalculateGrade(58, @grade);

SELECT @grade AS Grade;

Output:

Grade

C

4. For marks = 40:

CALL CalculateGrade(40, @grade);

SELECT @grade AS Grade;

Output:

Grade

F

Experiment 5

Objective: To demonstrate how to use conditional statements in

MySQL stored procedure. (Simple CASE structure))

150
MATS Centre for Distance and Online Education, MATS University

Notes Scenario:

You are tasked with developing a Department Management System

for a university. Each department is identified by a unique department

code, and based on the code, you need to display the corresponding

department name.

Here are the department codes and names:

• 1: Computer Science

• 2: Electrical Engineering

• 3: Mechanical Engineering

• 4: Civil Engineering

• 5: Mathematics

You will use a SIMPLE CASE statement in MySQL to match these

codes with the department names.

Problem Statement:

Write a MySQL stored procedure that accepts a department code as an

input parameter and returns the corresponding department name

using a SIMPLE CASE statement. The procedure should perform the

following tasks:

1. Accept the department code as an input parameter.

2. Use a SIMPLE CASE statement to return the corresponding

department name based on the department code.

3. If the department code does not match any of the predefined

values, return "Unknown Department".

Example Operations:

1. Input Department Code: The department code will be

provided as input to the stored procedure.

2. Return Department Name: The corresponding department

name is returned based on the input department code using a

SIMPLE CASE statement.

151
MATS Centre for Distance and Online Education, MATS University

Notes SQL Code:

Step 1: Creating the Stored Procedure

DELIMITER //

CREATE PROCEDURE GetDepartmentName(IN dept_code INT,

OUT dept_name VARCHAR(50))

BEGIN

 CASE dept_code

 WHEN 1 THEN

 SET dept_name = 'Computer Science';

 WHEN 2 THEN

 SET dept_name = 'Electrical Engineering';

 WHEN 3 THEN

 SET dept_name = 'Mechanical Engineering';

 WHEN 4 THEN

 SET dept_name = 'Civil Engineering';

 WHEN 5 THEN

 SET dept_name = 'Mathematics';

 ELSE

 SET dept_name = 'Unknown Department';

 END CASE;

END //

DELIMITER ;

Step 2: Calling the Stored Procedure

To call the procedure and get the department name for a specific

department code, use the following SQL code:

-- Declare a variable to store the department name

SET @dept_name = '';

-- Call the stored procedure with department code 1

CALL GetDepartmentName(1, @dept_name);

152
MATS Centre for Distance and Online Education, MATS University

Notes -- Output the department name

SELECT @dept_name AS Department;

Example Outputs:

1. For department code = 1:

CALL GetDepartmentName(1, @dept_name);

SELECT @dept_name AS Department;

Output:

Department

Computer Science

2. For department code = 3:

CALL GetDepartmentName(3, @dept_name);

SELECT @dept_name AS Department;

Output:

Department

Mechanical Engineering

3. For department code = 5:

CALL GetDepartmentName(5, @dept_name);

SELECT @dept_name AS Department;

Output:

Department

Mathematics

4. For an invalid department code = 10:

CALL GetDepartmentName(10, @dept_name);

SELECT @dept_name AS Department;

Output:

Department

Unknown Department

153
MATS Centre for Distance and Online Education, MATS University

Notes Experiment 6

Objective: To demonstrate how to use iterative statements in MySQL

stored procedure. (WHILE loop)

Scenario:

You are developing a Salary Increment System for a company's HR

department. The company offers a yearly salary increment to

employees. The system needs to simulate the process of incrementing

the salary by 5% each year until the employee's salary reaches or

exceeds a specified target salary.

Problem Statement:

Write a MySQL stored procedure that accepts an employee's current

salary and a target salary as input parameters and returns:

1. The final salary (which will be equal to or greater than the

target).

2. The number of years it takes to reach or exceed the target

salary by incrementing the salary by 5% each year.

The procedure should perform the following tasks:

1. Accept the employee's current salary and the target salary as

input parameters.

2. Use a WHILE loop to increase the salary by 5% each year.

3. Count the number of years it takes for the salary to reach or

exceed the target.

4. Return the final salary and the number of years required.

Example Operation:

1. Input:

o Current Salary: 50,000

o Target Salary: 60,000

2. Output:

o Final Salary: 60,000 (or more)

o Years Taken: 4 years

154
MATS Centre for Distance and Online Education, MATS University

Notes SQL Code:

Step 1: Creating the Stored Procedure

DELIMITER //

CREATE PROCEDURE CalculateSalaryIncrement(IN current_salary

DECIMAL(10,2), IN target_salary DECIMAL(10,2), OUT

final_salary DECIMAL(10,2), OUT years_taken INT)

BEGIN

 -- Declare a variable to keep track of the number of years

 DECLARE years INT DEFAULT 0;

 -- Initialize the final salary with the current salary

 SET final_salary = current_salary;

 -- Use a WHILE loop to keep incrementing the salary by 5% until

the target is reached

 WHILE final_salary < target_salary DO

 -- Increment the salary by 5%

 SET final_salary = final_salary * 1.05;

 -- Increment the year counter

 SET years = years + 1;

 END WHILE;

 -- Set the output variable for the number of years taken

 SET years_taken = years;

END //

DELIMITER ;

Step 2: Calling the Stored Procedure

To call the procedure and calculate how many years it will take to

reach the target salary, use the following SQL code:

-- Declare variables to store the final salary and years taken

155
MATS Centre for Distance and Online Education, MATS University

Notes SET @final_salary = 0.00;

SET @years_taken = 0;

-- Call the stored procedure with a current salary of 50,000 and a

target salary of 60,000

CALL CalculateSalaryIncrement(50000, 60000, @final_salary,

@years_taken);

-- Output the final salary and years taken

SELECT @final_salary AS FinalSalary, @years_taken AS

YearsTaken;

Example Outputs:

1. For current salary = 50,000 and target salary = 60,000:

CALL CalculateSalaryIncrement(50000, 60000,

@final_salary, @years_taken);

SELECT @final_salary AS FinalSalary, @years_taken AS

YearsTaken;

Output:

FinalSalary | YearsTaken

--------------|------------

60,775.31 | 4

2. For current salary = 70,000 and target salary = 100,000:

CALL CalculateSalaryIncrement(70000, 100000,

@final_salary, @years_taken);

SELECT @final_salary AS FinalSalary, @years_taken AS

YearsTaken;

Output:

FinalSalary | YearsTaken

--------------|------------

100,579.96 | 7

156
MATS Centre for Distance and Online Education, MATS University

Notes Experiment 7

Objective: To demonstrate the working of loop.

Scenario:

You are managing an online store, and you want to create a stored

procedure that counts how many times a product has been ordered in a

given month. The Orders table keeps track of all orders, and your goal

is to loop through each day of the month and count how many orders

were made for a specific product.

Problem Statement:

Write a MySQL stored procedure named CountProductOrders that

demonstrates the use of a simple loop. The procedure should:

1. Accept p_product_id, p_start_date, and p_end_date as input

parameters to identify the product and the date range.

2. Use a loop to iterate through each day in the range from

p_start_date to p_end_date.

3. For each day, check whether there were orders for the

specified product in the Orders table and count them.

4. Return the total number of orders for the product within the

given date range.

Table Structure:

Assume you have the following Orders table:

CREATE TABLE Orders (

 order_id INT PRIMARY KEY,

 product_id INT,

157
MATS Centre for Distance and Online Education, MATS University

Notes order_date DATE

);

Steps:

1. Create a stored procedure named CountProductOrders that:

o Takes p_product_id (INT), p_start_date (DATE), and

p_end_date (DATE) as IN parameters.

o Initializes a counter to track the total number of orders

for the product.

o Uses a loop to iterate through each day in the date

range, checking for each day if an order was placed for

the product.

o Returns the total number of orders.

Sample SQL Stored Procedure:

DELIMITER //

CREATE PROCEDURE CountProductOrders(

 IN p_product_id INT, -- Input parameter for product ID

 IN p_start_date DATE, -- Input parameter for the start date of

the range

 IN p_end_date DATE, -- Input parameter for the end date of

the range

 OUT total_orders INT -- Output parameter to return the total

number of orders

)

BEGIN

 -- Declare variables

 DECLARE current_date DATE; -- To store the current date in

the loop

158
MATS Centre for Distance and Online Education, MATS University

Notes DECLARE order_count INT DEFAULT 0; -- To keep track of the

number of orders for each day

 -- Initialize the total_orders variable

 SET total_orders = 0;

 -- Initialize the current date to the start date

 SET current_date = p_start_date;

 -- Loop through each day in the date range

 WHILE current_date <= p_end_date DO

 -- Count the number of orders for the given product on the

current date

 SELECT COUNT(*)

 INTO order_count

 FROM Orders

 WHERE product_id = p_product_id

 AND order_date = current_date;

 -- Add the count to the total number of orders

 SET total_orders = total_orders + order_count;

 -- Move to the next day

 SET current_date = DATE_ADD(current_date, INTERVAL 1

DAY);

 END WHILE;

END //

DELIMITER ;

-- Declare a variable to store the total number of orders

159
MATS Centre for Distance and Online Education, MATS University

Notes SET @total_orders = 0;

-- Call the stored procedure

CALL CountProductOrders(101, '2024-10-01', '2024-10-04',

@total_orders);

-- Output the total number of orders

SELECT @total_orders AS TotalOrders;

160
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Introduction to Database Management System

1. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020).

Database System Concepts (7th ed.). McGraw-Hill Education.

2. Ramakrishnan, R., & Gehrke, J. (2003). Database

Management Systems (3rd ed.). McGraw-Hill Higher

Education.

3. Date, C. J. (2019). An Introduction to Database Systems (8th

ed.). Pearson.

4. Connolly, T. M., & Begg, C. E. (2014). Database Systems: A

Practical Approach to Design, Implementation, and

Management (6th ed.). Pearson.

5. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of

Database Systems (7th ed.). Pearson.

Chapter 2: Relational Data Modeling and Database Design

1. Kent, W. (2012). Data and Reality: A Timeless Perspective on

Perceiving and Managing Information in Our Imprecise World

(3rd ed.). Technics Publications.

2. Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V.

(2011). Database Modeling and Design: Logical Design (5th

ed.). Morgan Kaufmann.

3. Blaha, M. (2010). Patterns of Data Modeling (Emerging

Directions in Database Systems and Applications). CRC Press.

4. Fleming, C. C., & Von Halle, B. (2003). Handbook of

Relational Database Design. Addison-Wesley Professional.

5. Harrington, J. L. (2016). Relational Database Design and

Implementation (4th ed.). Morgan Kaufmann.

Chapter 3: SQL and Procedural SQL

1. Beaulieu, A. (2020). Learning SQL: Generate, Manipulate,

and Retrieve Data (3rd ed.). O'Reilly Media.

2. Viescas, J. L. (2018). SQL Queries for Mere Mortals: A

Hands-On Guide to Data Manipulation in SQL (4th ed.).

Addison-Wesley Professional.

3. Celko, J. (2014). SQL for Smarties: Advanced SQL

Programming (5th ed.). Morgan Kaufmann.

161
MATS Centre for Distance and Online Education, MATS University

Notes 4. Feuerstein, S., & Pribyl, B. (2014). Oracle PL/SQL

Programming (6th ed.). O'Reilly Media.

5. Faroult, S., & Robson, P. (2006). The Art of SQL. O'Reilly

Media.

Chapter 4: Transaction Management and Concurrency

1. Bernstein, P. A., Hadzilacos, V., & Goodman, N. (1987).

Concurrency Control and Recovery in Database Systems.

Addison-Wesley.

2. Gray, J., & Reuter, A. (1992). Transaction Processing:

Concepts and Techniques. Morgan Kaufmann.

3. Weikum, G., & Vossen, G. (2001). Transactional Information

Systems: Theory, Algorithms, and the Practice of Concurrency

Control and Recovery. Morgan Kaufmann.

4. Kumar, V. (1996). Performance of Concurrency Control

Mechanisms in Centralized Database Systems. Prentice Hall.

5. Özsu, M. T., & Valduriez, P. (2020). Principles of Distributed

Database Systems (4th ed.). Springer.

Chapter 5: Object-Oriented Database

1. Loomis, M. E. S. (1995). Object Databases: The Essentials.

Addison-Wesley.

2. Cattell, R. G. G., & Barry, D. K. (2000). The Object Data

Standard: ODMG 3.0. Morgan Kaufmann.

3. Kim, W. (1995). Modern Database Systems: The Object

Model, Interoperability, and Beyond. ACM Press/Addison-

Wesley.

4. Stonebraker, M., & Moore, D. (1996). Object-Relational

DBMSs: The Next Great Wave. Morgan Kaufmann.

5. Blaha, M., & Premerlani, W. (1997). Object-Oriented

Modeling and Design for Database Applications. Prentice

Hall.

162

	Page 4

