
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Web Technology
Bachelor of Computer Applications (BCA)

Semester - 4

Course Introduction 1

Module 1

Introduction to Database Management System
2

Unit 1: Foundational Concepts of HTML 3

Unit 2: Text Formatting, Semantic Markup, and Accessibility 6

Unit 3: Advanced HTML Features and Integration 48

Module 2

CSS - Cascading Style Sheets
58

Unit 4: Introduction to CSS and Its Purpose 59

Unit 5: Selectors, Specificity, and Inheritance 61

Unit 6: Advanced Styling Techniques and Responsive Design 98

Module 3

JAVASCRIPT
117

Unit 7: Introduction to JavaScript and Its Fundamentals 118

Unit 8: Functions, Control Structures, and DOM Manipulation 124

Unit 9: Modern JavaScript Features and AJAX 141

Module 4

PHP
156

Unit 10: Introduction to PHP and Database Connectivity 157

Unit 11: Form Handling, File Management, and Error Handling 171

Unit 12: Security Practices and Frameworks 178

Module 5

API, GIT AND GITHUB
191

Unit 13: APIs and HTTP Methods 192

Unit 14: Version Control and CI/CD with Git and GitHub 207

 References 222

Web Technology

ODL BCA DSC 10 T

Bachelor of Computer Applications

3
MATS Centre for Distance and Online Education, MATS University

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology,

MATSUniversity, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSECOORDINATOR

Prof. (Dr.) Bhavna Narain, Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) Bhavna Narain, Professor and Mr. Sanjay Behara, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-66-1

@MATS Centre for Distance and Online Education, MATSUniversity, Village-Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may bereproduced or transmitted or utilized or stored in

any form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

MeghanadhuduKatabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this completely depends on AUTHOR’S MANUSCRIPT.

Printedat: TheDigitalPress, KrishnaComplex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1

COURSE INTRODUCTION

By this course provides an in-depth understanding of Web

Technologies, focusing on the core components required to design,

build, and manage dynamic and interactive websites. Covering

foundational topics such as HTML, CSS, JavaScript, PHP, and

version control systems, the course empowers learners to develop full-

stack web applications using modern development practices. Through

hands-on learning, students will gain proficiency in front-end and

back-end technologies, understand integration through APIs, and

apply version control for collaborative development.

Module 1: Introduction to HTML

This module introduces the foundational structure and syntax

of HTML (HyperText Markup Language), the standard

markup language for creating web pages. Learners will gain

skills in using semantic tags, text formatting, tables, lists, file

paths, iframes, and form elements to structure and present

web content effectively. The module emphasizes building

accessible and well-organized web pages.

Module 2: CSS – Cascading Style Sheets

CSS is integral to web presentation and design. This module

explores the purpose, types, and application of CSS,

including selectors, specificity, and inheritance rules.

Learners will understand how to control layout and design

using positioning techniques, backgrounds, borders, and

overflow properties, enabling them to style and organize web

content responsively and efficiently.

Module 3: JavaScript

This module focuses on the client-side scripting capabilities

of JavaScript, enabling learners to enhance interactivity and

dynamic behavior on web pages. Topics include variables,

control structures, functions, DOM manipulation, and event

handling. Learners will also be introduced to ES6 features

such as arrow functions, promises, and block-scoped

variables (let/const) for writing modern JavaScript code.

1

Module 4: PHP

Serving as the server-side scripting component, this module

introduces PHP syntax, variables, and data types, along with

form handling, session management, and database

interaction using MySQL. Emphasis is placed on building

dynamic, data-driven web applications. Additional topics

include file handling, error management, basic security

measures (e.g., preventing SQL injection), and an overview

of popular PHP frameworks and performance optimization

techniques.

Module 5: API, Git, and GitHub

Modern web development requires effective collaboration

and integration. This module introduces the fundamentals of

APIs, particularly RESTful APIs, and how to interact with

them using Fetch API and Axios. It also provides a

comprehensive introduction to Git version control, including

branching, merging, pull requests, and conflict resolution,

along with practical usage of GitHub for collaborative

project management and GitHub Actions for automation and

CI/CD workflows.By the end of this course, learners will

have acquired the essential skills to design and develop fully

functional, interactive, and collaborative web applications.

They will be equipped to work confidently with both client-

side and server-side technologies, integrate APIs, and

manage development workflows using modern tools,

preparing them for industry roles in web development and

software engineering.

2

MODULE 1

INTRODUCTION TO HTML

LEARNING OUTCOMES

By the end of this module, learners will be able to:

• Understand the structure, elements, and syntax of HTML.

• Utilize text formatting and semantic tags to enhance web

content.

• Implement IFRAMEs and manage file paths in HTML.

• Create and customize tables and lists for structured data

representation.

• Design HTML forms with various input types, attributes, and

validation techniques.

3
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Foundational Concepts of HTML

1.1 Introduction to HTML – Structure, Elements, and Syntax

HTML Core: The World Wide Web would not exist without

HyperText Markup Language (HTML), the basic building blocks

used to create web pages. HTML, which is an abbreviation for Hyper

Text Markup Language, was invented in 1993 by Tim Berners-Lee

and has gone through several versions with HTML5 being the latest.

HTML is a markup language, not a programming language, which

means it is designed to annotate text so that a machine can process it

and display the result. HTML works fundamentally through a system

of elements indicated by these tags. These tags, which are surrounded

by angle brackets, tell browsers how to interpret content. The opening

tag, the content and the closing tag make up most of the HTML

elements, it creates a nested tree-like structures that creates

relationships between different parts of a document. This hierarchy is

crucial to how browsers know how to parse and display web pages.

There is a general template you will follow in constructing an HTML

document. The doctype declaration The doctype declaration is the

very first thing that appears in every HTML document and it specifies

what version of HTML you are using. The declaration specifies

HTML5, the latest specification. This triggers the beginnings of the

document with the root element, followed by two major block

elements, (the metadata and document-wide information not shown on

the page) and (everything that users can see). Even though does not

render any content, it has several significant roles. It contains

important metadata that affects how a browser and search engine treat

the page. The page title is defined by the element that gets displayed

on the browser tabs and in the search results. Meta tags include

character encoding, viewport settings for responsive design, and

description for search engine optimization. The head section usually

contains links to external resources like stylesheets, scripts, and

favicons. Every single piece of content in HTML can be categorized

as blocks, inline, or even replaced and there are a few that are self-

contained variables that represent their data within a document.

Heading elements (through), paragraphs, and divisions are block-

level elements, which produce separate sections of content, while

inline elements (, , and for example) change content without

4
MATS Centre for Distance and Online Education, MATS University

Notes producing new line breaks inside those blocks. To modify the

behavior or appearance of HTML elements, you use HTML attributes

special HTML words. Attributes are declared within the opening tag

and can contain name-value pair (name="value").

Common properties are id(Unique Id to the component), class(for

styling and JS selection), style (Inline CSS), and src(source of

location) Some, like required for form elements, are boolean and

require no value. The above example shows how an anchor ()

element has three attributes href (the url destination), target="_blank"

(to show the link in a new tab), and title (the tooltip that appears when

user hovers over the link). HTML comments, denoted by , let

developers insert notes into the code that the browsers ignore.

Comments in a code serve many purposes, such as to keep records

about what the code is doing, to comment out a part of the code to see

if it works without that part while an application is being developed

and debugged. Proper nesting of elements is important for valid

HTML. Elements are closed in the reverse order in which they are

opened; a clean parent-child relationship is maintained. It can cause

unpredictable rendering as well as accessibility problems, if nested

improperly. Self-closing or void elements are a special kind of HTML

elements that are never going to have content and don’t need a closing

tag. Some common examples would be image (), line break (),

horizontal rule (), and input (). These elements can be written in

simplified form without the trailing slash in HTML5, although it is

still valid. The Document Object Model (DOM) is a standard in

computing programming interface for HTML, which describes the

structure of the page as a tree-like structure of objects that can receive

commands via scripts. HTML's connection to the DOM is key to

developing dynamic web content since JavaScript manipulates the

DOM to change the document based on user actions. It is worth

noting that HTML mainly describes structure, but as per the

separation of concerns principle, it is more of a structure building

block that works together with CSS (Cascading Style Sheets) for

présentation and JavaScript for behaviour. This allows developers to

change one thing without necessarily impacting the others, which

increases maintainability. Valid HTML follows guidelines created by

the World Wide Web Consortium (W3C). They point out syntax

problems, bad nesting, etc., which may prevent browsers from

5
MATS Centre for Distance and Online Education, MATS University

Notes rendering properly. Modern browsers can usually handle broken

HTML, but following the standards makes it safer and more

accessible. Accessibility is one of the core aspects of HTML

development. Semantic markup, correct heading structure, alt attribute

for images, and ARIA (Accessible Rich Internet Applications) provide

accessibility to users with disabilities (eg screen readers and assistive

technologies). HTML will keep on evolving through new elements

and attributes as web standards evolve. This evolution is mirrored in

the transition from XHTML's rigid syntax requirements to HTML5's

more lenient approach, which gives precedence of backward

compatibility over other standards with modern web requirements.

These are the basic concepts that will help you build a strong

foundation for developing efficient, accessible, standards-compliant

web documents.

Figure 1.1 foundational Concepts Of HTML

(Source: https://www.fuundational.com)

6
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Text Formatting, Semantic Markup, and

Accessibility

1.2 Text Formatting and Semantic Tags in HTML

styles. meaning of the content they enclose. Realizing that semantic

accessibility in HTML is a huge advancement in web development

practices and not just as visual representation of where we write all

the styles and elements, HTML gives us a bit of context about our

data and allows us to prefix data with the structure which defines its

meaning. There are two major categories of these: presentational

elements that relate more to style, and semantic elements that indicate

the Unlike traditional text formatting such as txt users navigate the

content. level represents the importance of a heading, with , the most

important, and , the least. Correct heading structure does more than

help you visually perceive content hierarchy through default browser

styling (larger font sizes for higher order headings), it also builds a

semantic outline that assistive technologies can leverage to help the

headings which defines the structure of the document as well as the

hierarchy of the content. The heading elements, through , create a

logical outline of the document, where each The next step to text

formatting in HTML is by using or ideas. with nice whitespace.

Paragraphs by default insert breaks before and after their content,

visually separating distinct thoughts The paragraph element () makes

up the most basic building block for generic text content, any

collection of related text implies emphasized text that might be

stressed if read aloud. in italics. These elements have semantic

meaning beyond their visual display— suggests content of strong

importance, urgency, seriousness, or formatting elements. The strong

HTML element meaning strong importance usually in bold and the

em HTML element meaning emphasized text usually To apply

special treatment to specific parts of the text inside these blocks,

HTML has several inline text important information and emphasized

text. This paragraph includes is sample output from a computer

program (all of these are technical content). side comments or small

print, and is usually rendered in a smaller font size. is used for

computer code, is keyboard input, and reference certain content. The

element is for formatting needs. The element highlights text similar

to a highlighter, and can be used to HTML also has elements for

7
MATS Centre for Distance and Online Education, MATS University

Notes some of the other common text (usually strikethrough for deletions

and underline for insertions).

<p>The <mark>highlighted section</mark> needs special

attention.</p>

<p><small>Terms and conditions apply.</small></p>

<p>Use the <code>console.log()</code> function to debug.</p>

<p>Press <kbd>Ctrl+S</kbd> to save your document.</p>

<p>The program returned: <samp>Hello, World!</samp></p>

() elements lower or raise the text above or below the standard line,

which is important in mathematical equations, chemical equations,

and footnotes. The and elements represent deleted and inserted text

respectively; they are often used to show document revisions along

with appropriate visual clues Subscript () and superscript area

formula is A = πr2. Water is H2O and. The meeting is on Tuesday

Wednesday. The assistive technologies on how the content is

organized and its purpose. contained content beyond just

presentation. Newer HTML elements help developers make more

structured, accessible documents while providing clearer signals to

browsers, search engines, and After these primitive formatting

elements, HTML5 added a very rich set of semantic elements that

convey meaning about its complete, standalone component. blog.

This tag indicates that the contents within it are a The element

represents a self-contained composition where people could be

interested, by itself or as a part of other compositions such as non-

consecutive entries in a magazine, newspaper, website or

Article Title

Article content...

cover a different facet of the main theme. independent pieces of

content, sections are rather parts of a larger whole. For example, you

might have several sections on a single webpage that typically with a

heading. Sections are like in that they can contain content, but instead

of being The element is a thematic grouping of content,

Features

They can also be used inside introductory and concluding content for

their nearest ancestor sectioning content or sectioning root element.

Some elements are repeated across pages and are usually found at the

top of a document (site branding, navigation, and search), and at

Header and footer elements (and) represent of the product features...

8
MATS Centre for Distance and Online Education, MATS University

Notes description articles or sections as section-specific intro or outro

content. the bottom of the document (copyright information, related

links, and contact details).

<header>

 <h1>Website Title</h1>

 <nav>

 Home

 About

 </nav>

</header>

<footer>

 <p>© 2025 Example Corp. All rights reserved.</p>

</footer>

The navigation element (<nav>) specifically identifies major

navigation blocks, helping browsers and assistive technologies

recognize and potentially provide special access to these critical page

components. This element typically contains lists of links to other

pages or sections within the current page.

For complementary but non-essential content, the <aside> element

indicates material related to the main content but which could be

considered separate. Common uses include sidebars, pull quotes,

advertising, and related article links.

<aside>

 <h3>Related Articles</h3>

 Similar Topic One

 Similar Topic Two

</aside>

The <figure> and <figcaption> elements work together to associate

illustrations, diagrams, photos, or code listings with their captions,

maintaining this relationship in a semantically meaningful way even if

the position changes during layout.

<figure>

9
MATS Centre for Distance and Online Education, MATS University

Notes <figcaption>Figure 1: Overview of system components and their

interactions.</figcaption>

</figure>

For more specific text semantics, HTML provides elements like

<address> for contact information, <time> for dates and times, and

<cite> for references to creative works. These elements allow precise

indication of content purpose beyond mere formatting.

<address>

 Written by John

Doe.

 Visit us at: Example Corp

 123 Main St, Anytown USA

</address>

<p>The concert starts at <time datetime="2025-04-

07T20:00">8:00pm on April 7</time>.</p>

<p>As <cite>The HTML Specification</cite> states, the cite element

represents the title of a work.</p>

Lists represent another fundamental aspect of text organization in

HTML, with three main types available. Unordered lists ()

present items with bullet points, ordered lists () use sequential

numbering, and description lists (<dl>) pair terms (<dt>) with their

descriptions (<dd>). Lists can be nested to create hierarchical

structures, and CSS can modify their presentation while maintaining

semantic integrity.

 Unordered item one

 Unordered item two

 First step

 Second step

<dl>

 <dt>HTML</dt>

 <dd>HyperText Markup Language, the standard language for

creating web pages.</dd>

 <dt>CSS</dt>

10
MATS Centre for Distance and Online Education, MATS University

Notes <dd>Cascading Style Sheets, used for styling HTML

documents.</dd>

</dl>

For tabular data, the <table> element and its associated elements

(<thead>, <tbody>, <tfoot>, <tr>, <th>, and <td>) provide structured

organization. When used appropriately for genuinely tabular

information rather than layout purposes, tables effectively present

relationships between data points.

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Age</th>

 <th>Location</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>John</td>

 <td>32</td>

 <td>New York</td>

 </tr>

 <tr>

 <td>Sarah</td>

 <td>28</td>

 <td>London</td>

 </tr>

 </tbody>

</table>

Blockquotes (<blockquote>) and inline quotes (<q>) format and

semantically identify quoted content, with the optional cite attribute

providing a URL reference to the source. These elements help

distinguish quoted material from original content while maintaining

proper citation relationships.

<blockquote cite="https://example.com/source">

 <p>The only limit to our realization of tomorrow will be our doubts

of today.</p>

</blockquote>

11
MATS Centre for Distance and Online Education, MATS University

Notes <p>As Einstein said, <q

cite="https://example.com/einstein">imagination is more important

than knowledge</q>.</p>

for styling. that affected appearance, but no link to the content

meaning. Modern best practices eschew these in favor of semantic

equivalents coupled with CSS an important evolution in web

development practices. Early flavor of HTML had purely

presentational elements , , (bold) elements And semantic HTML

versus presentational HTML presents CSS font-style for display

italics. for important content or to use CSS font-weight on elements

where the bold does not indicate importance. Likewise, and instead of

for italic text, should be used for emphasized content, or

Furthermore, instead of using for bold text, developers should apply

strong

Important warning

Warning:

but not semantically important Visually bold

Having party-based and index-based communication enables you to

make the content Developers can leverage the text formatting

features of HTML and use semantic elements to create contributes to

responsive design as it improves the readability of content, allowing it

to scale well on various devices and screen sizes. for users with

disabilities. Semantic HTML within semantic elements, particularly

headings, to enhance the relevance of search results. Screen readers,

for example, rely on semantic information to enable enhanced

navigation and content understanding to theoretical purity. Search

engines place more importance on content The advantages of

semantic HTML are not just an appeal accessibility technique in the

Web Content Accessibility Guidelines (WCAG) [WCAG 2008]. type

of element (such as headings, lists or navigation) which helps the

users to understand the structure of content and navigate accordingly.

Semantic markup is recommended as a core beneficial to

accessibility. Screen readers read out the Proper semantic markup is

particularly s with class names. code. Thus, for displaying actual

code reviews, elements like , , and convey their roles instantly and aid

in comprehension of a document hierarchy compared to repeating

generic For super devs, semantic HTML helps improve the

maintainability and readability of the text formatting and semantics is

12
MATS Centre for Distance and Online Education, MATS University

Notes still the way to create accessible, maintainable and usable web

content. the DOM. How to use appropriate markup. Make no

mistake, priest architect, even the most modern JavaScript framework

with their components based architecture still depends on valid

HTML semantics which they use as a basis to generate dynamic

structures in This, along with the continual evolution of web

development, has only increased the emphasis on semantic ultimately

serves user experience and development experiences alike. visual

styling, separating content structure from presentation. This creates

cleaner and more accessible code that select HTML elements based

primarily on its semantic meaning rather than default presentation.

CSS should take care of this However, in practice, developers should

available and valuable on all devices, browsers or user needs, which is

what web aspiration as a universal information platform. documents

that convey meaning both visually and contextually.

1.3 IFRAME and File Path Handling in HTML

to handle filepath correctly a basic life skill in a web developer!

iframe Element In this section we learn all about the wonders of

iframes as well as how The Most Powerful Element in HTML: the

Understanding IFrames

simple: to another webpage from the current page. Iframe syntax is

referred to as iframe, is used to embed another document within the

current HTML document. This enables developers to place one

HTML document within another, kind of like a window An inline

frame, commonly Sandbox Attribute Is Important in Preventing These

Risks: attacks. The of iframes The iframe may also cause security

vulnerabilities if not implemented correctly. Embedding harmful

contents can lead to cross-site scripting (XSS) attribute defines the

URL of the document to embed, and other attributes are used for

specifying different properties and behaviors of the iframe. Below are

the most important iframe attributes you may use for customization:

• width and height: set respective dimensions of your iframe

• name: provides a name for your iframe to be targeted in links

or scripts

• sandbox: extra restrictions on operations within the iframe for

extra security

• allow: Feature that is accessible within the iframe (like the

camera, microphone)

13
MATS Centre for Distance and Online Education, MATS University

Notes • loading: Determines how the iframe is loaded (eager or lazy)

• Security aspects The srcdoc: An HTML code to display

other than by loading a web page Therefore, to embed a

YouTube video as a responsive iframe with specific

dimensions and lazy loading

The sandbox attribute restricts various capabilities of the embedded

content, with options to selectively enable certain features. Common

values include:

• allow-scripts: Permits JavaScript execution

• allow-same-origin: Allows the content to be treated as same-

origin

• allow-forms: Enables form submission

• allow-popups: Allows popup windows

• allow-top-navigation: Permits navigation of the top-level

browsing context

Additionally, the Content Security Policy (CSP) header can be used to

control which sources are allowed to be embedded in iframes:

<meta http-equiv="Content-Security-Policy" content="frame-src 'self'

https://trusted-site.com;">

Responsive IFrames

Making iframes responsive is essential for modern web design. A

common technique involves wrapping the iframe in a container with

appropriate CSS:

<div class="iframe-container">

 <iframe src="embedded-content.html"></iframe>

</div>

With corresponding CSS:

.iframe-container {

 position: relative;

 width: 100%;

 padding-bottom: 56.25%; /* 16:9 aspect ratio */

 height: 0;

 overflow: hidden;

}

.iframe-container iframe {

 position: absolute;

 top: 0;

 left: 0;

14
MATS Centre for Distance and Online Education, MATS University

Notes width: 100%;

 height: 100%;

 border: 0;

}

This approach maintains a specific aspect ratio while allowing the

iframe to scale with its container.

File Path Handling in HTML

Proper file path handling is essential for organizing web projects and

ensuring resources are correctly linked. HTML uses file paths to

reference various resources such as images, stylesheets, scripts, and

other HTML documents.

Types of File Paths

There are several types of file paths used in HTML:

1. Absolute Paths

Absolute paths provide the complete URL to a resource, including the

protocol and domain:

<link rel="stylesheet" href="https://example.com/css/styles.css">

These paths work regardless of the current document's location but

require the resource to be accessible at the specified URL.

2. Relative Paths

Relative paths specify the location of a resource relative to the current

document:

<!-- Same directory -->

<!-- Subdirectory -->

<!-- Parent directory -->

Relative paths are more portable since they don't depend on specific

domains, making them ideal for local development and projects that

might be moved between servers.

3. Root-Relative Paths

Root-relative paths start with a forward slash and are relative to the

domain root:

<link rel="stylesheet" href="/css/styles.css">

15
MATS Centre for Distance and Online Education, MATS University

Notes These paths work consistently across all pages of a website, regardless

of their directory depth.

Best Practices for File Path Organization

Organizing files effectively is crucial for maintainable web projects:

1. Consistent Directory Structure: Maintain a logical hierarchy

with separate directories for different types of resources:

2. /project

3. /css

4. /js

5. /images

6. /pages

7. index.html

8. Descriptive File Names: Use clear, descriptive file names that

indicate content and purpose.

9. Case Sensitivity: Be aware that some servers (particularly

Unix-based) treat file names as case-sensitive.

10. Path Types for Different Scenarios:

• Use relative paths for resources within the same project

• Use absolute paths for external resources

• Use root-relative paths for resources that should be

accessible from any page on your site

11. URL Encoding: Ensure special characters in file paths are

properly URL-encoded:

12.

Common Path-Related Issues and Solutions

Several common issues arise with file paths:

1. Broken Links: Often caused by incorrect relative paths. Use

browser developer tools to identify and fix broken resource

links.

2. Path Traversal Vulnerabilities: Sanitize user input used in

file paths to prevent attackers from accessing unauthorized

files.

3. Cross-Origin Resource Sharing (CORS): When loading

resources from different domains, be aware of CORS

restrictions and ensure proper server headers.

4. Moving Projects Between Environments: Use relative paths

within projects to facilitate movement between development,

staging, and production environments.

16
MATS Centre for Distance and Online Education, MATS University

Notes Using File Paths with IFrames

File paths are particularly important when working with iframes, as

they determine which document gets embedded:

<!-- Embedding a document from the same directory -->

<iframe src="related-content.html"></iframe>

<!-- Embedding from a subdirectory -->

<iframe src="pages/related-content.html"></iframe>

<!-- Embedding from parent directory -->

<iframe src="../other-section/related-content.html"></iframe>

<!-- Embedding from an external site -->

<iframe src="https://example.com/embed-page.html"></iframe>

When embedding content from the same project, relative paths

provide flexibility. For external content, absolute paths are necessary.

Advanced IFrame Techniques

Beyond basic implementation, iframes offer advanced capabilities that

enhance their utility in modern web development.

Communication Between IFrames and Parent Documents

The postMessage API enables secure communication between an

iframe and its parent document:

// In the parent document

const iframe = document.querySelector('iframe');

iframe.contentWindow.postMessage('Hello from parent!',

'https://embedded-site.com');

// In the iframe

window.addEventListener('message', function(event) {

 if (event.origin === 'https://parent-site.com') {

 console.log('Message from parent:', event.data);

 }

});

This communication method is crucial for creating interactive

embedded applications while maintaining security boundaries.

Lazy Loading IFrames

To improve page performance, iframes can be lazy-loaded to defer

loading until they're needed:

<iframe src="heavy-content.html" loading="lazy"></iframe>

For browsers that don't support the loading attribute, JavaScript

alternatives can be implemented:

const observer = new IntersectionObserver((entries) => {

17
MATS Centre for Distance and Online Education, MATS University

Notes entries.forEach(entry => {

 if (entry.isIntersecting) {

 entry.target.src = entry.target.dataset.src;

 observer.unobserve(entry.target);

 }

 });

});

document.querySelectorAll('iframe[data-src]').forEach(iframe => {

 observer.observe(iframe);

});

Seamless Integration with CSS

To make iframes appear more integrated with the parent document,

CSS techniques can be employed:

iframe {

 border: none;

 background-color: transparent;

 overflow: hidden;

}

This removes the typical iframe border and creates a more seamless

experience.

File Path Best Practices for Project Scalability

As web projects grow, maintaining proper file paths becomes

increasingly important for scalability and maintainability.

Using Base URLs

The <base> element can simplify file path handling by specifying a

base URL for all relative URLs in a document:

<head>

 <base href="https://example.com/projects/current-project/">

 <!-- All relative paths will be resolved against the base URL -->

 <link rel="stylesheet" href="css/styles.css">

 <!-- Equivalent to https://example.com/projects/current-

project/css/styles.css -->

</head>

This approach is particularly useful for sites with complex directory

structures or those that might be moved to different locations.

Dynamic Path Generation

For large-scale applications, dynamically generating paths through

server-side languages or JavaScript can provide flexibility:

18
MATS Centre for Distance and Online Education, MATS University

Notes <!-- PHP example -->

<img src="<?php echo $basePath; ?>/images/logo.png" alt="Logo">

// JavaScript example

document.querySelector('iframe').src = `${baseUrl}/embedded-

content.html`;

This approach allows path configurations to be centralized and easily

updated.

In conclusion, mastering iframes and file path handling is essential for

creating well-structured, secure, and maintainable web projects. These

elements provide the foundation for effectively organizing and

embedding content, enabling developers to create rich, interactive

web experiences while maintaining proper resource management.

1.4 Tables and Lists – Creation and Customization

Tables and lists are fundamental HTML elements that organize and

present information in structured formats. From simple data

presentation to complex layouts, understanding how to create and

customize these elements is essential for effective web development.

HTML Tables: Structure and Semantics

Tables in HTML are designed to present tabular data—information

organized in rows and columns. The fundamental structure of an

HTML table consists of several key elements:

<table>

 <caption>Monthly Sales Data</caption>

 <thead>

 <tr>

 <th>Month</th>

 <th>Sales</th>

 <th>Growth</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>January</td>

 <td>$10,000</td>

 <td>5%</td>

 </tr>

 <tr>

 <td>February</td>

19
MATS Centre for Distance and Online Education, MATS University

Notes <td>$12,500</td>

 <td>25%</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <td>Total</td>

 <td>$22,500</td>

 <td>-</td>

 </tr>

 </tfoot>

</table>

Semantic Table Elements

Modern HTML tables include several semantic elements that enhance

accessibility and structure:

• <caption>: Provides a title or explanation for the table

• <thead>: Contains header rows (<tr>) with column headers

• <tbody>: Contains the main data rows

• <tfoot>: Contains footer rows, typically for summaries or

totals

• <th>: Defines header cells, which should use the scope

attribute to specify whether they're for rows or columns

• <td>: Defines standard data cells

These semantic elements not only structure the table visually but also

provide important information to screen readers and other assistive

technologies.

Table Attributes for Structure

Several attributes can modify the structure of tables:

• colspan: Allows a cell to span multiple columns

• <td colspan="2">Combined Cell</td>

• rowspan: Allows a cell to span multiple rows

• <td rowspan="3">Spans Three Rows</td>

• headers: Associates data cells with their corresponding

headers for accessibility

• <th id="name">Name</th>

• <td headers="name">John Doe</td>

20
MATS Centre for Distance and Online Education, MATS University

Notes Table Accessibility Considerations

Creating accessible tables is crucial for users with disabilities:

1. Use proper header cells: Always use <th> elements for

headers with appropriate scope attributes:

2. <th scope="col">Product</th>

3. <th scope="row">Q1 Sales</th>

4. Include captions: Provide context with the <caption> element

5. Use the <table> element only for tabular data: Tables

should not be used for layout purposes

6. Provide summary information: For complex tables, use

ARIA attributes:

7. <table aria-describedby="table-summary">

8. <!-- table content -->

9. </table>

10. <div id="table-summary" class="sr-only">This table shows

quarterly sales data across regions.</div>

Styling Tables with CSS

Basic HTML tables are functional but often lack visual appeal. CSS

transforms tables into attractive, readable components.

Basic Table Styling

Simple CSS properties can dramatically improve table appearance:

table {

 border-collapse: collapse;

 width: 100%;

 margin-bottom: 1em;

 font-family: Arial, sans-serif;

}

th, td {

 padding: 0.75em;

 text-align: left;

 border-bottom: 1px solid #ddd;

}

th {

 background-color: #f2f2f2;

 font-weight: bold;

}

tr:hover {

 background-color: #f5f5f5;

21
MATS Centre for Distance and Online Education, MATS University

Notes }

Zebra Striping

Alternating row colors improves readability:

tr:nth-child(even) {

 background-color: #f2f2f2;

}

Responsive Tables

Tables can be challenging on small screens. Several techniques

address this:

1. Horizontal scrolling:

2. .table-container {

3. overflow-x: auto;

4. }

5. Collapsing rows on small screens:

6. @media screen and (max-width: 600px) {

7. table, thead, tbody, th, td, tr {

8. display: block;

9. }

10.

11. thead tr {

12. position: absolute;

13. top: -9999px;

14. left: -9999px;

15. }

16.

17. td {

18. position: relative;

19. padding-left: 50%;

20. border: none;

21. border-bottom: 1px solid #eee;

22. }

23.

24. td:before {

25. position: absolute;

26. left: 6px;

27. width: 45%;

28. padding-right: 10px;

29. white-space: nowrap;

22
MATS Centre for Distance and Online Education, MATS University

Notes 30. content: attr(data-label);

31. font-weight: bold;

32. }

33. }

With corresponding HTML that includes data attributes:

<td data-label="Month">January</td>

34. Using CSS Grid for responsive layouts:

35. @media screen and (max-width: 600px) {

36. table {

37. display: grid;

38. }

39.

40. tr {

41. display: grid;

42. grid-template-columns: 1fr 1fr;

43. margin-bottom: 1em;

44. border: 1px solid #ddd;

45. }

46.

47. th, td {

48. padding: 0.5em;

49. }

50. }

Advanced Table Styling Techniques

Beyond basic styling, tables can benefit from advanced CSS:

1. Fixed headers with scrollable body:

2. .table-container {

3. height: 300px;

4. overflow-y: auto;

5. }

6. thead {

7. position: sticky;

8. top: 0;

9. background-color: #fff;

10. z-index: 1;

11. }

12. Column width control:

13. table {

23
MATS Centre for Distance and Online Education, MATS University

Notes 14. table-layout: fixed;

15. }

16. th:nth-child(1) {

17. width: 20%;

18. }

19. th:nth-child(2) {

20. width: 50%;

21. }

22. Cell text handling:

23. td {

24. white-space: nowrap;

25. overflow: hidden;

26. text-overflow: ellipsis;

27. }

HTML Lists: Types and Structures

HTML offers three primary types of lists, each with distinct semantic

meaning and visual presentation.

Unordered Lists

Unordered lists () present items in no particular order, typically

with bullet points:

 Apples

 Oranges

 Bananas

Ordered Lists

Ordered lists () present items in a specific sequence, using

numbers, letters, or Roman numerals:

 Preheat oven to 350°F

 Mix ingredients in a bowl

 Bake for 25 minutes

Description Lists

Description lists (<dl>) associate terms (<dt>) with their descriptions

(<dd>):

<dl>

 <dt>HTML</dt>

24
MATS Centre for Distance and Online Education, MATS University

Notes <dd>HyperText Markup Language, the standard language for web

pages</dd>

 <dt>CSS</dt>

 <dd>Cascading Style Sheets, used for styling web pages</dd>

</dl>

Nested Lists

Lists can be nested inside one another to create hierarchical structures:

 Fruits

 Apples

 Oranges

 Vegetables

 Carrots

 Broccoli

Customizing Lists with CSS

List presentation can be extensively customized using CSS.

Basic List Styling

Simple properties can transform the appearance of lists:

ul, ol {

 margin: 0 0 1em 0;

 padding-left: 2em;

}

li {

 margin-bottom: 0.5em;

 line-height: 1.4;

}

dl {

 margin: 0 0 1em 0;

}

dt {

25
MATS Centre for Distance and Online Education, MATS University

Notes font-weight: bold;

 margin-bottom: 0.25em;

}

dd {

 margin: 0 0 1em 2em;

}

Custom List Markers

The list-style-type property controls the appearance of list markers:

ul {

 list-style-type: square; /* Options: disc, circle, square, none */

}

ol {

 list-style-type: lower-roman; /* Options: decimal, upper-alpha,

lower-alpha, upper-roman, lower-roman */

}

Custom markers can be created using images or Unicode characters:

ul {

 list-style-image: url('bullet.png');

}

/* Or using ::marker */

li::marker {

 content: "➔ ";

 color: #007bff;

}

/* Or removing default markers and adding custom ones */

ul {

 list-style: none;

 padding-left: 0;

}

li::before {

 content: "★";

color: gold;

display: inline-block;

width: 1em;

margin-left: -1em;

}

Horizontal Lists

can become horizontal navigation menus: Lists

26
MATS Centre for Distance and Online Education, MATS University

Notes ul.horizontal {

list-style: none;

padding: 0;

margin: 0;

display: flex;

}

ul.horizontal li {

margin-right: 1em;

}

using inline-block */ Alternative

ul.horizontal-alt {

list-style: none;

padding: 0;

margin: 0;

}

ul.horizontal-alt li {

display: inline-block;

margin-right: 1em;

}

Interactive List Elements

add interaction to the list items: Here are several ways to

ul.interactive li {

padding: 0.5em 1em;

border-radius: 4px;

background-color.3s; transition:

}

ul.interactive li:hover {

background-color: #f0f0f0;

cursor: pointer;

}

Multi-column Lists

readability for long lists: Multiple columns aid

ul.multi-column {

column-count: 3;

column-gap: 2em;

list-style-position: inside;

}

Prevent items from spanning multiple columns * / / *

27
MATS Centre for Distance and Online Education, MATS University

Notes ul.multi-column li {

break-inside: avoid;

}

JavaScript is necessary: for Tables and Lists The Original

Functionality specialised use. Tables and list are not just for their

basic functions, they can be moulded into a for interactive

functionalities, but CSS does prepare tables for interactivityth.sortable

{

cursor: pointer;

position: relative;

}

th.sortable::after {

content: "↕";

position: absolute;

right: 8px;

color: #999;

}

th.sorted-asc::after {

content: "↑";

color: #333;

}

th.sorted-desc::after {

content: "↓";

color: #333;

}

tr.filtered {

display: none;

}

Lists as Navigation Menus

into a list structure: Navigation elements naturally fall

Home

Products

Category 1

Category 2

About

Contact

With supporting CSS:

.main-menu {

28
MATS Centre for Distance and Online Education, MATS University

Notes list-style: none;

padding: 0;

margin: 0;

display: flex;

background-color: #333;

}

.main-menu > li {

position: relative;

}

.main-menu a {

display: block;

padding: 1em 1.5em;

color: white;

text-decoration: none;

}

.main-menu a:hover {

background-color: #555;

}

.dropdown {

display: none;

position: absolute;

background-color: #444;

min-width: 200px;

0 8px 16px rgba(0,0,0,0.2); box-shadow: box-shadow:

z-index: 1;

list-style: none;

padding: 0;

}

. has-dropdown:hover. dropdown {

display: block;

}

.dropdown a {

padding: 0.75em 1.5em;

}

Combining Tables and Lists

visualization: Here is how to combine tables and lists for more

complex data

Department

29
MATS Centre for Distance and Online Education, MATS University

Notes Team Members

Projects

Marketing

John Smith (Lead)

Maria Garcia

David Chen

Website Redesign

Media Campaign）】 Do上社會媒介【（Social

Development

Sarah Johnson (Lead)

Michael Brown

Ana Rodriguez

API Integration

Mobile App

Bug Fixes

CSS Grid vs. Tables

layout: Tables — use only for tabular data! CSS Grid is an alternative

for

.grid-table {

display: grid;

repeat(3, 1 fr); grid-template-columns:

gap: 1em;

margin-bottom: 1em;

}

.grid-table-header {

font-weight: bold;

background-color: #f2f2f2;

padding: 0.75em;

}

.grid-table-cell {

padding: 0.75em;

solid #ddd;} border-bottom: 1px

}

With corresponding HTML:

Name

Title

Department

Doe John

30
MATS Centre for Distance and Online Education, MATS University

Notes Manager

do the same in an MVC → How to

Developer

Engineering

uses table-shaped layouts but doesn't run into semantic problems that

come with using a for non-table content. This

Best Practices and Performance Considerations

Creating efficient, accessible tables and lists requires attention to best

practices.

Table Performance Optimization

Large tables can affect page performance:

1. Lazy loading for large datasets: Load only visible portions

initially

2. Virtual scrolling: Render only visible rows and replace them

as the user scrolls

3. Pagination: Split large datasets across multiple pages

4. Minimizing DOM elements: Avoid unnecessary nested

elements within table cells

5. CSS optimization: Use efficient selectors and minimize

repaints/reflows

<div class="table-pagination">

 <button id="prev-page">Previous</button>

 Page 1 of <span id="total-

pages">5

 <button id="next-page">Next</button>

</div>

List Performance Optimization

For large lists:

1. Fragment caching: For server-rendered lists with frequent

updates

2. Virtualization: Similar to tables, render only visible items

3. Limiting animation complexity: Animations on list items can

cause performance issues

4. Debouncing scroll events: When implementing custom scroll

behavior

Cross-Browser Compatibility

Ensuring consistent appearance across browsers:

1. CSS resets or normalizers: Standardize default styling

31
MATS Centre for Distance and Online Education, MATS University

Notes 2. Vendor prefixes: For newer CSS properties

3. Feature detection: Test for supported features before using

them

4. Polyfills: For newer features in older browsers

/* Example of vendor prefixes for sticky positioning */

thead {

 position: -webkit-sticky;

 position: -moz-sticky;

 position: -ms-sticky;

 position: -o-sticky;

 position: sticky;

 top: 0;

}

Accessibility Beyond the Basics

Beyond fundamental accessibility considerations:

1. Custom keyboard navigation: For interactive tables or lists

2. // Example of arrow key navigation in a table

3. table.addEventListener('keydown', function(e) {

4. if (e.key === 'ArrowDown' || e.key === 'ArrowUp' ||

5. e.key === 'ArrowLeft' || e.key === 'ArrowRight') {

6. // Handle navigation between cells

7. }

8. });

9. ARIA live regions: For dynamic content updates

10. <div aria-live="polite" id="table-update-announcement">

11. Table data updated.

12. </div>

13. High contrast modes: Test and optimize for Windows High

Contrast Mode

14. @media (forced-colors: active) {

15. th, td {

16. border: 1px solid CanvasText;

17. }

18. }

19. Reduced motion preferences: Respect user preferences for

animations

20. @media (prefers-reduced-motion: reduce) {

21. .animated-list li {

32
MATS Centre for Distance and Online Education, MATS University

Notes 22. transition: none;

23. }

24. }

Emerging Trends and Future Directions

The evolution of tables and lists continues with emerging standards

and techniques.

Modern CSS Features for Tables and Lists

1. Container queries: Style tables and lists based on their

container's size rather than the viewport

2. @container (min-width: 500px) {

3. .responsive-table {

4. /* Styles for wider containers */

5. }

6. }

7. Subgrid: Allow table cells to participate in a parent grid layout

8. .table-grid {

9. display: grid;

10. grid-template-columns: repeat(3, 1fr);

11. }

12. .table-row {

13. display: grid;

14. grid-template-columns: subgrid;

15. grid-column: 1 / -1;

16. }

17. :has() selector: Style parent elements based on child content

18. /* Style rows that contain empty cells */

19. tr:has(td:empty) {

20. background-color: #ffeeee;

21. }

Data Visualization Evolution

Tables and lists are evolving into richer data visualization

components:

1. Interactive data tables: With built-in sorting, filtering, and

inline editing

2. Hybrid list-chart components: Combining textual data with

visual representations

3. Animated transitions: Smooth state changes when data

updates

33
MATS Centre for Distance and Online Education, MATS University

Notes 4. Contextual information: Tooltips, popovers, and expandable

rows for additional details

Accessibility Trends

The focus on inclusive design continues to shape tables and lists:

1. Standardized keyboard interaction patterns

2. Enhanced screen reader annotations

3. Voice navigation support

4. Internationalization considerations

In conclusion, tables and lists remain fundamental HTML elements

with endless possibilities for customization and enhancement. By

mastering these elements and applying modern CSS techniques,

developers can create accessible, responsive, and visually appealing

components that effectively organize and present information.

Whether used for data presentation, navigation, or complex interactive

interfaces, well-crafted tables and lists enhance usability and user

experience across diverse devices and contexts.

1.5 HTML Forms – Input Types, Attributes, and Validation

HTML Forms are the crux of any interactive web application. Forms

allow for structured ways for a user to submit information that can be

processed by the web server or client-side scripts. In this article, we

will analyze the properties of HTML forms, including input types,

attributes, and application of validation techniques.

Form Basics

Finally, an HTML form is created with the element to hold the

various input elements. A form has this elementary structure:

• Give an example of quality data you can use with your

responses.

Now all you have to do is synchronize.

The action attribute specifies where to send the form data when the

form is submitted, and the method attribute defines how to send the

data (the two most common ways are "get" and "post").

Input Types

All the new input types introduced in HTML5. There’s a unique

interface for each input type that takes a certain kind of information:

Text-Based Inputs

• text: Regular one line text input

• password: Input of masked text for sensitive data

• email: Email address optimized input field with inline validation

34
MATS Centre for Distance and Online Education, MATS University

Notes • searching: Input box to enter search terms

• tel: Telephone numbers input field

• url: URL input element with automatic validation

• textarea: Multiline text input

Selection Inputs

• checkbox: Let users choose multiple options

• radio: Users can pick a single choice from a list

• select: Generates a list from which the user must select an option

• datalist: A predefined list for sharing options in an input field

Specialized Inputs

• number: Input for numbers with up/down buttons

• range: A slider control for choosing a value from a range

• color: a color picker interface

• date: Calendar picker

• time: Time selector

• datetime-local: Date and time picker in one

• month: Month and year picker

• week: Week and year picker

• file: File upload interface

Button Inputs

• button: Generic button for custom JavaScript actions

• submit: The button thatSubmit the form

• reset: A button that resets a form fields back to the default

values

• image: Graphical submit button

Form Attributes

There are several attributes that HTML form elements support which

controls their behavior and appearance:

Common Input Attributes

• name: Identifies the input field when data is submitted

• id: Identifier for the element (one per element; needed for labels

and scripts)

• value: Default/current value of the input

• placeholder: Hint text shown when the input is empty

• required: The field is required to be filled out

• disabled : Makes input unusable and not submitted when

submitting form

35
MATS Centre for Distance and Online Education, MATS University

Notes • readonly: Puts the input in a non-editable state, while still

submitting it with a form

• autofocus: Focuses the input when the page is opened

• autocomplete: Controls browser autocomplete functionality

• width: Sets the width of text inputs

• maxlength: the maximum length of the input character

• min and max: Sets minimum and maximum values for range and

number inputs

• step: Sets the increment/decrement step for number and range

inputs.

Form-Specific Attributes

• enctype: Specifies how form data should be encoded

(important for file uploads)

• novalidate: Disables browser validation for the form

• target: Determines where the form result is displayed

• autocomplete: Controls browser autocomplete functionality at

the form level

Form Labels and Accessibility

Proper labeling of form elements is crucial for accessibility and

usability:

<label for="username">Username:</label>

<input type="text" id="username" name="username">

The for attribute in the label links it to the input field with the

matching id. This association allows users to click on the label to

focus the input, which is particularly helpful for checkboxes and radio

buttons.

Form Validation

HTML5 introduced built-in form validation features that allow

developers to enforce data integrity before submission:

Validation Attributes

• required: Ensures that a field is not empty

• pattern: Applies a regular expression pattern for validation

• minlength and maxlength: Controls text length

• min and max: Restricts numerical values

• step: Enforces value increments

• type: Provides basic validation (e.g., email, url, number)

36
MATS Centre for Distance and Online Education, MATS University

Notes Example of Form Validation

<form>

 <label for="email">Email:</label>

 <input type="email" id="email" name="email" required>

 <label for="password">Password:</label>

 <input type="password" id="password" name="password"

 minlength="8" required

 pattern="(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,}"

 title="Must contain at least one number and one uppercase and

lowercase letter, and at least 8 or more characters">

 <input type="submit" value="Submit">

</form>

Constraint Validation API

JavaScript can access the Constraint Validation API to perform

custom validation:

const email = document.getElementById('email');

email.addEventListener('input', function() {

 if (email.validity.typeMismatch) {

 email.setCustomValidity('Please enter a valid email address');

 } else {

 email.setCustomValidity('');

 }

});

Form Organization and Structure

For more complex forms, grouping related elements improves

usability and accessibility:

Fieldset and Legend

Details Personal

 Name:

 Email:

Shipping Address for

address Input type text name address id address

or clear the boards. You can change your board to too many input

fields

City:

Submit

37
MATS Centre for Distance and Online Education, MATS University

Notes Advanced Form Features

to improve the user experience: HTML5 comes with several new

form advanced features

Datalist Autocomplete Suggestions

from; INPUT List of values to pick

Output Element

displays the result of a calculation or user action: The element

=

100

Form Data Handling

JavaScript is commonly used in modern web applications to handle

form submissions, as shown below, which prevents the default form

submission behavior and processes the data asynchronously:

function(event) { document. querySelector('form').

addEventListener('submit',

event.preventDefault();

FormData(this); var formData = new

fetch('/submit-form', {

method: 'POST',

body: formData

})

. then(response => response. json())

. then(data => console. log(data))

. catch(error => console. error(error));

});

A Comprehensive Tutorial on Input Types and form inputs provides

the flexibility needed to meet diverse user requirements.

ValidationHTML forms have advanced a lot since the beginning of

the platform. Forms in HTML are fundamental to user interaction and

data collection on websites, and the ability to create a wide variety of

Data Collection With HTML5 Forms.

1.6 HTML Layout – Head, ID, Class, and CSS Integration

Official documentation Learn about HTML Creating organized,

accessible, and are used to create coherent web pages. layout

elements The document head section CSS for HTML In this section

we will discuss these building blocks and how they visually pleasing

web pages relies on an understanding of the layout and formatting of

HTML documents.

38
MATS Centre for Distance and Online Education, MATS University

Notes The HTML Document Structure

A well-structured HTML document follows a standard organization

that separates document metadata from content:

<!DOCTYPE html>

<html lang="en">

<head>

 <!-- Document metadata goes here -->

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>Document Title</title>

 <link rel="stylesheet" href="styles.css">

 <script src="script.js" defer></script>

</head>

<body>

 <!-- Document content goes here -->

 <header>

 <h1>Website Title</h1>

 <nav>

 <!-- Navigation links -->

 </nav>

 </header>

 <main>

 <section id="about">

 <!-- Section content -->

 </section>

 <article class="blog-post">

 <!-- Article content -->

 </article>

 </main>

 <footer>

 <!-- Footer content -->

 </footer>

</body>

</html>

39
MATS Centre for Distance and Online Education, MATS University

Notes The Head Section

The <head> section of an HTML document contains metadata that is

not displayed on the page but provides crucial information about the

document:

Essential Head Elements

1. Document Title: The <title> element defines the page title

displayed in the browser tab.

<title>My Website - Home Page</title>

2. Character Encoding: The <meta charset> tag specifies the

character encoding for the document.

<meta charset="UTF-8">

3. Viewport Settings: The viewport meta tag controls how the

page is displayed on mobile devices.

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

4. SEO Metadata: Meta tags for search engine optimization

provide information about the page content.

<meta name="description" content="A comprehensive guide to

HTML layouts and CSS integration">

<meta name="keywords" content="HTML, CSS, web development,

layout">

<meta name="author" content="John Doe">

5. External Resource Links: The <link> element connects the

HTML document to external resources, most commonly CSS

stylesheets.

<link rel="stylesheet" href="styles.css">

<link rel="icon" href="favicon.ico" type="image/x-icon">

<link rel="preconnect" href="https://fonts.googleapis.com">

6. Scripts: The <script> element includes JavaScript code or

links to external JavaScript files.

<script src="script.js" defer></script>

7. Style Definitions: The <style> element contains internal CSS

rules.

<style>

 body {

 font-family: Arial, sans-serif;

 margin: 0;

 padding: 0;

40
MATS Centre for Distance and Online Education, MATS University

Notes }

</style>

HTML IDs and Classes

IDs and classes are attributes that allow developers to identify and

target specific HTML elements for styling and scripting purposes:

ID Attribute

The id attribute provides a unique identifier for an HTML element.

Each ID must be unique within the document:

<div id="header">

 <h1>Website Title</h1>

</div>

IDs are referenced in CSS with the hash symbol (#):

#header {

 background-color: #333;

 color: white;

 padding: 20px;

}

IDs are also used for:

• Creating anchor links within a page

• JavaScript manipulation via getElementById()

• Form label associations

• WAI-ARIA relationships

Class Attribute

The class attribute assigns one or more classification names to an

element. Multiple elements can share the same class, and a single

element can have multiple classes:

<article class="post featured">

 <h2>Article Title</h2>

 <p class="summary">Article summary text...</p>

</article>

Classes are referenced in CSS with a period (.):

.post {

 margin-bottom: 20px;

 border: 1px solid #ddd;

}

.featured {

 background-color: #f8f8f8;

 border-left: 5px solid #007bff;

41
MATS Centre for Distance and Online Education, MATS University

Notes }

.summary {

 font-weight: bold;

 font-style: italic;

}

Classes provide a powerful way to:

• Apply consistent styling across multiple elements

• Group elements for JavaScript manipulation

• Implement design systems with reusable components

• Create state-based styling (e.g., .active, .disabled)

CSS Integration

CSS (Cascading Style Sheets) can be integrated with HTML in three

ways:

1. External CSS

External CSS is defined in a separate file with a .css extension and

linked to the HTML document using the <link> element in the head

section:

<head>

 <link rel="stylesheet" href="styles.css">

</head>

The external CSS file (styles.css) contains all the CSS rules:

body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 line-height: 1.6;

 color: #333;

}

header {

 background-color: #4a89dc;

 color: white;

 padding: 1rem;

}

External CSS is the preferred method for larger projects because it:

• Separates content from presentation

• Improves caching and performance

• Enables consistent styling across multiple pages

• Simplifies maintenance

42
MATS Centre for Distance and Online Education, MATS University

Notes 2. Internal CSS

Internal CSS is defined within the <style> element in the document's

head section:

<head>

 <style>

 body {

 font-family: Arial, sans-serif;

 margin: 0;

 padding: 0;

 }

 .container {

 width: 80%;

 margin: 0 auto;

 }

 </style>

</head>

Internal CSS is useful for:

• Single-page documents

• Page-specific styling that doesn't apply to other pages

• Prototyping and testing

3. Inline CSS

Inline CSS applies styles directly to individual HTML elements using

the style attribute:

<p style="color: blue; font-size: 18px; margin-top: 10px;">

 This paragraph has inline styling.

</p>

Inline CSS should be used sparingly as it:

• Mixes content with presentation

• Cannot be reused across elements

• Has higher specificity that may override other styles

• Makes maintenance difficult

However, inline CSS can be useful for:

• Email templates

• One-off styling that won't be repeated

• Dynamically generated styles from JavaScript

CSS Selectors and HTML Integration

43
MATS Centre for Distance and Online Education, MATS University

Notes CSS selectors are patterns used to select and style HTML elements.

Understanding the relationship between HTML structures and CSS

selectors is crucial for effective styling:

Element Selectors

name: Select HTML elements by their tag

h1 {

font-size: 2.5rem;

color: #333;

}

p {

margin-bottom: 1rem;

line-height: 1.6;

}

Class Selectors

class attributes: Style elements with certain

.container {

width: 80%;

max-width: 1200px;

margin: 0 auto;

}

.btn {

display: inline-block;

padding: 0.5rem 1rem;

background-color: #4a89dc;

color: white;

border: none;

border-radius: 4px;

cursor: pointer;

}

ID Selectors

specific ID attributes: Page targets with

#header {

position: sticky;

top: 0;

z-index: 100;

background-color: white;

2px 4px rgba(0, 0, 0, 0.1); box-shadow: 0

}

44
MATS Centre for Distance and Online Education, MATS University

Notes #contact-form {

padding: 2rem;

background-color: #f9f9f9;

border-radius: 8px;

}

Attribute Selectors

selected depending on their attributes: Syntax−Elements are

input[type="text"] {

padding: 0.5rem;

border: 1px solid #ddd;

border-radius: 4px;

}

a[href^="https"] {

color: green;

}

Combination Selectors

/* Descendant selector */

.article p {

font-size: 1rem;

}

/* Child selector */

.nav > li {

display: inline-block;

}

sibling selector = + Next

h2 + p {

font-weight: bold;

}

HTML Layout Elements

Semantic Layout Elements

HTML5 added semantic elements that give a more meaningful

structure to the document:

 Non-Semantic Layout Elements

Despite the use of semantic elements, these generic containers are still

widely used:

CSS Layout Techniques

There are a number of layout technique that you can leverage using

modern CSS that works along with your HTML structures:

45
MATS Centre for Distance and Online Education, MATS University

Notes Box Model

The CSS box model describes how elements are modeled as

rectangular boxes:

.box {

width: 300px;

padding: 20px;

border: 1px solid #ddd;

margin: 20px;

margin */ margin: 0; /* Reset

}

Flexbox

Flexbox offers a single-dimensional layout method:

Item 1

Item 2

00C00B00000

.flex-container {

display: flex;

space-between; justify-content:

align-items: center;

}

.flex-item {

flex: 1;

padding: 20px;

margin: 10px;

}

CSS Grid

CSS Grid offers a two-dimensional layout system:

Sidebar

Main Content

Footer

.grid-container {

display: grid;

1fr; grid-template-columns: 200px

1fr auto; grid-template-rows: auto

grid-template-areas:

"header header"

"sidebar content"

"footer footer";

46
MATS Centre for Distance and Online Education, MATS University

Notes min-height: 100vh;

}

. header { grid-area: header; }

{ grid-area: sidebar; } . sidebar

content; } . main-content { grid-area:

. footer { grid-area: footer; }

Responsive Layout

Web design today requires layouts that can adapt to a variety of

screen sizes:

Media Queries

Media queries enable conditional application of CSS rules based on

device characteristics:

device */ Essential styles for every

.container {

width: 90%;

margin: 0 auto;

}

/* Tablet styles */

@media (min-width: 768px) {

.container {

width: 80%;

}

}

/* Desktop styles */

@media (min-width: 1024px) {

.container {

width: 70%;

max-width: 1200px;

}

}

Responsive Images

Using CSS, image can be made responsive:

img {

max-width: 100%;

height: auto;

}

47
MATS Centre for Distance and Online Education, MATS University

Notes CSS Variables and Theming

 CSS Custom Properties (variables) allow for more maintainable and

themeable designs:

:root {

--primary-color: #4a89dc;

--secondary-color: #5d9cec;

--text-color: #333;

--background-color: #f9f9f9;

--spacing-unit: 1rem;

--border-radius: 4px;

}

.button {

core-ui-color(var(--primary-color)); background-color:

color: white;

padding: var(--spacing-unit);

var(--border-radius); border-radius:

}

.card {

background-color: white;

color: var(--text-color);

calc(var(--spacing-unit) * 2) padding:

border-radius); border-radius: var(—

4px rgba(0,0,0,0.1); box-shadow: 0px 2px

}

web design. When you grasp these ideas and how they are related,

you will be ready to write clean, beautiful, and responsive web pages

that The combination of the HTML tree structure with CSS styling

via IDs, classes, and semantic elements is at the heart of modern can

ensure good experiences on different devices and screen sizes.

48
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Advanced HTML Features and Integration

1.7 Advanced HTML Concepts: Events, SVG, Canvas, URL

Handling, and APIs in HTML5

This Module will look at the capabilities that modern HTML5 had

many advanced features that enabled static HTML gives you, such as

event handling, SVG, Canvas, enhanced URL handling, and native

APIs for rich web applications. web pages to be dynamic, interactive

applications.

Handling Events Introduction to HTML Events and

occurrences that happen in the browser which can be detected by

JavaScript and that could be responded. HTML5 brought a unified

Events are actions or event model that allows for interactive web

experiences.

 Event Attributes

HTML elements can have event attributes that run JavaScript code

when events happen:

Click Me

+ this. value)" its own deadline. console.log('this changed to: ' That

training data folds in>

Hover over me

Common HTML Events

Mouse Events:

• Dblclick: Fires when an element is double-clicked

• mousedown, mouseup: Fired when a mouse button is pressed

and on release

• mouseover, mouseout: Raised when the mouse hovers over an

element

• mousemove: Fires when mouse cursor moves on an element

Keyboard Events:

• Pressing or releasing a keykeydown,keyup

• fires when a character-producing key is pressed keypress

Form Events:

• submit: Emitted when a form is submitted

• reset: When a form is reset

• change: Fired when the value of an input element gets changed

• input: Fires when the value for an input element changes

(immediate firing)

49
MATS Centre for Distance and Online Education, MATS University

Notes • focus, blur: Fired when an element gains focus or loses focus

Document/Window Events:

• load : The event occurs when the page is loaded.

• resize: When the browser window is resized

• scroll: Fired when the document is scrolled

• DOMContentLoaded: When the HTML document has been

completely loaded and parsed

JavaScript Event Handling

While inline event attributes function, the preferred method is to

attach event listeners using JavaScript:

 // Get references to elements

const button = document. getElementById('myButton');

const form = document. getElementById('myForm');

const input = document. getElementById('myInput');

// Add event listeners

function (event) { button. addEventListener("click",

console. log('Button clicked!');

console. log('Event object:', event);

});

{ form. form.addEventListener('submit', function(event)

 e.preventDefault(); // Prevent form submission event.

console. log('Form submitted!');

});

method of responding to input events can be improved. input.

However, this

console. log('Current value:', this. value);

});

longer needed // Unload event listener when no

function handleClick() {

console. log('Temporary handler');

handleClick); button. removeEventListener('click',

}

handleClick); button. addEventListener("click",

Event Propagation

Events in HTML propagate through the DOM tree in two phases:

1. Capturing Phase: Events travel from the document root to the

target element

50
MATS Centre for Distance and Online Education, MATS University

Notes 2. Bubbling Phase: Events bubble up from the target element to

the document root

// Third parameter determines if the listener is for capture phase (true)

or bubbling phase (false, default)

parent.addEventListener('click', function() {

 console.log('Parent clicked - bubbling phase');

}, false);

parent.addEventListener('click', function() {

 console.log('Parent clicked - capturing phase');

}, true);

child.addEventListener('click', function(event) {

 console.log('Child clicked');

 event.stopPropagation(); // Prevents event from bubbling up

});

Custom Events

HTML5 allows creating and dispatching custom events:

// Create a custom event

const customEvent = new CustomEvent('userAction', {

 detail: {

 username: 'john_doe',

 timestamp: new Date()

 },

 bubbles: true,

 cancelable: true

});

// Dispatch the custom event

document.getElementById('userProfile').dispatchEvent(customEvent);

// Listen for the custom event

document.addEventListener('userAction', function(event) {

 console.log('User action detected:', event.detail);

});

SVG (Scalable Vector Graphics)

SVG is an XML-based markup language for creating vector graphics

that scale seamlessly across different screen sizes and resolutions.

Embedding SVG in HTML

SVG can be embedded directly in HTML documents:

<svg width="200" height="200" viewBox="0 0 200 200">

 <circle cx="100" cy="100" r="80" fill="purple" />

51
MATS Centre for Distance and Online Education, MATS University

Notes <rect x="60" y="60" width="80" height="80" fill="blue" />

 <text x="100" y="100" font-size="20" text-anchor="middle"

fill="white">SVG Text</text>

</svg>

SVG can also be included as an external file:

<!-- or -->

<object data="graphic.svg" type="image/svg+xml"></object>

Basic SVG Elements

1. Shapes:

• <circle>: Creates a circle

• <rect>: Creates a rectangle

• <line>: Creates a line

• <polyline>: Creates connected lines

• <polygon>: Creates a closed shape with straight lines

• <ellipse>: Creates an ellipse

• <path>: Creates arbitrary paths

2. Text:

• <text>: Adds text to the SVG

• <tspan>: Adds sub-sections of text

3. Container Elements:

• <g>: Groups SVG elements

• <defs>: Defines reusable elements

• <symbol>: Defines reusable symbols

• <use>: Reuses elements defined elsewhere

Styling SVG

SVG elements can be styled with attributes or CSS:

<svg width="200" height="200">

 <style>

 .shape {

 fill: red;

 stroke: black;

 stroke-width: 2px;

 }

 circle:hover {

 fill: orange;

 }

 </style>

52
MATS Centre for Distance and Online Education, MATS University

Notes

 <circle class="shape" cx="100" cy="100" r="80" />

</svg>

Interactive SVG

SVG elements can respond to events just like HTML elements:

<svg width="300" height="200">

 <rect x="50" y="50" width="200" height="100" fill="blue"

 onclick="this.setAttribute('fill', 'red')" />

</svg>

With JavaScript:

const svgCircle = document.querySelector('svg circle');

svgCircle.addEventListener('click', function() {

 this.style.fill = this.style.fill === 'red' ? 'blue' : 'red';

});

SVG Animation

SVG supports native animations with the <animate> element:

<svg width="200" height="200">

 <circle cx="100" cy="100" r="50" fill="blue">

 <animate attributeName="r" values="50;80;50" dur="2s"

repeatCount="indefinite" />

 <animate attributeName="fill" values="blue;purple;blue"

dur="2s" repeatCount="indefinite" />

 </circle>

</svg>

Canvas

The HTML5 <canvas> element provides a drawing surface for

creating dynamic, scriptable 2D and 3D graphics.

Basic Canvas Setup

<canvas id="myCanvas" width="400" height="300"></canvas>

<script>

 const canvas = document.getElementById('myCanvas');

 const ctx = canvas.getContext('2d'); // Get 2D rendering context

 // Drawing code goes here

</script>

Drawing on Canvas

Canvas provides a procedural API for drawing:

// Set styles

53
MATS Centre for Distance and Online Education, MATS University

Notes ctx.fillStyle = 'blue';

ctx.strokeStyle = 'red';

ctx.lineWidth = 5;

// Draw shapes

ctx.fillRect(50, 50, 100, 75); // Filled rectangle

ctx.strokeRect(200, 50, 100, 75); // Outlined rectangle

// Draw paths

ctx.beginPath();

ctx.moveTo(50, 200);

ctx.lineTo(150, 150);

ctx.lineTo(250, 200);

ctx.closePath();

ctx.fill(); // Fill the path

ctx.stroke(); // Stroke the path

// Draw circles

ctx.beginPath();

ctx.arc(300, 200, 50, 0, Math.PI * 2); // Full circle

ctx.fill();

// Draw text

ctx.font = '20px Arial';

ctx.fillStyle = 'black';

ctx.fillText('Hello Canvas', 150, 250);

Canvas vs. SVG

Feature Canvas SVG

Rendering Pixel-based (bitmap) Vector-based

DOM

Integration No (single element) Yes (each shape is an element)

Performance

Better for complex

scenes Better for fewer, larger objects

Resolution Resolution-dependent Resolution-independent

Accessibility

Poor (no built-in

accessibility)

Good (elements can have ARIA

attributes)

Animation

Manual redrawing

required CSS or SMIL animations

Event

Handling

Manual hit detection

required Native event support

54
MATS Centre for Distance and Online Education, MATS University

Notes Canvas Animation

Canvas animations, as you may know, involve clearing and re-

drawing the canvas:

50; // Starting position let x =

movement let speed=2; // Speed of

function animate() {

// Clear canvas

ctx. clearRect(0, 0, canvas. width, canvas. height);

(position object) and createa draw object which enable you to draw

object at current position Filter object by position

ctx.beginPath();

ctx. arc(x, 150, 30, 0, Math. PI * 2);

ctx.fillStyle = 'green';

ctx.fill();

// Update position

x += speed;

// Bounce at edges

if (x > canvas. width - 30 || x < 30) {

speed = -speed;

}

// Continue animation

requestAnimationFrame); animate(

}

// Start animation

animate();

URL Handling in HTML5

Never ends on the way but similar event switch to address Meta Tag

HTML History, history was improve with HTML5.

 URL API

interface that enables you to create and manipulate URLs: The URL

API is an

// Create a new URL object

= new URL(https://example.com/path/page.html?name=value const

url&other=123#section);

// Access URL components

console. log(url. protocol); // "https:"

console. log(url. hostname); // "example. com"

console. log(url. pathname); // "/path/page. html"

55
MATS Centre for Distance and Online Education, MATS University

Notes Multiple Choice Questions (MCQs)

1. What does HTML stand for?

a) Hyperlinks and Text Markup Language

b) Hyper Text Markup Language

c) Home Tool Markup Language

d) Hyper Transfer Markup Language

2. Which tag is used to create a hyperlink in HTML?

a) <link>

b) <a>

c) <href>

d) <hyper>

3. Which of the following is a semantic HTML tag?

a) <div>

b)

c) <article>

d)

4. What is the correct syntax for an HTML comment?

a) /* This is a comment */

b) // This is a comment

c) <!-- This is a comment -->

d) ** This is a comment **

5. Which attribute is used to open a hyperlink in a new tab?

a) open="new"

b) target="_new"

c) target="_blank"

d) href="new_tab"

6. What is the default alignment of table content in HTML?

a) Center

b) Left

c) Right

d) Justify

7. Which input type is used for selecting multiple options in a

form?

a) <input type="text">

b) <input type="radio">

c) <input type="checkbox">

d) <input type="submit">

56
MATS Centre for Distance and Online Education, MATS University

Notes 8. The <canvas> element in HTML is used for:

a) Playing audio files

b) Rendering graphics and animations

c) Embedding video files

d) Structuring tabular data

9. Which API is used in HTML5 to store data on the user's

browser?

a) SessionStorage API

b) WebSQL API

c) LocalStorage API

d) Both a and c

10. What does the <iframe> tag in HTML do?

a) Embeds an external webpage within a webpage

b) Creates a pop-up window

c) Links to an external CSS file

d) Defines an interactive form

Short Answer Questions

1. What is the purpose of HTML in web development?

2. Define semantic HTML and give two examples.

3. Explain the difference between <id> and <class> attributes in

HTML.

4. What is the use of the <form> tag in HTML?

5. How does the <iframe> tag work, and why is it used?

6. What are the different types of input fields in an HTML form?

7. What is the difference between <table>, <thead>, <tbody>,

and <tfoot>?

8. Explain the role of SVG and Canvas in HTML5.

9. What are meta tags, and why are they important?

10. How can JavaScript be integrated into an HTML file?

Long Answer Questions

1. Explain the basic structure of an HTML document with an

example.

2. Discuss the significance of semantic elements in HTML and

how they improve web accessibility.

3. Compare and contrast ordered lists () and unordered lists

() with examples.

57
MATS Centre for Distance and Online Education, MATS University

Notes 4. Describe the different types of form validation techniques in

HTML5 with examples.

5. What are the differences between absolute, relative, and root-

relative file paths in HTML?

6. Explain the <iframe> element in detail, with an example of

how it can be used for embedding content.

7. How does the integration of CSS improve the layout and

design of an HTML document? Provide examples.

8. Discuss the usage of HTML events, including onclick,

onmouseover, and onchange, with examples.

9. What are the advantages of using <canvas> and <svg> for web

graphics, and how do they differ?

10. Explain how HTML5 APIs such as LocalStorage and

SessionStorage can be used to store data. Provide examples.

58

MODULE 2

CSS - Cascading Style Sheets

LEARNING OUTCOMES

By the end of this module, learners will be able to:

• Understand the purpose and types of CSS and its applications.

• Utilize different CSS selectors, including basic, advanced, and

pseudo-selectors.

• Comprehend CSS specificity and inheritance rules.

• Implement background and border properties effectively.

• Manage element display and positioning using static, relative,

absolute, and fixed positioning.

• Work with width, height, and overflow properties for layout

control.

59
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Introduction to CSS and Its Purpose

2.1 Introduction to CSS – Purpose, Types, and Application

CSS stands for Cascading Style Sheets, which was a groundbreaking

technology that transformed web development forever by changing

the method of designing and developing visual presentation of web

content. Before CSS was introduced, HTML documents would not

only define the structure of a webpage but also include presentational

formatting, leading to unwieldy code that proved to be harder to

maintain and less flexible when it came to design. To remedy this

shortcoming, CSS was introduced, creating a greater structural

separation between content (HTML) and how that content is

presented (by way of CSS), creating a paradigm that lives on in the

way that we develop the web today. CSS is primarily used to visually

manipulate the elements of HTML globally from a single point in the

code base to the whole website. There are many benefits of such

separation of concerns. It firstly increases maintainability, as it

enables designers to make site-wide style changes while only updating

one stylesheet instead of multiple html pages. Second, CSS has a vast

and significant effect on page performance. Browsers can cache style

information if you use CSS, so they will be more efficient, wasting

bandwidth, and enhancing the user experience. Third, it brings an

unparalleled level of design flexibility and allows developers to have

fine control over the layout, typography, color palette, animations,

and responsive behaviors based on different screen sizes and devices.

There are three types of CSS implementation, each tailored to the

needs of different workflows in web development. The most

recommended approach is external CSS, which means creating

separate . css files that are referenced in HTML documents using

tags within the document's head. This allows you to take advantage of

centralized style management and browser caching. Embedded or

internal CSS:Internal CSS refers to style rules placed inside tags.

Inline css applies styles inline to individual HTML elements with the

style attribute, giving such a high level control but losing the benefits

from separation and reusability. Although inline CSS is not the best

way to handle styling in large projects, it works fine for email

templates or scenarios where the style needs to be scoped. CSS is

being used in a multitude of real-world scenarios. One of the most

60
MATS Centre for Distance and Online Education, MATS University

Notes powerful and widely-used use cases is responsive web design, where

we use media queries and flexible grid systems to define interfaces

that will scale smoothly across a variety of screen sizes — from

mobile devices to desktop displays. CSS frameworks —such as

Bootstrap, Foundation, and Tailwind CSS— deliver sets of predefined

components and systems for building layouts that speed up the

development process while ensuring a consistent outcome. CSS

preprocessors such as Sass, Less, and Stylus help enhance CSS

allowing for variables, functions, and other programming constructs

that improve maintainability, especially in complex projects. CSS

animations and transitions allow for interactive experiences without

the need for JavaScript, and CSS Grid and Flexbox offer advanced

layout systems for building complex, responsive UIs with less code.

As things currently stand, modern standards are being gradually

standardized through the efforts of organizations such as the W3C

(World Wide Web Consortium) and the CSS Working Group, detailing

future developments which then make their way into implementations

in browsers. Serving graceful degradation depending on the browser

and its capabilities means developers can introduce modern CSS

features found in CSS properties to modern browsers with fallbacks to

older technology. The CSS Object Model (CSSOM) is a European

Parliament (EP) API that brings dynamic style manipulation from

CSS into JavaScript, the lifeblood of modern web applications. Web

beyond: CSS custom properties (variables), logical properties and

container queries among other, upcoming, features will take

expanding the eyes of developers to the next level enabling us to

implement rich, robust and performant experiences.

61
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Selectors, Specificity, and Inheritance

2.2 CSS Selectors – Basic, Advanced, and Pseudo Selectors

You rely on CSS selectors -- the basis for styling -- to apply styles to

HTML elements. From general rules that apply to the entirety of a

document all the way down to using hyper specific elements,

understanding the full breadth of selector types gives developers

ultimate control over to whom the styles will be applied. Basic

selectors are a set of selectors that allow you to select an element

based on intrinsic characteristics of the element's HTML. The

element selector, or type selector, targets all instances of a particular

HTML element type across a document. So for instance, p { color:

blue; } sets blue text for all paragraph elements. This more advanced

selector offers a great method for setting baseline styles for atomic

HTML elements. The class selector, which is indicated by the leading

period (.) is also used to select elements that share the same class

attribute, allowing reusability of style under various element types.

For instance,. For example, highlight { background-color: yellow; }

will give a yellow background to any element that has the class

"highlight." Such an approach promotes the idea of using modular,

component-based styling, which is the foundation of modern CSS

methodologies like BEM (Block, Element, Modifier) and SMACSS

(Scalable and Modular Architecture for CSS). The ID selector begins

with a hash symbol (#) and matches the only element with the

corresponding value of its ID attribute. Sticks the header when

scrolling past it Example: #header { position: sticky; } sticky takes

effect on all element with ID of header There are many more CSS

selectors available. You should not use this selector for a repeated

pattern because it is associated with a unique identifier, and HTML

IDs must be unique! The universal selector which is written as an

asterisk (*) selects all elements in a document regardless of type. It

can also be used for global resets or to set box-sizing on the entire

document, like * { box-sizing: border-box; }. Although powerful, use

of the universal selector should be done sparingly due to its broad

scope and potential performance impact. An attribute selector allows

you to apply styles to an element based on its HTML attributes, with

or without specified values, allowing greater flexibility and

eliminating the need for additional class or ID attributes. As an

62
MATS Centre for Distance and Online Education, MATS University

Notes example, input[type="text"] { border-radius: 4px; } will only give

rounded corners to text input fields, allowing for the use of attribute

selectors to differentiate visually or functionally similar HTML

elements that use the same element type. Once we have the basic

selectors down, we build on that with more advanced selectors that

allow for targeting based on even more complex structures within our

documents and the relationships between our HTML elements.

Combinators indicate a relationship between multiple selectors,

allowing for hierarchical targeting within the document. The

descendant combinator (space) is used to select elements that are

nested within another element, no matter how deeply nested, such as

article p { line-height: 1.6; }, which selects paragraphs contained

within article elements. The child combinator (>) limits the selection

to direct children only, e.g. ul > li { list-style-type: square; }, affects

list items that are direct children of an unordered list. The adjacent

sibling combinator (+) will apply styles to an element directly

following a specified element(h2 + p { font-weight: bold;

})Formatting the first paragraph after any h2. All sibling combinators

after some element (in the following example h3 ~ p { margin-left:

1em; }) indent all p that follow a third-level heading.

Using commas to group selectors to share the same style declaration,

making your CSS more DRY and your file smaller. So, for example,

h1, h2, h3 { font-family: 'Georgia', serif; } presests the same font

family to all three heading levels. Compound selectors () combine

multiple basic selectors without spaces between them, allowing you

to target with extreme specificity. For instance, button.

primary[disabled] matches disabled buttons whose class includes the

"primary" keyword, so it illustrates how compound selectors can

accurately select an element whose set of specific properties is a

subset of an enumerable set of its attributes. There are pseudo-

selectors that allow you to target specific states, positions and have

something to do with dynamic or content characteristics and extend

the targeting beyond the physical structure of the document. Pseudo-

classes use a single colon (:) to select elements based on their state or

position that exists separately from the document tree. User

interaction pseudo-classes respond to user behaviors: :hover is

activated when users hover the cursor over an element, :active applies

while users are actively clicking or tapping, :focus highlights the

63
MATS Centre for Distance and Online Education, MATS University

Notes currently focused interactive element, and :visited styles links that the

user has previously clicked. Structural pseudo-classes affect selection

based on the document structure: :first-child and :last-child pick

elements indicating that they are the first or last child of their parent,

:nth-child() selects elements that fit with complex patterns or formulas

(e.g. li:nth-child(odd) for alternating), :only-child matches upon

determining that an element has no siblings, and finally, :empty is

used to match upon elements that have no other content or children.

Form-related pseudo-classes encompass the different states of form

controls: :checked applies to checked checkboxes and radio buttons,

:disabled and :enabled indicate the interactive state of form elements,

:valid and :invalid are triggered by form validation states, and

:required and :optional relate to the presence of the required attribute.

Root pseudo-classes, like :root, select the highest-level element in a

document body (by default) and serve as a shortcut to global CSS

variables and document-wide properties. Pseudo Elements (using a

double colon, ::), create and style imaginary elements that do not

exist in the HTML itself. The pseudo-elements for content generation

insert something before or after elements: ::before and ::after turn into

virtual elements and are the first or last children of the specified

element, respectively, which need content properties in order to be

visible. Phrase-style pseudo elements apply their styles to small parts

of the text content: ::first-letter gives style to the first letter to create

that drop-cap style we all know and love, ::first-line that applies the

style to the first line of text subjected to reflow upon changing

viewport or resizing elements and ::selection to style the text on user

selection, primarily with background and text colors. Functional

pseudo-classes take arguments in parentheses, giving us parametric

selection abilities: :not() removes elements that match the given

selector from matching, offering negative targeting, multiple selectors

can be grouped in :is() and :where() in a way that affects specificity of

the group, and :has() (in newer browsers) allows selecting elements

that contain certain children, providing a parent selector functionality

that developers have long wished for. The correct use of selectors

affect the specificity of the style and performance. Selector

specificity is hierarchical, with inline styles being the most specific

(1000), then IDs (100), classes and attributes (10), and elements (1).

You learn about a system that decides which style will be applied

64
MATS Centre for Distance and Online Education, MATS University

Notes when conflicting rules apply to the same element. Although very

specific selectors guarantee accurate selection, they may cause

maintainability issues, introducing dependencies to concrete

representations of the document. In summary, modern CSS best

practices lean more toward class-based selectors, which offer a good

balance between specificity and flexibility, accommodating

component-based architectures that align with modern front-end

development methods

.2.3 CSS Specificity and Inheritance

CSS specificity is a critical concept that defines how CSS rules will

be applied when several conflicting specifications point to the same

element. CSS, rather than going for the simplest possible method of

the "last rule wins" variety, adopts a more nuanced calculation system

that takes into account the relative importance of various selector

types. Learning about specificity can go a long way towards

controlling style application predictably as stylesheets start to grow

more complex in large projects. In the specificity pecking order,

inline styles applied to the element's style attribute are the most

specific (usually as 1,0,0,0); then are ID selectors (0,1,0,0); class

selectors, attribute selectors, and pseudo-classes (0,0,1,0); and finally

element selectors and pseudo-elements (0,0,0,1). For compound

selectors, specificity is the sum of each individual component. For

instance, #sidebar p.highlight would have a specificity of 0,1,1,1 as it

combines one ID, one class and one element selector. By using

numbers to represent values, this provides a clear and direct system to

manage style conflicts: a bigger number wins, no matter whether the

CSS comes before or after it in the doc. The cascade only applies if

the specificities are the same, with later rules taking precedence over

earlier ones. The! This important declaration is a special case that

breaks normal specificity calculations, elevating a property to the

highest level. Its use is largely discouraged in professional

development, both due to the maintainability that it brings as well as

its use cases are generally reserved from backfilling the original

classes here like if using something like utility classes or to override

third-party styles. Specificity is both a blessing and a curse in CSS

architecture. On the one hand, it allows accurate style application

without needing to modify the document structure. On the flip-side, it

can cause "specificity wars", where developers pile on selector

65
MATS Centre for Distance and Online Education, MATS University

Notes specificity to beat existing styles, achieving brittle, tightly coupled

code which is disastrous to maintain. Modern day CSS methodologies

such as BEM (Block, Element, Modifier) follow naming conventions

that limit selector nesting and keeps specificity levels in check, which

significantly improves CSS maintainability as well as performance.

Now add css inheritance into that, inheritance works hand in hand

with specificity, providing a way for style property values to flow

from parent to child elements even if they are not declared. This helps

to eliminate duplication of the same properties in multiple instances,

as the common property can be declared once in the document tree at

a higher level. Text-related properties inherit well: color, font-family,

font-size, font-weight, line-height, text-align all carry to the child

elements naturally from the parent. Properties such as list-style-type

and list-style-position also inherit, maintaining a consistent look for

your lists remains intact. Some special properties such as visibility

and cursor inherit by default, and thus propagate interactive

characteristics through nested elements.

However, many properties deliberately do not inherit to avoid this

undesired cascading effect. Properties that affect the box model —

width, height, margin, padding and border — cannot inherit, because

the same dimension cannot be transferred from parent to child,

otherwise, it would make any nested element unusable in a layout.

Properties related to positioning such as position, top, right, bottom,

and left also avoid inheritance to avoid unexpected layout shifts.

Background properties (e.g. background-color and background-

image) similarly do not inherit unless explicitly set to, which

preserves the transparent backgrounds of nested elements, making

them reveal parent backgrounds rather than duplicate them. CSS has

special property values to have more explicit control over inheritance

behaviors. The inherit keyword forces the property to assume the

same value as its parent, which is the opposite of the default behavior

of not inheriting. For example, border: inherit; makes an element

inherit its parent’s border style. The first keyword resets a given

property value to a value for that browser (i.e., defaulted in CSS

specification) prior to declaration or inheritance. Unset incorporate

the behavior of both inherit and initial: it acts as inherit for inheritable

properties and as initial for non-inheritable. The revert keyword (in

modern browsers) is a way to back out a property to the value that is

66
MATS Centre for Distance and Online Education, MATS University

Notes set by the user agent stylesheet, undoing author styles but keeping

what browsers would apply. This specificity versus inheritance

balance is a mechanism that enables a subtle but powerful control

over style application. Good CSS authors take advantage of

inheritance for overall page typographic and color schemes while

only applying sufficient levels of specificity to override these defaults

only for particular components and states. By learning these

mechanisms, developers can write predictable, maintainable

stylesheets without over-duplication of rules and specificity wars. The

cascade, after which CSS is named, is the third major concept in

CSS, along with specificity and inheritance. It explains the order in

which styles take precedence based on their origin: user agent styles

(such as those set by the browser) serve as the foundation, user styles

(defined at the browser settings level) take precedence over these

defaults, and author styles (from website stylesheets) take precedence

over both user agent and user styles. Normal declarations are

processed according to specificity rules within each origin category,

while! important declarations are given priority based on their origin

but in reverse order:!!important user styles override important author

styles and rendering accessibility accommodations not able to be

overridden by website code

.2.4 Background and Border Properties

CSS background properties provide a powerful method for styling

your element backgrounds with anything from a simple solid color to

a fully layered composition with multiple images. These properties are

foundational to web design: they help set visual hierarchy, provide

decorative elements, and improve content readability with proper

contrast. The background-color property establishes the foundational

color that sits behind any other background layer, allowing you to use

any valid color format including hex codes (#RRGGBB), RGB/RGBA

functions, HSL/HSLA functions, and named colors. It used to be with

alpha transparency a designer could apply RGBA or HSLA to create

semi-transparent backgrounds, allowing content below to be partially

visible creating more complex layering. The background-image

property puts one or more images behind the element content and

takes a URL, gradients, or multiple gradients. You can specify

multiple background images in a comma-separated list, with earlier

values appearing "above" later ones in the stacking order. CSS also

67
MATS Centre for Distance and Online Education, MATS University

Notes includes built-in gradient functions that allow the declaration of

gradient images procedurally inside the css, without the need for

external images, referenced with the url() function. Linear gradients

built with linear-gradient() progress colors along a straight line, and

use directional keywords or exact angles to determine the gradient

direction. Radial gradients, created with radial-gradient(), spread

outward from a center point, with parameters that dictate the shape

(circle, or ellipse) and size of the gradient. Conic gradients, made with

conic-gradient(), fill color around a center point and create pie-chart-

like visualizations with angular color transitions. There are four

background positioning properties that specify where background

images are placed in their containing elements. Image positioning: the

background-position property accepts keywords (top, right, bottom,

left, center), percentage values, or absolute lengths, allowing for very

granular definition of image position. Edge offsets (e.g. background-

position: right 20px bottom 10px;), on the other hand, position images

in relation to specific edges of a given container. The background-

origin propertysets whether the positioning coordinates are derived

from the entire element box (including borders and padding; border-

box) or just the padding and content areas (padding-box, the default)

or only the content area, excluding the padding (content-box). The

background sizing properties determine the scaling of images with

respect to their containers. The background-size property can take

absolute dimensions, percentages, or special keywords: cover scales

the image to fill the container completely while preserving its aspect

ratio, possibly cropping pieces of the image that fall beyond the

container, while contain scales the image to fit within the container

completely while preserving its aspect ratio, potentially leaving empty

space around the image. These keywords can be especially useful for

responsive design, resizing background images automatically to meet

different screen sizes and proportions. Background repetition

properties control how images will fill their containers when they are

smaller than the available space. The background-repeat property

accepts one of the following values: repeat (tiles both left to right and

up & down), repeat-x (tiles only left to right), repeat-y (tiles only up

& down), no-repeat (a single instance), space (tiles additional space is

added to the image without cutting off parts of tiles), or round

(adjusts the tiles slightly to avoid partial tiles). The background-

68
MATS Centre for Distance and Online Education, MATS University

Notes attachment property controls how backgrounds are applied on

scrolling: scroll (the default behavior) fixes the background relative to

the element; fixed anchors the background to the viewport for pseudo

parallax-like visual effects; and local attaches the background to the

element's content, causing it to scroll when content overflows and

scrolls within the element.

The background-clip property defines where the background is

painted: border-box draws the background as far back as the borders

(the default), padding-box stops the background at the inside edge of

borders and content-box paints the background only into the content.

The shorthand background property allows you to include all relevant

background properties in a single declaration, and accepts comma-

separated values for color, image position, size, repeat, attachment,

origin, and clip. For multiple backgrounds, a lot of properties support

comma-separated lists that correspond to each background layer. On

the other hand, their playful sibling properties, border, give structures

to many page layout, visually separate them, and enhance emphasis.

The main border properties govern three different aspects of borders:

width, style, and color. For (box) properties these absolute units (px,

em, rem) and keywords (thin, medium, thick) are used to set changes

between box sides: the simple border shorthand allows one to either

assign equal widths for all four sides or an individual width per side

if necessary. The border-style property specifies the type of border to

be displayed, such as value options of solid (solid line), dashed

(dashes regularly spaced), dotted (list of round dots), double (two

parallel solid lines), groove (appears carved in), ridge (appears

raised), inset (makes the element appear sunken) and outset (makes

the element appear elevated). The border-color property defines it so

it can accept any valid CSS value for colors, including transparency

via RGBA or HSLA formats. Border shorthands merge multiple

properties into a single declaration. The corresponding side-specific

shorthands border-top, border-right, border-bottom, and border-left

configure all properties for singular sides. The all-sides shorthand

border sets the width, style, and color for the outside of an entire

element. With shorthands, you miss giving the omitted values since

they will return to the default values, making border style as much a

significant property since without a declared style, borders will be

invisible regardless of border width or color. Finally, border radius

69
MATS Centre for Distance and Online Education, MATS University

Notes properties create rounded corners, which helps soften the appearance

of elements, lending itself to modern design aesthetics. The border-

radius property can take absolute units or percentages, with higher

values resulting in more rounding. Use corner-specific properties

(border-top-left-radius, border-top-right-radius, border-bottom-right-

radius, border-bottom-left-radius) to round different corners. The

shorthand border-radius takes up to four values in clockwise direction,

starting with the top-left, and with slash syntax (border-radius: 10px /

20px;) creates elliptical instead of circular corners. The advanced

border features include images and outlines that go beyond just lines.

The border-image property suite replaces standard borders with

image-based borders, slicing source images into corners and sides that

scale or repeat to fit the element perimeter. The below is nice for

decorative aspects but it requires some extra work with the image

itself as well as being aware of responsive behaviors. Many of its

properties are shared with borders, although it never affects layout

dimensions, adding an extra line outside of the border area around

elements. This attribute is especially useful for outlines (for example,

focus indicators) and transient highlights which would not interfere

with adjacent content. The background and border property

relationship forms the foundational scaffolding of web design

elements By default, backgrounds are drawn to under borders

(background-clip: border-box), so semi-transparent borders can show

backgrounds underneath. The CSS box model defines how these

properties work together for dimensions: the width and height

properties only by default apply to the content box, with padding and

borders adding to the full size of the element. The CSS declaration

box-sizing: border-box changes this behavior and makes width and

height include padding and borders, making it easier to calculate

sizes in complex layouts. CSS layout systems (Flexbox, Grid) decide

how elements that include background and borders, position

themselves inside containers; transitions and animations affect these

properties dynamically, to trigger interactive effects on state changes.

Background and Border Properties Similar to background properties

— the creative use of background and border properties helps define

much of the visual character of a website. Writing layered

backgrounds promote depth and texture without additional markup,

helping separate content from presentation. Gradient backgrounds

70
MATS Centre for Distance and Online Education, MATS University

Notes increase independency on external images, improving load

performance and support for dynamic color schemes by utilizing CSS

variables. With more and more elements being interactive these days,

border treatments are also helping to differentiate these elements,

build content hierarchies, and cement brand identities through a

consistent visual language. CSS has come a long way since then:

from clunky solid colour backgrounds and borders, we have moved on

to complex, multi-layered backgrounds and image-based borders.

2.5 Display and Positioning – Static, Relative, Absolute, Fixed

CSS display and position properties are used to control the way

elements appear and how they interact on the page. So knowing

these concepts very well helps the developer to build well-structured

layouts with predictable results on a variety of devices and browsers.

The display property defines how an element is rendered with respect

to the document flow: it tells them if it is a block, inline, or one of

several other display types. This property goes hand-in-hand with

positioning, which determines where the elements get displayed in

regard to their regular slot in the document flow—or to their parent

elements.

Display Property

CSS properties since it fundamentally alters how elements behave.

Some common values that The display property is quite possibly one

of the most critical they include:

Block-level Block: These elements begin on a applied to all sides of,

and can include block or inline elements. elements include ,, to , etc.

So, it can have margin and padding, new line and extend the full

width available.

Inline-block: A mixture that makes elements behave inline (next to

each other) but still respects width and height as well as vertical

margin and padding, gaining the advantages of both block and inline.

 space and None : The element no longer takes up thus is hidden.

Removes the element completely from the document flow as if it does

not exist.

Flex: Makes an Element a Flex Container values, flex containers can

align and distribute space among items in more sophisticated ways.

Flex containers are the parent to flex items and provide powerful

alignment controls.

71
MATS Centre for Distance and Online Education, MATS University

Notes Grid: Like flex, but for two-dimensional layouts instead of one-

dimensional ones. So far, we had only learned about flex containers,

which create either a row or a column.

 Values related to tables: These are table, table-row, table-cell, etc.,

that make elements behave like their HTML table counterparts.

 Positioning

The position property control how a node is located in the document.

There are four main types:

Static Positioning

Positioned Elements

https://developer.mozilla.org/enUS/docs/Web/CSS/position#static

Positioned MakeThe top, right, bottom, left, z-index properties have

no effect. This is the default for all HTML elements. Static Static:

.static-element {

position: static;

right, bottom, left are ignored */ /* top,

}

But for complex layouts or for overlapping elements it does Static

positioning is simple and predictable which makes it suitable for the

most at all. flowed with text. This is the positioning you have if you

don't use any position property order they would do in the document.

Block elements add line break before and after and in-line are The

static position is when elements stack in the normal and natural not

offer any flexibility.

Relative Positioning

Relative positioning positions an element relative to its normal

position in the document flow. The element continues to occupy its

original space, meaning other elements are not affected by its new

position.

.relative-element {

 position: relative;

 top: 20px;

 left: 30px;

}

In this example, the element will be positioned 20px down and 30px

to the right from where it would normally appear. Despite the visual

displacement, the element still takes up space in its original position

in the flow.

72
MATS Centre for Distance and Online Education, MATS University

Notes Relative positioning is useful for:

• Making minor adjustments to an element's position without

disrupting the layout

• Serving as a positioning context for absolutely positioned

child elements

• Creating a stacking context when combined with z-index

One important characteristic of relative positioning is that the element

still maintains its original space in the layout. Other elements behave

as if the positioned element were still in its original location, even

though visually it has moved.

Absolute Positioning

Absolute positioning removes an element from the normal document

flow and positions it relative to its nearest positioned ancestor (an

ancestor with a position value other than static). If no positioned

ancestor exists, it positions relative to the initial containing block

(usually the viewport).

.absolute-element {

 position: absolute;

 top: 50px;

 right: 100px;

}

This element will be positioned 50px from the top and 100px from the

right edge of its nearest positioned ancestor. The space that the

element would have occupied in the normal flow is collapsed as if the

element doesn't exist.

Absolute positioning has several important characteristics:

• The element is completely removed from the normal flow

• It can be positioned at specific coordinates within its

positioning context

• Width defaults to fit content unless explicitly set

• It can overlap other elements without pushing them

• Other elements are arranged as if the absolute element doesn't

exist

Absolute positioning is particularly useful for:

• UI elements that need to be precisely placed, like modals or

tooltips

• Elements that need to appear on top of other content

• Creating complex layouts with overlapping elements

73
MATS Centre for Distance and Online Education, MATS University

Notes • Creating dropdown menus

• Custom styled form elements

When using absolute positioning, developers must be careful to

ensure the element remains visible within its container and doesn't

overlap important content unintentionally.

Fixed Positioning

Fixed positioning is similar to absolute positioning, but the element is

positioned relative to the viewport (browser window) rather than any

ancestor element. This means the element stays in the same place even

when the page is scrolled.

.fixed-element {

 position: fixed;

 bottom: 20px;

 right: 20px;

}

This example shows an element that will appear 20px from the bottom

and 20px from the right of the viewport, remaining in that exact

position regardless of scrolling.

Fixed positioning is commonly used for:

• Navigation bars that stay at the top or side while scrolling

• Back-to-top buttons

• Cookie consent banners

• Chat widgets or helpdesk buttons

• Floating action buttons on mobile interfaces

Like absolutely positioned elements, fixed elements are removed from

the document flow and can overlap other content. This can sometimes

cause usability issues on smaller screens if not implemented carefully.

Sticky Positioning

Although not explicitly mentioned in the section title, sticky

positioning is worth mentioning as it combines aspects of both

relative and fixed positioning. An element with position: sticky

behaves like a relatively positioned element until it crosses a specified

threshold, at which point it behaves like a fixed element.

.sticky-element {

 position: sticky;

 top: 0;

}

74
MATS Centre for Distance and Online Education, MATS University

Notes This creates an element that scrolls normally with the page until it

reaches the top of the viewport, at which point it "sticks" and remains

visible at the top as the rest of the content continues to scroll.

Sticky positioning is useful for:

• Section headers in long lists

• Navigation elements that should remain visible during

scrolling

• Table headers that should remain visible when scrolling

through table data

• Sidebar elements that should remain in view

Browser support for sticky positioning has improved significantly,

making it a reliable option for modern websites.

Z-Index and Stacking Context

When elements overlap due to positioning, the z-index property

determines which elements appear on top. Elements with higher z-

index values appear in front of elements with lower values.

.back-element {

 position: absolute;

 z-index: 1;

}

.front-element {

 position: absolute;

 z-index: 2; /* This will appear on top */

}

It's important to note that z-index only works on positioned elements

(elements with position set to something other than static).

Additionally, z-index creates stacking contexts, which can limit the

scope of z-index comparisons to specific parent-child relationships.

Common Positioning Patterns and Use Cases

Centering Elements

Absolute positioning can be used to center elements both horizontally

and vertically:

. centered {

position: absolute;

top: 50%;

left: 50%;

-50%); transforms: translate(-50%,

}

75
MATS Centre for Distance and Online Education, MATS University

Notes This technique places the element at 50% the top and left of its

containing element and then uses the transform property to shift it

back half its own width and height, centering it perfectly.

 Overlays and Modals

To create overlay elements like modals, fixed or absolute positioning

is usually used:

.overlay {

position: fixed;

top: 0;

left: 0;

width: 100%;

height: 100%;

0, 0, 0.5); style background-color: rgba(0,

z-index: 10;

}

.modal {

position: fixed;

top: 50%;

left: 50%;

translate(-50%,-50%); transform:

z-index: 11;

}

Sticky Headers and Footers

Fixed positioning creates headers and footers that stay on screen while

the user scrolls:

.header {

position: fixed;

top: 0;

width: 100%;

z-index: 100;

}

.footer {

position: fixed;

bottom: 0;

width: 100%;

}

76
MATS Centre for Distance and Online Education, MATS University

Notes Floating Action Buttons

Fixed positioning is also perfect for floating action buttons that are

usually found in mobile interfaces:

Considerations Best Practices

action-button {

position: fixed;

bottom: 20px;

right: 20px;

width: 60px;

height: 60px;

border-radius: 50%;

background-color: #2196F3;

}

Responsive Design Challenges

In responsive design the fixed and absolute positioning can create

some issues, as the elements with such positioning is removed from

normal for positioning Instead of pixel values, use percentage values

to reposition elements for various viewports flow and are not

responsive means, it does not adjust itself as you change viewport

sizes. Solutions include:

• Applying media queries

• Relative positioning

• Applying different positioning methods depending on the

viewport size

• (vw, vh) based on viewport units

Performance Considerations

So for a limited number of elements, Positioned elements

(specifically those with fixed positioning) can degrade performance

because they cause certain parts of a page to be rendered as different

layers in the that's not a worry, but it can degrade performance for

complex layouts with lots of positioning elements. browser's

rendering engine.

Accessibility Implications

Developers need to make sure their content stays accessible when

using positioning to create unique layouts. This includes:

keyboard navigation

• Logical tab order for

77
MATS Centre for Distance and Online Education, MATS University

Notes important content

• Making sure fixed elements don’t cover

work around fixed elements

• Offering mechanisms to dismiss or

to make sure the content stays legible

• Using screen readers

2.6 Width, Height, and Overflow Properties

Width and height determine the physical size of elements (and

overflow properties help us deal with the text that overflows these

Managing the size of elements is a basic principle of CSS that affects

layout, user interface, dimensions).

Width and Height Properties

CSS offers various approaches to setting elements' width and height,

each applicable to particular situations and functioning in its own

manner.

Basic Width and Height

With specific values, the most basic way is to use the width and

height properties:

.box {

width: 300px;

height: 200px;

}

These properties may take different units:

Pixels (px): Static-size units that render the same across devices,

making them ideal for elements that need to retain a precise size,

regardless of the context.

units (vw, vh): Relative to the viewport size, where 1vw = 1% of

viewport width, and 1vh = 1% of viewport height. This is especially

handy for responsive designs that Viewport adapt to varying screen

sizes.

These are often used em and rem These units should be understood

relative to font size and are the basis of responsive typography, with

the difference that em is relative to the font size of the element and

rem is used relative for typography, but can come in handy for making

a scalable layout. to the font size of the root element.

Min and Max Dimensions

CSS has min-width, max-width, min-height, and max-height

properties that set limits instead of specific sizes:

78
MATS Centre for Distance and Online Education, MATS University

Notes .responsive-element {

width: 100%;

max-width: 800px;

min-height: 200px;

}

min-width/min-height: Which prevents things from getting too small

to for responsive design This property is crucial be usable or look

good on small screens.

 max-width/max-height: Limit how much space your element can

occupy on a particularly wide screen which would increase readability

or maintain the intended design.

width: 100%; max-width: X, which lets an element fill its container

up to a certain size. When it comes to responsive design this is a very

common pattern:

Box-Sizing Property

The box-sizing property has a big impact on how width and height are

calculated:

.content-box {

/ box-sizing: content-box; / Default

width: 300px;

padding: 20px;

border: 1px solid black;

342px */ / Total fucking width: 300px + 40px (padding) + 2px

(border) =

}

.border-box {

box-sizing: border-box;

width: 300px;

padding: 20px;

border: 1px solid black;

border. Total width: 300px (includes padding and

}

The content-box: The default, where width and height only includes

the content padding and border are added to the defined heights.

Making it more intuitive and easier to predict border-box: how

they will size, since what you can see, will align with the size you

would specify. your content, padding, and borders.

Width and height include

79
MATS Centre for Distance and Online Education, MATS University

Notes Box model Many developers use the universal selector to set box-

sizing: border-box on all elements for more consistent layouts:

 *, *::before, *::after {

box-sizing: border-box;

}

Auto Width and Height

When width or height is auto inline-block elements,collapses to fit the

content. of the container. For inline and width; auto; If the element is

a block element, it will take the full width to the height of the content,

showing all the content. height:auto: Resizes according (the default

for many elements), the browser determines the appropriate

dimension:

Aspect Ratio

Modern CSS includes support for the aspect-ratio property, which

preserves a certain ratio of width to height:

.video-container {

width: 100%;

aspect-ratio: 16 / 9;

}

It is especially useful in the case of responsive media elements and

helps to preserve the ratio across screens.

Overflow Properties

This is useful when a width and height are set, leading to text larger

than or extending out The overflow property specifies how to handle

content that is too big to fit of these limitations. into an area.

Basic Overflow

values: The overflow property can have multiple

visible: Content will not be clipped and may be rendered outside the

box of the element.

hidden: The content that might extend beyond the element is hidden.

scroll: Scrollbars show up regardless of whether the content A

scrollbar will be overflows. added to the element so the user can

scroll to see the overflowing content.

auto: Scrollbars are only displayed when the content is overflowing

the boundaries of the element

.text-container {

width: 300px;

height: 200px;

80
MATS Centre for Distance and Online Education, MATS University

Notes overflow: auto;

}

Directional Overflow

:

.table-container {

width: 100%;

max-height: 400px;

necessary */ overflow-x: auto; /* Allows horizontal scrolling if

/* Disable vertical scrolling */ overflow-y: hidden;

}

This can come in handy especially for tables, codeblocks, or other

content that you might want scrolling on the horizontal axis (while

still keeping constraints on the vertical).

Text Overflow

For text only overflow control, the text-overflow property adds more

value:

.truncated-text {

width: 200px;

white-space: nowrap;

overflow: hidden;

text-overflow: ellipsis;

}

To truncate multi-line text, we need a set needed with UI elements

where space is at a premium. This produces text that truncates with a

series of ellipsis (…) if the text longer than the width of its container,

as is often of properties:

.multiline-truncated {

width: 300px;

/* ~ 3 lines of text */ max-height: 4.5em;

overflow: hidden;

display: -webkit-box;

-webkit-line-clamp: 3;

-webkit-box-orient: vertical;

}

Scroll Behavior

The scroll-behavior property determines how programmatic scrolling

animations work:

.smooth-scroll {

81
MATS Centre for Distance and Online Education, MATS University

Notes height: 300px;

overflow: auto;

scroll-behavior: smooth;

}

This allows for smooth scroll animations when users navigate within

the element using JavaScript or anchors.

Practical Applications

Responsive Images

Responsive control of image dimensions while maintaining aspect

ratios:

.responsive-image {

max-width: 100%;

height: auto;

}

This simple pattern prevents images from exceeding the width of their

container while keeping their original aspect ratio.

Card Components

Fixed-height cards and controlled overflow for same UI:

.card {

width: 300px;

height: 400px;

}

.card-header {

height: 60px;

}

.card-image {

height: 200px;

overflow: hidden;

}

.card-content {

height: 140px;

overflow: auto;

}

Modal Windows

content for modals with large amount of content Scrollable

.modal {

position: fixed;

top: 50%;

82
MATS Centre for Distance and Online Education, MATS University

Notes left: 50%;

absolute; position:

width: 80%;

max-width: 600px;

max-height: 80vh;

overflow: auto;

}

Horizontal Scrolling Sections

Making horizontal scrolling sections in the likes of a gallery or

feature:

.horizontal-scroll {

width: 100%;

overflow-x: auto;

white-space: nowrap;

}

.horizontal-scroll.item {

display: inline-block;

width: 250px;

height: 300px;

margin-right: 20px;

}

Best Practices and Considerations

Responsive Design

In responsive designing fixed dimensions can give you a headache

across multiple screen sizes. Instead:

• Use relative units: percentages and viewport units

• Use max-width and min-width constraints instead of fixed widths

• Use content adaptive heights (height: auto)

• Adjust dimensions according to viewport size with media queries

Performance Considerations

Overflow properties can affect performance, specifically with the use

of when applied in large or many éléments:

• Scrolling Containers for example, can by their nature be

performance taxing on mobile

• Avoid very long scrolling containers use pagination instead

• use overflow: auto instead of overflow scroll to avoid unwanted

scrollbars

83
MATS Centre for Distance and Online Education, MATS University

Notes • Use nested scrolling containers with care, as they can result in

challenging user experiences

Accessibility Implications

Any overthrow controls also need to be added with accessibility in

mind:

• Make scrollable areas obvious to every user

• Get keyboard access to scrollable content

• Don't hide content users might need to scroll to access without

indicators

• Run screen readers to make certain that relationships between

content are still clear

2.7 List Styles and calc() Function

List Styles

HTML lists are fundamental elements for presenting related items in a

structured format. CSS provides extensive styling capabilities for lists

through various properties and techniques.

Basic List Properties

CSS offers several properties specifically for styling lists:

• list-style-type: Defines the marker (bullet or numbering) style

for list items.

• list-style-position: Determines whether the marker appears

inside or outside the content flow.

• list-style-image: Allows using a custom image as the list

marker.

• list-style: A shorthand property combining the above three

properties.

List Style Types

The list-style-type property offers numerous predefined marker styles:

For unordered lists ():

• disc: The default filled circle

• circle: An empty circle

• square: A filled square

• none: No marker

For ordered lists ():

• decimal: Standard numbers (1, 2, 3)

• decimal-leading-zero: Numbers with leading zeros (01, 02,

03)

84
MATS Centre for Distance and Online Education, MATS University

Notes • lower-roman: Lowercase Roman numerals (i, ii, iii)

• upper-roman: Uppercase Roman numerals (I, II, III)

• lower-alpha or lower-latin: Lowercase letters (a, b, c)

• upper-alpha or upper-latin: Uppercase letters (A, B, C)

• lower-greek: Lowercase Greek letters (α, β, γ)

ul {

 list-style-type: square;

}

ol {

 list-style-type: upper-roman;

}

In addition to these common values, CSS also supports more

specialized numbering systems like armenian, georgian, and various

language-specific numbering via cjk-ideographic (Chinese-Japanese-

Korean), hiragana, katakana, and others.

List Style Position

The list-style-position property controls whether the marker appears

inside or outside the content block:

ul {

 list-style-position: outside; /* Default */

}

ol {

 list-style-position: inside;

}

outside: Places markers in the margin area, creating a cleaner

alignment of the actual content.

inside: Places markers within the content area, which can be useful

when you need the entire list, including markers, to fit within a

specific width.

Custom List Markers with Images

For more distinctive list styling, custom images can replace standard

markers:

ul {

 list-style-image: url('bullet.png');

}

However, this basic approach offers limited control over marker size

and positioning. For more precise control, many developers prefer

using background images or pseudo-elements instead.

85
MATS Centre for Distance and Online Education, MATS University

Notes List Style Shorthand

The list-style shorthand property combines type, position, and image

in a single declaration:

ul {

 list-style: square inside url('bullet.png');

}

The order doesn't matter, and any values can be omitted, with defaults

applied for missing values.

Advanced List Styling Techniques

While basic list properties provide a foundation, more sophisticated

styling often requires additional techniques.

Styling with Pseudo-elements

Using : before pseudo-elements offers precise control over marker

appearance:

ul {

 list-style-type: none; /* Remove default markers */

 padding-left: 1.5em; /* Space for custom markers */

}

ul li::before {

 content: "→ "; /* Custom marker */

 display: inline-block;

 width: 1em;

 margin-left: -1em;

 color: #0066cc;

}

This approach allows complete customization of marker color, size,

spacing, and even animations or transitions.

Multi-level Lists

For nested lists, different marker styles can visually distinguish

hierarchy levels:

ul {

 list-style-type: disc;

}

ul ul {

 list-style-type: circle;

}

ul ul ul {

 list-style-type: square;

86
MATS Centre for Distance and Online Education, MATS University

Notes }

Horizontal Lists

Lists can be transformed into horizontal navigations or button groups:

ul.horizontal {

 list-style-type: none;

 padding: 0;

 margin: 0;

}

ul.horizontal li {

 display: inline-block;

 margin-right: 1em;

}

For more sophisticated horizontal lists, flexbox provides additional

control:

ul.flex-horizontal {

 list-style-type: none;

 padding: 0;

 margin: 0;

 display: flex;

 gap: 1em;

}

Custom Counters

For complex numbering requirements, CSS counters offer

programmatic control over numbering:

ol {

 list-style-type: none;

 counter-reset: item;

}

ol li {

 counter-increment: item;

}

ol li::before {

 content: "Section " counter(item) ": ";

 font-weight: bold;

}

Counters can be nested, formatted, and combined with text or other

content, making them powerful for document structuring.

87
MATS Centre for Distance and Online Education, MATS University

Notes Practical List Styling Examples

Modern Navigation Menu

.nav-menu {

 list-style-type: none;

 padding: 0;

 margin: 0;

 display: flex;

 gap: 20px;

}

.nav-menu li a {

 text-decoration: none;

 color: #333;

 font-weight: 500;

 transition: color 0.3s;

}

.nav-menu li a:hover {

 color: #0066cc;

}

Feature List with Custom Icons

.feature-list {

 list-style-type: none;

 padding: 0;

}

.feature-list li {

 padding-left: 2em;

 margin-bottom: 1em;

 position: relative;

}

.feature-list li::before {

 content: "✓";

 position: absolute;

 left: 0;

 color: #4CAF50;

 font-weight: bold;

}

Timeline or Process Steps

.timeline {

 list-style-type: none;

88
MATS Centre for Distance and Online Education, MATS University

Notes padding: 0;

 position: relative;

}

.timeline::before {

 content: "";

 position: absolute;

 top: 0;

 bottom: 0;

 left: 15px;

 width: 2px;

 background: #ddd;

}

.timeline li {

 padding-left: 40px;

 position: relative;

 margin-bottom: 30px;

}

.timeline li::before {

 content: "";

 position: absolute;

 left: 10px;

 top: 5px;

 width: 12px;

 height: 12px;

 border-radius: 50%;

 background: #0066cc;

 border: 2px solid white;

}

The calc() Function

The calc() function is a powerful CSS feature that allows

mathematical calculations for property values, enabling dynamic and

responsive layouts with precision.

Basic Syntax and Operations

The calc() function performs calculations using standard mathematical

operators:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

89
MATS Centre for Distance and Online Education, MATS University

Notes • Division (/)

.element {

 width: calc(100% - 40px);

}

This example sets the width to 100% of the parent container minus 40

pixels, creating responsive padding without additional elements.

Important syntax rules include:

• Spaces must surround + and - operators

• Spaces are optional for * and / operators

• Calculations can be nested within parentheses

• Values can mix different units

Mixing Units

One of calc()'s most powerful features is combining different unit

types in a single calculation:

.column {

 width: calc(50% - 20px);

 margin-left: calc(1rem + 2vw);

 height: calc(100vh - 5em);

}

This allows for truly responsive designs that combine the benefits of

relative (%, em, rem, vw) and absolute (px, pt) units.

Common Use Cases

Fluid Typography

body {

 font-size: calc(16px + 0.5vw);

}

This creates text that scales smoothly with viewport width without

requiring media queries.

Flexible Layouts with Fixed Elements

.sidebar {

 width: 250px;

}

.main-content {

 width: calc(100% - 250px);

}

This maintains a fixed-width sidebar while allowing the main content

to use the remaining space.

90
MATS Centre for Distance and Online Education, MATS University

Notes Centering with Fixed Margins

.container {

 width: calc(100% - 40px);

 max-width: 1200px;

 margin: 0 auto;

}

This centers a container with consistent 20px margins on each side

while respecting a maximum width.

Grid-like Layouts

.grid {

 display: flex;

 flex-wrap: wrap;

}

.grid-item {

 width: calc((100% - 40px) / 3);

 margin-right: 20px;

 margin-bottom: 20px;

}

.grid-item:nth-child(3n) {

 margin-right: 0;

}

This creates a three-column grid with 20px gutters without requiring

CSS Grid or complex calculations.

Variable-height Elements

.section {

 min-height: calc(100vh - 80px); /* Subtracting header height */

}

This ensures sections fill the viewport minus the header height.

Nested Calculations

Calc() functions can be nested for more complex scenarios:

.element {

 width: calc(50% - calc(20px + 2%));

}

This can be simplified to:

.element {

 width: calc(50% - 20px - 2%);

}

91
MATS Centre for Distance and Online Education, MATS University

Notes Variables and calc()

Calc() works seamlessly with CSS variables for powerful,

maintainable layouts:

:root {

 --gutter: 20px;

 --columns: 3;

}

.grid-item {

 width: calc((100% - (var(--gutter) * (var(--columns) - 1))) / var(--

columns));

 margin-right: var(--gutter);

}

.grid-item:nth-child(var(--columns)n) {

 margin-right: 0;

}

This allows changing the grid structure by updating variables rather

than rewriting calculations.

Browser Support and Limitations

Modern browsers have excellent support for calc(), but some

considerations include:

• Avoid division by zero or potentially zero values

• Complex calculations can impact rendering performance

• Very old browsers (IE8 and earlier) don't support calc()

• Some properties may have unexpected behavior with calc() in

certain browsers

When using calc() in production, always test across target browsers

and provide fallbacks where necessary.

2.8 Visibility and Print-Specific CSS

Visibility Properties

CSS provides several methods to control element visibility, each with

distinct behaviors and use cases. Understanding these differences is

crucial for creating interactive interfaces and responsive designs.

display: none vs. visibility: hidden

The two primary methods for hiding elements have important

differences:

display: none

.hidden-display {

 display: none;

92
MATS Centre for Distance and Online Education, MATS University

Notes }

When an element has display: none:

• It's completely removed from the document flow

• It takes up no space in the layout

• It's not visible to screen readers or assistive technology

• Child elements cannot override this and become visible

• It's not part of the tab order

• It will not receive mouse events or focus

This is appropriate for:

• Content that should be completely removed from the page

until needed

• Implementing "toggle" features where space allocation

changes when elements appear/disappear

• Initial states for elements that will be revealed by JavaScript

visibility: hidden

.hidden-visibility {

 visibility: hidden;

}

When an element has visibility: hidden:

• It remains in the document flow

• It takes up space in the layout as if it were visible

• It's not visible to users but may still be read by some screen

readers

• Child elements can override this with visibility: visible

• It's not part of the tab order

• It will not receive mouse events

This is appropriate for:

• Elements that should maintain their space in the layout when

hidden

• Situations where you need to measure hidden elements

• When you need to selectively show child elements of a hidden

parent

Opacity and Alpha Transparency

Another approach to controlling visibility is adjusting transparency:

.transparent {

 opacity: 0.5; /* 50% transparency */

}

.invisible {

93
MATS Centre for Distance and Online Education, MATS University

Notes opacity: 0; /* Completely transparent but still present */

}

.transparent-background {

 background-color: rgba(255, 0, 0, 0.5); /* Red with 50% alpha */

}

When an element has opacity: 0:

• It remains in the document flow

• It takes up space in the layout

• It can receive mouse events and focus

• It's part of the tab order by default

• All child elements inherit the transparency

This approach is useful for:

• Fade in/out animations and transitions

• Hover effects

• Interactive elements that should respond even when not visible

• Creating overlay effects

Clip and Clip-path

For more complex hiding requirements, clipping can be used:

.clipped {

 position: absolute;

 clip: rect(0, 0, 0, 0);

}

.clip-path {

 clip-path: circle(0);

}

These techniques:

• Remove the element visually while keeping it in the DOM

• Can be useful for accessibility patterns where elements should

be available to screen readers but not visible

• Allow for creative reveal animations when combined with

transitions

The modern approach uses clip-path which offers more flexibility and

animation capabilities than the older clip property.

Hidden Attribute

HTML5 introduced the hidden attribute as a semantic way to hide

elements:

<div hidden>This content is hidden</div>

94
MATS Centre for Distance and Online Education, MATS University

Notes This has similar effects to display: none but carries semantic meaning.

It can be overridden with CSS:

[hidden] {

 display: block !important;

}

Combining Methods for Custom Visibility Patterns

Different techniques can be combined for specific requirements:

Accessible Hidden Content (Visually hidden but screen reader

accessible)

.visually-hidden {

 position: absolute;

 width: 1px;

 height: 1px;

 padding: 0;

 margin: -1px;

 overflow: hidden;

 clip: rect(0, 0, 0, 0);

 white-space: nowrap;

 border: 0;

}

This pattern hides content visually while keeping it accessible to

screen readers essential for implementing proper accessibility.

2.9 Cursor and Button Styling

The visual feedback provided by cursors and buttons plays a crucial

role in creating intuitive and responsive user interfaces. These

elements serve as the primary interaction points between users and

websites, making their styling essential for effective user experience

design.

Cursor Styling

CSS provides the cursor property to modify how the mouse pointer

appears when hovering over different elements. This subtle yet

powerful feature helps communicate to users what actions are

possible.

.clickable {

 cursor: pointer; /* Changes to a hand icon indicating clickability */

}

.text-selection {

 cursor: text; /* Changes to text selection I-beam */

95
MATS Centre for Distance and Online Education, MATS University

Notes }

.draggable {

 cursor: move; /* Changes to a move icon */

}

.loading {

 cursor: wait; /* Changes to loading indicator */

}

.disabled {

 cursor: not-allowed; /* Indicates an element cannot be interacted

with */

}

Custom cursors can also be implemented for more unique interfaces:

.custom-cursor {

 cursor: url('path/to/custom-cursor.png'), auto;

}

Button Styling

Buttons are among the most common interactive elements on

websites, and their styling can significantly impact user engagement.

Effective button styling involves several key aspects:

Basic Button Styling

.button {

 display: inline-block;

 padding: 10px 20px;

 background-color: #3498db;

 color: white;

 border: none;

 border-radius: 4px;

 font-family: 'Arial', sans-serif;

 font-size: 16px;

 text-align: center;

 text-decoration: none;

 cursor: pointer;

}

Interactive States

Well-designed buttons provide visual feedback for different

interaction states:

.button:hover {

 background-color: #2980b9; /* Darker shade when hovered */

96
MATS Centre for Distance and Online Education, MATS University

Notes }

.button:active {

 background-color: #1f6aa5; /* Even darker when clicked */

 transform: translateY(1px); /* Slight movement to simulate pressing

*/

}

.button:focus {

 outline: 2px solid #74b9ff; /* Accessibility feature for keyboard

navigation */

 outline-offset: 2px;

}

.button:disabled {

 background-color: #cccccc;

 color: #999999;

 cursor: not-allowed;

 opacity: 0.7;

}

Button Variations

Different types of buttons can be styled distinctly to communicate

their purpose:

/* Primary action button */

.button-primary {

 background-color: #3498db;

}

/* Secondary action button */

.button-secondary {

 background-color: transparent;

 border: 2px solid #3498db;

 color: #3498db;

}

/* Danger action button */

.button-danger {

 background-color: #e74c3c;

}

/* Success action button */

.button-success {

 background-color: #2ecc71;

}

97
MATS Centre for Distance and Online Education, MATS University

Notes Button Sizes

different contexts. Providing multiple button sizes gives you

flexibility in

.button-small {

padding: 5px 10px;

font-size: 12px;

}

.button-large {

padding: 15px 30px;

font-size: 18px;

}

Modern Button Effects

add visual interest: Modern button styles use subtle effects to

.button-modern {

transition: all 0.3s ease;

0, 0, 0.10); box-shadow: 0 2px 4px rgba(0,

}

.button-modern:hover {

transform: translateY(-2px);

0 6px 8px rgba(0, 0, 0, 0.15); Hold you also as opaque and without

respect to their end up appearing as a result when your cursor under

the following defining a special effect for box-shadow:

}

.button-modern:active {

transform: translateY(0);

0, 0, 0.1); box-shadow: 0 2px 4px rgba(0,

}

98
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Advanced Styling Techniques and Responsive

Design

2.10 Advanced CSS Topics: Images, Colors, Gradients, Shadows,

Fonts, Transformations, Animations, and Z-Index

can add up to a unified and logical UI. with the elements(interaction

states). These small details When you spend time on cursor/button

styling, it adds some beauty to your website and makes it more user-

friendly by giving clear hints on where the user is interacting Fonts,

Transformations, Animation and Z-Index Other Elements in CSS:

Images, Colors, Gradients, Shadows,

Image Handling

CSS provides several properties to adjust how images are displayed

and integrated inside a layout.

 Basic Image Properties

.responsive-image {

/ max-width: 100%; / Allows the image to be responsive

actually true. None of the statements above are

}

.background-image {

url(relative/path/to/image. jpg'); background-image:

the entire container */ background-size: cover; /* covers

image */ background-position: center; /* center

no-repeat; /* Do not tile */ background-repeat:

}

Image Filters

CSS filters can perform advanced image manipulations:

.filtered-image {

grayscale(100%); /* Brews it in black and white (maybe darker) */

filter:

}

.filtered-image:hover {

/ filter: grayscale(100%); / Grayscale/black and white, color on

hover

ease 0.5s; /* Smooth transition */ transition: filter

}

.multiple-filters {

sepia(40); filter: contrast(100) brightness(90)

99
MATS Centre for Distance and Online Education, MATS University

Notes }

Object-Fit Property

The property object-fit defines how an image or video should be

resized to fit its container:

.contain-image {

width: 300px;

height: 200px;

/ object-fit: contain; / Maintain aspect ratio within mega

}

.cover-image {

width: 300px;

height: 200px;

entire box, may get cropped */ object-fit: cover; /* Covers

}

Advanced Color Techniques

options and opacity control is available. With modern CSS, color

format

Color Formats

.color-examples {

#3498db; /* Hexadecimal */ color-1:

HEX */ color-2: #3498db; /*

0.7); /* RGBA */ color-3: rgba(52, 152, 219,

189); /* RGB */ color-4: rgb(49, 130,

HSLA with alpha */ color-5: hsla(204, 70%, 53%, 0.7); /*

}

Color Variables

CSS custom properties (variables) let us centralize the management of

colors:

:root {

--primary-color: #3498db;

--secondary-color: #2ecc71;

--text-color: #333333;

--accent-color: #e74c3c;

}

.element {

color: var(--text-color);

background-color:var(--primary-color);}

 border: 2px solid var(--accent-color);

100
MATS Centre for Distance and Online Education, MATS University

Notes }

Gradients

Gradients create smooth transitions between colors, adding depth and

visual interest.

Linear Gradients

.linear-gradient {

 background: linear-gradient(to right, #3498db, #2ecc71);

}

.multi-stop-gradient {

 background: linear-gradient(45deg, #3498db, #2ecc71, #e74c3c);

}

.transparent-gradient {

 background: linear-gradient(to bottom, rgba(52, 152, 219, 1),

rgba(52, 152, 219, 0));

}

Radial Gradients

.radial-gradient {

 background: radial-gradient(circle, #3498db, #2ecc71);

}

.positioned-radial {

 background: radial-gradient(circle at top right, #3498db, #2ecc71);

}

Conic Gradients

. conic-gradient {

#ff5161, #7f1b43, #ff6988); background: conic-gradient(from 45deg,

#ff6988,

wheel */ border-radius: 50%; /* Makes it appears as a color

}

Shadows

Shadows help create depth and dimension to make interfaces more

visually interesting.

Box Shadows

.basic-shadow {

rgba(0,0,0,0.1); box-shadow: 0 4px 8px

}

.multiple-shadows {

box-shadow:

0 2px 4px rgba(0, 0, 0, 0.1),

101
MATS Centre for Distance and Online Education, MATS University

Notes 0, 0.1); 0px 8px 16px rgba(0, 0,

}

.inset-shadow {

0.1); box-shadow: inset 0 2px 4px rgba(0, 0, 0,

}

.colored-shadow {

62, 80, 0.5); box-shadow: 0 4px 8px rgba(44,

}

Text Shadows

.basic-text-shadow {

1px 1px 2px rgba(0, 0, 0, 0.3); text-shadow:

}

.glow-effect {

.8); text-shadow: 0 0 10px rgba(52, 152, 219,

}

.multiple-text-shadows {

text-shadow:

1px 1px 2px #3498db,

-1px -1px 2px #e74c3c;

}

Font Styling

Typography is a central aspect of design, and CSS provides deep

control over text formatting.

 Web Fonts

@font-face {

font-family: 'CustomFont';

src: url('fonts/custom-font. woff2') format('woff2'),

url('fonts/custom-font. woff') format('woff');

font-weight: normal;

font-style: normal;

loaded */ font-display: swap; /* How font is

}

.custom-font-text {

CSS: font-family: 'CustomFont', sans-serif; Or, as really scripted in

}

Variable Fonts

@font-face {

font-family: 'VariableFont';

102
MATS Centre for Distance and Online Education, MATS University

Notes format('woff2-variations'); url('fonts/variable-font.eot'); woff2') src:

100 900; /* Weight range */ font-weight:

}

.variable-font-example {

sans-serif; font-family: 'VariableFont',

/* Any value between 100-900 */ Font-weight: 275;

/ font-variation-settings: 'wght' 275, 'wdth' 80; / More axes

}

Advanced Text Styling

.stylized-text {

font-variant: small-caps;

letter-spacing: 1.5px;

line-height: 1.6;

text-transform: uppercase;

underline wavy #3498db; `text-decoration:

text-underline-offset: 5px;

font-kerning: normal;

"liga" on, "kern" on; font-feature-settings:

}

Transformations

CSS transforms change how elements look on the page, but do not

change where they live (flow) in the document.

 2D Transforms

.translate-example {

element right 20px transform: translate(20px, 30px); /Move & down

30px/

}

.rotate-example {

/ transform: rotate(360deg); / complete rotation

}

.scale-example {

original size! */ transform: scale(1.5); /* 150% the

}

.skew-example {

both X and Y */ transform: skew(10deg, 5deg); /* skewing on

}

.combined-transform {

scale(1.2); transform: translate(20px, 0) rotate(45deg)

103
MATS Centre for Distance and Online Education, MATS University

Notes }

3D Transforms

.perspective-container {

Set the space into 3D */ perspective:1000px; /*

}

.rotate3d-example {

have transform: rotateX(45deg) rotateY(30deg) rotateZ(15deg); you

preserve-3d; /* 3D positioning of children is preserved */ transform-

style:

}

.flip-card {

transform: rotateY(180deg);

rotate */ backface-visibility: hidden; /* makes the back face hidden

when

}

Animations

CSS animations enable smooth transitions between states to create

dynamic, interactive user interfaces.

Keyframe Animations

@keyframes slideIn {

0% {

transform: translateX(-100%);

opacity: 0;

}

100% {

transform: translateX(0);

opacity: 1;

}

}

.animated-element {

forwards; animation: inFromRight 1s ease-out

}

Animation Properties

.customized-animation {

animation-name: slideIn;

animation-duration: 1.5s;

ease-in-out; transition-timing-function:

animation-delay: 0.2s;

104
MATS Centre for Distance and Online Education, MATS University

Notes animation-iteration-count: 2;

backwards; animation-direction:

backards; animation-fill-mode:

running; animation-play-state:

}

Multiple Animations

.multi-animated {

animation:

slideIn 1s ease-out,

fadeColor 3s linear infinite;

}

Transitions

elements. Triggers are helpful for state changes on interactive

.transition-example {

background-color: #3498db;

ease, transform 500ms ease-out; transition: background-color 300ms

}

.transition-example:hover {

background-color: #2ecc71;

transform: scale(1.1);

}

. staggered-transition. item {

}

*.05s)); transition-delay: calc((var(--item-index)

}

Z-Index and Stacking Context

The z-index is a CSS property that decides which element stays over

another.

.stacking-example {

to make z-index work */ position: relative; /* Needed

on top */ z-index: 10; /* Higher value comes

}

.stacking-context {

context Create a new stacking

position: relative;

z-index: 0;

stacking context as well */ opacity: 0.99; /* Creates a

}

105
MATS Centre for Distance and Online Education, MATS University

Notes is understanding stacking contexts: A vital part of controlling layered

layouts

.parent {

position: relative;

z-index: 1;

}

.child {

position: absolute;

Only matters compared to this parent’s stacking context */ z-index:

100; /*

}

.sibling {

position: relative;

and all its children */ be on top of. parent z-index: 2; /* Will

}

Once you get the hang of them, you can create quite sophisticated

designs that actually Some of these advanced CSS topics can be

powerful improve user experience without sacrificing performance or

accessibility.tools for visually appealing and interactive websites.

2.11 Responsive Web Design – CSS Media Queries

At Responsive web design: Responsive web design is one of the

important techniques the core of this approach lies the CSS media

queries which allow developers to specify styles based on device

attributes. used for web development and aims at making the website

readable and functional across multiple devices and screen sizes.

Understanding Media Queries

These Media queries use the CSS @media rule to conditions usually

concern screen sizes and other device features. apply certain styles

when specified conditions are met.

Basic Syntax

(condition) { @media mediaType and

unless conditions are met */ Can't style stuff

}

• are: Some of the common media types

• screen: For the computer screen, tablets, and mobile phones

• print:For printed pages and print previews

• all: For all media types (default if not specified)

106
MATS Centre for Distance and Online Education, MATS University

Notes Common Breakpoints

Breakpoints should be about content and not specific devices, but here

are commonly used ranges:

/* Small devices (phones) */

(max-width:576px) { @media

your kind words. Thank you so much for

}

**/ /* Medium devices (tablets)

screen and (min-width: 577px) and (max-width: 768px) { @media

/* Styles for tablets */

}

Large devices (laptops/desktops) */ @media (min-width: 1200px) {

/*

(min-width: 769px) and (max-width: 1024px){ @media screen and

/* Styles for laptops */

}

{ /* Extra large devices (large desktops) */ @media screen and (min-

width: 1200px)

screen and (min-width: 1024px) { @media

For more details on how this works, read the first article of the series–

paragraph styling in CSS.

 }

Mobile-First Approach

A mobile-first approach means to build for mobile devices first and

then progressively enhance for larger screens:

 Inline styles */ Mobile base styles /*

.container {

width: 100%;

padding: 15px;

}

/* Adjust for tablets */

screen and (min-width: 768px){ @media

.container {

width: 750px;

margin: 0 auto;

}

}

/* Adjust for desktops */

107
MATS Centre for Distance and Online Education, MATS University

Notes screen and (min-width: 1024px){ @media

.container {

width: 970px;

}

}

adjust for large screens */} {/*

and (min-width: 1200px) { @media screen

.container {

width: 1170px;

}

}

Responsive Layouts

Flexible Grid Systems

.grid-container {

display: grid;

gap: 20px;

column on mobile */ grid-template-columns: repeat(1, 1fr); /* One

}

768px) { @media screen and (min-width:

.grid-container {

repeat(2, 1fr); /* Tablet: Two columns */ grid-template-columns:

}

}

1024px) { @media screen and (min-width:

.grid-container {

repeat(3, 1fr); /* 3 cols for desktop */ grid-template-columns:

}

}

screen and (min-width: 1200px){ @media

.grid-container {

minmax(0, 1fr)); /* Four columns on large screen */ grid-template-

columns: repeat(4,

}

}

Flexbox Responsive Patterns

.flex-container {

display: flex;

/* Stack vertically on mobile layout */ flex-direction: column;

108
MATS Centre for Distance and Online Education, MATS University

Notes gap: 20px;

}

{ @media screen and (min-width: 768px)

.flex-container {

are laid out horizontally on wider screens */ flex-direction: row; /*

Where the flex items

flex-wrap: wrap;

}

.flex-item {

2 items per row */ flex: 0 0 calc(50% - 20px); /*

}

}

{ @media (min-width: 1024px)

.flex-item {

calc(30vw - 20px); /* Three items per row */ flex: 0 0

}

}

Responsive Typography

:root {

 /* Base font sizes */

 --base-font-size: 16px;

 --h1-size: 1.75rem;

 --h2-size: 1.5rem;

 --body-size: 1rem;

}

body {

 font-size: var(--base-font-size);

}

h1 { font-size: var(--h1-size); }

h2 { font-size: var(--h2-size); }

p { font-size: var(--body-size); }

@media screen and (min-width: 768px) {

 :root {

 --base-font-size: 17px;

 --h1-size: 2rem;

 --h2-size: 1.75rem;

 }

}

109
MATS Centre for Distance and Online Education, MATS University

Notes @media screen and (min-width: 1024px) {

 :root {

 --base-font-size: 18px;

 --h1-size: 2.5rem;

 --h2-size: 2rem;

 }

}

Fluid Typography with Clamp

The clamp() function provides responsive typography without media

queries:

h1 {

 /* Min size: 1.5rem, preferred: 5vw, max: 2.5rem */

 font-size: clamp(1.5rem, 5vw, 2.5rem);

}

p {

 font-size: clamp(1rem, 2vw, 1.25rem);

 line-height: clamp(1.5, calc(1.5 + 2 * ((100vw - 320px) / 1280)), 2);

}

Responsive Images

.responsive-image {

max-width: 100%;

height: auto;

}

*/

.art-direction {

/ background-image: url('small. jpg'); / Mobile default

}

768px) { @media screen and (min-width:

.art-direction {

url(medium. jpg'); /* Tablet version */ background-image:

}

}

1024px) { @media screen and (min-width:

.art-direction {

background-image: url('large. jpg'); /* Desktop version */

}

}

110
MATS Centre for Distance and Online Education, MATS University

Notes

(HTML) with CSS styling Using the picture element

picture {

display: block;

width: 100%;

}

picture img {

width: 100%;

height: auto;

}

Advanced Media Query Features

Orientation

and (orientation: landscape) { @media screen

portrait) { @media(orientation:

.sidebar {

width: 100%;

height: auto;

}

}

(orientation: landscape) { @media screen and

landscape) { @media only screen and (orientation:

.sidebar {

width: 30%;

height: 100vh;

}

}

Display Quality

screen and (min-resolution: 192dpi){ @media

and (min-resolution: 2dppx) { @media screen

and (-webkit-min-device-pixel-ratio: 2), only screen and (min-device-

pixel-ratio: 2) { @media only screen

.hero-image {

url(‘hero-2x. jpg'); background-image:

}

}

using @supports Support Queries

When we combine media queries with feature queries, we can achieve

some pretty awesome responsive design:

111
MATS Centre for Distance and Online Education, MATS University

Notes screen and (min-width: 768px) { @media

@supports (display: grid) {

.container {

display: grid;

fr)); grid-template-columns: repeat(auto-fill, minmax(250px, 1

}

}

not(display: grid) { @supports

fallback since IE doesn’t support grid */ IE has to use a

.container {

display: flex;

flex-wrap: wrap;

}

.item {

width: calc(50% - 20px);

margin: 10px;

}

}

}

Reduced Motion

Media queries to address accessibility concerns:

 { } @media (prefers-reduced-motion: no-preference)

.animated {

0.5s ease-in-out; animation: fadeIn

}

}

{ @media (prefers-reduced-motion: reduce)

{animation: none;} motion-reduce:reduce

.animated {

animation: none;

transition: none;

}

}

Dark Mode

:root {

--bg-color: #ffffff;

--text-color: #333333;

--accent-color: #3498db;

112
MATS Centre for Distance and Online Education, MATS University

Notes }

dark) @media (prefers-color-scheme:

:root {

--bg-color: #1a1a1a;

--text-color: #f0f0f0;

--accent-color: #74b9ff;

}

}

body {

color: var(--text-color);

}

.button {

var(--accent-color)` background-color:

}

Navigation Patterns Responsive

/* Mobile-first navigation */

.nav {

width: 100%;

}

.nav-menu {

appearance for mobile */ display: none; /* Default hidden

}

.nav-toggle {

display: block; ===> = {menu} (for mobile> hamburger menu)

}

.nav-menu.active {

added display: block; // show element when active class is

}

navigation Tablet and desktop

(min-width: 768px){ @media screen and

.nav-menu {

/ display: flex; / Visible, always on larger screens.

}

.nav-toggle {

none; // Bring back your hamburger menu */ display:

}

.nav-item {

margin-right: 20px;

113
MATS Centre for Distance and Online Education, MATS University

Notes }

}

Container Queries

Container queries, which are still gaining broader browser support, are

progressive they are the future of responsive design:

 /* Define a container */

.card-container {

container-type: inline-size;

container-name: card;

}

*/ How it works:

{ @container card (min-width: 400px)

.card-title {

font-size: 1.5rem;

}

.card-layout {

display: flex;

}

}

card (max-width: 399px) { @container

.card-title {

font-size: 1.2rem;

}

.card-layout {

display: block;

}

}

Design with Media Queries Responsive

• Utilize relative units: Use rem, em and percentage based

values to have more adaptive layouts.

• Content-based breakpoints : Allow your content to dictate

where the breakpoints should fall, not the particular

dimensions of devices.

• Avoid too many trackable points: The golden rule is to have

3-4 major track points.

• Test All the Time: And not just resize a browser, but using

real devices.

114
MATS Centre for Distance and Online Education, MATS University

Notes • Think performance: Keep the CSS in media queries to a

minimum to avoid bloated code.

• Use logical operators: Use and, not, and only to chain

conditions together for the most precise targeting you can

achieve.

 (max-width: 1024px) { @media screen and (min-width: 768px) and

768 < { @media screen and (min-width: 768px) and (max-width:

1024px)

/* Tablet-specific styles */

}

print */ Not Print[code] /* Everything except

@media not print {

screen { # 25. @media

}

Apply with a plan: Decide on mobile first or desktop first, then adapt

it to your project. on the various devices with which they access the

web today. With this knowledge, developers are able to create

dynamic interfaces CSS media queries ensure the responsivity of a

website, which is a key concept for designing comfortable

experiences for web usershat respond thoughtfully to different

viewing states of the application, all while balancing design and

usability.

Multiple Choice Questions (MCQs)

1. What does CSS stand for?

a) Computer Style Sheets

b) Cascading Style Sheets

c) Creative Styling System

d) Custom Styling Script

2. Which of the following is a correct way to apply an

external CSS file to an HTML document?

a) <css href="styles.css">

b) <link rel="stylesheet" type="text/css" href="styles.css">

c) <style src="styles.css">

d) <script href="styles.css">

3. What is the default position value of an HTML element in

CSS?

a) Fixed

b) Absolute

115
MATS Centre for Distance and Online Education, MATS University

Notes c) Relative

d) Static

4. Which of the following is an example of a pseudo-class

selector?

a) .container

b) #main

c) a:hover

d) div > p

5. How can you make a div element 50% transparent using

CSS?

a) opacity: 50%;

b) opacity: 0.5;

c) transparent: 50%;

d) visibility: 50%;

6. What does the z-index property control?

a) Font size

b) Layer stacking order

c) Element width

d) Border thickness

7. Which CSS property is used to change the font of text?

a) text-style

b) font-family

c) font-style

d) text-family

8. How do you apply a background color of blue to a

paragraph using CSS?

a) p { background: blue; }

b) p { bg-color: blue; }

c) p { bgcolor: blue; }

d) p { background-color: blue; }

9. What is the purpose of the calc() function in CSS?

a) Perform mathematical calculations for property values

b) Count the number of elements in a container

c) Convert CSS values to JavaScript functions

d) Apply transitions to elements

10. Which CSS unit is relative to the font size of the root

element?

a) px

116
MATS Centre for Distance and Online Education, MATS University

Notes b) em

c) rem

d) %

Short Answer Questions

1. What are the different types of CSS?

2. Define CSS specificity and its importance.

3. How does the z-index property work?

4. What are pseudo-classes and pseudo-elements in CSS? Give

examples.

5. Explain the difference between absolute, relative, and fixed

positioning in CSS.

6. How can you center a div both vertically and horizontally?

7. What is the difference between em and rem units in CSS?

8. How can media queries be used for responsive web design?

9. What is the difference between opacity and visibility

properties in CSS?

10. How do CSS animations work, and what are keyframes?

Long Answer Questions

1. Explain the different types of CSS with examples of their

usage.

2. Discuss various CSS selectors, including element, class, ID,

group, and pseudo-selectors.

3. Compare and contrast inline, internal, and external CSS.

Which one is the best practice and why?

4. Describe the importance of the CSS box model and explain its

components.

5. How do positioning properties (static, relative, absolute, and

fixed) affect element placement? Provide examples.

6. Explain how CSS media queries work and give an example of

a responsive design layout.

7. Discuss the role of CSS transitions and animations with

examples.

8. How can CSS be used to create a gradient background?

Explain the types of gradients.

9. What are flexbox and grid layouts in CSS? Compare their

differences and use cases.

10. How can CSS be used to enhance user interaction by styling

buttons and cursors? Provide examples.

117

MODULE 3

JAVASCRIPT

LEARNING OUTCOMES

By the end of this module, learners will be able to:

• Understand the basics of JavaScript, including data types and

variables.

• Implement functions, loops, and control structures for

scripting.

• Work with JavaScript objects and manipulate the Document

Object Model (DOM).

• Handle user interactions through event handling and validate

forms effectively.

• Explore ES6 features such as let, const, arrow functions, and

promises.

118
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Introduction to JavaScript and Its Fundamentals

3.1. Introduction to JavaScript – Basics, Data Types, and

Variables

JavaScript (JS) is one of the most popular programming languages in

the world, it acts as a scripting language for web development and is

front-end-side part of web development along with HTML and CSS.

JavaScript was initially created by Brendan Eich at Netscape in 1995

to make web pages more interactive as static pages. Now, it has

matured into a multi-purpose language that drives everything from

client-side web applications to server-side development using Node.

js, mobile apps using frameworks such as React Native, and even

desktop apps with Electron. Part of the widespread appeal of

JavaScript comes from the fact that it is ubiquitous nearly every web

browsers is shipped with a JavaScript engine that comes as standard

equipment meaning it’s the most available programming language on

the planet. However, being a high-level, interpreted language with

dynamic typing and first-class functions, might offer developers a

great deal of flexibility in tackling problems (and thus also at times

can create confusion for beginners who are used to robust typing). It's

ECMAScript based, and ECMAScript 2015 (ES6) was a huge turning

point in its development that had added lots of really powerful

features that made certain prior complex programming patterns easier

to code and the language itself became much more expressive and

powerful. Before diving into JavaScript, it is essential to know the

environment where it runs and executes. The JavaScript code is either

directly embedded using the tag within an HTML document, or

linked as an external file (with the. js extension. For page having

JavaScript, using a web browser we can load that page. The browser

processes page code by order by running code with the help of its

JavaScript engine, for instance, chrome uses V8 engine, while Firefox

uses a SpiderMonkey, and Safari uses JavaScriptCore (Nitro).

Browsers have their own individual implementations that might differ

a bit from one another, but they all follow the same ECMAScript

spec, which means they behave consistently across platforms. By

embedding JavaScript inside HTML files, the JavaScript code can

also interact with the content of the page using the Document Object

Model (DOM), enabling developers to build dynamic and interactive

119
MATS Centre for Distance and Online Education, MATS University

Notes user interfaces. JavaScript can run on the server with runtime

environments such as Node. js, allowing for server-side applications

and command-line tools. It is not surprising that their commonality is

a major factor in the continuing success of JavaScript in modern

software development as the glue language between different

components of an application and the full-stack tool of choice. Before

developers can write useful JavaScript programs, they need to

understand JavaScript’s fundamental? its basic syntax. The statements

you write in JavaScript are written line by line and are normally

followed by a semicolon (automatic semicolon insertion), which

instructs the browser to execute the statements on each line one by

one. It is case-sensitive, so user and User would be different

variables. JavaScript enables developers to conveniently document

their code and to disable sections of code without deleting them, as it

supports single-line comments starting with // as well as multi-line

comments that lie between /* and */. In JavaScript, the whitespace,

which consists of spaces, tabs, and line breaks, is mostly ignored by

the JavaScript engine (except for whitespace inside strings). As a

result, whitespace can be used to format your code in a readable way

without affecting the execution. This variability in syntax may make

the language more accessible to new developers, but it means

developers must develop coding conventions to ensure readability and

maintainability of the code base, a necessity if multiple programmers

share a code base since they may have different programming styles.

JavaScript implements several primitive and complex types that

developers are expected to know to write effective code, as data types

form the base of any programming language. When you declare a

variable with a value, the primitive types include Number (both

integer and float), String (text in single or double quotes or template

literals in backclean), Boolean (true or false), Undefined (a declared

variable that doesn’t contain a value), Null (an intentional absence of

value), Symbol (a type introduced in ES6 to create unique identifiers),

and BigInt (for representing a whole number larger than the Number

type can safely accommodate). JavaScript doesn't differentiate

between integers and floating-point numbers as some other

programming languages do – any number is stored as a double-

precision 64-bit floating-point value, resulting in errant behavior in

some calculations that are looking for precise integers. JavaScript

120
MATS Centre for Distance and Online Education, MATS University

Notes strings are immutable, which means that once a string is created there

is no way to modify its content, and because operations on strings

always return new string representations instead of changing the

existing value. Finally, booleans are necessary for controlling flows

and executing conditional statements, and undefined and null,

although both represent "nothing," serve different purposes for the

design of the language.

JavaScript has complex data types in addition to the primitive types

that enable you to write more complex data structures. The most base

complex type is Object or a collection of key-value pairs, which is

the building block for almost everything in JavaScript. And, one of

the built-in Javascript objec that is specialized for ordered collections,

is the array: such an object has numeric indices and a length property

that automatically updates as you add or delete elements. In

JavaScript, functions are first-class objects, so they can be assigned to

variables, passed as arguments, and returned from other functions; this

enables powerful programming paradigms like functional

programming. RegExp Regular Expressions provide regex based

searching for text. Date objects are created to represent temporal

phenomena, but they have historically been criticized for the

wackiness of their API, leading many developers to use external

libraries, such as Moment. js, or the more recent native Intl APIs for

the purpose of date manipulation. ES6 introduced Map and Set,

providing more structured approaches to collection handling with

unique keys or values, resolving the limitations of plain objects. So

this is just a short summary of about your complex types in

JavaScript being defined utilized in such a unique way that helps a

user to understand the different methods and properties utilizing a

very basic type. One such example is JavaScript which is dynamically

typed that will allow you to declare a variable to hold values of any

type and can reassigned values of any type during the execution of

your program. This is in contrast to statically typed languages, such as

Java or C++, where the data type of a variable must be declared, and

cannot be changed. JavaScript has a type system based on type

coercion——it automatically converts values from one type to

another when operations involve mixed types and for example, adding

a number to a string results in a concatenation of two strings, not an

addition of two numbers. This behaviour must be properly understood

121
MATS Centre for Distance and Online Education, MATS University

Notes as it leads to subtle bugs at awothersihins in many situations, while

being a huge time saver otherwise. In order to find out what type a

value is, the typeof operator can be used, which returns a string that

indicates the type of the operand. For primitive values, this usually

gives the expected output (for example, "number", "string",

"boolean"), but with a few quirks — most famously, typeof null

returns "object" because of a historical bug that we keep for the sake

of backward compatibility. For complex values, typeof generally

returns "object", except for functions, where it returns "function". To

differentiate between various kinds of objects more accurately,

developers commonly use functions such as Array. isArray() or the

instanceof operator that tests to see if an object has a given

constructor somewhere in its prototype chain. In JavaScript, variables

are named containers for values, and the language allows you to

declare them using different syntax, each of which exhibits different

behaviors. Unlike the var keyword, which was used before ES6, it has

a function scope and declares variables global when declared outside

of a function. But var has been largely supplanted by the more

predictable let and const keywords (also introduced in ES6) that offer

you block scope. let and const are ES6 features that allow you to

define blocks, where let is mutable and const is that which is

constant, but does not make its properties frozen, so an object

assigned to a const variable can have its properties modified, but the

assignment cannot be changed after initialization, so understanding

how immutability works in JavaScript. Variable names can include

letters, digits, underscores and dollar signs, but cannot start with a

digit; they are usually written in camelCase, with the first of a series

of words lowercase and subsequent words capitalized. Variable names

should describe what they store, but also be short enough such that

their usage remains clear. Following these conventions make the code

maintainable and avoid name collisions in large codebases being

worked on by multiple developers at the same time.

Have you ever thought variable scope in JavaScript? Variable scope

in JavaScript is a crucial JavaScript concept to learn when you want

to write effective JavaScript code and avoid unexpected behavior. The

scope defines the accessibility of variables in the program and

JavaScript has multiple types of scopes. The global scope covers the

whole program; this means that a variable defined at this level can be

122
MATS Centre for Distance and Online Education, MATS University

Notes accessed from anywhere – that being said, over usage of global

variables can create naming conflicts, and the code becomes less

maintainable. Block scope of variables, which applies to variables

declared via var within a function, restrict access to those variables to

inside that function as well as any nested functions. Block scope

(slightly more complicated) was introduced in ES6, through let and

const to limit the visibility of variables to the block in which they are

declared (curly braces), a scope like if statements, loops, and stand-

alone blocks. Lexical scope (or static scope) means that where you

can access a variable is determined based on the physical structure of

the code, not the context of its execution at runtime – which is what

enables closures, one of JavaScript’s most powerful features, where

functions retain access to variables of their containing scope after that

scope has run. By understanding these scope mechanisms, developers

can anticipate how and where their variables will behave in their

code, and avoid common pitfalls like variable hoisting, a javascript

specific mechanic that moves declarations (but not intitializations) to

the top of their containing scope at compilation phase. Operators in

JavaScript help you perform different operations on the values which

can be as simple as arithmetic to as advanced as logical> Arithmetic

operators are +, -, , /, % (remainder), * (exponentiation), and, for

conversion to a number and changing sign, also rarely used + (unary

plus) and — (unary negus). Assignment operators perform an

operation and assignment in one concise step (+=, -=, *=, /=) to

make it easier on the user. Comparison operators are used to evaluate

the relationships between values and return boolean results: equality

operators are both loose equality (==), which coerces types, and strict

equality (===), which checks that types match, while relational

operators are greater than (>), less than (=), and less than or equal to

(<=). Logical operators) &&, ^^,!) – combines (or inverts) boolean

expressions, but in JavaScript they return one of the operands, not

necessarily a boolean value, so they allow some tricks like short-

circuit evaluation and the nullish coalescing operator (??)). Bitwise

operators work with the binary representation of values, whereas the

ternary conditional operator (condition? expr1 : expr2) provides a

shorter of conditional expression. String operators include: {#1}

concatenation with the plus sign (+) and, added in ES6, template

literals with backticks for more flexible string composition with

123
MATS Centre for Distance and Online Education, MATS University

Notes embedded expressions. Since then, as JavaScript has evolved, more

data types, operators and features were introduced with each iteration

of the ECMAScript standard to provide greater capabilities. ES6

(ECMAScript 2015) introduced template literals, enabling multi-line

strings and string interpolation with ${expression} syntax, offering a

more natural and readable way to compose strings. It also added the

spread operator (...) which can unwrap iterables - like arrays - into

individual elements for use in things like passing arguments to a

function and manipulating arrays. Function declarations can also have

default parameters, giving a fallback value when no arguments are

provided. Destructuring assignment allows unpacking values from

arrays or properties from objects into distinct variables with concise

syntax. The optional chaining operator (?.) allows safely accessing

nested properties without explicitly checking for each level's

existence, preventing the infamous "cannot read property 'x' of

undefined" errors. Newer additions like nullish coalescing (??)

provide more predictable alternatives to logical OR (||) when dealing

with falsy values that might be valid in certain contexts. These

modern features have collectively transformed JavaScript

development, reducing boilerplate code and enabling more expressive,

less error-prone programming patterns that better reflect developer

intent while maintaining compatibility with the language's

foundational principles.

124
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Functions, Control Structures, and DOM

Manipulation

3.2. JavaScript Scripting – Functions, Loops, and Control

Structures

One of the most important concepts in JavaScript programming is the

concept of functions, which are reusable pieces of code that perform

specific tasks when invoked. Traditional function declarations use the

function keyword followed by a name, a parameter list in parentheses,

and a code block in curly braces (e.g., function greet(name) { return

"Hello, " + name; }). These declarations are hoisted to the top of their

enclosing scope, so they can be called even before they are present in

the code. While function declarations create functions which can be

used before their own definition (e.g. function greet (name) { return

"Hello, " + name; } can be invoked before the actual statement in the

code flow), function expressions look like function declarations but

instead of declaring a function, it will assign an anonymous or named

function to a variable (e.g. const greet = function(name) { return

"Hello, " + name; }), and also these function expressions will not get

hoisted, so you can only use these functions after their declaration in

the code flow. With ES6, function expressions can also be written

using the new arrow functions syntax (e.g., const greet = name =>

"Hello, " + name;). In addition to providing unique syntax, arrow

functions also show different behavior when it comes to this keyword,

as they inherit it from their surrounding context, instead of creating

their own, which gets rid of a typical error for standard functions. This

behavior of binding context makes arrow functions especially useful

in callback situations and when dealing with event listeners, where

preserving the correct context can otherwise require explicit binding

with the help of methods like bind(), call() or apply().JavaScript has

several ways to pass values into functions, thanks to the function

parameters. In the procedure declaration, you list the basic

parameters, which are matched by position to arguments in the

procedure call. In ES6, default parameters... meaning that the fallback

values that are used when an argument isn’t provided or is explicitly

set to undefined (e.g. function greet(name = "Guest") {... }) Rest

parameters are represented by the spread operator preceding the

parameter name (such as function sum(...numbers) {... }), and they

125
MATS Centre for Distance and Online Education, MATS University

Notes enable you to gather multiple numbers into a single array within the

function, allowing an arbitrary number of arguments to be taken by a

function, which in contrast gives you a more structured way of

working with arguments, compared to the arguments object, an array-

like but not true array object with all parameters passed into a

function. It can also be used when calling functions, where the spread

operator expands iterables into individual arguments (e.g.,

max(...array)), leading to cleaner code in many cases. Another ES6

feature is parameter destructuring, which enables functions to extract

values from arrays or properties from objects directly within the

parameter list, simplifying the manipulation of complex data

structures provided as arguments. Q: The how to get as much power

as possible from JavaScript functions? A: Use parameters and return.

It would work in other way as well, this is the trick you can use when

using other if, use this interaction, returns and slots will help.Return

values are the output that a function sends, serving as a means for a

function to convey results back to where they were summoned. By

default, in JavaScript, a function will return nothing (or, it will return

undefined) unless there is a return statement, which is the case when

the function has an explicit return statement or a return statement

without return value. The moment a return statement containing a

value gets executed, the function stops executing and the value is

passed back to the caller. Functions can return any JavaScript data

type, whether primitives, objects, arrays, even additional functions —

this last one is what makes a higher-order function possible, one of the

cornerstones of functional programming in JavaScript. You can

return multiple values by packing them into an array or an object (an

array is most commonly used to unpack the return — as the syntax

for destructuring is more concise). [[functions can return other

functions]] Functions can return other functions. This way, you will

define patterns like closures, where an inner function still has access

to a variable of its outer function after it has finished executing. This

closure mechanism allows for data encapsulation, private variables,

and function factories, where functions produce tailored functions

based on their input parameters. Return values and how to deal with

them effectively is something you must know to design functions that

play nicely in your programs as a whole and also obeys DRY through

separation of concerns.In JavaScript, functions have very different

126
MATS Centre for Distance and Online Education, MATS University

Notes variable scopes which have consequential effects on structuring code.

Local variables defined inside a function using let, const, or var can

be accessed only within that function itself, thus avoiding collision of

names with variables from another scope, and allowing encapsulation

of data.

The global scope, global variables are accessible throughout the

program(global variables are declared outside of any function at top

level & using var non-strict mode), so generally should be minimized.

Closures are one of the most powerful features of JavaScript when a

function continues referencing the variables inside its outer

(enclosing) function scope even after the outer function has finished

executing. Such behavior allows for elaborate patterns such as data

privacy, where inner functions can read and write variables that are

not visible to the outside world, effectively creating "private" state.

Closures are also used to emulate private variables in JavaScript with

the module pattern, a common design pattern in pre-ES6 JavaScript

which allows us to use closures to create encapsulated code modules

with private and public members. With the introduction of real

modules in ES6, this avenue is less common of late, but the difference

between close implementation and a simple function is important to

recognize, and closures are fundamental in understanding the

functional aspect of JavaScript and their occurrence in asynchronous

programming and callback-style functions and event handlers.Control

structures are statements that control the flow of a program's

execution. Conditional Statements: It allows the codes to make

decisions based on some condition. The if statement executes the

block of code associated with the statement only when the specified

condition evaluates to true, and an optional else clause is used to

execute the block of code associated with an alternate execution path

when the specified condition is false. Multiple conditions can be

tested with else if clauses, which creates a chain of conditional tests.

For scenarios that have many discrete cases, the switch statement

provides syntax with clearer structure, evaluating the expression to

execute the code block in the case with a matching case label. The

ternary conditional operator (condition? If-else statements are

replaced with the conditional operator as below (expr1? expr2 : expr3)

It provides a way to do inline checks and return a value based on the

condition. JavaScript has automatic type coercion behavior that can

127
MATS Centre for Distance and Online Education, MATS University

Notes lead to unexpected results when testing conditions, especially when

using loose equality (==) — this is why the use of strict equality

(===) is generally recommended so that constants of different types

are not equal. Logical operators can be used anywhere to combine

conditions (&&, ||) or negate them (!)., you only check the second

operand when it's value is relevant based on the value of the first

operand, making it well suited for concise conditional patterns.

Knowing these conditional structures and their subtleties are basic to

executing the decision making logic that is at the heart of nearly all

non-trivial JavaScript applications.While control flow statements

allow you to determine whether certain statements should run, loops

go one step further; they enable you to execute code multiple times,

which is critical when dealing with a series of data or needing to

repeat a method a specific number of times. JavaScript's most general

form of iteration construct is the most popular for loop, which

comprises an initializer, a condition, and an increment expression,

whose body executes while the condition evaluates to true. Every time

the while loop runs, it checks the while conditions before running the

next iteration. The do-while loop, which works similarly, guarantees

the body executes at least once by checking the condition after the

completion of each iteration instead of before. For eigenvalues, roll

coins, the for...in loop iterates over all enumerable string properties

including those inherited along the prototype chain – this behavior

can sometimes be undesirable and care needs to be taken and

additional checks in with hasOwnProperty() used to ignore inherited

values. For iterating through arrays and other iterable objects, a for is

better...for loop introduced in ES6, that iterates over the values of

iterable, not the names of its properties. The break statement breaks

entirely out of a loop, whereas a continue statement skips the current

iteration of the loop and continues on with the next iteration. While

they are not technically loops, array methods such as forEach(),

map(), filter(), and reduce() allow us to get away from mutating data

and state and use a functional approach to working on collections,

aiding in code readability, and typically fewer lines of code. Note that

deciding when to use one loop or another is very important in order

to write more efficient and readable JavaScript code that can easily

handle different types of iterations needs.If you're manipulating

collections, for example, built in array methods are a very powerful

128
MATS Centre for Distance and Online Education, MATS University

Notes alternative to loops, leading to more declarative styles of

programming.

Another common approach is using Array.prototype.forEach() as a

simpler syntax than the explicit loops, but with no way out from, for

example, premature termination of iteration: The map() method

creates a new array with the results of calling a provided function on

every element in the calling array, excellent for manipulating all

elements in an uniform way. The filter() method returns a new array,

containing all elements of the calling array for which the provided

filtering function returns true, perfect for creating subsets based on a

given criteria. The array reduce() method executes a reducer function

on each element of the array, resulting in a single output value,

allowing for complex aggregation and transformation. The find()

method returns the first element that fulfills a provided testing

function, while findIndex() returns the index of that element instead.

As the names imply, the some() and every() methods test whether

some or all elements pass a given test respectively and will return

boolean results. These higher-order functions promote thinking about

operations at a higher level of abstraction, thinking about what might

be done as opposed to how it might be iterated on to accomplish a

goal, and often leads to shorter, more readable, and less error-prone

code with respect to common looping errors such as of-by-one or a

broken exit clause. The try-catch statement is the cornerstone of error

handling that lets code try actions that can fail (the try part) and

handle these errors gracefully (the catch part). You can define an

optional finally block that is executed whether or not an error

occurred, which is useful for cleanup operations which need to always

execute. By subclassing the Error class or its more specific variants,

such as SyntaxError, ReferenceError or TypeError, the developers can

implement custom errors and they are able to describe exactly what

went wrong in the context of their application. The throw statement

programmatically throws an error; it takes an arbitrary value as the

error object, but by convention, we throw an instance of Error or that

of its subclasses, since it will capture where it comes from by tracking

the stack traces. Error handling is more complex in async code —

promises can get.catch. catch() methods or the second argument to.

then() which offers an alternative to error handling, async/await

designates the option of using more traditional try-catch blocks with

129
MATS Centre for Distance and Online Education, MATS University

Notes async operations, thus combining more familiar error handling syntax.

Error handling helps to catch exceptions and handle errors gracefully,

preventing crashes from the application when unexpected situations

occur, it also helps us in debugging our application by showing us

meaningful error messages and provides the user experience by

showing the appropriate messages when things don’t go as expected

and operations can’t be performed.This article covers how the

execution model in JavaScript affects how the code works, especially

in relation to timing and asynchronous operations. The one live outer

event loop handles the language on a single thread, where one

operation at a time is processed from the call stack, which keeps track

of the currently running functions. It also raises the possibility of

making blocking calls that can make the user interface become

unresponsive for a long time. As a solution to this problem, JavaScript

supports asynchronous programming via several methods. The

traditional approach is called Callbacks which consists of functions

passed as arguments that are executed once some operations are

complete. Promises, which were introduced in ES6, stand for a value

that might not be available yet and have methods such as. then() and.

catch() for successful and failed operations respectively, and even

allowing more structured chains of asynchronous operations.

Async/await allows us to write asynchronous code in more of a

"synchronous" style which can be a very nice change of pace from

the callback hell we can encounter with Promises. Web APIs such as

setTimeout(), setInterval(), and fetch() work outside of the main

thread, putting their callbacks in the task queue once they finish,

which the event loop moves to the call stack once empty. Making

sense of this execution model is the key to building responsive web

applications that can execute resource-intensive operations or network

requests without freezing the UI, In modern web development, where

UI responsiveness directly contributes to user experience, this is an

important consideration.The fact that modules are needed in

JavaScript illustrates the history of namespace pollution in global

scope, and modules are a way to separate units of code that can be

reused. Before ES6, developers used patterns such as Immediately

Invoked Function Expressions (IIFEs) as well as tools like RequireJS

or Browserify to mimic the functionality of modules. With the import

and export keywords, ES6 introduced module support natively in

130
MATS Centre for Distance and Online Education, MATS University

Notes JavaScript, making it possible for individual JavaScript files to

explicitly declare what they provide to other modules, and what they

need from other modules. Named exports (export function, export

class, export const) allow for multiple exports from a module,

whereas default exports (export default) enable a default export,

which is ideal for modules that only export a predominant feature.

Modules are automatically executed in strict mode, which helps catch

common coding mistakes. They are also run just once on import,

returning a reference to the same module instance on each import, so

that state is consistent within an application. Unlike scripts, which

run immediately when the browser gets to them, modules are deferred

by default, meaning the browser won’t run them until the document

itself is fully parsed. Development environment tools current-

generation bundlers and build systems, such as Webpack, Rollup, and

Parcel now support ES modules, even offering tree-shaking to

improve performance by omitting dead code from included modules.

Modules are a major step forward in the maturation of JavaScript as a

language for building larger applications, bringing better organization,

reusability, and maintainability to complex projects.

Figure 3.1: Javascript Control Flow

(Sorce: https://www.electroniclinic.com)

131
MATS Centre for Distance and Online Education, MATS University

Notes 3.3. JavaScript Objects and DOM Manipulation

Objects are the building blocks of JavaScript as a way to store

collections of related data and functionality. Simply put, an object is

an unordered collection of key-value pairs, where keys (or property

names) are strings or symbols, while values can be any JavaScript

data-type — from primitives to other objects and functions. You

create objects either using an object literal (i.e., an expression

enclosed by curly braces e.g., {name: "John", age: 30}), Object

constructor (new Object()) | constructor functions / classes that act

like templates to create similar or similar structured objects. You can

access properties through dot notation (object. You can access the

properties in dot notation (object.property) or bracket notation

(object["property"]) — bracket notation is needed when property

names contain special characters, whitespace characters, or those

dynamically determined at runtime. Regular objects have no order

(sure, modern JavaScripts keep the insertion order for non integers)

unlike arrays which are ordered. Assignment operators or the delete

keyword can be used to dynamically add, modify or delete properties

from an object at any point during the execution of a program,

demonstrating the dynamic nature of JavaScript. The ability is

powerful but can lead to subtle bugs in larger applications if

properties get modified or deleted unexpectedly [when all property

names are dynamic strings]. In summary, object properties have

several aspects that define their behavior and visibility. Data

properties hold values and are the most common type of property.

Accessor properties, which are created with get and set methods, run

code when properties are read or written, providing computed values

and validation logic. Property Attributes -

Object.getOwnPropertyDescriptor()}} The post Property Attributes

appeared first on Object. getOwnPropertyDescriptor(), control

behavior of properties : configurable specifies whether property can

be deleted or change its attributes enumerable controls property

visibility in such kind of iterations as for...in loops; writable

determines whether the value of a property is changeable and value is

the actual data for data properties. Object can be used to configure

these attributes. defineProperty() or Object. defineProperties() with

fine granularity of control about object behavior. Property descriptors

are a way to work with these attributes programmatically, and

132
MATS Centre for Distance and Online Education, MATS University

Notes outsource some advanced patterns: data validation, computed

properties, property protection. Since ES6, objects can have symbols

as property keys, allowing properties to be created that do not

participate in normal iteration methods, facilitating the addition of

"hidden" properties or methods that won't conflict with existing or

future property names, a technique used by many built-in JavaScript

methods and frameworks to store internal state on objects without the

risk of collision with application-defined properties. Prototypes are

the basis for JS inheritance, enabling objects to inherit properties and

methods from other objects. In JavaScript, each object has an internal

link ([[Prototype]] in ES5] to another object which is its prototype,

and it is this that it inherits properties from when they don’t exist on

the object. When property is accessed on any object JavaScript first

checks the property on that object and then it on its prototype chain

until it finds some object with null prototype which is object

generally. prototype. This chain is the basis of prototype-based

inheritance, in contrast to class-based inheritance in Java, C++, and

other languages. When a constructor function is invoked with the new

keyword, it creates an object whose prototype is set to the

constructor's prototype property. The Object. The create() method

provides a straightforward approach to establishing prototype links

between objects without using constructors. Classes: There is a class

syntax added in ES6 too, and it is syntactic sugar over the prototype-

based inheritance of JavaScript rather than an entirely new inheritance

model, but for developers coming from class-based languages it

provides a more familiar syntax. The instanceof operator determines

if an object has a specific constructor in its prototype chain, and

Object. getPrototypeOf() is an object.[[Prototype]] accessor.

Prototypes are key to learning JavaScript's object-oriented features

and to gaining understanding of how inheritance works in built-in

objects and third-party libraries.

Constructor Functions : They Function as Templates for Creating

Objects With Uniform Structures and Behaviors. A classical

constructor is just a function that is designed to be called with the new

keyword, which creates a new object that inherits from the

constructor's prototype property. It is a convention that constructors

should start with a capital letter to distinguish them from functions.

The this keyword is a keyword most commonly used inside a

133
MATS Centre for Distance and Online Education, MATS University

Notes constructor, which refers to the object being created and assigns

properties directly (this. name = name). Because methods are

generally defined on the constructor's prototype (as opposed to

preventing the same thing being defined in many different instances),

they only exist in one place in memory, no matter how many

instances exist. The class syntax was introduced in ES6, which gives

developers a more familiar and concise way of defining constructor

functions and their prototype methods. However, JavaScript's class

syntax is still prototype-based implementation under the hood which

should be familiar to whoever comes from a class-based language.

Classes pass constructor methods for initialization, instance methods

which show up on the prototype, static methods which attach to the

class rather than an instance, and getter and setter methods for

computed properties, and extends syntax for sub-classing. Since then,

orthodox Javascript has adopted Red and many of the experimental

syntaxes in a much more readable form, making working with object

oriented Javascript code much more maintainable, but familiarising

oneself with the underlying prototype mechanism is still useful for

debugging and working with older codebases. The Document Object

Model (DOM) is a programming interface for HTML and XML

documents, and it represents the structure of a web page as a tree of

objects, allowing JavaScript to interact with and manipulate the

content of the page. The document object, which represents the entire

HTML document and serves as the entry point for DOM

manipulation, is the root of this tree structure. According to the

previous definition, nodes are the building blocks of the DOM tree

and there are several node types: element nodes (representing HTML

elements), text nodes (representing text between the elements),

attribute nodes (representing element attributes) and comment nodes

(representing HTML comments). The hierarchy reflects the nesting of

HTML elements, with the parent-child relationships between nodes

corresponding to the containment relationships in the original markup.

This hierarchical structure supports traversal in all directions: parent

to child, child to parent, and between siblings. There are several

properties that help you accomplish this task: parentNode,

childNodes, firstChild, lastChild, nextSibling and previousSibling.

The Document Object Model enables JavaScript to identify parts of a

web page and makes it possible for JavaScript to change, add, or

134
MATS Centre for Distance and Online Education, MATS University

Notes remove portions of the web page in response to user or external

events, why you need to have a basic understanding of the DOM

structure in order to effectively work with web technologies. It can be

used to find, change, add or remove elements in a web page using

javascript code. The first step in this process is about selecting

elements, using methods like getElementById(),

getElementsByClassName(), getElementsByTagName() and the more

flexible (and powerful) querySelector() and querySelectorAll(), which

use CSS selector syntax to identify elements. And the various ways

that you can change those selected elementsOnce you’ve selected

something, you can change it in a million different ways: innerHTML

changes the HTML inside an element, textContent inside an element

text, style gives you access to inline CSS properties, classList lets you

add, remove and toggle css classes, setAttribute() and getAttribute()

let you manipulate element attributes. New elements are created by

calling document. createElement() method, use appendChild() or

insertBefore() or other methods to insert them at specific position in

the document. You need to select the element to be removed and call

remove on the element, or removeChild on the parent element. Using

cloneNode() you can clone elements either shallow or deep, modern

DOM manipulation techniques are typically facilitated through

higher-level abstractions provided by libraries (jQuery) or frameworks

(React, Angular, Vue) that address the complexity of efficient DOM

updates, cross-browser compatibility, and synchronization of

application state with visual UI elements that make web development

for complex interactive applications much easier.

Events are a way for JavaScript to react to user actions and other

activities that happen in the browser environment, they produce the

core of interactive web applications. When events occur it means that

we have an event-driven programming model and that means that

JavaScript waits for an Event and acts on it. These events can include

click, mouseover, keydown, submit, load, resize, and more, which all

indicate different interactions or browser actions. The functions that

get executed when an event occurs are called event handlers, which

can be attached to the elements in multiple way: inline HTML

attributes (eg: onclick="handleClick()"), element properties (eg:

element. onclick = handleClick), and the more flexible

addEventListener() method, which allows multiple handlers for the

135
MATS Centre for Distance and Online Education, MATS University

Notes same event type on one element. Keep in mind that event handlers

automatically pass in an event parameter, which is an object that

contains information about the event: for example, its type, the

element or elements involved, and event-specific data like mouse

coordinates or key codes. Event propagation occurs during two

phases: the capture phase, which traverses downwards from the

document root to the target element; and the bubbling phase, which

traverses upwards from the target back up to the root. The

stopPropagation() method stops this propagation while

preventDefault() prevents the default action from the browser for the

event like opening a link or submitting a form. Custom events with

the CustomEvent constructor allow decoupled communication

between application components. If you want to write web app which

is responsible to user interaction and responsive to browser

environment changes you have to well- versed with the event

handling. Forms are an important part of web applications, they help

collect data from users to be processed on the client or submitted to

back-end servers. If you want to access a form from js, you can do

this through the DOM, usually by selecting the form itself using

getElementById() or querySelector(), and then access its elements

using the elements collection or directly selecting specific inputs. The

submit event is fired when the form is submitted; it allows you to

validate input before sending the data to the server. PreventDefault():

Event handlers for this event usually make use of preventDefault() to

prevent the submission from happening if the validation fails or if

using AJAX-based submission techniques. HTML5 attributes such as

required, pattern, or min/max and JavaScript logic checking input

values against any given criteria can be used for form validation.

Thus we can give real-time validation feedback as we are typing in

the form fields through input event changes such as change, input, and

focus events. Once validation has been performed, the data can be

collected from a form in a number of ways: directed at the input value

properties, using the FormData API which offers a more structured

representation, or by using the newer form:. elements approaches. 91

// You can submit forms programmatically by calling the form's

submit() method: 92 form.submit() 93 // or use the Fetch API or

XMLHttpRequest to send the form data asynchronously, 94 //

allowing more fluid user experiences where pages do not need to

136
MATS Centre for Distance and Online Education, MATS University

Notes reload upon form submission. AJAX (Asynchronous JavaScript and

XML) allows web applications to communicate with servers and

update portions of a web page without the need to refresh the entire

page, which greatly enhances the user experience, making web

applications feel more like desktop applications. Ajax calls were

primarily done using the XMLHttpRequest object historically which

we pass in the methods to open the connection, send the request and

get the response using callbacks and event listeners. Modern

JavaScript applications now almost exclusively use Fetch API built as

a more capable and flexible replacement for it and returns promises

that simplify writing and maintaining asynchronous code. Fetch takes

a URL and an optional options object for setting the request method,

headers, the body content, and other settings. As such, response

handling will start with checking the response status, followed by

checking the body in the appropriate format – most often JSON using

the. json() method, but in addition as textual content, blob, or

different codecs relying on the content-type. Due to the fact that fetch

only rejects promises for failures on the network level, not http-level

errors like 404 or 500, we are required to check for errors explicitly.

Security must be respected when working with CORS guidelines,

which order browsers (the developers of the same) to not send

requests to domains not serving the page unless the appropriate

headers allow that. For more complex needs, libraries like Axios build

on these native capabilities with features such as auto JSON parsing,

request/response interceptors, and streamlined error handling. Web

Storage APIs enable web apps to store data on the client so that they

can maintain state across page refreshes and browser sessions. The

LocalStorage on the other hand provides a place to persist data across

sessions, which will be available until the user intentionally clears it

or it is explicitly removed by the program – great for preferences,

settings or cached data with long term lifetime. SessionStorage offers

temporary storage for as long as the current browser tab is open, so if

the tab or window is closed, the stored data will be lost; use this for

retaining data state between user interactions in the same visit, like a

multi-step form or wizard, These two types of storage implement the

same key-value API, featuring methods like: setItem(key, value),

getItem(key), removeItem(key), clear(). Although it can store key-

value pairs, all values will be strings and complex data types will

137
MATS Centre for Distance and Online Education, MATS University

Notes require serialization/deserialization (usually using a JSON for this

purpose). stringify() and JSON. parse(). Storage capacity varies by

browser, but usually round to 5MB to 10MB, with a clear maximum

that is a big advantage over cookies, which are capped at

approximately 4KB. Unlike cookies, the storage data is not sent along

with every request to the server, making it a good choice for

applications that store a lot of data on the client-side and therefore

will add a lot of data to outgoing requests. Storage events allow cross-

tab/window communication to listen for storage value changes, which

is helpful when multiple instances of the same app are opened

simultaneously.

3.4. Event Handling and Form Validation

Events like mouse clicks, keystrokes, form submissions, window One

some sort of web development knows how event propagates or how to

validate a form properly. web applications is event handling, which

allows developers to build interfaces that respond to user actions. This

anyone who has been working with The key behind interactive

bubble up through its ancestors in the DOM tree. resizes, and so on.

By default the JavaScript event model uses a bubbling pattern,

meaning that events trigger from the target element at source then of

the great core features offered by the Document Object Model (DOM)

is a set of structures that represent all elements of a web page along

with associated events.

const button = document. getElementById('myButton');

function (event) { button. addEventListener(click,

console. log('Button was clicked!');

//2976.0861/ }}{{{{2670. api apimakeup /\.((a. preventdefault.

event. addEventListener());

});

This Event delegation, which uses event method is especially

beneficial for dynamically generated elements or when working with

extensive lists. bubbling to manage events for several elements with a

single event listener, is a potent pattern.

// Event delegation example

function(event) { document. getElementById('parent-list');

addEventListener("click",

if (event. target. tagName === 'LI') {

item:', event. target. textContent); console. log('Clicked on list

138
MATS Centre for Distance and Online Education, MATS University

Notes }

});

Form Validation: Form validation is a critical part of Forms are an

essential part of web applications, user convenience to prevent any

unwanted data submission and for us as a system to secure it through

server-side validation. web development that ensures user-submitted

data is valid and safe to process. Thus client-side validation is

important for they are the main way for users to enter data.

These More recent validation additions like the features enable

browser-to-browser validation with minimal JavaScript involvement.

required, pattern, min, max, and type attributes (all introduced with

HTML5) were in many ways the natural evolution of validation on the

web.

example of how to get the email. $email = $_POST['email']; // Just as

an

The Constraint Validation API extends the built-in validation

mechanism, However, for more complex validation scenarios, you

can always leverage JavaScript to create custom validation providing

developers read access to validation state and custom error messages.

registrationForm = document. const form = document. const

plugin with the above parameters. const email = document. You are

not allowed to use the

function() { email. $('input').on('input',

if (email. validity. typeMismatch) {

email address'); email. setCustomValidity(Please specify a valid

} else {

email. setCustomValidity('');

}

});

) { form. addEventListener('submit', function(event

if (! form. checkValidity()) {

event.preventDefault();

(part No. 3) Use Error handling in a basic and advice based simple

way. Error Handling

showValidationErrors();

}

});

139
MATS Centre for Distance and Online Education, MATS University

Notes validateEmail: Validation rules are simply Extract string from more

var with Regular Expressions Regular expression is very useful

Putting it all together, we can define a function, expressions that can

be evaluated as True or False. These rules are expressed using the

Validator built-in functions. while validating any data like email

address, phone number, postal code, etc.

const regex = /^[a-zA-Z0-9. _%+-]+@[a-zA-Z0-9.-]+\. [a-zA-

Z]{2,}$/;

return regex.test(email);

}

As users can fix errors earlier in the input process, it leads to less

frustration users can face while filling the forms, Using real-

time/inline leading to higher completion rates. validation helps user

experience as it gives feedback input-wise, i.e., as the users type

instead of waiting until form submission.

name="password"]'); your favorite thing about it?

querySelector('input[What's

document.getElementById('password-strength'); passwordStrength =

document. password-strength = const

text entry. passwordInput. This event fires when the user inputs a

value during

= calculatePasswordStrength(this. value); const strength

${strength}; passwordStrength. textContent = The password strength

is:

= strength- + strength. toLowerCase()}`; passwordStrength.

className

});

However, older browsers might need to fallback to another solution

because sometimes, the Constraint Validation API might not be

When we implement Yup would help to keep the same validation

behaviour for you all the time. supported in older browsers, although

newer versions of popular browsers would offer standard coverage.

Libraries such as Validate. The solution you mentioned (using js,

Formik, or form validation, we still need to take care of cross browser

compatibility. Do show clear, descriptive error messages that Form

validation is another key area in which accessibility comes a more

accessible form validation experience. all users will understand

140
MATS Centre for Distance and Online Education, MATS University

Notes including those using screen readers. The aria-invalid and aria-

describedby attributes can aid in providing into play.

{ showError(input, message)

= document. getElementById(${input. name}-error); const

errorElement

errorElement. textContent = message;

multiple sclerosis, or rheumatoid arthritis. input. or topical use, you

may be able to use this with diseases such as AIDS, cancer,

${input. name}-error); input. setAttribute('aria-describedby',

}

These frameworks handle a lot of complexity of You can also use the

same type of form handling and validation with modern frameworks

such form validation under the hood with ample customization

capabilities for custom needs. as React, Angular, and Vue, all of

which include a state management solution. It must include clear

visual indicators, For validation failures the overall user experience.

meaningful error messages, and the preservation of valid data in the

event of an error. An effective error handling mechanism plays a

significant role in should be properly handled through error

strategies.

141
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Modern JavaScript Features and AJAX

3.5. JavaScript ES6 Features – Let, Const, Arrow Functions,

Promises

In contrast, these are some core features of modern JavaScript

development, providing syntactic sugar, better scoping and powerful

One of the most comprehensive revisions to JavaScript since its async

programming capabilities. inception came in ECMAScript 2015 or

ES6.

When you declare variables with the let keyword, these variables are

block scoped; meaning they are scoped to the nearest enclosing block

(enclosed by curly braces), resulting in more predictable code

behavior with Ready fewer unintended side effects. for something

small but really good.

// Block scoping with let

if (true) {

'I exit only in this block'; let blockScoped =

of the function'; var functionScoped = 'I am alive for the life

}

// Good console. log(functionScoped);

defined console. log(blockScoped); // ReferenceError: blockScoped

is not

While a variable is constant, the contents of that constant variable

itself can still change; a The const keyword allows you to create

variables that reuse a distinction that is critical in using objects and

arrays. reference but do not let you reassign that reference, which is

(effectively) how you declare constants in JavaScript.

const PI = 3.14159;

variable PI = 3.14 // TypeError: Assignment to constant

'Alice' }; const person = { name:

contents of the object can be changed person. name = 'Bob'; //pros -

// TypeError: Assignment to constant variable const person = { name:

'Charlie' };

But, in addition about arrow function (= Now, before talking>method

chains. to being shorter, arrow functions lexically bind their this

value, so you never have to worry about that dynamic binding issue

we always had with functions. This is particularly useful in callbacks

142
MATS Centre for Distance and Online Education, MATS University

Notes and), Arrow function is a special shorthand for writing a function

expression.

// Traditional function

function add(a, b) {

return a + b;

}

// Arrow function equivalent

const add = (a, b) => a + b;

// Lexical 'this' binding

const counter = {

count: 0,

increment: function() {

function if you want to preserve 'this' context) // (Use arrow

setInterval(() => {

this.count++;

console. log(this. count);

}, 1000);

}

};

This allows us to define functions very easily, and remove a lot of

Default parameters are one of the available forms boilerplate code that

we need to write for just parameter checking. of function parameters.

'Hello') { function greet(name = 'Guest', greeting =

return ${greeting}, ${name}! ;

}

greet(); // "Hello, Guest!"

greet('Alice'); // =>"Hello, Alice!"

"Hi, Bob!" greet('Bob', 'Hi') //

This Backticks (`) are used for template literals that allow string

interpolation and multi-line strings without using makes it easier to

read and maintain string manipulation code. concatenation or escape

characters.

const name = 'Alice';

= `Hello, ${name}! const greeting

Welcome to our website.`;

The output can then be used to get the value of the keys directly

without further processing, which The destructured assignment

syntax is a shorter way of extracting values from arrays or properties

143
MATS Centre for Distance and Online Education, MATS University

Notes is especially useful when dealing with nested data structures or API

responses. from objects and assigning them to variables.

// Array destructuring

2, 3, 4, 5,]; const[first, second,...rest] = [1,

// Object destructuring

'Developer' } = { name: 'Alice', age: 30 }; const { name, age,

profession =

The Spread and rest operators (...) offer flexible methods for spread

operator takes an iterable and expands it into its constituent elements,

whereas the rest operator takes multiple elements and combines them

into a single entity. working with arrays and objects.

// Spread operator

const arr1 = [1, 2, 3];

5] const arr2 = [...arr1, 4, 5]; // [1, 2, 3, 4,

// Rest parameter

function sum(...numbers) {

+ num, 0); return numbers. reduce((total, num) ⇒ total

}

Async/await offers a cleaner way to write asynchronous code by

Promises are avoiding the "callback hell" problem that earlier

JavaScript asynchronous code faced. a great improvement in the way

JavaScript handles asynchronous operations. This successful, or

failed. It A Promise is an object that tries to see if an async operation

is finished, renders asynchronous code more predictable and easier to

reason about. can be in one of three states: pending, fulfilled, or

rejected.

// Creating a promise

const FetchData = new Promise((resolve, reject) =>{

// Asynchronous operation

setTimeout(() => {

const success = Math. random() > 0.5;

if (success) {

resolve({ data: 'Success!' });

} else {

to fetch data') reject new Error('Failed

}

}, 1000);

});

144
MATS Centre for Distance and Online Education, MATS University

Notes // Consuming a promise

fetchData

. then(result => console. log(result. data))

. catch(error => console. error(error. message));

All then methods return a new Promise, which allows for a flat

structure of async Using promise chaining, you code. can write

sequential asynchronous actions explicitly, without putting callbacks

in nested levels.

fetchUserData(userId)

..then(userData =>fetchUserPosts(userData. postIds))

= ..then(posts> posts.filter(filterRelevantPosts))

= . then(relevantPosts> displayPosts(relevantPosts))

= ..catch((error)> handleError(error));

One of the advantages of Promise.all() is that it allows you to handle

multiple promises in parallel, before a subsequent step can occur. and

wait for them all to resolve before continuing. This is especially

helpful when different asynchronous operations need to complete The

Promise.

const promises = [

fetchUserProfile(),

fetchUserPosts(),

fetchUserFriends()

];

Promise.all(promises)

. then(([profile, posts, friends]) =>{

// All data available here

friends: UserFriends) renderUserDashboard(profile: UserProfile,

posts: UserPosts,

})

.catch(error => {

automatically resolves and if any, rejects catch is called. All the

above promises

showErrorMessage(error);

});

It The Promise. Returns: a is useful for implementing timeouts or to

arbitrarily select the fastest available resource. promise that resolves

or rejects as soon as one of the promises in an iterable resolves or

rejects, with the value from that promise.

145
MATS Centre for Distance and Online Education, MATS University

Notes fetchData(); const dataPromise =

= const timeoutPromise = new Promise((resolve, reject)> {

= setTimeout(()> reject(new Error(‘Request timed out’)), 5000);

});

timeoutPromise]) Promise. race([dataPromise,

= . then((data)> processData(data))

. error =>handleError(error)));

Even though JavaScript is still prototype-based under the covers, the

class syntax provides a more The features of classes in ES6 allow you

to create object-oriented code with a cleaner and more familiar syntax

and deal with traditional way for developers formerly of class-based

languages to inertia object-oriented programming patterns into

JavaScript. inheritance in a more intuitive way.

 class Person {

constructor(name, age) {

this.name = name;

this.age = age;

}

greet() {

Hello, my name is ${this. name}; return

}

static createAnonymous() {

Person('Somebody', 0); return new

}

}

person { class Employee extends

) { constructor(name, age, position

super(name, age);

this. position = position;

}

greet() {

${this. position}; return ${super. greet()} and I am a

}

}

The use of import and export statements enforces a clearer

understanding of dependencies and ES6 introduced modules, a clean

avoids polluting the global namespace. way to share code across

JavaScript files.

146
MATS Centre for Distance and Online Education, MATS University

Notes // math.js

export const PI = 3.14159;

export function square(x) {

return x * x;

}

// app.js

import { PI, square } from '. /math. js';

import * as math from '. /math. js';

With the introduction of block-scoped variables, arrow functions with

lexical this binding, and promises for asynchronous programming,

JavaScript applications were fundamentally All of these ES6 features

together mark a huge step forward for JavaScript, paving the

structured and developed in a completely new way in the professional

web landscape way for developers to produce neater, more

maintainable and more functional code.

3.6 Introduction to AJAX and JSON

The concept changed the way we do things from a request- response

to interactive Asynchronous JavaScript and XML (AJAX) changed

the game of web development by allowing web apps to revise content

in response user experience which led to modern single-page app. to

user input without needing to reload entire pages. These The essence

of AJAX is sending asynchronous http request from the client-side

desktop-like experience. requests occur behind the scenes, enabling

users to keep reading a page while data is retrieved or sent. The

JavaScript code receives the response from the server, and updates

appropriate pieces of the page with the new information, creating a

more responsive, javascript codes to the server.

Simple AJAX request (XMLHttpRequest) //

xhr = new XMLHttpRequest(); var

true); xhr. open('GET', 'https://api.example.com/data',

xhr. onreadystatechange=function(){

if (xhr. readyState === 4 && xhr. status === 200) {

const response = JSON. parse(xhr. responseText);

updateUIWithData(response);

}

};

xhr.send();

147
MATS Centre for Distance and Online Education, MATS University

Notes Though still supported by all browsers, it has been largely replaced by

the much more modern The original implementation of AJAX was

held together with glue and string around the XMLHttpRequest

object, for opening connections, Fetch API, which exposes a cleaner

Promise based interface. sending requests and receiving responses.

Modern AJAX request using Fetch API some data from the server

without a page refresh. //

-- After running above code you can call it through /api/data>

properties.

.then(response => {

if (!response.ok) {

throw new Error(HTTP error! Status: ${response. status});

}

return response.json();

})

. then(data => with data) update UI

. catch(error => error); console. error('Fetch error:',

JSON data is structured as key-value pairs, using a syntax similar to

JavaScript objects, making JSON (JavaScript Object Notation) was

JSON, the de facto standard format for AJAX applications data

exchange, though its it intuitive for developers to work with.

simplicity, lightweight, and direct JavaScript parsing.

{

"id": 123,

"name": "John Doe",

"email": "john@example.com",

"roles": ["user", "admin"],

"settings": {

"notifications": true,

"theme": "dark"

}

}

a json string. These are used to work with the JSON data returned by

an method parses a JSON string and returns a JavaScript object and

JSON. - stringify(): it converts a js object to The JSON. parse()

AJAX application.

JavaScript objects interaction — converting JSON to

const user = {

148
MATS Centre for Distance and Online Education, MATS University

Notes name: 'Alice',

age: 30,

draw lots of hobbies into that list as possible. You

};

= JSON. const jsonString = JSON. var jsonString

// Back to JavaScript object const parsedUser = JSON.

parse(jsonString);

REST is an architectural style consisting of constraints RESTful for

designing web services, focusing on stateless client-server

communication, cacheable responses, and uniform interfaces.11 APIs

(which stands for Representational State Transfer) have emerged as

the most significant architectural style for web services, offering a

widely-adopted specification for structuring AJAX interactions.

RESTful API CRUD using Fetch //

// GET request (Read)

get('https://api.example.com/users/123')

. then(response => response. json())

= . Then(user> displayUser(user));

// POST request (Create)

{ fetch('https://api.example.com/users',

method: 'POST',

headers: {

'application/json' 'Content-Type':

},

'alice@example.com'}) body: JSON. stringify({ name: 'Alice', email:

})

. then(response => response. json())

. then(response =>addUserToList(response.data));

To domains. Similar-origin policy Cross-Origin Resources Sharing

(CORS) is a browser security feature that restricts what AJAX

requests can be made to different allow a web resource to be called

from a different domain, the servers must enable CORS by providing

these headers in their response. The same-origin policy is designed to

prevent potentially malicious scripts from accessing data across

domains.

CORS example) Requesting data from another domain (remember

{ fetch('https://otherdomain.com/api/data',

request credentials: 'include' // Send cookies with the

149
MATS Centre for Distance and Online Education, MATS University

Notes })

. then(response => response. json())

= ..then(data> processData(data))

.catch(error => {

instanceof TypeError) { if (error

console.

}

});

a demand does not resolve. Both XMLHttpRequest and Fetch also

offer ways to handle errors Hence, dealing with error in AJAX

applications is something significant, if you need to inform the user to

guarantee great user experience when of different kinds, such as with

the network itself, or server code.

 function fetchData(url) {

return fetch(url)

.then(response => {

if (!response.ok) {

an error status code // Server replied with

Error(Server error: ${response status} ${response. statusText});

throw new

}

return response. json();

})

.catch(error => {

parsing error Error: Network error or JSON

console. error('Fetch error:', error);

error. Please try again later.'); showErrorMessage('Data loading

storage data (optional) // Retry the request with backoff or use

return getCachedData();

});

}

Since things like requests happen asynchronously, it is important to

update users regarding data being loaded or processed so that they are

aware of what is happening in the application and to avoid their

confusion regarding Despite their efficacy, AJAX applications can

state. be datatious in themselves, because they are built to respond

when a action has been executed.

function loadUserData() {

150
MATS Centre for Distance and Online Education, MATS University

Notes showLoadingIndicator();

fetch('/api/user-data')

. then(response => response. json())

.then(data => {

updateUserInterface(data);

hideLoadingIndicator();

})

.catch(error => {

data'); showErrorMessage('Something went wrong in loading

hideLoadingIndicator();

});

}

It can help AJAX application with fetching data faster by allowing

data once retrieved to access to the data that is not frequently

modified. be stored locally for subsequent calls. This helps minimize

unnecessary network requests and enables quicker Using Client-side

cache to optimize AJAX application performance:

const cache = new Map();

{ function fetchWithCache(url, expirationTime = 60000)

const cachedData = cache. get(url);

const now = Date.now();

if (cachedData && cachedData. timestamp response. json()) now -

.then(data => {

now }) cache. set(url, { data, timestamp:

return data;

});

}

Regular polling You make declarations of requests periodically to see

if there is some data Polling and long polling are used in AJAX

available Long-polling Keep the connection open until data becomes

available or timeout occurs applications to emulate real time updates.

// Basic polling example

// notag is irrelevant for this purpose } }) { setInterval(= data: {

notag: '' },> { console.log(=> startPolling(api_url)`

setInterval(() => {

fetch(url)

. then(response => response. json())

..then((data) =>updateWithNewData(data));

151
MATS Centre for Distance and Online Education, MATS University

Notes . catch(error => error)); console. error(Polling error:,

}, interval);

}

Whereas, AJAX sets up a unidirectional request/response connection

that is closed after data transfer is complete, WebSockets establish a

Fetching a new poll every 30 seconds permanent two-way

communication channel between the server and the client. is

inefficient and WebSockets are more capable for this task.

// WebSocket example

WebSocket('ws://example.com/socket'); const socket = new

socket.onopen = function() {

opened')}}; console. log('WebSocket connection

'subscribe', channel: 'updates' })); socket. send(JSON. stringify({

type:

};

socket. onmessage = function(event) {

const data = JSON. parse(event. data);

handleRealTimeUpdate(data);

};

socket. onclose = function() {

connection closed') console. log('WebSocket

the connection dropped unexpectedly, try to reconnect. // If

};

and add more features, AJAX libraries and frameworks were created.

For more complex scenarios, libraries like Axios can provide more

functionality and a more expressive API for doing HTTP requests,

whereas if you To make common operations easier use a front-end

framework like React or Vue they will provided approaches to

tracking the state and updating UI.

for AJAX requests Axios for AJAX requests //. Using Axios

could repeatedly send a message to get the latest data. axios. Using

WebSockets, I

.then(response => {

.json() on the response. Axios automatically parses JSON, so you

don't need to call

const data = response. data;

updateUI(data);

})

152
MATS Centre for Distance and Online Education, MATS University

Notes .catch(error => {

if (error.response) {

error status Server response was an

handleServerError(error. response. status, error. response. data);

} else if (error. request) {

handleNetworkError();

} else {

[Unhandled promise rejection: Object] {Response} Impossible to read

property 'length' of undefined. This is the only one that gives me an

error:

handleClientError(error. message);

}

});

Common attacks are When CSRF (Cross-Site Request Forgery), in

which illegal commands are sent from a browser that the website

trusts, and JSON injection, in which the JSON's construction can

execute undesirable code. dealing with AJAX and JSON, security

should be your concern.

// CSRF protection example

validation and sanitization function secureAjaxPost(url, data) { //

Ajax POST with

from a meta tag // CSRF token

const csrfToken = document.

document.querySelector('meta[name="csrf-token"]')

getAttribute('content');

return fetch(url, {

method: 'POST',

headers: {

'Content-Type':'application/json',

'X-CSRF-Token': csrfToken

},

body: JSON. stringify(data),

Do send cookies with the request credentials: 'same-origin' //

});

}

The blog you were reading can be mocked so that developers can test

their AJAX code without ever needing to make the requests to the

network. Sinon. For instance, in a frontend testing framework such as

153
MATS Centre for Distance and Online Education, MATS University

Notes jqXHR, Chai, or Mock Service Worker (MSW), server responses it is

an asynchronous process. Mocking libraries such as Testing AJAX is

unique as was removed.

 import { rest } from 'msw';

setupServer } from ‘msw/node’; import {

const server = setupServer(

{ setupServer } from 'msw/node'; // This function will be called for

every request matching the provided URL. export const server =

setupServer(rest.get('/api/users', (req, res, ctx) = rest. import { rest }

from 'msw'; import> {

{ id: 2, name: 'Bob' }])); return res(ctx. json([{ id: 1, name: 'Alice' },

})

);

beforeAll(() => server. listen());

afterEach(() => server. resetHandlers());

afterAll(() => server. close());

it('loads and displays user data', async () =>{

// Your test code here

requests to /api/users The MSW server will intercept fetch

});

It allows for data to be fetched and updated asynchronously, and its

AJAX and JSON are core technologies in modern web development,

and they're still used alongside newer approaches such you started for

creating responsive and data-driven web experiences. simplicity and

flexibility through JSON still drives interactive web applications on

the internet today. Learning these technologies will get as GraphQL.

Multiple Choice Questions (MCQs)

1. What is the correct way to declare a JavaScript variable?

a) var name = "John";

b) let name = "John";

c) const name = "John";

d) All of the above

2. Which of the following is NOT a data type in JavaScript?

a) String

b) Number

c) Character

d) Boolean

154
MATS Centre for Distance and Online Education, MATS University

Notes 3. How do you write a function in JavaScript?

a) def myFunction() {}

b) function myFunction() {}

c) function: myFunction() {}

d) func myFunction() {}

4. What will console.log(typeof []) return?

a) array

b) object

c) list

d) undefined

5. How do you select an element by its ID in JavaScript?

a) document.querySelector("#id")

b) document.getElementById("id")

c) document.selectElement("id")

d) document.getById("id")

6. What keyword is used to define a constant in JavaScript?

a) var

b) let

c) const

d) static

7. What is the purpose of the addEventListener method?

a) To remove an event from an element

b) To attach an event handler to an element

c) To create a new HTML element

d) To stop event propagation

8. What is the output of console.log(5 + "5")?

a) 10

b) 55

c) Error

d) NaN

9. Which statement is used to handle exceptions in

JavaScript?

a) catch

b) try...catch

c) error

d) exceptionHandler

10. What is JSON used for in JavaScript?

a) Storing and exchanging data

155
MATS Centre for Distance and Online Education, MATS University

Notes b) Creating animations

c) Validating forms

d) Manipulating the DOM

Short Answer Questions

1. What are the different ways to declare variables in JavaScript?

2. Explain the difference between == and === in JavaScript.

3. What is a JavaScript function? Give an example.

4. How can you loop through an array in JavaScript?

5. Define DOM and explain its importance.

6. What is event bubbling in JavaScript?

7. How can you validate a form using JavaScript?

8. Explain the difference between let and const in ES6.

9. What is a Promise in JavaScript?

10. How does AJAX improve web application performance?

Long Answer Questions

1. Explain the different data types available in JavaScript with

examples.

2. Discuss the various control structures (if-else, switch, loops)

used in JavaScript.

3. What are JavaScript objects? How can you create and access

object properties?

4. Describe how JavaScript can be used to manipulate the DOM

with examples.

5. Explain event handling in JavaScript with different types of

events.

6. What are arrow functions in ES6, and how do they differ from

regular functions?

7. Discuss the role of Promises in JavaScript and how they

handle asynchronous operations.

8. Explain AJAX and JSON with an example of how they work

together in web development.

9. Compare localStorage, sessionStorage, and cookies in

JavaScript.

10. How can JavaScript be used to create dynamic and interactive

web pages?

156

MODULE 4

PHP

LEARNING OUTCOMES

By the end of this module, learners will be able to:

• Understand the basics of PHP, including syntax, variables, and

data types.

• Establish database connectivity using PHP and MySQL and

perform CRUD operations.

• Implement PHP form handling using GET, POST, sessions,

and cookies.

• Perform file handling operations such as reading, writing, and

uploading files.

• Handle errors and exceptions effectively in PHP applications.

• Apply security measures to prevent SQL injection and cross-

site scripting (XSS) attacks.

• Gain an overview of popular PHP frameworks like Laravel

and CodeIgniter.

• Explore caching techniques and performance optimization

strategies in PHP.

157
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: Introduction to PHP and Database Connectivity

Introduction to PHP, MySQL, and Web Development

4.1. Introduction to PHP – Syntax, Variables, and Data Types

The border makes it possible to embed PHP code into the HTML for

fluid core syntax of PHP is simple but strong. PHP The executes on

the web server and creates dynamic content that the server sends to

the client's browser. one of the total attractions for it is still relatively

simple to understand, customizable and works well with HTML.

While client-side languages run in the user's browser, PHP it is one of

the most popular languages used in web development. Its affairs is

pages. PHP, created in 1994 by Rasmus Lerdorf as a short form to

track visitors on his website, has rapidly morphed into a full-fledged

scripting language, and now PHP (Hypertext Preprocessor) was

introduced in the mid-1990s as a server-side scripting language used

to develop specifically web HTML could be something like this:

switching between static and dynamic content. An example of a

simple PHP script within code is contained between special tags:

Welcome to PHP

PHP is loosely-typed, so variables PHP Variables are output of the

date function Today is in PHP acts as the string concatenate operator,

joining the string "Hello, World! With the is served directly to your

browser. The period (.) catch operator in PHP;9 instanceof operator in

PHP Governor function to show the current date and time. All other

content is passed through as regular HTML and -- With this example,

only the code inside the php tags is processed by the PHP interpreter,

which executes the echo statement and date() easing collaboration,

particularly in intricate web applications. # and multi-line comments

start with /* and end with */. Well-structured comments play a crucial

role in keeping code comprehensible and that in C, C++ and

JavaScript. Single-line comments start with // or Comment in PHP is

like etter or underscore, followed by any combination of letters,

numbers, and underscores. of the variable. Variable names are case

sensitive and must start with a are not declaratively typed prior to

use. Every PHP variable starts with a dollar sign ($) and the name

simple containers that allow you to store data for use in your script

and manipulate it.

158
MATS Centre for Distance and Online Education, MATS University

Notes There are several data types that PHP supports which define what

kind of data can be held in variables and how such data can be

modified. Here are the main data types:

Scalar Types:

• Boolean:Used to represent true or false values

• integer:Whole number without a decimal point

• Float/Double: Decimal number or exponentially formatted

• String: Series of characters encapsulated in single or double

quotes

Compound Types:

• Array: Ordered maps, mapping values to keys

• Objects: Instances of classes containing properties and

methods

• Callable: Functions and methods that are callable

• Iterable: Arrays or objects that are iterable

Special Types:

• Reference: References to external resources (like a database

connections)

• NULL: Variable without a value

using single quotes single quotes and backslashes, while double-

quoted strings are processed for variables and escape sequences. (') or

double quotes ("). What they really mean is that single-quoted strings

are literal except for escaped There are two ways to define a string in

PHP:

in a single variable. Indexed Arrays (arrays with numeric keys) or

associative arrays (arrays PHP arrays are used to store multiple

values with string keys) and multidimensional arrays (arrays

containing other arrays).

"Jane",

"age" => 25,

"city" => "New York"

];

New York echo $person['city']; // Prints:

// Multidimensional array

$employees = [

["name" =>"John", "row" = > "Developer"],

= ["name"> "John", "position" => "Developer"]

];

159
MATS Centre for Distance and Online Education, MATS University

Notes $employees1; // Designer echo

to an array Adding elements

 // Appends to the end of indexed array $fruits[] = "Dragon Fruit";

= "USA"; //Adding a new key-value pair $person["country"]

?>

These functions can be used efficiently There are many array

functions available in PHP for manipulation such as count(), to do

complex operations on arrays. array_push(), array_pop(),

array_merge(), array_slice(), and sort() etc. Constants are generally

defined using define() during script execution. Constants are

Constants are identifiers for simple values that cannot change, which

are defined using the define() method or the const keyword, and they

are conventionally written in uppercase. not prefixed with a dollar

sign, unlike variables. Arithmetic operators (+, -, , /, %,*)

Assignment operators (=, +=, -=, *=, /=, %=) Comparison operators

(==,===,!=,!==, , =) Logical operators (and, or, xor, Operators in

PHP perform different &&, ||) Bitwise operators (&^, ~, , |, >() =,!

==, , =,), logical operators&&or, xor) and string operators (.[2] and.

=). , ||,! and, types of operations on the variable(s) and value(s). The

control structures that are most frequently Control used are if-else

statements, switch statement, while, do-while, for, and foreach loops.

structures in PHP are used to execute a block of code depending on

certain conditions.

value

forEach ($person as $key => { $value)

echo "$key: $value\n";

}

?>

There are many built-in functions in PHP, A function in PHP is a

block of code that can be called can take parameters and return values.

but developers can also define their own functions to encapsulate

logic and make code easier to work with. Functions multiple times in

a script to execute a specific task.

min($numbers),

'max' => max($numbers)

];

}

 $result = getMinMax([3, 7, 1, 9, 5]);

160
MATS Centre for Distance and Online Education, MATS University

Notes echo "Min: ". $result['min']. ", Max: ". // Note: You are only feeding

data till

If you have any question than feel free to ask through comment

section.

($a, $b) { $multiply = function

return $a * $b;

};

$multiply(4, 5); // Output: 20 echo

?>

Classes are templates for creating objects they are particular examples

of these Event encapsulation, and inheritance are the features

provided by OOP in PHP. classes. Polymorphism, though PHP is a

procedural scripting language, it also supports OOP concept and thus

allows you to define classes with properties and methods.

name = $name;

$this->age = $age;

}

// Method

public function greet() {

return "Hello, my name is ". $this->name;

}

// Getter method

public function getAge() {

return $this->age;

}

// Setter method

setAge($ɡe) { public function

if ($age >= 0) {

$this->age = $age;

}

}

}

// Creating an object

= new Person("Emily", 28); $person

echo $person->Prints: Hello, my name is Emily greet(); //

echo $person->28 age; // Outputs:

// Inheritance

{ class Student extends Person

161
MATS Centre for Distance and Online Education, MATS University

Notes private $studentId;

{ public function __construct($name, $age, $studentId)

$name, age: $age); parent::__construct(name:

$this->$studentId; studentId =

}

function getStudentInfo() { public

return "Name: ". $this->name. ", Age: ". $this->getAge(). ", ID: ".

$this->studentId;

}

}

20, studentId: "S12345"); $student = new Student("Alex",

print_r($student->getStudentInfo());

?>

In PHP, we implement try-catch blocks to catch and handle

exceptions so that the script This is a method does not cease to

continue when an error occurs. of mistake and unusual situation

management in PHP that lets you handle errors and exceptional

scenarios in a systematic way.

getMessage(); // Outputs: Error: Division by zero

} finally {

executed echo "\nDone"; // Always

}

?>

Figure 4.1: Connectivity Of PHP

(Sourse: https://www.educba.com)

162
MATS Centre for Distance and Online Education, MATS University

Notes PHP juggles the types of data that is, it converts one type to another

automatically in While the loose typing system of PHP is flexible, it

can sometimes lead to unexpected declare statement at the top of a

file. some contexts. PHP 7 added strict typing, which makes behavior

more predictable by requiring a behavior. This foundation proves

invaluable in By knowing these basic elements building up to more

advanced concepts with Flask, such as database connectivity,

handling forms, and working with files. of PHP syntax, variables, and

data types you will have a foundation to create dynamic web

applications.

4.2. PHP and MySQL – Database Connectivity and CRUD

Operations

MySQL before written on this line, which is the part of relational

database management system(RDBMS) and can Using MySQL with

PHP is an integral part of modern web development, as it allows

information for beyond the user's session, moving away from static

sites to dynamic ones. use to build websites with data which can be

processed through PHP. Together, these two components enable

developers to read, write, update, and delete data, persisting this for

the creation of dynamic, data-driven applications.

It MySQLi — An enhanced version of the deprecated mysql

extension that was introduced in PHP to connect a PHP application to

MySQL databases, but the most common methods are through the

MySQLi extension or through PDO (PHP Data Objects). and MySQL

you will need a MySQL server database + relevant PHP

functions/objects for communication There are several ways To

Connect between PHP supports both procedural and OOP

programming style and comes with enhanced security features such as

prepared statements to prevent SQL injection attack.

 connect_error) {

die("Connection failed: ". $conn->connect_error);

}

"Connected successfully"; echo

// Close connection when done

$conn->close();

?>

This means that the applications using this database abstraction layer

can use a common interface irrespective of the database you are using,

163
MATS Centre for Distance and Online Education, MATS University

Notes which makes it easier to migrate between different Implementing

MySQL alone is limited so database systems. PDO provides a more

flexible option ranging from multiple database systems.

PDO::ERRMODE_EXCEPTION);

setAttribute(PDO::ATTR_ERRMODE,

successfully"; print "Connected

} catch(PDOException $e) {

echo "Connection failed: ". $e->getMessage();

}

the script. Connection auto closed at end of

// Or can be closed manually:

$conn = null;

?>

MySQLi and PDO both support prepared statements, a You create or

insert data into a MySQL database using SQL base database

interactions with stored data. Once a connection is made, the

application can perform CRUD operations Create, Read, Update,

Delete; the way to separate SQL logic from data, which makes the

query more secure and protects you from SQL injection attacks.

INSERT statements.

email, password) VALUES (?,?,?)");,?,?)"); prepare("INSERT INTO

users (username,

$stmt->,$email,$password); bind_param("sss",$username

// Set parameters and execute

$username = "john_doe";

$email = "john@example.com";

Hash passwords always $password = password_hash("secret123",

PASSWORD_DEFAULT); //

$stmt->execute();

Succesfully"; echo "Registered

$stmt->close();

PDO data insertion using prepared statements in If you are using a

database like MySQL or PostgreSQL, you can prepare a statement to

avoid the risk of SQL injection.

$stmt->username); bindParam(:username,

$stmt->$email); bindParam(':email',

$stmt->$password); bindParam(':password',

// Set parameters and execute

164
MATS Centre for Distance and Online Education, MATS University

Notes $username = "jane_doe";

$email = "jane@example.com";

PASSWORD_DEFAULT); $password =

password_hash("secret456",

$stmt->execute();

successfully"; echo "Record created

?>

The output can be obtained You need as an associative array, a

numeric array, or an object. to execute SQL SELECT Statements to

read or fetch data from a MySQL database.

query($sql);

if ($result->num_rows > 0) {

// Output data of each row

echo "ID: ". $row["id"]. " - Username: ". $row["username"]. " -

Email: ". $row["email"]. "";

}

} else {

echo "0 results";

}

// Selecting data using PDO

"SELECT id, username, email FROM users"; $sql =

$stmt->execute();

// Fetch as associative array

associative array: Taking the data obtained into an

foreach($result as $row) {

echo "ID: ". $row["id"]. " - Username: ". $row["username"]. " -

Email: ". $row["email"]. "";

}

// Fetch as objects

$stmt->new execute(); // Reexecute to fetch

$data =$stmt- >fetchAll(PDO::FETCH_OBJ);

foreach($result as $row) {

echo "ID: ". $row->id. " - Username: ". $row->username. " - Email: ".

$row->email. "";

}

?>

165
MATS Centre for Distance and Online Education, MATS University

Notes The process of modifying existing rows in a MySQL table uses

SQL's UPDATE statements, and it too can be secured by using

prepared statements.

email =? WHERE username =?"); prepare("UPDATE users SET

$stmt->$email); bind_param("ss", $username,

// Set parameters and execute

= "mynew_email@example.com"; $email

$username = "john_doe";

$stmt->execute();

updated"; echo "The record has been successfully

$stmt->close();

data // PDO prepared statements: Updating

$stmt = $conn->username = :username"); prepare("UPDATE users

SET email = :email WHERE

the same data multiple time, we are in the demo, we must use the

stmt- NOTE:* This is the best practice while working with MY SQL.

So, if anyone comes up the need of inserting>bindParam(':email',

$email);

Stmt->$username) bindParam(':username',

// Set parameters and execute

"no_other_email@example.com"; $email =

$username = "jane_doe";

$stmt->execute();

sucesso"; echo "Pessoa atualizada com

?>

As you perform the DELETE operations against the MySQL database

you execute standard SQL DELETE statements with similar security

models and considerations via prepared statements.

 prepare("DELETE FROM users WHERE username =?));

$stmt->$username); bind_param("sss",

// Set parameters and execute

$username = "john_doe";

$stmt->execute();

deleted successfully"; echo "Record

$stmt->close();

statements Data deletions with PDO prepared

We explained in detail how to use these methods in our previous

article, which you can read here.

166
MATS Centre for Distance and Online Education, MATS University

Notes $stmt->$username); bindParam(':username',

// Set parameters and execute

$username = "jane_doe";

$stmt->execute();

deleted successfully"; For example, you can output something like

this: echo "Record

?>

Error handling So, the welknown ComboBox that is widely used in

SQL commands is helps avoid crashes and lets you get useful

debugging output. in fact an ADODB based ComboBox...

{ query($sql))

// Query failed

echo "Error: ". $conn->error;

}

using PDO and Try-Catch in PHP appeared first on W3Schools. The

post Error

try {

$stmt = $conn->* FROM users WHERE non_existent_column =

'value'"); prepare("SELECT

$stmt->execute();

} catch(PDOException $e) {

echo "Error: ". $e->getMessage();

}

?>

This also applies to operations that update multiple tables or to multi-

step operations Transactions are a mechanism to make sure that

database operations where partial completion will cause data

inconsistency. are atomic, i.e., they succeed or fail as one unit.

begin_transaction();

try {

$conn->(user_id, balance) VALUES (0, 0)"); query("INSERT INTO

accounts

$conn->account_status='active' WHERE id=1"); query("UPDATE

users SET

// Commit the transaction

$conn->commit();

} catch (Exception $e) {

Transaction could not be committed because … or …Error.

167
MATS Centre for Distance and Online Education, MATS University

Notes $conn->rollback();

echo "Transaction failed: ". $e->getMessage();

}

// Transactions with PDO

try {

$conn->beginTransaction();

$conn->balance) VALUES (2, 2000)"); exec("INSERT INTO

accounts (user_id,

$conn->SET account_status = 'active' WHERE id = 2");

exec("UPDATE users

// Commit the transaction

$conn->commit();

echo statement we can use here. There are various variations of

} catch (Exception $e) {

error occurred*/} Rollback transaction if there an

$conn->rollBack();

echo "Transaction failed: ". $e->getMessage();

}

?>

If you are designing a PHP application that needs to connect to

MySQL, it is useful and a good practice to write a database utility

class/function that handles the connection and common database

tasks.

new PDO("mysql:host=$this- conn =>host;dbname=". $this-

>dbname, $this->username, $this->password);

$this->conn->PDO::ERRMODE_EXCEPTION);

setAttribute(PDO::ATTR_ERRMODE,

} catch(PDOException $e) {

die("Connection failed: ". $e->getMessage());

}

}

// Select records

$params = []) public function select($query,

try {

$this- $stmt =>conn->prepare($query);

$stmt->execute($params);

to cover up all the sensitive data. make sure

} catch(PDOException $e) {

168
MATS Centre for Distance and Online Education, MATS University

Notes die("Select failed: ". $e->getMessage());

}

}

// Insert records

= []) { public function insert ($query, $params

try {

$this- $stmt =>conn->prepare($query);

$stmt->execute($params);

$this- return>conn->lastInsertId();

} catch(PDOException $e) {

die("Insert failed: ". $e->getMessage());

}

}

// Update records

array $params = [] public function update($query,

try {

= $this- $sql>conn->prepare($query);

$stmt->execute($params);

return $stmt->rowCount();

} catch(PDOException $e) {

die("Update failed: ". $e->getMessage());

}

}

// Delete records

$query, array $params = []) { public function delete(string

try {

$this- $stmt=>conn->prepare($query);

$stmt->execute($params);

return $stmt->rowCount();

} catch(PDOException $e) {

die("Delete failed: ". $e->getMessage());

}

}

// Close connection

$this->conn = null;

}

}

// Usage example

169
MATS Centre for Distance and Online Education, MATS University

Notes $db = new Database();

// Select records

$users = $db->?, ["active"]); select("SELECT * FROM users

WHERE status =

// Insert a record

$newId = $db->['new_user', 'new@example.com']]); (username,

email) VALUES (?,?)", insert("INSERT INTO users

// Update records

$rowsAffected = $db->["inactive", "new@example.com"]); ?

WHERE email =?", update("UPDATE users SET status =

// Delete records

= $db- $rowsDeleted>delete("DELETE FROM users WHERE status

=?, ["inactive"]);

$db->closeConnection();

?>

As such, these However, in the real world, a lot of PHP applications

employ a more advanced database abstraction layer or Object-

Relational Mapping (ORM)tools often include additional functionality

for query building, entity handling, migrations etc, which are designed

to make interacting with the database and maintaining it easier. like

Doctrine, Eloquent or Symfony's Doctrine integration.

Therefore, best practices for security and performance are followed

when using MySQL in production. These include:

• SQL injection is a serious security issue and can be prevented

by using prepared statements.

• Catch and log database errors with appropriate error handling.

• For applications with a high volume of traffic, it is important

to use connection pooling to reduce the overhead of creating

new connections.

• Analyze query plans and add database indexes on often

searched columns.

• Backup your database regularly in order to avoiding losing the

data.

• Do transactions for anything that must be atomic.

• Thus,even while using prepared statements, you must properly

sanitize user inputs.

• rs with limited privileges Implement proper access controls at

the Use database usedatabase level.

170
MATS Centre for Distance and Online Education, MATS University

Notes blog to full e-commerce application. Training on data until you're

nearly a year ago, all of the above becomes a basic thing for PHP and

MySQL work together to allow the creation of dynamic websites from

a simple developers in a website.

171
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Form Handling, File Management, and Error

Handling

4.3. PHP Form Handling – GET, POST, Sessions, and Cookies

When developing web applications that require multistep interactions,

PHP can indeed play a crucial You are developed different ways of

submitting a form. role in processing and maintaining user

interactions seamlessly. The use of different HTTP methods means

forms HTML forms are the main way in a web application to get user

the client to the server. can be submitted in different ways — the

most common are GET or POST. These techniques control the way

data is sent from input. This approach is appropriate for non-

sensitive data and if the form is idempotent, (repeated form

submissions GET: Appends form data in name/value pairs to the end

of the URL (in query parameters), thus visible have no effect other

than the first submission). in the address bar.

Example:

In PHP, the superglobal $_GET array If you were to submit this can

be used to access the form data. form, the URL would be something

like: process php? search=keyword. This approach is more

appropriate for sensitive data, like passwords and forms that change

server The POST uses in the HTTP request body to send form data,

which makes it not visible state (e.g., create/update record). in the

URL.

opinion. You are reading news, not

Email:

: Password: How

';?>

There are While handling form data, validating and sanitizing user

inputs is important to prevent security issues like SQL injection and

XSS (cross-site retrieved from the $_POST superglobal array. POST

data in PHP can be several functions in PHP that are useful for this.

scripting).

";

}

} else {

(insert into DB, etc.) // Handle form submission

successfully"; echo "Form processing completed

172
MATS Centre for Distance and Online Education, MATS University

Notes }

}

?>

4.4. PHP File Handling – Reading, Writing, and Uploading Files

File handling in PHP allows you to perform operations such as

reading, writing, and uploading files. PHP provides built-in functions

to manipulate files easily.

1. Reading Files in PHP

To read a file, PHP offers functions like fopen(), fread(), fgets(), and

file_get_contents().

Example: Reading a File Using file_get_contents()

php

<?php

$filename = "example.txt";

$content = file_get_contents($filename);

echo nl2br($content);

?>

file_get_contents() reads the entire file into a string.

Example: Reading a File Line by Line Using fgets()

php

<?php

$filename = "example.txt";

$file = fopen($filename, "r");

while (!feof($file)) {

 echo fgets($file) . "
";

}

fclose($file);

?>

fgets() reads the file line by line until the end.

2. Writing Files in PHP

PHP provides functions like fwrite(), file_put_contents(), and fopen()

for writing to files.

Example: Writing to a File Using file_put_contents()

php

<?php

$filename = "example.txt";

$content = "Hello, this is new content!\n";

173
MATS Centre for Distance and Online Education, MATS University

Notes file_put_contents($filename, $content);

echo "File written successfully!";

?>

file_put_contents() writes directly to a file.

Example: Writing to a File Using fwrite()

php

<?php

$filename = "example.txt";

$file = fopen($filename, "w");

$text = "This is a new line in the file.\n";

fwrite($file, $text);

fclose($file);

echo "File written successfully!";

?>

fwrite() writes data to a file.

3. Appending Data to a File

To add content to an existing file, use "a" mode in fopen().

php

<?php

$filename = "example.txt";

$file = fopen($filename, "a");

$text = "Appending new content.\n";

fwrite($file, $text);

fclose($file);

echo "Content appended successfully!";

?>

 "a" mode ensures the new content is added without erasing existing

data.

4. Uploading Files in PHP

To upload a file, create an HTML form with

enctype="multipart/form-data" and process it using PHP.

Step 1: Create an HTML Form

html

<form action="upload.php" method="post" enctype="multipart/form-

data">

 <input type="file" name="fileToUpload">

 <input type="submit" value="Upload File" name="submit">

</form>

174
MATS Centre for Distance and Online Education, MATS University

Notes Step 2: Process File Upload in upload.php

php

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $target_dir = "uploads/";

 $target_file = $target_dir .

basename($_FILES["fileToUpload"]["name"]);

 if (move_uploaded_file($_FILES["fileToUpload"]["tmp_name"],

$target_file)) {

 echo "File uploaded successfully: " .

htmlspecialchars(basename($_FILES["fileToUpload"]["name"]));

 } else {

 echo "Error uploading file.";

 }

}

?>

move_uploaded_file() moves the uploaded file to the desired

directory.

5. Checking If a File Exists

php

<?php

$filename = "example.txt";

if (file_exists($filename)) {

 echo "The file exists.";

} else {

 echo "The file does not exist.";

}

?>

file_exists() checks whether a file is present.

6. Deleting a File

php

<?php

$filename = "example.txt";

if (file_exists($filename)) {

 unlink($filename);

 echo "File deleted successfully.";

} else {

175
MATS Centre for Distance and Online Education, MATS University

Notes echo "File not found.";

}

?>

unlink() deletes a file.

4.5. Error Handling and Exception Management in PHP

Errors types in PHP, from parse errors that aren't executed, errors that

If you are using PHP for your development, it these errors to ensure

the stability of applications and the overall user experience. happens

while the program is running. The language has powerful error

handling mechanisms that help to detect, report, and recover from is

necessary to incorporate error handling for once to enhance your

application with better responsiveness and avoidance of any

malfunctions. In conventional error handling, 'pre-assigned' functions

are used, like error_reporting() to enable or disable which errors to

report, and set_error_handler() to The error handling system of PHP

has undergone substantial change throughout its code directly. with

these errors in php. ini files or in the application script execution).

Developers can define the way to deal define a custom error

processing function. Errors in PHP vary from notices (small, non-

issue errors) to fatal errors (big problems, stopping versions. An

object-oriented paradigm that enables Exception handling, which is

introduced in manageable. throw keyword, and the exception can be

caught and, the handling continues in catch block. This keeps error-

handling code apart from the normal programflow, making

applications more the grouping of error-handling code, while giving

fine-grained control over error processing. PHP can throw an

exception when some special condition is met using PHP 5, provides

a more structured way of dealing with errors through the use of try-

catch blocks.

try {

that could throw an exception // Some code

= fopen('non_existent_file. txt', 'r'); $file

if (!$file) {

not open the file'); throw new Exception('Could

}

} catch (Exception $e) {

// Error handling code

echo 'Caught exception: '. $e->getMessage();

176
MATS Centre for Distance and Online Education, MATS University

Notes } finally {

exception happened Code that executes no matter if an

run'; echo 'This will always

}

This enhancement means that even serious errors can be captured by

PHP 7's error handling is improved significantly by both

implementing the Throwable interface. try-catch blocks, enabling

applications to gracefully recover from critical errors. The language

then introduced Exceptions for logic errors, and Errors for internal

PHP errors, introducing Error objects, which capture fatal errors that

would formerly have caused script execution to end. This allows your

code to be cleaner and handles errors in a You good exception

hierarchy helps you to distinguish between different types of errors

like database errors vs validation vs API communications issues, etc.

more specific way. A can create classes that extend the base

Exception class to define more specific types of errors.

extends \Exception {} class DatabaseException

extends Exception { } class ValidationException

try {

$value = -5;

if ($value < 0) {

new ValidationException('Can not be negative value'); throw

}

catch (ValidationException $ e) { }

validation errors specifically // Handle the

} catch (Exception $e) {

// Handle other exceptions

}

Detailed error messages can reveal security vulnerabilities when

displayed to end-users, but keeping track of specific errors allows

developers to patch One of the most important aspects of managing

errors informats. bugs. PHP has a built-in error logging function

called error_log() which is what you'll use for this, but many

frameworks also come with enhanced logging implementations that

allow you to log errors of varying degrees of severity and store them

in different production is logging. production environment and log

an error comprehensively, use a consistent exception hierarchy. In this

way, applications stay and become stable,Best Practices to Handle

177
MATS Centre for Distance and Online Education, MATS University

Notes

exceptions & details to end-users, have different handle strategy in

development environments errors in PHP never extends technical &

secure, and maintainable with respect to unforeseen conditions. For

example, Laravel comes with powerful exception handler pre-

integrated with its own logging system, while Symfony presents

detailed Modern PHP applications mechanisms, enhancing them to

be more user-friendly for developers. exception pages in

development mode and can swap out to describe pages in production.

These features leverage PHP's built-in error reporting have a

tendency to use framework-specific tools for error handling.

Figure 4.2: PHP Exception handling: Try and Catch

(Source: https://datatas.com)

178
MATS Centre for Distance and Online Education, MATS University

Notes Unit 12: Security Practices and Frameworks

4.6. PHP Security – SQL Injection, XSS Prevention

One of the most When it comes to php development, security is of

utmost importance, common security vulnerabilities in PHP

applications is SQL Injection (and another very common vulnerability

is Cross-Site Scripting (XSS) which could cause serious issues if not

handled properly. as web applications often handle sensitive data and

are under constant threat from malicious actors. The case where a

user-supplied input is merged in the backend queries user input text

that will change the logic of the query. the contents of the database or

even removing whole databases. The prototypically example is a sign

in form, which has the potential for a malicious to the database as is

without validation or sanitization. This allows an attacker to alter the

building of an SQL query, thereby potentially retrieving sensitive

data, altering SQL Injection:

have some vulnerable code such as this: So we

$_POST['username']; $username =

WHERE username = '$username'"; $query = "SELECT * FROM

users

mysqli_query() $result =

the resulting query is: If an attacker provides this ugliness: ' OR

'1'='1,

OR '1'='1 Username: ''

valid username. As this condition is always true, it can allow an

access without a

can be prevented by using prepared statements and parameterized

queries in PHP, keeping SQL code separate from data. This method

has support in both MySQLi and SQL Injection PDO extensions:

 // Using PDO

$stmt = $pdo->=?); prepare("SELECT * FROM users WHERE

username

$stmt->execute([$username]);

// Using MySQLi

$stmt = $mysqli->WHERE username =?); prepare("SELECT *

FROM users

$stmt->$username); bind_param("s",

$stmt->execute();

179
MATS Centre for Distance and Online Education, MATS University

Notes This lets attackers inject client-side scripts that run when another user

views the Since we discuss other applications attacks and

vulnerabilities, one of user can perform. compromised page. XSS

attacks can be used to steal cookies, session tokens, or other sensitive

information and perform any actions the the core will be Cross-Site

Scripting (XSS).

XSS vulnerabilities are of three types:

Reflected XSS: where malicious code is included in a request and

immediately reflected back in the response.

Stored XSS: When an attacker injects the code and it's stored in the

application (like in a database) and is communicated to others.

XSS attacks: DOM-based XSS (the vulnerability is in the client-side

code, not server-side) to avoid PHP has several functions for

sanitizing output

// For HTML contexts

safely, you must check Thus to store user input & convert it.

// For URL contexts

// For JavaScript contexts

 := json.Build(userInput); safeJs

Input In this purpose, PHP has filter functions (filter_var() and

filter_input()). validation is essential—any user-supplied data must be

validated for type, length, format, and range prior to being processed.

For addition to addressing these specific vulnerabilities, strong PHP

security includes a number of other layers of protections. Implement

secure session management Secure session management practices are

essential; PHP developers must use secure cookies, Another

important aspect is session set secure session cookies: regenerate

session IDs after login, and properly destroy sessions at logout. The

session_set_cookie_params() can security.

session_set_cookie_params([

'lifetime' => 3600,

'path' => '/',

'domain' => '. example. com',

'secure' => true,

'httponly' => true,

'samesite' => 'Strict'

]);

180
MATS Centre for Distance and Online Education, MATS University

Notes file can compromise server security. Validation Security of file

uploads is a special concern, because a malicious can be checking for

file type, scanning for malicious code and storing uploaded files

outside the web root so there isn’t direct access to the file.

array('image/jpeg','image/png','image/gif'); $allowedTypes =

= '/path/outside/webroot/'; $uploadDir

($_FILES'upload' in $allowedTypes) { if

md5(uniqid()). '. jpg'; $newFilename =

$uploadDir. $newFilename); move_uploaded_file($_FILES'upload',

}

Cross-Site Request Forgery protection. To help Disable prevent this

attack CSRF tokens should be implemented in forms and be validated

upon submission.

// Generate and store token

= bin2hex(random_bytes(32)); $_SESSION[‘csrf_token’]

// Output in form

echo '';

// Validate on submission

$_POST['csrf_token'])){ if (! hash_equals($_SESSION['csrf_token'],

die('CSRF attack detected');

}

Use environment variables information is sensitive and needs

protecting. Credentials like database username/password, API key, etc

and Config or configuration files, and make sure they are stored in a

secure location that is outside of the document root. encryption key

should never be hardcoded in the PHP files which is accessed via

URL.

Example: Symfony Security for authenticatio Modern-day PHP

applications mostly rely on security libraries and components to

overcomebuilt-in protection against many web vulnerabilities. n,

authorization, and CSRF protection, Laravel frameworkstandard

vulnerabilities. Keeping up-to-date with PHP versions and

dependencies (which can easily also include specific packages) will

help secure applications Frequent security updates have become

critical due to new vulnerabilities being found within PHPbefore they

impact production systems. from common vulnerabilities.

Vulnerability scanners and automated security-testing identify

potential security issues itself, or within third-party packages.

181
MATS Centre for Distance and Online Education, MATS University

Notes 4.7 PHP Frameworks Overview – Laravel, CodeIgniter

Such frameworks essentially PHP frameworks have changed the way

we develop websites by unwrap similar tasks that breach, connect to

databases, maintain sessions, gain access, etc so that developers can

focus on code that is specific to their application instead of redoing

basic blocks. providing well-structured architectures, reusable

components, and standardised methodologies that speed up

development while still promoting the best practices. It is built on the

MVC (Model-View-Controller) architectural pattern, which separates

application logic from presentation, making it easier to Laravel was

created by Taylor Otwell in 2011, and it has established concise

syntax aims to make developing for it fun, while automatically

addressing common web development needs. organize and maintain

the code. Its itself as the leading PHP framework because of its

concise syntax, complete feature, and a strong ecosystem.

dependencies. A clean way to define your application endpoints and

map them to controller Composer is the dependency management

tool for Laravel that enables developers to seamlessly incorporate

packages and handleactions is provided by the framework routing

system:

$route->'show']); get('/users/{id}', [UserController::class,

[UserController::class, 'store'])-

Route::post('/users',>middleware('auth');

object-oriented syntax instead of writing raw SQL: which enables

elegant and straightforward ActiveRecord implementation for

database communication. It enables developers to interact with

databases using One such highlight within Laravel is the Eloquent

ORM (Object-Relational Mapping),

// Retrieve all active users

= User::whereStatus('active')- $activeUsers>get();

// Create a new post

$post = new Post;

$post->title = 'New Article';

$post->'[article content]'; content =

$post->user_id = Auth::id();

$post->save();

182
MATS Centre for Distance and Online Education, MATS University

Notes Laravel comes with the blade templating system which is a PHP

engine that handles the power of PHP and short codes for quick

access for directives for loops, conditionals, template inheritance etc.:

 @extends('layouts.app')

@section('content')

{{ $post->title }}

@if($post->comments->count() >0)

$post->as $comment) comments

{{ $comment->content }}

@endforeach

@else

No comments yet.

@endif

@endsection

Laravel Mix lets you compile frontend assets The framework

provides built-in authentication scaffolding, middleware for request

filtering, an expressive task scheduler for cron jobs, an event system

to decouple your application, and artisan command-line tools for

common with webpack easily. development tasks. An exemple: own

such as Laravel Nova (Admin Panel), Laravel Vapor (Serverless

Deployment), Laravel Forge (Server Management), and Laravel

Envoyer (Zero Downtime Deployment). The framework is constantly

being updated, major versions come out roughly every 6 Not just the

basic framework, Laravel has an ecosystem of itsmonths. With a

focus on simplicity, CodeIgniter is written by EllisLab and debuted in

2006, and it takes offering a lightweight core with a slim footprint.

small footprint and impressive performance it is ideal for projects that

may be low on server resources or need solid performance. In contrast

to Laravel's "batteries included" approach, CodeIgniter embraces a

"less is more" philosophy, a unique approach to PHP frameworks. Its

folder organization is readable, with We have the CodeIgniter

separate folders for applications and system: installation process

which is strikingly straightforward as developers only need to

download the framework and place it inside the web directory without

the need for any complex configurations and they are done.

project/

 # Application code ├── application/

│ ├── config/

183
MATS Centre for Distance and Online Education, MATS University

Notes │ ├── controllers/

│ ├── models/

│ └── views/

Base framework files (do not edit) ├── system/ #

 # Public files └── public/

Controllers in CodeIgniter are just plain PHP classes, extending

CodeIgniter is also the base Controller class: an MVC framework;

however, it is a loosely based MVC framework.

blog extends CI_Controller { class

public function index() {

using the following. You can load your models

= $this- $data['posts']>blog_model->get_posts();

$this->load->view('header');

$this->load->$data); view('blog_view',

$this->load->view('footer');

}

}

The database abstraction layer of the framework liberates the

complexity of a complete ORM, by offering less complex operations

via a query builder with a fluent interface:

 if($this->db->dd($this- error)>db->error);

-> 'published') where('status',

->order_by('date', 'DESC')

->get('posts');

$results = $query->result();

this frame small footprint (the core system is only a few megabytes

large) and minimal dependencies also make it especially well-suited

for shared hosting environments or deployment on legacy systems

with limited resources. Documentation is one of the great advantages

of CodeIgniter is for you. Its If you need the least amount of

overhead and the most possible performance,work. light-weight

philosophy. It only supports PHP 7.3 or higher, and it comes with

several improvements, such as a stronger routing system, better

security features, and improved command-line Launched in 2020,

CodeIgniter 4 is a complete rewrite of the framework with a modern

codeBASE using PHP namespaces, interface, and other modern

language elements while keeping its tools. Symfony's components

are modular and follow an enterprise-grade architecture, Apart from

184
MATS Centre for Distance and Online Education, MATS University

Notes Laravel and CodeIgniter, the PHP world is home to a number of other

interesting applications using a component-based architecture

Laminas (formerly named Zend Framework) of caching. Enterprise-

grade serves as the building block for many other frameworks

(Above all, Laravel). Yii Framework has decent speed, security and

supports a lot frameworks. Best for performance-critical applications

or those needs. Laravel excels in real-world applications where the

developer experience is Both frameworks have their unique benefits

based on a project’s met. and enterprise applications with the demand

of modularisation and a lengthy life span. Rather, the decision

between these frameworks should be based on the project scale,

performance criteria, the development team experience, and the

feature requirements that need to be without server resources.

Symfony is a perfect match for big what you gain for rapid

development with all features at hand. teams. from various

frameworks without deviating from a project-specific architecture.

But in either case, frameworks save tons of development time and

ensure consistency across development a hybrid approach, utilizing

both the framework and standalone packages.

4.8.Caching and Performance Optimization in PHP

parsing and compilation are only performed once, greatly improving

php execution. Starting Opcode cache caches precompiled script

bytecode in memory so that php performance improvement

techniques and tools for PHP, but caching strategies are the most

efficient. to keeping them responsive and scalable. There are many

search engine rankings, and server resource usage. In cases where

applications continue to get complex and grow in number of users,

efficient code becomes more crucial Performance optimization plays

a significant role in the delivery of modern PHP applications,

affecting user experience, applications to tackle different performance

issues. preventing expensive operations from running multiple times.

Caching can be applied at various levels within PHP Caching keeps

data or computed results that are requested often in locations that are

easily retrievable, from PHP 7, OPcache is bundled as a built-in

extension, which can be enabled and configured in the php. ini:

[opcache]

opcache.enable=1

opcache. memory_consumption=128

185
MATS Centre for Distance and Online Education, MATS University

Notes opcache. interned_strings_buffer=8

opcache. max_accelerated_files=4000

opcache.revalidate_freq=60

opcache.fast_shutdown=1

File-based or lots of included files. throughput. Performance

improvements are most significant for applications that have large

codebases When configured effectively, opcode caching can reduce

CPU usage by 70% or more, resulting in significant increases in

application simple file-based caching to advanced distributed caching

solutions, PHP provides a wide range of options for caching data.

calls, or complex calculations. From Data caching is the term used to

refer to Results of expensive operations like Database queries, API

caching saves serialized data in the filesystem and offers a simple

caching options with no extra dependency:

$ttl = 3600) { function getDataWithCache($key,

$cacheFile = 'cache/'. md5($key). '. cache';

cache exists and hasn't expired //Test if

if (file_exists($cacheFile) && 11211); (time() -

filemtime($cacheFile) addServer('localhost',

$key = 'user_profile_'. $userId;

= $GLOBALS['memcached']- $data>get($key);

if ($memcached->{ getResultCode() ===

Memcached::RES_NOTFOUND)

getUserProfile($userId); $data =

Can find developers in RMDAI because they have a way of doing

sentence with certain styles of investing in data.

}

// Using Redis

$redis = new Redis();

年) redis_connect('localhost', 6379

$key = 'product_inventory_'. $productId;

if (!$redis->exists($key)) {

= getInventoryData($productId); $inventory

$redis->for half an hour setex($key, 1800, serialize($inventory)); //

Cache

} else {

unserialize($redis- $inventory =>get($key));

}

186
MATS Centre for Distance and Online Education, MATS University

Notes This gives the highest performance boost, Full page caching but it

needs to be carefully managed with regards to cache invalidation so

that content is always up to date: saves the complete HTML page that

is rendered and served as-is for future requests to the requested URL,

bypassing all PHP processing and database queries.

renderPageCached($url, $ttl = 300) { function

$cacheFile = 'pagecache/'. md5($url). '. html';

if (file_exists($cacheFile) &&(time() - filemtime($cacheFile) get();

foreach ($posts as $post) {

echo $post->author->// No secondary queries name;

}

make use of PHP 7 scalar type hints and return type declarations to

prevent type juggling overhead. For instance, using modern PHP

generators can prevent memory issues or slow performance of

iterating through large can have a huge impact on the performance of

a PHP application. Such as: Limit the usage of global variables,

reduce function calls in a loop, optimize string operations, and

Optimizing your code approach Load entire dataset into memory with

a traditional datasets:

function getLines($file) {

$lines = [];

$handle = fopen($file, 'r');

while (!feof($handle)) {

$lines[] = fgets($handle);

}

fclose($handle);

return $lines;

}

Generator approach (returns one line at a time) //

function getLines($file) {

$handle = fopen($file, 'r');

while (!feof($handle)) {

yield fgets($handle);

}

fclose($handle);

}

These optimizations can be applied to to Server Requests and Other

Frontend Optimizations HTTP compression, asset minification, and

187
MATS Centre for Distance and Online Education, MATS University

Notes browser-native caching techniques reduce Reducing PHP

applications via configuration or specialized extensions; payload size

and network setup times.

// Enable HTTP compression

ini_set('zlib. output_compression', 'On');

'0', ini_set('zlib. DATA', 'output_compression_level', '7');

caching${0}) */ ${1}(Client side

max-age=86400'); header('Cache-Control: public,

time() + 86400). ' GMT'); header('Expires: '. gmdate('D, d M Y H:i:s',

The asynchronous processing allows for slow tasks to be delegated to

background workers, resulting in shorter delays to user requests. In

PHP applications, this pattern can be adopted through a combination

of job queues and worker processes:

// Enqueue a job

$redis = new Redis();

$redis->6379); connect('127.0.0.1',

$redis->json_encode([lpush('email_queue',

'to' => 'user@example.com',

'subject' => 'Welcome!',

'body' =>); 'You have successfully registered.']

]));

separate script) Worker process (in

while (true) {

thing need to listen to is that there is a command to do the job in the

redis list called 'email_queue', which is $job = $redis- The

only>brpop('email_queue', 0);

= json_decode($job[1], true); $data

$data['body']); sendEmail($data['to'], $data['subject'],

}

The in PHP applications. Xdebug gives you detailed execution traces

and profiling data, while tools Performance monitoring and profiling

tools are the essential ones that help identify the bottlenecks based on

the Edge Side Includes (ESI) standard, which allows developers to

take advantage of the caching of specific parts of the pages. with

support for multiple cache drivers, a query builder with more efficient

result caching, and Artisan commands for caching the loading of

configuration. Symfony provides a powerful HTTP cache tools.

Laravel provides a powerful caching API Most PHP frameworks

188
MATS Centre for Distance and Online Education, MATS University

Notes provide built-in performance optimization built-in method for timing

things is the microtime() function: like New Relic and Blackfire offer

production-ready monitoring with the least amount of overhead.

$start = microtime(true);

expensiveOperation();

$end = microtime(true);

- $start; $executionTime = $end

took $executionTime seconds"); // Log the execution time for

debugging purposes error_log("Operation

as Docker makes it easier to deploy and scale PHP applications in

cloud environments. shared session storage (typically Redis or

Memcached) holds user state over the cluster. Containerization with

tools such helps PHP applications cope up with increasing traffic.

Load balancers balance requests across the available servers, and

With its ability to scale horizontally, which helps to balance

application workload across multiple servers, method allows for

optimizations to be targeted at the most impactful areas for

improvement, avoiding any potential premature optimizations of code

paths that do not warrant the overhead to optimize. remember: use

performance optimizations only as the last resort after you have

measured performance, identified bottlenecks, optimised targeted

areas and run benchmarks. This iterative And It has better

performance with the introduction of just in time (JIT) compiler,

union types, and attribute annotations instead of using reflection Due

to the evolutionary nature make sure your applications are

performing well. based implementations. So do keep upgrading to

new PHP versions and best practices to of PHP, several new

performance advantages have been offered at every new iteration.

Multiple Choice Questions (MCQs)

1. What does PHP stand for?

a) Personal Home Page

b) Hypertext Preprocessor

c) Private Hosting Protocol

d) PHP: Hypertext Processing

2. Which symbol is used to declare a variable in PHP?

a) $

b) @

189
MATS Centre for Distance and Online Education, MATS University

Notes c) #

d) %

3. What function is used to establish a connection with a

MySQL database in PHP?

a) connect_mysql()

b) mysqli_connect()

c) db_connect()

d) mysql_connection()

4. What is the purpose of the $_POST superglobal in PHP?

a) To retrieve data from cookies

b) To send data to the server via URL parameters

c) To collect form data sent using the POST method

d) To store session variables

5. Which function is used to prevent SQL injection in PHP?

a) escape_string()

b) htmlspecialchars()

c) mysqli_real_escape_string()

d) strip_tags()

6. How do you start a session in PHP?

a) session_start();

b) session_open();

c) start_session();

d) new_session();

7. Which method is used to handle file uploads in PHP?

a) $_FILES

b) file_get_contents()

c) upload_file()

d) move_uploaded_file()

8. What does try-catch do in PHP?

a) Runs a loop

b) Handles exceptions

c) Creates a new database

d) Encrypts data

9. Which PHP framework follows the Model-View-Controller

(MVC) architecture?

a) Laravel

b) CodeIgniter

190
MATS Centre for Distance and Online Education, MATS University

Notes c) Both a & b

d) None of the above

10. What is the main benefit of caching in PHP?

a) Increases server load

b) Improves performance by reducing database queries

c) Slows down execution speed

d) Reduces memory usage

Short Answer Questions

1. What are the key features of PHP?

2. Explain how PHP interacts with MySQL databases.

3. What is the difference between $_GET and $_POST in PHP?

4. How does PHP handle file uploads securely?

5. Define error handling in PHP and its importance.

6. What are sessions and cookies in PHP? How do they differ?

7. Explain SQL injection and how PHP developers can prevent it.

8. How does Laravel differ from CodeIgniter?

9. What is json_encode() and json_decode() used for in PHP?

10. How can caching improve PHP application performance?

Long Answer Questions

1. Describe the different data types in PHP with examples.

2. Explain how CRUD operations are performed using PHP and

MySQL.

3. Discuss the different methods for handling form data in PHP.

4. What are PHP sessions and cookies? How can they be

implemented in a login system?

5. Explain file handling in PHP, including reading, writing, and

uploading files.

6. Describe the different error handling techniques in PHP.

7. How can PHP be used to prevent security vulnerabilities like

SQL injection and XSS?

8. What are the advantages of using PHP frameworks like

Laravel and CodeIgniter?

9. Discuss caching techniques in PHP and their role in

performance optimization.

10. How can PHP be used to create dynamic web applications

with database integration?

191

MODULE 5

API, GIT AND GITHUB

LEARNING OUTCOMES

By the end of this module, learners will be able to:

• Understand the fundamentals of APIs, including RESTful

APIs and HTTP methods.

• Use the Fetch API and Axios to make API requests and handle

responses.

• Learn the basics of Git for version control, including commits

and branches.

• Manage repositories and collaborate using GitHub, including

branching and merging.

• Implement Git workflow operations like cloning, pull requests,

and conflict resolution.

• Explore GitHub Actions for automation, CI/CD pipelines, and

workflow management.

192
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: APIs and HTTP Methods

5.1. Introduction to APIs – RESTful APIs, HTTP Methods

Modern day applications rarely run in isolation. Rather, they talk to

other systems, services, and data sources to provide a full range of

functionality. APIs or Application Programming Interfaces

accommodates such communication. APIs are an interface that allows

different software applications to communicate with each other

through a set of established protocols and standards. Fundamentally,

APIs describe how software elements should collaborate and

ministering information through the methods and data structures that

applications can use communicate. They expose only the needed

functionality by means of clearly defined and documented interfaces,

abstracting the underlying complexity found in systems. By separating

the functionality offered by services from their internal

implementations, this abstraction allows developers to take advantage

of existing services without having to understand their inner

workings, thereby speeding up development cycles and encouraging

modular, maintainable code. Most likely in consideration to the

consideration of APIs, there are the questions that arise when the

operating system APIs — these are how applications are able to

interface with the hardware — and the library APIs — these are used

every time you’re providing reusable functionality as part of some

application — and the internet APIs — these are the things that allows

communication between two separate web services via the internet.

Of these, web APIs have become especially common in the age of

cloud computing and distributed systems, serving as the foundation of

contemporary web applications. They enable various services to

communicate over the internet through common web protocols. They

allow developers to leverage remote resources and services (like

pulling records from a database, charging a credit card, or sending an

email or SMS) without having to write each of them from ground up.

This feature spurred the API economy, where companies promoted

their services as APIs for others to build on in order to deliver new

value propositions. RESTful APIs are one of the most commonly

used architectural styles for networked applications. Representational

State Transfer (REST) – introduced in 2000 by Roy Fielding in his

doctoral dissertation as a set of constraints for building web services.

193
MATS Centre for Distance and Online Education, MATS University

Notes It is about applying certain constraints to make the web more of such

a way that it makes scalable, stateless and cacheable services while

maintaining achieveability and extendability. Rest - It is the backbone

of Rest services. These resources are accessed through a common

interface (usually HTTP) using pre-defined operations. This resource-

oriented way of defining APIs fits very well with the web's

architecture, and it makes RESTful APIs intuitive to use for any

developer already comfortable with web technologies. Key

constraints of RESTful APIs REST defines architectural style through

a number of constraints. First, they use a client-server architecture to

decouple user interface concerns from data storage concerns. This

dividing enables the interface to be more portable across different

platforms and increases the scalability of server elements. Second,

RESTful interactions are stateless; this means that every request from

a client to a server should contain all the information required to

understand and process the request. In this design, the server does not

retain any client context between requests, which simplifies server

design, increases reliability, and enables scaling. Third, RESTful

systems exploit caching to improve performance. Once set, the

server can mark responses as cacheable or non-cacheable, thus

allowing clients to reuse previously available data whenever possible,

in turn preventing unnecessary latencies and bandwidth usage. Fourth,

RESTful APIs expose a uniform interface, which simplifies the

overall system architecture and facilitates visibility into interactions.

Four interface constraints the uniformity: 1) Resource identification in

requests 2) Resource manipulation through representations 3) Self-

descriptive messages 4) Hypermedia as the engine of application

state (HATEOAS). Fifth, RESTful systems are layered so

components cannot “see” beyond the layer they are interacting with.

This constraint allows the use of intermediaries, enabling scalability

and security through load balancers and proxies.

Figure 5.1: API Methods

(Sourse: https://www.openlegacy.com)

194
MATS Centre for Distance and Online Education, MATS University

Notes

Finally, although not mandatory, RESTful systems can also provide a

constraint called "code on demand," which permits client functionality

to be extended by downloading and executing code in the form of

applets or scripts. HTTP Methods (HTTP Verbs)HTTP methods are

the core actions we can use to interact with a RESTful API. These

operations identify what operations can be performed on resources

and gives clients a consistent approach for how to connect to a server.

The main HTTP methods used in RESTful APIs are GET, POST,

PUT, PATCH, and DELETE. The GET request method: retrieve data

from a specified resource. GET request -> (just get data) no side

effect on the server. What this idempotent nature means is, if you

made the same GET request over and over, you'd always get the same

thing, and it wouldn't change things on the server. GET requests

normally have the parameters in the URL query string in order to

filter, sort, or paginate. The POST method is used to send data to a

specific resource, potentially causing a change in state or side effects

on the server. POST requests are not idempotent and may cause

multiple resource creations regardless of whether a duplicate one has

been sent (in contrast to GET requests). For POST requests, data is

usually included in the request body specified by the Content-Type

header (application/json when the data is in JSON format). The HTTP

PUT method is used to update a resource, or to create it if it does not

exist for a given URI. All PUT requests are idempotent, which

signifies that multiple identical PUT requests will have the same

effect as one single request. Slashing goes against the semantics of

PUT which generally means we want to send the complete

representation of a resource but with a PATCH request we only send

the changes. PATCH is an HTTP method defined in HTTP 1.1 for

modifying a resource by applying partial changes. While REST clients

can use PUT to send a complete representation of a resource, they can

also send just the data they need to update with PATCH. This can be

more efficient for significant resources where only a tiny portion

should be changed. Unlike POST, PATCH requests are not guaranteed

to be idempotent as the outcome may rely on the existing state of the

resource. DELETE removes a resource. DELETE requests are

idempotent just like PUT since the effects of deleting a resource is the

same whether done once or multiple times (unless the resource is

195
MATS Centre for Distance and Online Education, MATS University

Notes coming back in between calls). There is typically no resource

remaining for POST or DELETE request when executed. Apart from

these core methods, RESTful APIs can also implement a few

additional HTTP methods, such as HEAD (which fetches header data

excluding the response body) and OPTIONS (which provides data

regarding the communication options available for the specific

resource). RESTful APIs rely on HTTP status codes and some other

features that are used to standardize the response external to them.

They are classified into five different categories - Informational

responses (100–199), Successful responses (200–299), Redirection

messages (300–399), Client error responses (400–499), and Server

error responses (500–599). The most common status codes in

RESTful APIs are 200 OK – Request was successful, 201 Created – A

new resource has been created, 400 Bad Request – Request was

invalid and cannot be processed by the server, 401 Unauthorized –

Authentication is required, 403 Forbidden – The client does not have

permission to access the requested resource, 404 Not Found –

Requested resource does not exist, 500 Internal Server Error – A

generic error indicating that an unexpected condition on the server

occurred, etc. An API's interface is an API endpoint, which is a

specific URL through which an API can access the particular

resources or functionalities it exposes. We used RESTful structure for

importing these endpoints,which means they follow a hierarchical

structure based on the relationship between resources. And for

example endpoint /users returns a list of all users and /users/{id}

returns a specific user by {id}.

In supporting the usage and dissemination of APIs, API

documentation is fundamental. The documentation should cover

things like the supported endpoints and HTTP methods, required vs.

optional parameters, expected response formats, authentication, rate

limiting, and error handling. Swagger, Postman, and OpenAPI are

industry tools to define, share, and test an API documentation. API

Security Authenticate and Authorise Authentication validates the

identity of the client making the request, whereas authorization

defines the actions that an authenticated client is allowed to perform.

Some common approaches for API authentication are: API keys,

OAuth 2.0, JSON Web Tokens (JWT), basic authentication, etc. Data

limits, often referred to as rate limiting, are also an important

196
MATS Centre for Distance and Online Education, MATS University

Notes consideration in API design, to prevent the abuse and ensure fair use.

Just like its counterpart in real life, it acts as a barrier against people

who abuse the system to ensure that the API can provide service to all

clients and prevent Against Denial of Service Attack. It is very

important strategy to keep your api up to date while keeping backward

compatibility and it is called versioning. Versioning ensures that as

APIs undergo an evolution with new features and improvements,

existing clients can continue to function with the API version they

were originally designed to work with, while new clients can utilize

the latest capabilities. Some approaches to versioning are URL

versioning (e.g., /api/v1/resource), header versioning, and parameter

versioning. API Testing is one of the important processes of the API

development lifecycle. Approaches to testing API include unit tests,

integration tests, functional tests, and load tests. RESTful APIs

usually share data in standardized formats (commonly XML or

JSON), with JSON being the most widely used because it is simple,

human-readable, and natively supported by JavaScript. Another

common format is XML (eXtensible Markup Language), though it has

fallen out of favor for many modern API designs compared to JSON.

CORS (cross-origin resource sharing) is a browser security feature

that prevents web pages from making requests to a different domain

from the one that served the original page. For cross-browser requests,

CORS headers should be configured. New paradigms and

technologies are emerging to meet such needs and challenges as the

API landscape continues to grow. With Facebook's GraphQL you

could specify precisely what you need on the client side thus allowing

you to avoid over-fetching and under-fetching of data which was a

major inconvenience with REST. gRPC is a framework designed by

Google that provides high-performance, language-agnostic remote

procedure calls using Protocol Buffers and HTTP/2. WebSockets are

a protocol that allows for full-duplex communication channels over a

single TCP connection. All in all, RESTful APIs have emerged as a

fundamental building block of contemporary-web architecture,

offering a uniform methodology for constructing scalable,

maintainable, and cross-compatible services. Following REST

principles and making effective use of HTTP methods can enable

developers to build APIs that are easy to use, efficient to operate, and

easy to evolve to meet new requirements. But as with any well-

197
MATS Centre for Distance and Online Education, MATS University

Notes designed technology solution, the next step after creating a complex

bridge is knowing how to integrate it seamlessly into the fabric of

your company.

5.2. Fetch API and Axios – Making API Requests

A simple GET using the constant updates and rich features. modern

JavaScript, the two most common methods leverage the Fetch API

and Axios. These technologies allow developers to access data, post

data, and communicate well with web services, resulting in better user

experience through the web. If you are doing asynchronous HTTP

requests in HTTP is the most widely used protocol for

communication on many cases. introduced as part of the HTML5

standard and provides a cleaner and more powerful way to make

HTTP requests in JavaScript, thanks to its promise-based nature,

making it better suited to modern JavaScript development techniques

and practices. Its built-in integration with browsers requires no third-

party libraries, so developers can keep things light without losing

features in set than the older XHR (XMLHttpRequest) API. Fetch

API was The Fetch API is a major improvement in a browser-based

networking API, as it is a more powerful and flexible feature interface

is simple, but covers a lot of ground, allowing developers to perform

intricate networking tasks with just a few lines of code. returns a

Promise that resolves to the Response object representing the server's

response to the request. This on the global fetch() function, the first

parameter of which is a URL, and the second is an optional

configuration object. It The Fetch API is fundamentally centered

Fetch API can look something like this:

The line with the URL call (should be a RESTful API):

. then(response => response. json())

. then(data => console. log(data))

. catch(error => console. error('Error:', error));

standard HTTP methods by using the configuration object. Example

of constructing a POST request would GET requests are default on

fetch but the API actual supports all process will be caught in the

catch() block and logged. then logged to the console. Any errors that

happen in this json() method when the server responds. In the second

then() block, the resulting data is make a GET request to a specific

URL, you could use the fetch() function as follows: The first of the

198
MATS Centre for Distance and Online Education, MATS University

Notes then() blocks converts the response body into JSON with the For

example, if you wanted to be:

{ fetch(https://api.example.com/data,

method: 'POST',

headers: {

'application/json', 'Content-Type':

},

body: JSON.stringify({

name: 'John Doe',

email: 'john@example.com'

})

})

. then(response => response. json())

. then(data => console. log(data))

. catch(error => console. error('Error:', error));

Third-Party JavaScript Library for Enhanced HTTP Client for

Browser and Node js environments. Axios is built on Promises, and it

brings a rich feature set into play, solving many issues with its Axios

A stringify() function to be sent is in the body property and it must be

serialized to the string format using JSON. JSON: How and when to

use the body. The data property. The headers object is used to

specify any HTTP headers that need to be added, and the 'Content-

Type' header is particularly important to specify the format of the

request example highlights a few important features of the Fetch API.

In this case, POST is specified in the method This blob()Each of the

body parsing methods returns another Promise that will resolve with

the parsed data. (status codes, headers, etc.), but not its body.

Developers can only access the bodies through one of the body

parsing methods such as json(), text() or is its two-phase response

processing. Resolving a fetch Promise gives a Response object which

contains data about the response itself One of the interesting features

of the Fetch API status codes that serves the purpose of identifying

and dealing with HTTP errors. manually check the response. ok

property or reject on network failures or if something else prevents

the request from completing. That means developers have to (404,

etc.) Instead, its promise will only more verbose, particularly around

error handling. Unlike XMLHttpRequest, fetch doesn’t reject the

Promise on HTTP error statuses This is a two-phase approach, where

199
MATS Centre for Distance and Online Education, MATS University

Notes you can be flexible with how you deal with responses, but can end up

being need polyfills for older browsers. doesn’t natively support

request cancellation (although you can sort of do this using the newer

AbortController API), and it doesn’t have built-in support for things

like request timeouts, automatic retries or progress monitoring for

uploads and downloads. Again, while its browser support is now

great, it’ll its many strengths. It The Fetch API does have its

limitations, despite native counterpart Fetch, with a similar and

intuitive interface.

npm or yarn:

 npm install axios

// or

yarn add axios

used in a project to perform HTTP requests: After installing, Axios

can be imported and

import axios from 'axios';

axios. get('https://api.example.com/data')

.then(response => {

console. log(response. data);

})

.catch(error => {

console. error('Error:', error);

});

functions (e.g axios. post(), axios. put(), etc.) along with a generic

axios() function capable For more intricate requests, Axios has

method-specific 400 and above, making our error handling a bit more

straightforward. property without any extra parsing step. Axios also

automatically rejects the Promise on status codes of the response data

available on the response. data GET request in Axios. Fetch has to

manually parse the JSON response, whereas Axios will automatically

parse JSON responses, meaning you directly have You could use this

example to show an easy of taking a config object:

axios({

method: 'post',

'https://api.example.com/data', url:

data: {

name: 'John Doe',

email: 'john@example.com'

200
MATS Centre for Distance and Online Education, MATS University

Notes },

headers: {

'Content-Type':'application/json'

}

})

.then(response => {

console. log(response. data);

})

.catch(error => {

console. error('Error:', error);

});

However, this can be particularly helpful when making requests with

a Axios provides the ability to create a custom instance which comes

with your own settings which is one of its most powerful number of

APIs or if certain configurations need to be consistently applied to

many requests: features.

const api = axios.create({

https://api.example.com, baseURL:

timeout: 5000,

headers: {

token123', 'Authorization': 'Bearer

'application/json'} 'Content-Type':

}

});

use the custom instance. // Now you could

api.get('/users')

.then(response => {

console. log(response. data);

})

.catch(error => {

console. error('Error:', error);

});

The create() method builds a custom instance using a base URL,

timeout value,code principle. and desired headers. This means that

you do not have to set these configurations over and over again with

every request that you make through this instance — maintaining a

DRY In this example, the axios. before they are handled by then() or

catch() This offers great funtionality to use for cross-cutting concerns

201
MATS Centre for Distance and Online Education, MATS University

Notes such as authentication, logging or error It further includes support for

a request and response interceptors that allow you to globally modify

requests before they are sent or responses handling:

// Request interceptor

axios. interceptors. request. use(

config => {

One such way is to read the Axios response data and set the headers

for the request to be sent.

 Bearer ${getToken()} config. headers. Authorization:

return config;

},

error => {

// Handle request errors

return Promise. reject(error);

}

);

// Response interceptor

axios. interceptors. response. use(

response => {

2xx triggers this function] [GENERIC HANDLER for ANYTHING

in the range of

return response;

},

error => {

Using your watch method, the code below runs if any status codes

outside the 2xx range are hit:

 if (error. response. status === 401) {

UNAUTHORIZED −// Show login page etc. And finally do

something with

}

return Promise. reject(error);

}

);

highly. Using the CancelToken API developers can abort in-flight

requests Cancellation request is another place where Axios scores

when desired, like when a user leaves a page or triggers a new search

before the older one finishes:

const CancelToken = axios. CancelToken;

202
MATS Centre for Distance and Online Education, MATS University

Notes const source = CancelToken. source();

axios. get('/long-operation', {

cancelToken: source.token

})

.then(response => {

console. log(response. data);

})

.catch(error => {

if (axios. isCancel(error)) {

error. message); console. log(‘Request canceled:’,

} else {

console. error('Error:', error);

}

});

// Cancel the request

user.); source. cancel(`Operation canceled by the

Suppose we have a few APIs to call and make it a powerful tool for

handling HTTP requests in JavaScript applications. downloads.

Axios provides several features that With it, Axios also comes with

support for request timeouts, automatic transformation of request and

response data, client-side protection against XSRF and progress

monitoring for uploads and operations. details of HTTP

communication. But that can result in more verbose code, especially

when dealing with common on modern browsers already, this

eliminates an additional dependency. It also exposes a lower-level

API that allows developers to have more fine-grained control over the

factors considered when comparing Fetch and Axios are: Note Fetch

lives Some parsing, elegant error handling, interceptor support, and

request cancellation, making it a popul an additional dependency,

Axios provides more features and a more developer-friendly API by

default. It offers features like automatic JSON While it

requiresmassive advantage in full stack JavaScript development.

uniformly on both browser and Node. js environments, a ar choice for

more complex apps with advanced networking needs. Axios also

works larger scale projects that need advanced functionality, such as

interceptors, automatic retrying, or consistent behavior across

different environments, Axios might better suit your needs. the better

choice for more lightweight applications where keeping the number of

203
MATS Centre for Distance and Online Education, MATS University

Notes dependencies small is a goal. For Axios usually comes down to

project requirements. On the other hand, Fetch might be In real-world

scenarios, deciding between Fetch and functions or thin wrappers

around the Fetch API to mitigate its downsides but still want to avoid

a full external library. smaller than they used to be, as Fetch API is

maturing and browsers are adding support for features like cancellable

requests. Moreover, many developers implement utility It is worth

mentioning that the difference between them is support the modern

async/await syntax, which can make writing asynchronous code a lot

more readable:

 want to use fetch with async/await.

async function fetchData() {

try {

= await fetch('https://api.example.com/data'); } catch(error) { } }

export default async function handler(req: NextApiRequest, res:

NextApiResponse) { try { const response

if (!response.ok) {

throw new Error(HTTP error! status: ${response. status});

}

const data = await response. json();

console.log(data);

} catch (error) {

console. error('Error:', error);

}

}

Axios with async await //

async () = const fetchDataWithAxios => {

try {

const response = await axios..

console. log(response. data);

} catch (error) {

console. error('Error:', error);

}

}

The async await syntax enables developers to write asynchronous

code that reads like synchronous code in both scenarios, making it

easier to read and maintain. Try/catch blocks provide a good way to

handle error while improving the Pseudocode examples readability of

204
MATS Centre for Distance and Online Education, MATS University

Notes the code. and their shaping; are a bit different. error handling is vital

to building resilient applications when doing API integration. Both

Fetch and Axios offer ways to handle different kinds of errors, but the

methods Proper codes are not examined to identify HTTP errors,

since fetch only rejects the Promise on network failures: the response.

Response.ok or status For Fetch, developers have to validate

Sentence structure:

fetch('https://api.example.com/data') Python

.then(response => {

if (!response.ok) {

throw new Error(HTTP error! status: ${response. status});

}

return response.json();

})

.then(data => {

console.log(data);

})

.catch(error => {

console. error('Error:', error);

});

Axios will automatically reject the Promise for HTTP error status

codes, so error handling becomes a little easier:

= requests.get('https://api.example.com/data') axios. data

.then(response => {

console. log(response. data);

})

.catch(error => {

if (error.response) {

with a status code // Request was executed and server responded

retuns out of range of 2xx (// that

with error:', error. response. status); console. error('Server responded

console. error('Error data:', error. response. data);

} else if (error. request) {

a reply] [The request was sent off but never got

error. request); console. errorResponsive('No response received:',

} else {

Error Something happened in setting up the request that triggered an

to set up request:', error. message); console. error('Failed

205
MATS Centre for Distance and Online Education, MATS University

Notes }

});

API keys, OAuth tokens, and JSON Web Tokens Another key point

in with which they communicate includes the requisite CORS headers

to allow cross-origin requests. that served the webpage. Both Fetch

and Axios are governed by CORS, and developers must ensure the

server considerations to keep in mind. CORS (Cross-Origin Resource

Sharing) is a security feature implemented in browsers that prevents

webpages from making requests to different domains than the one

When making requests to an API from client-side JavaScript, there are

important security object: (JWTs) are common authentication

methods that can be included in requests using both Fetch and Axios.

For Fetch, authentication tokens are usually included in the request

configuration headers API communication is Authentication.

for a protected resource: // Normal fetching call

headers: {

Bearer token123 Authorization:

}

})

. then(response => response. json())

. then(data => console. log(data));

or, more elegantly, using request interceptors: With Axios, the same

can be done using headers in the request configuration,

axios. interceptors. request. use(config => {

= Bearer ${getToken()}`; config. headers. AuthorizationBearer

return config;

});

While the Fetch API gives a cross-standard, built-in way supported in

most browsers, Axios provides a well featured, Both Fetch API and

Axios are great options for making HTTP requests to implement any

logic for pagination. page, limit or offset parameters. Fetch and Axios

both support paginated requests by adding these parameters to the

URL or request config, but the developer will need what to return

when the volume gets really high. Most APIs do pagination via

Pagination When designing APIs, an important consideration is their

own caching solutions, leveraging either browser storage

(localStorage or IndexedDB) and in some cases libraries created

specifically for caching. data that is not modified often. Fetch and

206
MATS Centre for Distance and Online Education, MATS University

Notes Axios do not have built-in caching mechanisms apart from those

offered by browsers, but developers are able to create Another

technique to optimize API requests is caching, particularly for

requests accordingly. these limits might be different, and it is

important to respect these as most of the time, the API designers will

implement a strategy for this. Which may even include detecting rate

limit errors from its responses and adjusting the timing of its limiting,

to balance out usage and prevent abuse. Depending on the API, API

providers can (and should) use rate each way and choose the way that

fits the best of their project needs and then build robust and efficient

applications to communicate with servers and external APIs. user-

friendly method across structured environments. It allows developers

to understand the nuances of in JavaScript applications.

207
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: Version Control and CI/CD with Git and

GitHub

5.3. Introduction to Git – Version Control Basics

The response In any new project, in order to start using Git,

developers will run git init to create a new repository, or clone one

using is necessary for developers of all expertise; it is the key to

successful collaboration and code management. various systems.

Learning Git, understanding its basics, essential part of software

development, allowing teams to collaborate efficiently, maintain a

history of changes, and handle multiple versions of their software. Git

has become the de facto industry standard version control system

(VCS) due to its speed, flexibility, and distributed architecture among

Version control has become an and with flying colors, it has become

one of the most popular tools used in thousands of open-source and

commercial projects worldwide. systems and how they performed, so

Git was designed to be fast, scalable, and able to handle large projects

with thousands of contributors. Git started its way, but has never

looked back since, kernel. Torvalds was frustrated with existing

version control In 2005, Linus Torvalds created git to facilitate the

development of the Linux therefore greater reliability. server contains

the repository and clients check out individual files from single

snapshots. A distributed approach has strengths like the ability to

operate offline, faster for many operations, redundancy, and complete

copy of the repository including its history. This distribution is in

contrast to centralized version control systems, where a single

Fundamentally, Git is a distributed version control system (DVCS)

whereby every developer who clones a project has a directory a Git

repository. such as metadata and objects that git needs in order to

manage changes and history of the project. The hidden directory is

what makes a the git init command, Git creates a hidden. It includes

a.git directory which stores all necessary information Git repository

is, very simply, a database which contains a full record of a project,

including every modification made to its files throughout its history.

1.3 Initialization of a Git repository When we initialize a repository

using A are stored in the repository as the project history. is where

you prepare changes to commit to the repository. In the end, the

committed changes where they make modifications to their files. In

208
MATS Centre for Distance and Online Education, MATS University

Notes git, a staging area you will use is in these three areas: the working

directory, the staging area (or index), and the repository. The working

directory is In Git, the primary workflow that easier to read and

maintain. to stage and commit only select changes in your working

directory, which helps you group related changes together in separate

logical commits. This granularity is a major advantage of Git,

allowing for neat and comprehensive histories of a project that are

complete control over what goes into your repository. While working

in your working directory, you can make many changes but then

choose Worked as a three-stage workflow, giving you is because Git

initializes a directory and prepares it to be a repository; whereas when

cloning, it downloads a copy of an existing repo hosted on a remote

(like git hub, git lab, bitbucket). git clone.

fresh with a new Git repository Start

git init

an existing repository Cloning

clone https://github.com/username/repository.git git

Stage a specific file

git add filename.js

Stage multiple files

git add file1.js file2.js

Stage all changes

git add.

point in time. commit (i.e., save) their change to the repository with

the git commit command. A commit has to have a meaningful

message and represent the state of the project at a After staging

changes, developers can

Changes With A Message Commit Staged

commit -m "Add feature: user authentication" git

The git log So, this is part of our crucial to understand history of the

project over time. command lists the commits, showing the commit

hashes, authors, dates, and messages. This allows developers to keep

track of what changed, when features or bugs were introduced, and

maintain a the development state of a given repository: Checking out

its history.

View commit history

git log

line per entry See history only as a single

209
MATS Centre for Distance and Online Education, MATS University

Notes git log --oneline

of branches See the history with a graph

log --graph --oneline --all git

Then once Developers can create a new branch to make changes in

isolation, so they can experiment with this branch usually reflects the

stable, production-ready version of the project. uses branches to

manage historical versions, basically a pointer from a new commit to

the last commit that has the actual work. Every Git repository has a

main branch, traditionally named "master" or "main," by default, and

the various aspects of a project at the same time without stepping on

one another's toes. Git Among Git's most powerful features, branches

enable developers to work on this branch is complete/ tested you can

merge it back with main branch. new features or make bug fixes

without impacting the main codebase.

Create a new branch

git branch feature-branch

Switch to the new branch

git checkout feature-branch

Command To Create and Switch To A New Branch One

-b feature-branch Git checkout

List all branches

git branch

one branch into another branch. When a feature or bugfix Merge: the

action of integrating changes from is done, developers merge their

branch back into the main branch, which adds their changes to the

main codebase.

target branch (e.g. main) Checkout the

git checkout main

Pulling Changes from Another Branch #

git merge feature-branch

In case of a conflict, Git adds conflict markers into the conflicting

sections Merging branches may lead of the affected files, and the

developer has to resolve these conflicts manually to finish the merge.

to conflicts if the same part of the file has changed differently in the

branches you are trying to merge.

a merge conflict happens Have the conflicting files be edited to

resolve conflicts after

Next, stage the resolved files and finish the merge #

210
MATS Centre for Distance and Online Education, MATS University

Notes git add resolved-file.js

git commit

A remote is a git repository hosted on a server, e.g. GitHub, GitLab or

Bitbucket, that acts as a central point for sharing changes; it will be

called Git repositories can can then push their local changes to a

remote repository, as well as pull and merge changes made by others

for teamwork and code sharing. a remote. They be hosted on remote

servers, which allows developers to collaborate on projects.

Add a remote repository

https://github.com/username/repository.git git remote add origin

local changes to remote repository Push

git push -u origin main

remote repository Fetch updates from a

git fetch origin

remote repo Pull (fetch and merge) changes from a

git pull origin main

point in Git history, most commonly to mark the Scoped release

versions. Besides, tags stay unchanged as opposed to branches, thus

serving Git tags are ways to refer to a certain the current local branch.

examine changes prior to determining whether to integrate them. git

pull, however, is a built-in alias of git fetch git merge it is executed

under the hood in a single step and merges remote changes directly

into To fetch all changes from a remote but not integrate into files.

This enables developers to lets identify git fetch vs git pull important

for collaborating with others. git fetch So first, as a precise point of

reference to a commit.

Create a lightweight tag

git tag v1.0.0

message while creating a tag with the ‘-a’ option. Additionally you

can add a

git tag -a v1. 0. 0 -m "Version 1.0.0"

Publish tags to a remote repo #

git push origin --tags

A gitignore file is used by git to tell what the files of temporary files,

compiled binaries, or local configuration files that may differ between

development environments. or directories to ignore in a project. This

allows you to prevent tracking .

Example. gitignore file contents

211
MATS Centre for Distance and Online Education, MATS University

Notes node_modules/

.env

*.log

dist/

Changes have been "stashed" and Git stash is a powerful tool to stash

your current changes when you are not ready to commit can be re-

applied later when the developer is ready to continue working on

them. them and need to switch to some other work.

Stash current changes

feature X"/ /git stash save "Work in progress on

List stashed changes

git stash list

Apply the most recent stash

git stash apply

Apply a specific stash

git stash apply stash@{1}

apply the most recently stashed changes, dropping the most recent

stash git stash pop

git stash pop

This can produce a cleaner, more linear to merging changes into

another branch. Merging creates a new commit that incorporates Git

rebase provides an alternative onto another branch Rebase current

branch history, but its use can be dangerous, for branches shared with

other users. changes from both branches whereas rebasing changes

the commit history by applying commits from one branch on top of

Figure 5.1: GitHub Version Control

(Source: https://iqss.github.io)

212
MATS Centre for Distance and Online Education, MATS University

Notes another.

Bitbucket being some of the most popular. These platforms build

upon the basic capability of Git, offering features like pull requests (or

merge requests), code reviews, issue tracking, continuous integration,

and project management become more proficient with Git. design is

also what allows Git's efficiency and integrity checking. Appreciating

this architecture helps developers debug problems and Git is a

content-addressable filesystem, which means every object (git

commit, git tree, git blob) is saved with a SHA-1 hash and looked up

by it. This This is a core commitment of Git and project management,

many Git hosting solutions have come to fruition such as:GitHub,

GitLab To help with collaboration & functionalities.

5.4 GitHub – Repositories, Branching, Merging

GitHub, got rid of the hassle of handling version control for Git. At

its heart, repositories are the cornerstone of collaborative software

development. A repository or “repo” for short is simply a place where

files for a project and the full history of their revisions are stored

digitally. A GitHub repository can be either public (anyone can see

and contribute to the repository) or private (only collaborators that

you invite can see it). This level of flexibility allows teams to tailor

the visibility they get based on their project needs. Simply create a

repository on the GitHub: This can be done by creating a new

repository on the GitHub platform itself or migrating a previous local

Git repository to be hosted by GitHub. GitHub offers you the option

to include essential files like a README document, which serves as

the starting point of the project, a. gitignore file to ignore certain files.

We also include a license file for legal purposes. One of GitHub's

most fitting features is its implementation of the branching concept at

the heart of Git. The process of branching enables developers to create

a separate work environment for themselves without compromising

the main codebase, code, or project until it's ready to be deployed.

GitHub repository default branch is traditionally "master" or "main,"

which is the working version of the project, the official, deployable

version. Developers can create feature branches to work on new

functionality, bugfix branches to make changes to address bugs, and

release branches from this main branch for production versions.

GitHub's branching model encourages parallel development

workflows where multiple features can be developed simultaneously

213
MATS Centre for Distance and Online Education, MATS University

Notes by different team members. For larger projects with many

contributors, this is beneficial, as it reduces the chances that

developers stepping on each others' toes while working on separate

parts of the codebase. GitHub enriches the branching experience with

features like branch protection rules that require code reviews or

status checks before changes can be integrated into key branches.

Merging is a way to integrate changes from one branch to another,

often from a feature branch back to the main branch after work is

done. They include the following options for merging branches:

Unlike create a new commit called the merge commit reflects the

integration of the source branch into the target branch. Or, a squash

merge will squash all commits from the source branch into one single

commit before merging — giving you a cleaner and a more linear

history. A rebase merge is equivalent to taking the commits from the

source branch and replaying them on the tip of the target branch —

resulting in a linear history with no explicit merge commit.

GitHub Pull Request (PR) system acts as the main way for suggesting

changes to projects, as well as for reviewing and discussing merges

of branches. Using pull requests, developers can showcase their code

to teammates and get feedback via comments on code lines while

iterating on their changes before blending their code into the main

code base. This process maintains code quality and creates a channel

for team members to share knowledge. Pull requests can be

associated with issues, and when the pull request is merged the related

tasks will automatically be considered completed. The GitHub UI

exposes visual differentials for diffs between branches, so you can see

what you will impact with your code change. These diffs highlight the

lines that have been added, deleted, or modified, so reviewers can see

just what has changed instead of needing to look through all the code.

Moreover, GitHub offers different ways to notify the team about

activities in repository such as pull request updates, issue changes,

and branch modifications. For larger projects that use complex

branching strategies, network graphs and branch comparison tools

available from GitHub provide insight into branch relationships.

Also, these visualizations allow teams to make sense of how a project

has evolved over time and the connections between features or

versions. They also help you spot branches that have diverged and

might need to be brought up to date to avoid a merge conflict down

214
MATS Centre for Distance and Online Education, MATS University

Notes the road. The GitHub repository and branching features aren't just for

managing code. The platform features integration to continuous

integration and continuous delivery (CI/CD) systems through GitHub

Actions, enabling automated testing and deployment based on activity

in branches. For example, a team may set up automated tests to

execute every time a pull request is opened against the main branch,

allowing only code that passes all tests to be merged. GitHub provides

branch protection mechanisms to enforce security as well. The

repository owners can enforce specific workflows, e.g., making all

changes to protected branches through a pull request, have at least a

minimum number of approving reviews before merging or status

checks must pass before allowing merges, etc. These measures ensure

that code quality is upheld and that critical branches cannot be

mistakenly or maliciously changed. Experiences with repositories,

branching, and merging in GitHub contributes to the creation of a

strong solution for collaborative software development. Its internal

structure is reliant on organizing team progress striking a balance

between having individual work spaces and coordinated integration,

and ensuring tools that help all contributors work in tandem as well as

run cohesive projects. With these features GitHub has played a major

role in shaping the way distributed version control workflows are

done in modern software development methodologies.

5.5 Git Workflow – Cloning, Pull Requests, Conflict Resolution

A consistent and efficient Git workflow is fundamental to successful

collaboration in software development. Usually, this workflow starts

with cloning a repository. Cloning copies a remote repo to your local

machine, including all of its files, commit history, and branch

structure. This process starts with the command git clone [repository-

url], which downloads the repository to the developer's local machine

and, in the process, creates a remote connection named "origin"

pointing to the source repository. Allows the repository on the local

machine to sync in the future with the remote repository. After

cloning a repository, developers typically have a set workflow,

starting with making sure their local repository is up-to-date with the

remote repository. So the command git pull origin main (or master,

depending on what is the name of the default branch of the repository)

fetches to the local branch the latest changes from the remove

repository, and merge them into it. This is important to prevent

215
MATS Centre for Distance and Online Education, MATS University

Notes potential conflicts with the latest code base. This best practice has

been followed for a long time, and after synchronizing, when most of

the people follow next step in a Git workflow is to create a new

branch for whatever task they are currently working on. to delimit

conflicting changes. The developer's job is to resolve these sections,

by editing them into a coherent combination of the changes, or

picking one version over the other.

The developer runs git add [file] after editing the files to resolve the

conflicts, and then continues the merge or rebase process using git

merge continue or git rebase continue. As simply mechanically

resolving push conflicts doesn't imply logical compatibility, it is most

crucial to test the code after fixing push conflicts, that it really works

with the combined changes. For simpler cases, GitHub has visual

tools to help resolve conflicts directly in its web interface. In the case

of more complex conflicts, developers usually resolve them on their

local environments with their choice of text editors or IDEs equipped

with merge conflict tools. Common strategies for reducing conflicts

are to integrate change often (pull from and merge into the trunk),

keeping communication open between team members regarding

which parts of the codebase they are owning, and structuring projects

in a way that minimizes the likelihood that multiple developers need

to modify the same files at the same time. When conflicts are not

avoidable, working through them in a systematic manner and

communicating with team members about how the conflict is resolved

makes sure that the final code accomplishes what it was intended to

do. The Git workflow is not a one-size-fits-all process; teams may

customize to fit their unique needs. Some teams choose to have a

formalized workflow similar to Gitflow, in which you have feature,

develop, release, hotfix and master branches with specific roles, or

GitHub Flow, which emphasizes continuous deployment (as opposed

to delivery) and is a much simpler branching strategy. Depending on

the specific workflow you choose, the methods of isolation

accomplished through branching, review performed via pull requests,

and integration of changes done with care — will prevail throughout

Git collaboration. More advanced Git workflow strategies involve

interactive rebasing for tidying up commit history before creating a

pull request, using cherry-pick to apply individual commits across

branches, and taking advantage of hooks to validate or format changes

216
MATS Centre for Distance and Online Education, MATS University

Notes prior to commit or push. When used appropriately, these techniques

can further improve the reputation and quality of the development

process. Having said that, in the end a good Git workflow has to strike

the right balance between developer freedom and code quality and

project consistency. Providing rules for how changes should be

developed and reviewed, helps the team make use of Git's powerful

features {GitCh 18} to work on a co-ordinated fashion, at scale, with

many changes and contributors..

5.6 Introduction to GitHub Actions – CI/CD Basics

GitHub actions are a groundbreaking feature added to the GitHub

family, offering in-built CI/CD right into GitHub repositories. GitHub

Actions was first introduced back in 2018, with wide availability in

2019, and it automates software development workflows, enabling

the developers to build, test, and deploy code from the same platform,

without the need for third-party CI/CD tools. All project-related

activities stay within one platform, which makes the development

process simpler. Fundamentally, GitHub Actions is an event driven

automation platform. It runs specific workflows in response to

specific events in a repository, such as push operations, pull request

activities, issue creation, or scheduled triggers. The event-driven

architecture gives you flexibility so that your teams can push

automation everywhere in the development process based on what

happens in their repository. In one instance, a team might set up

workflows to run tests every time code is pushed to a specific branch,

deploy applications when releases are created, or publish packages

when version tags are placed. GitHub actions are defined in YAML

syntax in files within.github/workflows directory. github/workflows

folder in a repository This configuration-as-code approach means

workflow definitions are versioned along with the application code,

and you have a complete history of how build and deployment

processes have evolved over time. A simple workflow file consists of

a few parts: workflow name, events that kick off the workflow, and

jobs. A workflow is defined as a job that consists of one or more steps

that run in order. Steps can run commands, run custom scripts, or use

actions reusable units of code that perform a special task. GitHub

Actions The actions comprise of three types JavaScript actions can

run natively in the GitHub Actions virtual environment; Docker

container actions run in a Docker container; composite run steps

217
MATS Centre for Distance and Online Education, MATS University

Notes actions that can perform multiple run steps as a single action. It allows

developers to create complex workflows by composing them with

simpler, reusable components. GitHub has a marketplace of thousands

of community-generated actions you can use to do common tasks

such as setting up programming language environments,

communicating with cloud services, or publishing deployment

artifacts. These ready-made actions speed up workflow development

by reducing the need to create custom code for standard operations.

Instead of writing their own scripts to authenticate with AWS,

developers can simply leverage existing actions such as aws-

actions/configure-aws-credentials that securely and easily take care

of authentication. Runners are the environments where your jobs in

GitHub Actions run. GitHub offers hosted runners which are a set of

available virtual machines with different operating systems like

Ubuntu Linux, Windows, and macOS that are provisioned and

cleaned up automatically for every job run. For teams with default

needs, self-hosted runners can be set up to execute workflows on

custom infrastructure, thus providing better control over the execution

environment. From simple web applications to complex systems with

unique hardware or software dependencies, this versatility can cater to

a variety of project objectives.

Continuous integration is one of the main use cases of GitHub

Actions. Continuous integration (CI) is a DevOps practice in which

code changes are automatically built and tested in order to ensure

new code works with the existing codebase. A common CI workflow

will include steps to check out the repo code, prepare the

programming language and/or dependencies you need, build the

application and execute various test suites. The outcomes of these

operations can be reported back in to the GitHub interface for display

as status checks on pull requests. This is able to instantly let

developers know how their changes are affecting the code, allowing

them to catch the issues while they are still on development.

Continuous Deployment The continuous deployment practice extends

the automation pipeline to include deploying applications to testing,

staging, or production Continuous Delivery (CD) workflows may

involve packaging applications, releasing artifacts to cloud storage,

adjusting environment configuration, and/or starting deployments on

deploying services. With the correct configuration, GitHub Actions

218
MATS Centre for Distance and Online Education, MATS University

Notes can facilitate more complex deployment strategies like blue-green

deployments or canary releases, reducing risk in the deployment

process. Security is one of the important considerations in CI/CD

systems and GitHub Actions comes with a lot of features to help

secure workflows. Secrets management enables sensitive data like

API keys or credentials to be securely stored in the GitHub repository

and referenced in workflows without exposing the actual values.

Environment protection rules: These rules define which branches are

allowed to be deployed to certain environments, while approval rules

can ensure that deployments are reviewed before execution. GitHub

Actions also enforces security boundaries between workflows to

prevent unauthorized access to sensitive resources. GitHub Actions is

tied into other GitHub features, which increases its value proposition

as a CI/CD platform. For instance, workflow runs are connected with

the corresponding commits or pull requests that triggered them,

adding information to build results. With GitHub Actions, status

checks can be required for merging pull requests, which means only

code that has cleared all tests can be merged into protected branches.

It is also possible for artifacts created during workflow runs like

compiled binaries or documentation to be stored and made available

for download directly from the GitHub UI. GitHub Actions also

supports "matrix" builds, where a workflow can be run for different

configurations in parallel. For example, a test workflow could run

multiple times against various versions of a programming language or

on different operating systems to be compatible. This ability to run in

parallel drastically cuts the time required to validate changes against

multiple environments, speeding up the development loop. In

addition to standard CI/CD tasks, GitHub Actions may also automate

many parts of repository management. You can set up workflows so

that they label issues based on their content, close outdated pull

requests, populate changelog entries from commit messages and

update versions of dependencies automatically. This wider application

of automation allows teams to keep repository hygiene and trim down

manual administration work. The cost consideration is the most

crucial part of GitHub Actions. GitHub gives you a free execution

minutes and workflow runs storage depending on its plan. Use above

these limits is billed, which means teams need to ensure they

optimize their workflows to be as efficient as possible. These include

219
MATS Centre for Distance and Online Education, MATS University

Notes things like caching dependencies, making sure matrix builds only

have as many configurations as absolutely necessary, and only

requiring those to run if they are still valid, when executing automated

processes. With increasing complexity in projects, it gets tougher to

manage these GitHub Actions workflows. These include things like

parameterizing workflows to reduce duplication, creating reusable

workflow templates for common patterns, and implementing

monitoring to track workflow performance and reliability. This

documentation will help team members to understand the workflow

behavior and it also helps the team to maintain the automation

infrastructure over time. GitHub Actions was a huge leap in the way

development teams did CI/CD. With automation built right inside the

repository platform, it helps to minimize context switching,

configuration is straightforward, and provides a consistent experience

for developers. And as software delivery increasingly focuses on

speed and reliability, tools like GitHub Actions that help streamline

that journey from code to deployment become more and more

important to modern development practices. GitHub Actions is a

powerful tool for automating in-repo development pipelines. Thanks

to its event-driven architecture, modular action system, and built-in

integration with the rest of the GitHub ecosystem, it can empower

teams to build sophisticated CI/CD pipelines without managing a

separate system. With the near-universal adoption of DevOps across

projects that aim for high automation and fast delivery, GitHub

Actions provides a low-barrier-to-entry, robust solution to implement

these the principles into the development workflow.

Multiple Choice Questions (MCQs)

1. What does API stand for?

a) Automated Programming Interface

b) Application Programming Interface

c) Applied Protocol Integration

d) Advanced Process Integration

2. Which HTTP method is used to retrieve data from a

server?

a) POST

b) GET

c) PUT

d) DELETE

220
MATS Centre for Distance and Online Education, MATS University

Notes 3. What is the main difference between Fetch API and Axios?

a) Fetch API is built-in, while Axios is a third-party library

b) Fetch API supports JSON automatically, while Axios does

not

c) Axios does not support asynchronous operations

d) Fetch API does not work with APIs

4. Which of the following is not a version control system?

a) Git

b) SVN

c) GitHub

d) Mercurial

5. What command is used to initialize a Git repository?

a) git start

b) git init

c) git create

d) git repo

6. How do you check the status of a Git repository?

a) git show

b) git status

c) git log

d) git check

7. What command is used to create a new branch in Git?

a) git checkout new branch

b) git branch new_branch

c) git create branch new_branch

d) git new branch

8. What is the purpose of a pull request in GitHub?

a) To delete a repository

b) To request merging changes into another branch

c) To create a new repository

d) To undo commits

9. What is GitHub Actions primarily used for?

a) Issue tracking

b) Code review

c) Continuous Integration/Continuous Deployment (CI/CD)

d) Managing repositories

10. What command is used to push local commits to a remote

repository?

221
MATS Centre for Distance and Online Education, MATS University

Notes a) git push origin main

b) git commit -m "message"

c) git add .

d) git merge main

Short Answer Questions

1. What is an API, and why is it used in web development?

2. Explain the difference between RESTful and SOAP APIs.

3. What are the common HTTP methods used in API

development?

4. How does the Fetch API work in JavaScript?

5. What is the advantage of using Axios over the Fetch API?

6. Define Git and explain its importance in version control.

7. What is the difference between git pull and git fetch?

8. How do branches help in collaborative development?

9. What is a merge conflict in Git, and how can it be resolved?

10. Explain the basic concept of GitHub Actions and its role in

CI/CD.

Long Answer Questions

1. Explain the structure of a RESTful API and its key

components.

2. Discuss the role of HTTP status codes in API communication.

3. How do Fetch API and Axios work for making API requests?

Provide examples.

4. Explain the Git workflow, including commit, push, pull, and

merge processes.

5. What is the difference between Git and GitHub? How do they

work together?

6. Describe the branching strategy in Git and its best practices.

7. How do you resolve merge conflicts in Git? Provide examples.

8. Explain the importance of pull requests in open-source

development.

9. Discuss the significance of GitHub Actions in CI/CD

workflows.

10. How does version control improve software development and

team collaboration?

222
MATS Centre for Distance and Online Education, MATS University

Notes References

Module 1: Introduction to HTML

1. "HTML and CSS: Design and Build Websites" by Jon

Duckett - A visually engaging introduction to HTML with

practical examples and clear explanations.

2. "Learning Web Design: A Beginner's Guide to HTML,

CSS, JavaScript, and Web Graphics" by Jennifer Niederst

Robbins - Comprehensive coverage of HTML fundamentals

with visual learning aids.

3. "HTML5: The Missing Manual" by Matthew MacDonald -

In-depth exploration of HTML5 features including Canvas,

SVG, and APIs.

4. "Responsive Web Design with HTML5 and CSS" by Ben

Frain - Focuses on creating adaptable web layouts using

semantic HTML.

5. "Web Accessibility: Web Standards and Regulatory

Compliance" by Jim Thatcher et al. - Essential guide to

creating accessible HTML documents and understanding

semantic markup.

Module 2: CSS

1. "CSS: The Definitive Guide" by Eric Meyer and Estelle

Weyl - Comprehensive reference covering all aspects of CSS

including selectors, specificity, and layout.

2. "CSS Secrets: Better Solutions to Everyday Web Design

Problems" by Lea Verou - Advanced techniques and creative

solutions for common CSS challenges.

3. "Mastering CSS: Advanced Web Standards Solutions" by

Rich Clark and Manian Jina - Deep dive into CSS specificity,

inheritance, and practical applications.

4. "CSS in Depth" by Keith J. Grant - Explores complex CSS

concepts including the cascade, positioning, and responsive

design patterns.

5. "Responsive Web Design with CSS3 and HTML5" by Ben

Frain - Focuses on media queries and building flexible layouts

for multiple screen sizes.

Module 3: JavaScript

223
MATS Centre for Distance and Online Education, MATS University

Notes 1. "Eloquent JavaScript" by Marijn Haverbeke -

Comprehensive introduction to JavaScript programming with

practical examples.

2. "JavaScript: The Definitive Guide" by David Flanagan - In-

depth coverage of JavaScript fundamentals, objects, and DOM

manipulation.

3. "You Don't Know JS" series by Kyle Simpson - Deep

exploration of JavaScript concepts including scope, closures,

and ES6 features.

4. "JavaScript and JQuery: Interactive Front-End Web

Development" by Jon Duckett - Visual guide to JavaScript

basics and DOM manipulation.

5. "ES6 for Humans: The Latest Standard of JavaScript" by

Deepak Grover and Hanu Prateek Kunduru - Focused guide to

modern JavaScript features including arrow functions and

promises.

Module 4: PHP

1. "PHP & MySQL: Server-Side Web Development" by Jon

Duckett - Clear introduction to PHP programming and

database integration.

2. "Modern PHP: New Features and Good Practices" by Josh

Lockhart - Up-to-date coverage of PHP development including

security best practices.

3. "PHP Objects, Patterns, and Practice" by Matt Zandstra -

Advanced PHP programming concepts and design patterns.

4. "Learning PHP, MySQL & JavaScript" by Robin Nixon -

Comprehensive guide covering PHP and database

connectivity.

5. "PHP and MySQL Web Development" by Luke Welling and

Laura Thomson - In-depth tutorial on building database-driven

websites with PHP.

Module 5: API, Git and GitHub

1. "RESTful Web APIs" by Leonard Richardson, Mike

Amundsen, and Sam Ruby - Comprehensive guide to

designing and consuming RESTful APIs.

2. "Pro Git" by Scott Chacon and Ben Straub - Thorough

exploration of Git fundamentals and advanced techniques.

224
MATS Centre for Distance and Online Education, MATS University

Notes 3. "Git for Teams" by Emma Jane Hogbin Westby - Practical

guide to collaborative development using Git and GitHub.

4. "GitHub Essentials" by Achilleas Pipinellis - Step-by-step

tutorial on using GitHub for project management and

collaboration.

5. "Building APIs with Node.js" by Caio Ribeiro Pereira -

Hands-on guide to creating and consuming APIs with practical

examples.

225
MATS Centre for Distance and Online Education, MATS University

Notes

	Page 21

