
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Python Programing
Bachelor of Computer Applications (BCA)

Semester - 3

Course Introduction 1

Module 1

Python basics

2

Unit 1: Basic of Python 3

Unit 2: Function in Python 15

Module 2

Data handling & libraries

34

Unit 3: Lists, Tuples, Sets and Dictionaries 35

Unit 4: String Manipulation 46

Module 3

Database and GUI

80

Unit 5: MySQL with Python 81

Unit 6: CRUD Operations 93

Reference 142

Python Programing

 ODL BCA SEC 003

Bachelor of Computer Applications

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSECOORDINATOR

Prof. (Dr.) K. P. Yadav, Vice Chancellor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) K. P. Yadav, Vice Chancellor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

March, 2025

ISBN: 978-81-986955-3-6

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may bereproduced or transmitted or utilized or stored in

any form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed &Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

MeghanadhuduKatabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depend on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1

COURSE INTRODUCTION

Python is a versatile and widely used programming language,

essential for modern software development, data analysis, and

automation. This course provides a comprehensive introduction to

Python programming, covering fundamental syntax, data handling

techniques, and graphical user interface (GUI) development. Students

will gain both theoretical knowledge and practical skills, enabling

them to build efficient programs, manage data, and create interactive

applications.

Module 1: Python Basics

This Module introduces the core concepts of Python

programming, including syntax, variables, data types, and

operators. Students will learn how to write basic programs, use

control structures (if-else, loops), and implement functions.

Understanding Python fundamentals is key to building

efficient and scalable programs.

Module 2: Data Handling & Libraries

Data handling is essential for managing and analyzing

information in Python. This Module covers data structures

such as lists, tuples, dictionaries, and sets. Students will also

learn to work with popular libraries like NumPy and Pandas

for data manipulation, visualization, and analysis, making

them proficient in handling large datasets.

Module 3: Database and GUI

This Module focuses on integrating Python with databases and

building graphical user interfaces (GUIs). Students will learn

how to connect to databases using SQL, perform CRUD

operations, and develop interactive applications using libraries

like Tkinter or PyQt. By mastering database and GUI

concepts, students will be able to create functional, user-

friendly software solutions.

2

Module 1

PYTHON BASICS

1.0 LEARNING OUTCOMES

• Understand Python syntax and basic operations.

• Learn about variables and different data types (Numbers,

Strings, Lists, Tuples, Sets, and Dictionaries).

• Understand functions (built-in and user-defined) and explore

function arguments and recursion.

• Learn about exception handling using try-except-finally

blocks.

• Understand the init constructor method in Python classes.

• Learn about file handling (reading and writing files, file

modes, and using the with statement).

3
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Basic of Python

1.1 Python Syntax and Basic Operations

Python's ease of use, being readable and adaptable, it is among the

most widely used programming languages. With its substantial

indentation, Code readability is given first priority in this general-

purpose, interpreted, high-level programming language. Procedural,

Programming paradigms that include object-oriented and functional

programming are Python supports. Python is a good language for

both novice and seasoned programmers to learn because of its

comparatively basic and easy-to-learn grammar. Python does not

utilize curly brackets to limit code blocks or semicolons to finish

statements like C or Java do. Rather, the program structure is

specified using indentation, which makes it clearer and less

syntactically noisy.Programs in the python involve statements and

expressions to perform specific tasks. A Python script usually starts

with a shebang line On Unix-based systems, this would be placed in

the first line of code: #!/usr/bin/env python3 so that it can be run

directly from Terminal, along with import statements if any external

libraries are required Python comments are denoted by the hash tag

(#), making it simple for the developers to annotate their code. Python

variables are dynamically typed, meaning that a variable's type is

deduced during runtime), allowing to easily write your code but also

careful handling to avoid type-related errors.One of the basic

operations in Python is variable assignment and basic sorts of data.

Numerous data kinds are pre-installed in Python, such as textual,

Boolean, integer, and floating-point values. In Python, variables are

defined with the equal sign (=), and you do not need to declare

variables like in some statically typed languages. For example, we just

have to write x = to give a variable an integer value, use 10; for a

floating-point number, use y = 3.14. Strings: A string with single or

double quotations around it ('Hello'), is another fundamental data

type. or "World"), and Python has powerful string manipulation and

slicing and concatenation and built-in methods for it.You also have

basic arithmetic operations available, so Python allows you to add (+),

subtract (-), multiply (), and divide (/). The percent sign (%) gives the

modulo or remainder of a division, while double asterisks (*) yield an

exponent. Double forward slash (//) represents integer division that

4
MATS Centre for Distance and Online Education, MATS University

Notes yields the quotient while discarding the decimal part. Overall, these

three basic arithmetic operations are the building blocks of all

numerical computations in Python which makes it a great choice for

both mathematical and scientific applications.

Program Example 1: Division, Multiplication, Subtraction, and

Addition

Python application to illustrate mathematical procedures

a = 15

b = 4

print("Addition:", a + b)

a - b, print("Subtraction:")

print(a * b), "Multiplication:"

print(a / b), "Division:"

print(a // b), "Integer Division:"

print("Modulus:", a % b)

print("Exponentiation:", a ** b)

Control flow statements are another key feature of Python. If, elif,

and else conditional expressions enable developers to use the

condition to determine whether to run a specific section of code. In

Python, we use indentation to create these code blocks and make the

syntax clean and readable. Control flow statements to generate

complex conditions, employ operators like and, or, and not in logic.

Python Basic Syntax and Operations

Python is a powerful and readable high-level programming language.

Stated information because readabi­lit­y counts more in python as

compared to any other language which made it popular. Web

development, data science, and artificial intelligence are just a few of

the domains that use Python, a flexible programming language,

automation, etc. Before you start programming, you need to learn

about Python syntax and how to carry out basic operations. Where

This Module Will Introduce Basics like Variables, Operators, if

statements, loops, functions, data types, and basic input/output.

Python Syntax

Python syntax refers to the rules that define which combinations of

symbols are considered to be properly formed programs in the Python

programming language. Instead of using semicolons or curly braces

for code blocks like in other programming languages, Python

5
MATS Centre for Distance and Online Education, MATS University

Notes interactively uses indentation. This allows for cleaner, more organized

code in Python.

Python code: Writing and Running

Python code could be written in interactive mode through Python

interpreter or script mode through file with an extension of a. py. To

execute a Python script, use the python filename command. Python in

Terminal/Command Prompt.

print("Hello, World!")

We use the print() function to show the output on the screen. This

makes Python less strict as you need not to declare a variable in

advanced.

1.2 Data Types and Variables (Numbers, Strings, Lists, Tuples,

Sets, Dictionaries)

Python's = operator is used to give a variable values. Python variables

do not need to define a type, unlike statically typed languages. The

assigned value determines the kind of variable.

x = 10 # Integer

y = 3.14 # Float

Name = String # "Python"

is_active = Boolean #True

Numerous built-in data types are supported by Python, including:

 Fig: 1.1 Data Types

[Source: https://images.theengineeringprojects.com]

https://images.theengineeringprojects.com/

6
MATS Centre for Distance and Online Education, MATS University

Notes • Entire numbers, such as 10, -5, and 100, are known as integers

(int).

• Numbers having decimal points, such as 3.14 and -2.7, are

known as floating-point numbers (float).

• "Hello" and "World" are examples of strings (str), which are a

series of characters encapsulated in single or double

quotations.

• Boolean (bool): Stands for True or False

• Lists (List): arranged grouping of values, such as

• Immutable ordered collections, such as (1, 2, 3) are called

tuples.

• Key-value pairs found in dictionaries (dict) include {"name":

"John" and "age": 25}.

Operators in Python

Python has various operators to do computation and logical

operations. Operators are divided into Bitwise operators,

membership, identity, assignment, comparison, arithmetic, and

logical.

Arithmetic Operators

Basic mathematical operations are carried out via arithmetic

operators:

a = 10

b = 5

print(a + b) # Addition

print(a - b) # Subtraction

print(a * b) # Multiplication

print(a / b) # Division

print(a % b) # Modulus

print(a ** b) # Exponentiation

print(a // b) # Floor division

Comparison Operators

Comparison operators compare two values and return a Boolean

result:

x = 10

y = 20

print(x == y) # False

print(x != y) # True

print(x >y) # False

7
MATS Centre for Distance and Online Education, MATS University

Notes print(x <y) # True

print(x >= y) # False

print(x <= y) # True

Logical Operators

Logical operators are used to combine multiple conditions:

x = True

y = False

print(x and y) # False

print(x or y) # True

print(not x) # False

Control Flow Statements

Python contains control flow statements, such as loops (for, while)

and conditional phrases (if-elif-else), to govern how programs are

executed.

Statements with Conditions

num = 10

if num> 0:

print("Positive number")

elifnum< 0:

print("Negative number")

else:

 print("Zero")

Loops in Python

Using loops, a block of code can be run repeatedly.

for Loop

for i in range(5):

 print(i)

while Loop

count = 0

while count < 5:

 print(count)

 count += 1

Functions in Python

Functions are reusable code segments that carry out particular tasks.

def greet(name):

 return "Hello, " + name

8
MATS Centre for Distance and Online Education, MATS University

Notes print(greet("Alice"))

Python also supports lambda functions, which are anonymous

functions:

square = lambda x: x * x

print(square(5))

Input and Output Operations

Python has print() to display output and input() to accept user input.

name = input("Enter your name: ")

print("Hello, " + name)

Working with Lists

Lists are mutable sequences used to store multiple items.

numbers = [1, 2, 3, 4, 5]

numbers.append(6)

print(numbers)

Working with Dictionaries

Dictionaries store key-value pairs and allow efficient data retrieval.

person = {"name": "John", "age": 30}

print(person["name"])

File Handling

Python's built-in functions enable reading and writing files.

with open("example.txt", "w") as file:

file.write("Hello, Python!")

Exception Handling

Python provides exception handling to manage errors gracefully.

try:

num = int(input("Enter a number: "))

print(10 / num)

except ZeroDivisionError:

print("Cannot divide by zero")

except ValueError:

print("Invalid input")

Python is an excellent option for novices due to its easy-to-understand

syntax. We covered a few fundamental ideas in this Module,

including syntax, variables, operators, and control structures,

functions, and file handling. Once you grasp these fundamentals, you

can dive deeper into Python for data analysis, machine learning, and

web development. Once you have a good command of such basics

9
MATS Centre for Distance and Online Education, MATS University

Notes you will be in a better position to dive deep into advanced

programming and real-world applications.

Sample Program: Conditional Statements

A program that determines if a given number is positive, negative,

or zero

num = int(input("Enter a number: "))

if num> 0:

print("The number is positive.")

elifnum< 0:

print("The number is negative.")

else:

print("The number is zero.")

Learning about loops is another requirement for Python programming.

To loop, utilize the for and while loops. over sequences and perform

various tasks repeatedly. Loop, the for loop is one of the most utilized

when having to iterate through lists, tuples, strings, and ranges (or

something iterable in general), The while loop iterates while a certain

condition is true. The loop can be controlled with the help of the break

and continue statements_exec, exiting or jumping past iterations when

needed.

Sample Program: Looping Structures

Write a looping program that prints numbers one through ten.

for i in range(1, 11):

print(i, end=' ')

print("\n")

Using while loop

count = 1

while count <= 10:

print(count, end=' ')

 count += 1

You also have in Python collections as dictionaries, sets, tuples, and

lists. Lists: Sequences that can be changed to store collections. They

allow different operations like indexing, slicing, append, remove etc.

Intercept Note, this is one make up and tuple tuple other way this are

immutable, them nothing change after assignment. While dictionaries

are unordered key-value pairs that enable unique element collections,

sets are high-performance data retrieval.

10
MATS Centre for Distance and Online Education, MATS University

Notes Sample Program: Working with Lists

Creating and manipulating a list

fruits = ['Apple', 'Banana', 'Cherry']

fruits.append('Mango')

print("List of Fruits:", fruits)

print("First Fruit:", fruits[0])

fruits.remove('Banana')

print("Updated List:", fruits)

Python features enable you to divide the more complex issue into

smaller, more manageable ones, smaller issues. The def keyword is

used to define functions; the function name comes next, and

parenthesis. They accept disagreements and come back values to

make code more flexible.

Sample Program: Defining Functions

Function to determine a number's square

def square(num):

 return num ** 2

print("Square of 5:", square(5))

Other crucial subjects include object-oriented programming, file

handling, and handling of exceptions. In Python, the try, except, and

finally blocks are utilized to detect and manage runtime issues.

Reading and writing to files are both part of file handling and OOP

introduces concepts like classes, objects, and inheritance (open(),

read(), write()).

Sample Program: Exception Handling

try:

 x = int(input("Enter a number: "))

 y = int(input("Enter another number: "))

 result = x / y

print("Result:", result)

except ZeroDivisionError:

print("Error: Cannot divide by zero!")

except ValueError:

print("Error: Invalid input! Please enter a number.")

Python is more efficient because of its built-in modules and libraries.

For example, datetime for date and time, random for random integers

and the math module for mathematical functions operations.

11
MATS Centre for Distance and Online Education, MATS University

Notes Sample Program: Using Built-in Modules

import math

import random

print("Square Root of 16:", math.sqrt(16))

print("Random Number between 1 and 10:", random.randint(1, 10))

All in all, tech stack for Python development has been chosen in the

order of ease to medium-low jobs. Developers can use abstracted

syntax and operations by following the fundamentals of Python,

allowing them to create more efficient, scalable applications.

Programming Basics: Data Types and Variables

Among the essential components of any programming language is the

variable, which enables data manipulation and storage. A variable is

merely the name of a place where things can be kept in memory while

your program runs. As you can imagine, allowing a program to have

variables is an essential part of having it do complex computations,

process data, and display useful output. As such, mastering it allows

one to handle and manipulate the data as efficiently and effectively as

possible, which is paramount to understand in the world of

programming. (The exact rules governing variable declaration,

assignment, and scope vary from language to language, but the idea is

the same: variables hold target values that you can reference and

change while the program is running). (For instance, Python variables

are typed dynamically, meaning that the type of value you assign to a

variable determines its data type, negating the need for explicit

declaration itself.)In programming, data types are also an essential

concept, as they define whatA many types of information can be kept

in a variable. Types of data vary by computer language (numbers,

strings, lists, tuples, sets, dictionaries, etc.) on which various

operations can be applied and various storage mechanisms. Data

Types (the classification) allow a program to correctly compute when

handling its part of the data; thus maintaining the integrity and

correctness of the information. By being aware of the various kinds

of data, programmers can effectively plan how memory will be

allocated for various data types, improve performance, and only use

the operations that make sense for each type of data. From here, let us

go deeper into all of these data types, their features and functions,

that can be practically appliedOut of other data types in any

12
MATS Centre for Distance and Online Education, MATS University

Notes programming numbers are one of the most widely used. They consist

of numerical values that include complicated numbers, floating-point

numbers, and integers. For example, in Python, floating points (float)

have a decimal point, whereas integers (int) are entire numbers

without 1. As mentioned earlier, complex numbers are made up of of

both real and imaginary components. Arithmetic operations like as

addition, subtraction, division and multiplication are frequently

carried out using numerical data types. This is the program

demonstrating some of the numerical operations:

Sample Program 1: Working with Numbers

x = 10 # Integer

y = 3.5 # Float

z = x + y # Adding an integer and float

print("The sum is:", z)

Another basic data type is strings, which are character sequences that

are surrounded by single, double, or triple quotations. Frequently

employed for text data manipulation and storage. These built-in

methods include concatenation, slicing, repetition, et cetera

.upper(),.lower(), and. replace().Once assigned, the contents of strings

cannot be changed since they are unchangeable. This Program

Demonstrated Some OfThe String Functions:

Sample Program 2: String Manipulation

text = "Hello, World!"

print(text.higher()) # Convert to capital letters

text.lower() to print # Change to lowercase

print(text[0:5]) # Slicing strings

One of the most versatile data structures is undoubtedly a list.

Because they enable storing multiple values in a single variable. Lists,

which are variable-length, meaning elements can be changed,

appended, or deleted. As a sequence, lists support indexing, iteration,

and many built-in functions. append(),.remove(), and. sort(). The next

program illustrates how to manipulate lists:

Sample Program 3: List Operations

digits = [1, 2, 3, 4, 5].

numbers.append (6) # Including a component

print(numbers)

numbers.remove(3) # Removing an element

13
MATS Centre for Distance and Online Education, MATS University

Notes print(numbers)

Tuples have some similarities but are immutable, which means that

once they are created, none of their constituent parts can be altered.

They come in handy when dealing with fixed items collection. Tuples

are similar in that they use parentheses instead of list square brackets,

but you can access data from tuples in an efficient way. The next

program shows how to use tuple:

Sample Program 4: Tuple Usage

tuple_data = (10, 20, 30)

print(tuple_data)

print(tuple_data[1]) # Accessing tuple elements

Sets are collections of non-ordered values and they can not contain

duplicates. They are appropriate for operations like membership

testing, union, intersection, and difference. This program illustrates

operations with set:

Sample Program 5: Set Operations

set1 = {1, 2, 3, 4}

set2 = {3, 4, 5, 6}

print(set1.union(set2) #Union of sets

print(intersection of set1. (set2) # Sets intersecting

Dictionaries are hash tables; the principle behind dictionaries is

storing key-value pairs that allow values to be quickly retrieved using

unique keys. They are incredibly adaptable and widely used for

mapping relationships among data elements. In the following

program, we work with dictionary operations:

Sample Program 6: Dictionary Operations

data = {"name": "Alice", "age": 25, "city": "New York"}

print(data["name"]) # Accessing a value using a key

data["age"] = 26 # Modifying a value

print(data)

So this is essential to understand the functionality and data types for

programming. The types of data are used for different properties for

its use cases. These data types allow programmers to write code that

is efficient and scalable while ensuring optimal data management and

computational efficiency. Moreover, the combination of these data

types allows for the creation of advanced data structures, enabling

advanced problem solving and algorithm development.In conclusion,

variables and data types are essential programming ideas that let

14
MATS Centre for Distance and Online Education, MATS University

Notes programmers make ever-more complex, dynamic, and interactive

applications. This stuff helps enhance problem-solving skills, remove

any roadblocks and prepares the ground for the next learnings on

various levels, For instance, data structures, algorithms, object-

oriented programming, etc. Regular experimentation with data input

enables programmers to build their knowledge base, which ultimately

helps them write optimized and scalable code.

15
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2 Function in Python

1.3 Functions: Built-in and User-defined, Function Arguments,

Recursion

We are only focused on functions here, that are an important aspect of

programming as it will help you to write modular code, re-usable,

and structured codeA function is a section of code that can be used

repeatedly by software. to accomplish a particular goal. By going over

functions, we can divide complex problems into smaller ones to

solve. Improves the readability and maintainability of programs, they

also let you debug programs faster. Functions can be broadly of two

types in most programming languages both user-defined and built-in

functions. Functions also have disagreements, so they can take in

data, and recursion is a specific, special case of functions calling

itself.

Built-in Functions

hese pre-made functions are included in the programming language to

perform common tasks. It is extremely fast and it's available to use

out of the box. This covers the built-in functions, which include things

like math operations, string manipulation, input/output, etc. A

method also known in some programming languages function,

contains several commands, so that we do not have to rewrite the

same code over and over, and, therefore, makes coding much easier

Fig: 2.1 Function in Python

[Source: https://www.scientecheasy.com]

https://www.scientecheasy.com/

16
MATS Centre for Distance and Online Education, MATS University

Notes (an example are built-in functions in Python, including print(), len(),

sum(), max(), and others.SqlAlchemy makes many functions written

to make developer life easier).

Consider the following example where we use Python built-in

functions:

Example 1: Using Integrated Features

Numbers = [4, 7, 1, 9, 3]

print("Maximum number:", max(numbers)) # Determines the highest

number

print("Minimum number:", min(numbers)) # Finds the minimum

number

print("Sum of numbers:", sum(numbers)) # Calculates the sum

print("Length of list:", len(numbers)) # Finds the length of the list

You don't need to bother about explicitly designing an algorithm to

determine the maximum or minimum of a given value because these

built-in functions do tasks for you effectively list or sum or length.

Functions defined by the user

 With the exception of built-in functions and user-created functions,

specify a certain feature that isn't provided by built-in functions. A

function definition organizes the code better and makes coding

reusable. The def keyword, the function name, and two parentheses

which may contain parameters define a function in Python. The

function's body outlines the actual operations, and when called, the

function runs.

A user-defined function example is this one, which calculates a

number's square:

Example 2: User-defined Function

def square(num):

 return num * num

outcome = square (5)

Output: 25 print("Square of 5:", result)

The function square() accepts an integer in this example and returns

that number squared. Code can be reused (using that function as many

times as we want with different values) which makes code organized

and avoids code duplicity.

17
MATS Centre for Distance and Online Education, MATS University

Notes Function Arguments

Definition: These are the values supplied to the function when it is

called. The function's arguments can be positional, keyword, default,

or variable-length.

• As The sequence in which arguments are presented, positional

arguments are the most prevalent kind matters.

Example 3: Positional Arguments

def welcome (name, age):

print(f"Hello {name}, you are {age} years old.")

greet("Alice", 25)

• Keyword Arguments: In this kind, arguments are conveyed

according to the names of their respective parameters, which

make the function call more informative and independent of

order.

Example 4: Keyword Arguments

greet(name="Bob", age=30)

• Default Arguments: A parameter can be assigned a default

value, and in the event that no arguments are supplied, this

value will be used.

Example 5: Default Arguments

def power(base, exponent=2):

 return base ** exponent

print(power(4)) # Uses default exponent value 2

print(power(4, 3)) # Uses provided exponent value 3

• Important Topics in Python Functions: Variable-length

Arguments: Sometimes a function needs to agree with any

number of arguments. For non-keyword arguments, use args;

for keyword arguments, use *kwargs.

18
MATS Centre for Distance and Online Education, MATS University

Notes # Example 6: Variable-length Arguments

def add_numbers(*args):

 return sum(args)

print(add_numbers(1, 2, 3, 4, 5)) # Output: 15

Recursion in Functions

A key idea in programming is recursion, which is when a function

calls itself to solve an issue. Factorial, Fibonacci series, tree traversals

are examples of problems that can be solved through their

subproblems using those.

• Factorial Using Recursion:

Example 7: Factorial using Recursion

def factorial(n):

 if n == 0 or n == 1:

 return 1

 else:

 return n * factorial(n - 1)

print(factorial(5)) # Output: 120

Here, until the base case (n == 0 or n == 1) is reached, the factorial ()

method calls itself with a smaller result.

• Fibonacci Series Using Recursion:

Example 8: Fibonacci Series using Recursion

def fibonacci(n):

 if n <= 0:

 return "Invalid input"

elif n == 1:

 return 0

elif n == 2:

 return 1

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(6)) # Output: 5

19
MATS Centre for Distance and Online Education, MATS University

Notes • Sum of Digits Using Recursion:

Example 9: Sum of Digits using Recursion

def sum_of_digits(n):

 if n == 0:

 return 0

 else:

 return (n % 10) + sum_of_digits(n // 10)

print(sum_of_digits(1234)) # Output: 10

• Reverse a String Using Recursion:

Example 10: Reverse a String using Recursion

def reverse_string(s):

 if len(s) == 0:

 return s

 else:

 return s[-1] + reverse_string(s[:-1])

print(reverse_string("hello")) # Output: "olleh"

Recursion is elegant, but excessive function calls in recursion can eat

a lot of memory. In some cases, you might want to use iterative

solutions for optimal performance.

You can analyse the list of functions with a human-like approach.

While A user-defined function enables the user to create their own,

whereas a built-in function is a basic function that already exists

functions easy to use and simplifies the most common activities.

programmer to customize an operation according to the needs of

convert. Because function arguments allow flexibility, because

functions are more generalized. Functions can call themselves, a trait

known as recursion, which has proven exceptionally useful in solving

complex problems. Recursive Function Implementation

Considerations although recursive functions RMID obviously are

very useful, they have the disadvantage that they can lead to the

accumulation of data in the memory stack and cause stack overflow

errors. Learning about functions and how to use them properly allows

programmers to develop efficient, scalable, and maintainable code in

a variety of fields and applications.So it would be best if you were a

20
MATS Centre for Distance and Online Education, MATS University

Notes little bit careful when working with exceptions, especially those that

are not handled properly; thus, try-except-finally helps solve this

problem.What is Exception Handling in Python? Any programming

language comes with its own set of errors, and Python comes with a

massive mechanism to deal with them using the try-except-finally

constructs. This mechanism enables developers to handle exceptions,

which prevents programs from being terminated abruptly. Learning

the try except finally is key to writing reliable and error-proofed

code.The try block contains the code that could result in an exception.

There is one exception mentioned if something goes wrong in this

block, and The corresponding except block captures it. The exception

block states the action to take in case of certain exceptionsIf the code

that might cause an exception is contained in the try block. Whether

or not a finally block raises an exception is defined, it is always

performed. Finally, this is very useful for cleanup tasks like database

termination, resource release, and file closure connections.Python has

built-in exceptions Zero Division Error, IndexError, KeyError,

ValueError, TypeError, etc. There are certain other exceptions (1d, 1e)

which happen when there is a problem with the thread's execution.

Additionally adaptable, the try-except-finally block can catch several

exceptions in a single block, which improves the robustness of error

processing logic.

1.4 Exception handling (try-except-finally)

One of the most common exceptions in Python is Zero Division Error

which occurs on division of a number by zero the program below

shows how to catch this exception and handle it gracefully:

Try:

 numerator = int(input("Enter numerator: "))

 denominator = int(input("Enter denominator: "))

 result = numerator / denominator

print("Result:", result)

except ZeroDivisionError:

print("Error: Division by zero is not allowed.")

finally:

print("Execution completed.")

Example: Handling Multiple Exceptions

The same program can raise many exceptions in run-time. The code

below catches both ZeroDivisionError and ValueError:

21
MATS Centre for Distance and Online Education, MATS University

Notes try:

 num1 = int(input("Enter first number: "))

 num2 = int(input("Enter second number: "))

print("Result:", num1 / num2)

except ZeroDivisionError:

print("Cannot divide by zero.")

except ValueError:

print("Invalid input! Please enter a number.")

finally:

print("End of program.")

Example: Handling File Not Found Error

Handling FileNotFoundError Handling When Performing File

Operations Here is the code which shows how to deal with this

situation:

try:

 file = open("non_existent_file.txt", "r")

 content = file.read()

 print(content)

except FileNotFoundError:

print("Error: File not found.")

finally:

print("File operation attempted.")

Example: Handling Index Error

IndexError when accessing an invalid index in a list Here's code that

shows how to catch this exception:

try:

my_list = [1, 2, 3]

 print(my_list[5])

except IndexError:

print("Error: Index out of range.")

finally:

print("List operation completed.")

Example: Handling Key Error in Dictionary

In SQL, a When you attempt You receive a KeyError when

attempting to retrieve a dictionary key that is not present. This code

takes care of the error quite well This article was published as a part

of the Data Science Blogathon:

try:

22
MATS Centre for Distance and Online Education, MATS University

Notes my_dict = {"name": "John", "age": 30}

 print(my_dict["address"])

except KeyError:

print("Error: Key not found in dictionary.")

finally:

print("Dictionary operation completed.")

Example: Handling Type Error

A TypeError arises when an operation is conducted on incompatible

types. Here is an example of this:

try:

 result = "5" + 10

except TypeError:

print("Error: Cannot add a string and an integer.")

finally:

print("Type checking completed.")

Example: Handling Value Error

When we provide AWhen a function receives an argument of the right

type but an even more wrong value, a ValueError is triggered. The

below example shows how to handle it:

try:

 number = int("abc")

except ValueError:

print("Error: Invalid conversion to integer.")

finally:

print("Value checking completed.")

Example: Handling Custom Exceptions

In some cases, developers have to define their own exceptions. Below

is the code used to generate and manage a user-defined or custom

exception:

CustomError(Exception) class:

 pass

try:

 raise CustomError("This is a custom exception.")

apart from CustomError as e:

print("Caught custom exception:", e)

finally:

print("Custom exception handling completed.")

23
MATS Centre for Distance and Online Education, MATS University

Notes Example: Using Else Clause with Try-Except

Python contains a clause that is optional, that, if no exception

happens, will run. Here is an example of how it works:

try:

num = int(input("Enter a number: "))

print("Square:", num * num)

except ValueError:

print("Invalid input!")

else:

print("No exceptions occurred.")

finally:

print("Program execution completed.")

Example: Ensuring Resource Cleanup with Finally

A typical application for the finally block is resource management. An

example of how to use it follows:

try:

 file = open("sample.txt", "w")

file.write("Hello, world!")

except IOError:

print("Error: File operation failed.")

finally:

file.close()

print("File closed successfully.")

These error-handling techniques are an essential component of

Python programming that increases the stability and reliability of

applications. This not only helps avoid the hard stop of their program,

but also allows for better recovery from errors. This lesson went

through several examples illustrating a large variety of real-world

exceptions that can demonstrate the power of exception handling to

write resilient code. Read Next; Correcting Common Python Error

Handling Mistakes (TypeError, FileNotFoundError, and Custom

Exception) whether it is handling integer value errors or input

validation errors, the try-except-finally construct is one of the most

useful tools in Python programming. Constructor Python has a special

type of function that is automatically called upon the instantiation of a

class object. Using this function init to define this method, to initialize

the attributes and to set up any necessary elements for the object. The

constructor is an important part about object oriented programming,

24
MATS Centre for Distance and Online Education, MATS University

Notes as it makes sure that all instances of a class start off in a good state.A

constructor is always called init, and it accepts self as its first

parameter, which we will know is the instance of the class. It is also

possible to define additional parameters to pass in values and perform

some processing when creating an object. This approach provides

encapsulation and safeguards the data's integrity by prohibiting direct

access to object characteristics from outside the class definition. By

using constructors, programmers can make the process of creating

objects with initial values easier and reusable, which can reduce

redundancy in the code. Imagine this class Person that uses a

constructor to set up a person’s age and name. The constructor

immediately launches Upon creating a Person class object, initializing

the instance variable.

class member:

 __init__ def (self, name, age):

 self.name = name

self.age = age

 def display(self):

print(f"Name: {self.name}, Age: {self.age}")

person1 = Person("Alice", 25)

person1.display()

The characteristics of age and name are set to new values when the

above constructor creates a new Person. Then, the details of the

person are printed using the display method.

You can also use a constructor to establish the properties' default

values. When making something, if no arguments passed, default

values are given.

class Car:

 def __init__(self, brand="Toyota", model="Corolla"):

self.brand = brand

self.model = model

 def show_details(self):

print(f"Car Brand: {self.brand}, Model: {self.model}")

car1 = Car()

25
MATS Centre for Distance and Online Education, MATS University

Notes car2 = Car("Honda", "Civic")

car1.show_details()

car2.show_details()

In this example, the constructor sets default values for brand and

model, so even if no values are passed, the created object contains

meaningful data.

Constructors can also perform calculations and process data while

initializing an object. This functionality is very useful for objects that

must be preprocessed before use.

Rectangular class:

 (self, length, width) def __init__:

length = self.length

self.width = width

* width * length = self.area

 def display(self):

print(f"Length: {self.length}, Width: {self.width}, Area: {self.area}")

rect1 = Rectangle(10, 5)

rect1.display()

In the above example, the constructor determines the rectangle's area

as soon as the object is formed. It provides the need for an additional

area computation method into oblivion.

Inheritance also implements constructors, A super() function allows

To call the parent class constructor, use a child class constructor.

Animal class:

(self, species) def __init__:

self.species = species

class Dog(Animal):

 def __init__(self, name, breed):

 super().__init__("Dog")

 self.name = name

self.breed = breed

 def show_info(self):

print(f"Species: {self.species}, Name: {self.name}, Breed:

{self.breed}")

dog1 = Dog("Buddy", "Golden Retriever")

26
MATS Centre for Distance and Online Education, MATS University

Notes dog1.show_info()

The super (). Call to init () guarantees that the constructor of the

Animal class is called first, then that of the Dog class's unique

attributes are initialized.

A key feature of constructors is their capability of efficient

instantiation of multiple objects. Constructors can be incredibly

powerful for large-scale applications as they can be dynamically

created with various parameters.

student in the class:

 function __init__(self, name, marks, student_id):

student_id = self.student_id

self.name = name

self.marks = marks

 def details (self):

print(f"ID: {self.student_id}, Name: {self.name}, Marks:

{self.marks}")

students = [

Student(101, "John", 85),

Student(102, "Emma", 90),

Student(103, "Liam", 78)

]

for student in students:

student.details()

This demonstrates the use of constructors in creating Student objects

and the ability to instantiate multiple objects using constructors.

Constructors also are involved in encapsulation by being a way to

limit direct access to class variables and to enable only access

through getter and setter methods.

def specifics (self):

(self, account_number, balance) def __init__:

self.__account_number = account_number

self.__balance = balance

get_balance(self) def:

self.__balance back

27
MATS Centre for Distance and Online Education, MATS University

Notes def deposit(amount, self):

 if amount > 0:

self.__balance += amount

print(f"Deposited: {amount}, New Balance: {self.__balance}")

 else:

print("Invalid deposit amount!")

account = BankAccount("123456", 5000)

print("Initial Balance:", account.get_balance())

account.deposit(1500)

Class variables are made with double underscores (__). private and

limit their access through specific methods.

We can also use constructors in resource management such as file

handling, in which a file is opened while the object is being initialized

and closed once the object is no longer required.

FileHandler class:

 (self, filename, mode) def __init__:

self.file = open(mode, filename)

print(f"File '{filename}' opened in {mode} mode")

 (self, data) def write_data:

self.file.write(data)

close_file(self) def:

self.file.close()

print("File closed")

file1 = FileHandler("sample.txt", "w")

file1.write_data("Hello, this is a test file.")

file1.close_file()

The context manager ensures files are properly cleaned up,

minimizing the chances of leaks.

At their core, constructors are a critical building block in building

expressive Python applications. They play an important role in object-

oriented programming by handling object initialization, encapsulation,

inheritance, and resource management. Effective Using constructors

can result in code that is simpler to maintain, cleaner, and improve

code efficiency.Structure of Writing 8800 words in paragraph on File

28
MATS Centre for Distance and Online Education, MATS University

Notes Handling (Reading & Writing Files, File Modes, With Statement) with

sample programs 10. File Handling in Python Explained with

Examples: Below is a detailed explanation with examples that covers

different concepts of Python's file handling.

1.5 Constructor (init method) in Python

Yo are to develop file handling techniques to both read and write data

to a file that is external. The fcntl module allows you to control file

descriptors, enabling you to perform operations such as locking,

referencing or blocking on these descriptors. Python has in-built

functions to handle files efficiently with different modes to specify

how to Get a file open. Additionally, employing the with statement

makes that the file is correctly handled and will not cause file

corruptions or memory leaks.

Python’s file handling follows the standard CRUD operations:

1. Create – Creating a new file.

2. Read – Reading data from an already existing file.

3. Update (Write/Append) – Updating data in the file.

4. Delete – Removing a file.

To perform any operation on a file, the file must be opened first using

Python’s built-in open() function, which accepts two inputs: the

access mode and the file path. To release system resources, we should

use close() to end the process of closing the file, however the with

statement easily handles this.

Python File Opening

The open() method in Python is used to open a file. The file name is

the only argument it takes. A mode for opening the file is an optional

second input.

open("example. txt", "r") file # Starts the read mode of example.txt

There are several file modes in Python:

• Read (r): opens a file in the default reading mode.

• Write (w): This creates a new file and opens the file for

writing if there is none, will truncate if there is.

• Append (a): Initializes the file in add mode while preserving

the current content.

• Read and Write key (r+): To enable reading and writing of a

file, press the Read and Write key (r+). to exist

• Write and Read (w+): Reads and writes, and creates a new

file if the one doesn't already exist.

29
MATS Centre for Distance and Online Education, MATS University

Notes • Append and Read (a+): Available for both writing and

reading and truncating.

1.6 File Handling (Reading & Writing Files, File Modes, With

Statement)

Reading files is a fundamental operation. Python provides multiple

ways to read files:

Example 1: Reading a Complete File

using the file open("sample.txt", "r"):

 content = file.read()

 print(content)

In this For example, the with statement opens the file in read mode is

used.

(r), read everything from it and print it. The file gets shut down

automatically by the statement after you finish reading it.

Example 2: Line-by-Line Reading

with open("sample.txt", "r") as file:

 for line in file:

 print(line.strip()) # Removes trailing newline characters

Here, the file is read line by line using a loop, which saves memory.

Example 3: Using readline() to Read a Single Line

with open("sample.txt", "r") as file:

 line = file.readline()

 while line:

 print(line.strip())

 line = file.readline()

The readline()technique is helpful when handling single lines at a time

structured text.

Example 4: Reading into a List Using readlines()

with open("sample.txt", "r") as file:

 lines = file.readlines()

 print(lines)

All of the lines are read by the readlines() function to a list with a

matching element for every line in the file.

Python Writing to a File

The w, a, or w+ mode must be used in order to write data to a file. If

there isn't a file, it creates one created automatically.

30
MATS Centre for Distance and Online Education, MATS University

Notes Example 5: Writing to a File (w Mode)

with open("output.txt", "w") as file:

file.write("Hello, World!\n")

file.write("This is a new line.\n")

This code writes two lines into output.txt. If the file exists, its content

is erased before writing new data.

Example 6: Appending to a File (a Mode)

with open("output.txt", "a") as file:

file.write("Appending a new line.\n")

This appends data without erasing the previous content.

Example 7: Writing Multiple Lines

lines = ["First Line\n", "Second Line\n", "Third Line\n"]

with open("multiline.txt", "w") as file:

file.writelines(lines)

The writelines() method writes a list of strings to a file.

File Handling with Different Modes

Python allows files to be opened in different modes based on the

requirement.

Example 8: Reading and Writing (r+ Mode)

with open("data.txt", "r+") as file:

print(file.read()) # Examine the current content.

file.write("\nAdding a new line!") # Write at the end

The r+ mode does not truncate the file but permits reading and

writing.

Example 9: Overwriting vs. Appending (w+ and a+ Modes)

Overwriting the file

with open("overwrite.txt", "w+") as file:

file.write("Overwritten content.\n")

file.seek(0)

 print(file.read())

Appending while reading

with open("append_read.txt", "a+") as file:

file.write("Appended content.\n")

file.seek(0)

 print(file.read())

In here seek(0) sets the file pointer to position 0, to read again after

writing.

31
MATS Centre for Distance and Online Education, MATS University

Notes File Handling with Statement

As we are working with files the with statement is preferred as it

guarantees that upon execution, the file is automatically closed,

preventing resources leaks.

Example 10: Using with for Multiple File Operations

with open("example.txt", "w") as file:

file.write("Line 1\n")

file.write("Line 2\n")

with open("example.txt", "r") as file:

 print(file.read())

Using with open() for both reading and writing ensures that files are

handled properly.

Learn the usage of file handling in python, to store and extract the

data efficiently. Different file modes give developers control over how

files can be accessed and modified. When a file is opened using the

with statement, it will be automatically closed when the suite finishes

executing, which means less risk of leaking resources. These

examples illustrate fundamental operations like reading, writing,

appending, and managing file pointers. These techniques allow the

programmers to build applications that can store logs, produce data

files and handle external resources and so on.

MCQs:

1. Which keyword is used to define a function in Python?

a) def

b) func

c) define

d) function

2. Which data type is mutable in Python?

a) Tuple

b) List

c) String

d) Integer

3. Which method is called when an object is created in a

Python class?

a) __start__

b) __begin__

32
MATS Centre for Distance and Online Education, MATS University

Notes c) __init__

d) __new__

4. Which of the following is used to handle exceptions in

Python?

a) try-except

b) if-else

c) switch-case

d) catch-throw

5. What will be the output of the following code?

print(type({}))

a) <class 'list'>

b) <class 'set'>

c) <class 'dict'>

d) <class 'tuple'>

6. Which of the following file modes is used to read a file in

Python?

a) 'w'

b) 'r'

c) 'a'

d) 'x'

7. What will range (5) returns in Python?

a) [0, 1, 2, 3, 4]

b) [1, 2, 3, 4, 5]

c) (0, 1, 2, 3, 4)

d) None

8. Which statement is used to open a file in Python?

a) open()

b) readfile()

c) file_open()

d) file()

9. What does the with statement do in file handling?

a) Ensures the file is properly closed after use

b) Deletes the file

c) Reads the entire file

d) Opens multiple files at once

10. Which of the following is NOT a valid function argument

type in Python?

a) Default

33
MATS Centre for Distance and Online Education, MATS University

Notes b) Keyword

c) Arbitrary

d) Mandatory

Short Questions:

1. What are the basic syntax rules in Python?

2. Explain mutable and immutable data types with examples.

3. How does the __init__ method work in Python classes?

4. What is exception handling in Python? Provide an example.

5. Differentiate between Lists and Tuples in Python.

6. Write a simple recursive function in Python.

7. Explain file handling modes in Python.

8. How does the try-except-finally block work?

9. What is the difference between String and String Buffer in

Python?

10. Write a Python program to read a text file and print its

contents.

Long Questions:

1. Explain Python's data types (Numbers, Strings, Lists, Tuples,

Sets, and Dictionaries) with examples.

2. Write a Python program to demonstrate function overloading

using default arguments.

3. What are different types of function arguments in Python?

Explain with examples.

4. Explain recursion in Python with a factorial program.

5. How does exception handling work in Python? Write a

program to handle division by zero.

6. Discuss the role of the __init__ constructor in Python classes.

Provide an example.

7. Write a Python program to write user input to a file and then

read the contents.

8. Explain the difference between normal file handling and the

with statement.

9. Discuss how Python manages memory allocation for objects.

10. Explain the importance of error handling in software

development with real-world examples.

34

Module 2

DATA HANDLING & LIBRARIES

2.0 LEARNING OUTCOMES

• Understand how to work with Lists, Tuples, Sets, and

Dictionaries in Python.

• Learn about string manipulation techniques in Python.

• Explore NumPy for array operations, indexing, and slicing.

• Understand Pandas and its key data structures: Series and

DataFrames.

• Learn about Matplotlib for basic data visualization (Line Plot,

Bar Chart, Scatter Plot).

35
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Lists, Tuples, Sets, and Dictionaries

2.1 Working with Lists, Tuples, Sets, and Dictionaries

There are more than a few built-in Python data structures are used to

organize and manage our data. Four of the article will look at

Python's main collection types guide: lists, tuples, sets, and

dictionaries. Understanding these versatile data structures thoroughly

is a goal that many Python programs have and mastering them will

greatly enhance your programming abilities.

Lists

One of Python's most widely used and versatile data structures is lists;

offer the ability to hold a group of things. An ordered, changeable

collection that may include a variety of types is called a list.

Creating Lists

There are several ways to create a list in Python:

Empty list

empty_list = []

empty_list_alternative = list()

List with elements

numbers = [1, 2, 3, 4, 5]

mixed_list = [1, "hello", 3.14, True]

List from another iterable

characters = list("Python") # Creates ['P', 'y', 't', 'h', 'o', 'n']

Fig: 3.1 Lists, Tuples, Sets

[Source: https://www.devopsschool.com]

https://www.devopsschool.com/

36
MATS Centre for Distance and Online Education, MATS University

Notes # List comprehension

squares = [x**2 for x in range(10)] # [0, 1, 4, 9, 16, 25, 36, 49, 64,

81]

Accessing List Elements

Python lists are zero-indexed, meaning the first element is at index 0:

fruits = ["apple", "banana", "cherry", "date", "elderberry"]

Accessing elements by index

first_fruit = fruits[0] # "apple"

last_fruit = fruits[-1] # "elderberry"

Slicing lists

first_three = fruits[0:3] # ["apple", "banana", "cherry"]

Shorthand for starting from beginning

first_three_alt = fruits[:3] # ["apple", "banana", "cherry"]

From index 2 to the end

from_cherry = fruits[2:] # ["cherry", "date", "elderberry"]

Negative indices count from the end

last_two = fruits[-2:] # ["date", "elderberry"]

Step parameter (every second element)

every_second = fruits[::2] # ["apple", "cherry", "elderberry"]

Reverse a list

reversed_fruits = fruits[::-1] # ["elderberry", "date", "cherry",

"banana", "apple"]

Modifying Lists

Because lists are mutable, you can alter their contents without having

to make a new one:

 digits = [1, 2, 3, 4, 5]

Changing an element

numbers[0] = 10 # Now numbers is [10, 2, 3, 4, 5]

Changing multiple elements with slicing

numbers[1:3] = [20, 30] # Now numbers is [10, 20, 30, 4, 5]

37
MATS Centre for Distance and Online Education, MATS University

Notes # Adding elements

numbers.append(6) # Add to the end: [10, 20, 30, 4, 5, 6]

numbers.insert(1, 15) # Insert at index 1: [10, 15, 20, 30, 4, 5, 6]

numbers.extend([7, 8, 9]) # Add multiple elements: [10, 15, 20, 30, 4,

5, 6, 7, 8, 9]

Removing elements

numbers.remove(30) # Remove first occurrence of 30

popped_value = numbers.pop() # Remove and return the last element

(9)

popped_index = numbers.pop(2) # Remove and return element at

index 2 (20)

del numbers[1] # Delete element at index 1 (15)

del numbers[2:4] # Delete a slice

Clear the list

numbers.clear() # numbers is now []

List Operations

Python provides several operations that can be performed on lists:

a = [1, 2, 3]

b = [4, 5, 6]

Concatenation

c = a + b # [1, 2, 3, 4, 5, 6]

Repetition

repeated = a * 3 # [1, 2, 3, 1, 2, 3, 1, 2, 3]

Length

length = len(a) # 3

Membership test

contains_two = 2 in a # True

contains_five = 5 in a # False

Maximum and minimum

max_value = max([3, 1, 4, 1, 5, 9]) # 9

min_value = min([3, 1, 4, 1, 5, 9]) # 1

38
MATS Centre for Distance and Online Education, MATS University

Notes

Sum

total = sum([1, 2, 3, 4, 5]) # 15

List Methods

Python lists come with several built-in methods:

colors = ["red", "green", "blue", "green", "yellow"]

Count occurrences

green_count = colors.count("green") # 2

Find index of first occurrence

blue_index = colors.index("blue") # 2

Sort list in-place

numbers = [3, 1, 4, 1, 5, 9]

numbers.sort() # numbers is now [1, 1, 3, 4, 5, 9]

numbers.sort(reverse=True) # numbers is now [9, 5, 4, 3, 1, 1]

Sort with custom key function

words = ["apple", "banana", "cherry"]

words.sort(key=len) # Sort by length: ["apple", "banana", "cherry"]

Reverse list in-place

words.reverse() # ["cherry", "banana", "apple"]

Getting a sorted copy without modifying the original

original = [3, 1, 4, 1, 5, 9]

sorted_copy = sorted(original) # [1, 1, 3, 4, 5, 9]

Nested Lists and Matrices

Lists can contain other lists, allowing you to create multi-dimensional

structures:

2D list (matrix)

matrix = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

39
MATS Centre for Distance and Online Education, MATS University

Notes # Accessing elements

element = matrix[1][2] # 6 (row 1, column 2)

Processing all elements in a nested list

for row in matrix:

 for element in row:

print(element, end=" ")

print() # New line after each row

List comprehension with nested lists

flattened = [element for row in matrix for element in row]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Creating a matrix with list comprehension

size = 3

identity_matrix = [[1 if i == j else 0 for j in range(size)] for i in

range(size)]

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

Common List Patterns

Here are some common patterns and idioms when working with lists:

Filtering elements

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

evens = [x for x in numbers if x % 2 == 0] # [2, 4, 6, 8, 10]

Transforming elements

squares = [x**2 for x in numbers] # [1, 4, 9, 16, 25, 36, 49, 64, 81,

100]

Finding unique elements

duplicates = [1, 2, 2, 3, 4, 4, 5]

unique = list(set(duplicates)) # [1, 2, 3, 4, 5]

Counting elements

from collections import Counter

frequencies = Counter(["a", "b", "a", "c", "b", "a"])

Counter({'a': 3, 'b': 2, 'c': 1})

Zipping lists together

names = ["Alice", "Bob", "Charlie"]

40
MATS Centre for Distance and Online Education, MATS University

Notes ages = [25, 30, 35]

combined = list(zip(names, ages)) # [("Alice", 25), ("Bob", 30),

("Charlie", 35)]

Unzipping a list of tuples

names, ages = zip(*combined)

Finding max/min elements with a key function

students = [("Alice", 95), ("Bob", 82), ("Charlie", 91)]

best_student = max(students, key=lambda student: student[1]) #

("Alice", 95)

Performance Considerations

It's helpful to know the computational complexity of list

operations so you can write efficient code:

• Getting an element by an index: O(1) — constant time

• Append an element: O (1) amortized — which is effectively

constant time

• Adding or removing an element: The list's size is O(n) –n.

• O(n) is the search time for an element, where n is the list's size

• Slicing: O(k) — k is the size of the slice

• Sorting: where n is the list's size and O(n log n)

In large lists, operation such as insert, delete and search would be

slow. In these cases with different requirements, other data structures

(sets, dictionaries, etc) may be the better choice.

The tuples

Lists and tuples are comparable, except that after they are generated,

their content cannot be altered (they are immutable). That helps them

become more memory-efficient easier and quicker than lists in

handfuls of cases.

Creating Tuples

Here are different methods for building tuples:

Empty tuple

empty_tuple = ()

empty_tuple_alt = tuple()

Tuple with elements

numbers = (1, 2, 3, 4, 5)

mixed_tuple = (1, "hello", 3.14, True)

41
MATS Centre for Distance and Online Education, MATS University

Notes

Single element tuple (note the comma)

singleton = (42,) # Without the comma, it would be just the number

42

Tuple from another iterable

characters = tuple("Python") # ('P', 'y', 't', 'h', 'o', 'n')

Tuple packing

coordinates = 3, 4 # This is a tuple (3, 4)

Tuple unpacking

x, y = coordinates # x = 3, y = 4

Accessing Tuple Elements

Accessing elements in tuples works the same way as with lists:

colors = ("red", "green", "blue", "yellow", "purple")

Accessing by index

first_color = colors[0] # "red"

last_color = colors[-1] # "purple"

Slicing

first_three = colors[:3] # ("red", "green", "blue")

Tuple Operations

Tuples assist numerous activities that lists do, except those that would

modify the tuple:

a = (1, 2, 3)

b = (4, 5, 6)

Concatenation

c = a + b # (1, 2, 3, 4, 5, 6)

Repetition

repeated = a * 3 # (1, 2, 3, 1, 2, 3, 1, 2, 3)

Length

length = len(a) # 3

42
MATS Centre for Distance and Online Education, MATS University

Notes # Membership test

contains_two = 2 in a # True

Maximum and minimum

max_value = max((3, 1, 4, 1, 5, 9)) # 9

min_value = min((3, 1, 4, 1, 5, 9)) # 1

Count occurrences

occurrences = (1, 2, 2, 3, 2).count(2) # 3

Find index of first occurrence

index = (1, 2, 3, 4).index(3) # 2

Immutability and Its Benefits

Since tuples are immutable, they cannot be altered after creation:

my_tuple = (1, 2, 3)

This would raise an error

my_tuple[0] = 10 # TypeError: item assignment is not supported

by the 'tuple' object

Benefits of immutability include:

1. Hashability: Tuples (as long as all their elements are also

hashable) can be dictionary keys or elements in a set.

2. Security: The data will not get changed by accident.

3. Performance: Tuples may outperform lists in some operations.

4. Memory: In general, tuples use less memory than lists.

Tuple Applications

Common use cases for tuples:

Function returning multiple values

def get_coordinates():

 return (10, 20)

x, y = get_coordinates() # Tuple unpacking

Dictionary keys (if all elements are hashable)

locations = {

 (40.7128, -74.0060): "New York",

 (34.0522, -118.2437): "Los Angeles"

}

43
MATS Centre for Distance and Online Education, MATS University

Notes

Named tuples (a more readable alternative)

from collections import namedtuple

Person = namedtuple('Person', ['name', 'age', 'job'])

john = Person("John Doe", 30, "Developer")

print(john.name) # Accessing by field name

print(john[0]) # Accessing by index

When to Use Tuples vs Lists

Use tuples when:

• Data shall always remain constant once created

• A hashable sequence is required

• You need to specify that the data will not change

• You have heterogeneous data (like database records)

Use lists when:

• You have to change the collection

• You are in a homogeneous data with expected scaling up/down

• You have to often retrieve and update values

Sets

Sets: Sets are represented as groups of unique elements that are not in

order. They are optimized for mathematical set operations, duplicate

removal, and membership testing.

Creating Sets

Here are different ways to create sets:

Empty set (note: {} creates an empty dictionary, not a set)

empty_set = set()

Set with elements

numbers = {1, 2, 3, 4, 5}

mixed_set = {1, "hello", 3.14, True}

Set from another iterable

characters = set("Mississippi") # {'M', 'i', 's', 'p'}

Set comprehension

even_squares = {x**2 for x in range(10) if x % 2 == 0} # {0, 4, 16,

36, 64}

Set Operations

44
MATS Centre for Distance and Online Education, MATS University

Notes Sets support mathematical set operations:

a = {1, 2, 3, 4, 5}

b = {4, 5, 6, 7, 8}

Union (all elements from both sets, without duplicates)

union = a | b # {1, 2, 3, 4, 5, 6, 7, 8}

union_alt = a.union(b) # Same result

Intersection (elements present in both sets)

intersection = a &b # {4, 5}

intersection_alt = a.intersection(b) # Same result

Difference (elements in a but not in b)

difference = a - b # {1, 2, 3}

difference_alt = a.difference(b) # Same result

Symmetric difference (elements in either set but not both)

sym_diff = a ^ b # {1, 2, 3, 6, 7, 8}

sym_diff_alt = a.symmetric_difference(b) # Same result

Subset test

is_subset = {1, 2}.issubset(a) # True

Superset test

is_superset = a.issuperset({1, 2}) # True

Disjoint test (no common elements)

are_disjoint = a.isdisjoint({10, 11, 12}) # True

Modifying Sets

Sets are mutable and can be modified:

s = {1, 2, 3}

Adding elements

s.add(4) # Now s is {1, 2, 3, 4}

s.update([4, 5, 6]) # Now s is {1, 2, 3, 4, 5, 6}

45
MATS Centre for Distance and Online Education, MATS University

Notes # Removing elements

s.remove(3) # Raises KeyError if element doesn't exist

s.discard(3) # No error if element doesn't exist

46
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: String Manipulation

2.2 String Manipulation in Python

The most popular Python uses strings as its data type. These are

identical to strings, they are immutable sequences of characters and

once after creating, their content cannot be modified. But Python has a

comprehensive set of operations and functions to allow working with

strings efficiently. In this tutorial, we will look at string manipulation

in Python that includes intro to basic to advanced concepts of string

manipulation. Python is particularly well-suited for text processing

tasks because of its strong and well-designed string handling.

Whether you are extracting information from data, creating user

experiences or working on natural language processing applications,

string manipulation is an important concept to grasp. String

manipulations are professional on The Python language itself has

built-in functions and features, and techniques modules designed to do

string operations, which allow the developer to express complex

transformations simply. Our guide will start with the very basics of

string creation and operation, only to gradually progress towards

sophisticated topics, such as regular expressions, string templating,

and performance concerns. The following sections will illustrate

practical examples to showcase the concepts.

The basics creation of strings and their primary properties

In Python, you can build A single quote in a string ('), To construct a

multi-line string, use double quotes ("), or triple quotes(''' or "").

Whether you use single or double quotes is largely a matter of

preference, but using one type will let you put the other within string

itself without escaping.

Different ways to create strings

single_quoted = 'Hello, World!'

double_quoted = "Python Programming"

triple_quoted = '''This is a

multi-line string'''

triple_double_quoted = """Another

multi-line string"""

It means strings in Python are sequences, and therefore we can obtain

elements of a string by applying slicing and indexing techniques. A

47
MATS Centre for Distance and Online Education, MATS University

Notes string’s initial character has index 0, while negative indexes begin

counting from the string's end.

text = "Python"

print(text[0]) # Output: P

print(text[1]) # Output: y

print(text[-1]) # Output: n (last character)

print(text[-2]) # Output: o (second-to-last character)

A core feature of the strings in Python is their unmutability. A string's

characters cannot be altered. once it is created. However, you may

construct fresh strings from the current ones.

text = "Python"

This will raise an error

text[0] = "J"

Instead, create a new string

new_text = "J" + text[1:]

print(new_text) # Output: Jython

However, the strings in Python 3 are unicode strings by default and

hence can depict a vast array of distinct characters from various

languages and symbol systems. This is what makes Python uniquely

appropriate for international applications.

unicode_text = " # Japanese "Hello World"

print(len(unicode_text)) # Shows the number of characters (7) not

bytes

Basic String Operations

Python has a few primitive operations on str; we can concatenate a

couple of them, repeat them and test membership.

Concatenation of Strings

 String joining is the process of joining two strings concatenation

operands and producing the resultant string. The + operator is used

for concatenation in Python.

first_name = "John"

last_name = "Doe"

full_name = first_name + " " + last_name

print(full_name) # Output: John Doe

Using the + operator is simple for concatenating a small number of

strings, but can be inefficient for joining many strings because an

48
MATS Centre for Distance and Online Education, MATS University

Notes intermediate string is created at each concatenation. To concatenate

several strings using more performant way we can use the join()

method that we explain later.

String Repetition

The * operator creates repeating a fresh string a string a

predetermined amount of times.

pattern = "=-"

line = pattern * 10

print(line) # Output: =-=-=-=-=-=-=-=-=-=-

This is especially useful for building simple patterns or pretty-

formatted output.

Membership Testing

In Python string, we can check for substring exist or not using in and

not in operators.

text = "Python programming is fun"

print("Python" in text) # Output: True

print("Java" in text) # Output: False

print("java" not in text) # Output: True

Membership test is case sensitive, hence "Python" and "python"

considered two different strings.

String Comparison

Python The normal Strings The comparison operators ==,!=,, = can be

used to compare them. This comparison is carried out in

lexicographical order by the Unicode value of the characters.

print("apple" < "banana") # Output: True

print("Python" == "python") # Output: False (case-sensitive)

print("abc" <= "abd") # Output: True

In lexicographical order, lowercase letters follow uppercase letters,

digits precedes letters.

print("Z" < "a") # Output: True

print("9" < "A") # Output: True

49
MATS Centre for Distance and Online Education, MATS University

Notes String Methods in Python

In Python, there is a large collection of integrated string manipulation

techniques. These methods enable you to modify, search, and extract

data from strings. These functions never Since strings cannot be

changed, alter the original string, so they always return new strings.

Case Conversion

Python offers several methods to convert the case of strings:

text = "Python Programming"

print(text.upper()) # Output: PYTHON PROGRAMMING

print(text.lower()) # Output: python programming

print(text.capitalize()) # Output: Python programming

print(text.title()) # Output: Python Programming

print(text.swapcase()) # Output: pYTHONpROGRAMMING

These methods are useful for standardizing text for comparison or

display purposes.

String Searching

Python provides methods to find substrings within a string:

text = "Python is awesome. Python is powerful."

print(text.count("Python")) # Output: 2

print(text.find("awesome")) # Output: 10

print(text.find("Java")) # Output: -1 (not found)

print(text.index("powerful")) # Output: 27

print(text.index("Java")) # Raises ValueError if not found

print(text.startswith("Python")) # Output: True

print(text.endswith("powerful.")) # Output: True

The find() function will return an index of -1 if the substring cannot

be located. Similar steps are taken by the index() method, which

throws a ValueError if the substring cannot be found.

String Stripping

We can use built-in functions in Python to trim leading and trailing

spaces or other characters:

text = " Python "

print(text.strip()) # Output: "Python"

print(text.lstrip()) # Output: "Python "

print(text.rstrip()) # Output: " Python"

text = "***Python***"

print(text.strip("*")) # Output: "Python"

50
MATS Centre for Distance and Online Education, MATS University

Notes Wherever, you are getting user input or data from external sources,

these methods come in handy.

String Splitting and Joining

Split: The split() method breaks Thejoin() method combines a list of

strings into a single string and divides a string into a list of substrings

based on a defined separator:

text = "Python,Java,C++,JavaScript"

languages = text.split(",")

print(languages) # Output: ['Python', 'Java', 'C++', 'JavaScript']

new_text = " - ".join(languages)

print(new_text) # Output: Python - Java - C++ - JavaScript

The split() method can also take a second argument to limit the

number of splits:

text = "Python,Java,C++,JavaScript"

languages = text.split(",", 2)

print(languages) # Output: ['Python', 'Java', 'C++,JavaScript']

There are also specialized splitting methods for specific use cases:

text = " PythonJavaC++ "

languages = text.split() # splits on whitespace

print(languages) # Output: ['Python', 'Java', 'C++']

multi_line = "Line 1\nLine 2\nLine 3"

lines = multi_line.splitlines()

print(lines) # Output: ['Line 1', 'Line 2', 'Line 3']

String Replacement

All instances of a substring are replaced with another substring using

the replace() method:

text = "Python is awesome. Python is powerful."

new_text = text.replace("Python", "Java")

print(new_text) # Output: Java is awesome. Java is powerful.

You can also limit the number of replacements:

text = "Python is awesome. Python is powerful."

new_text = text.replace("Python", "Java", 1)

print(new_text) # Output: Java is awesome. Python is powerful.

String Checking Methods

Python provides several methods to check the characteristics of

strings:

51
MATS Centre for Distance and Online Education, MATS University

Notes print("123".isdigit()) # Output: True

print("abc".isalpha()) # Output: True

print("abc123".isalnum()) # Output: True

print("PYTHON".isupper()) # Output: True

print("python".islower()) # Output: True

print("Python".istitle()) # Output: True

print(" ".isspace()) # Output: True

print("123.45".isdecimal()) # Output: False

These can be used to validate user input or before performing an

operation that requires the string corresponding to a specific format.

String Formatting

Python has very advanced string formatting functionalities. Special

blank character types in other group format for pack format:

{0:.N,2,12/5.01234567} 126 format pads a number with blanks on

the left:

name = "Alice"

age = 30

message = "My name is {} and I am {} years old.".format(name, age)

print(message) # Output: My name is Alice and I am 30 years old.

You can also use positional or keyword arguments:

message = "My name is {0} and I am {1} years old.".format(name,

age)

message = "My name is {name} and I am {age} years

old.".format(name=name, age=age)

For more complex formatting, you can specify the format of the

inserted values:

value = 3.14159

print("The value is {:.2f}".format(value)) # Output: The value is 3.14

print("The value is {:10.2f}".format(value)) # Output: The value is

3.14

F-Strings (Formatted String Literals)

Python 3.6 introduced f-strings, which provide a more concise and

readable way to format strings:

name = "Alice"

age = 30

message = f"My name is {name} and I am {age} years old."

print(message) # Output: My name is Alice and I am 30 years old.

F-strings allow you to embed expressions directly within the string:

52
MATS Centre for Distance and Online Education, MATS University

Notes x = 10

y = 20

print(f"{x} + {y} = {x + y}") # Output: 10 + 20 = 30

You can also apply formatting to the embedded expressions:

value = 3.14159

print(f"The value is {value:.2f}") # Output: The value is 3.14

Because they evaluate expressions at run time instead of parsing the

format string, f-strings are also more efficient than the older

formatting methods.

String Slicing

One of the coolest features in Python is string slicing. Generally, the

syntax for slicing is string[start:end:step], where:

• The start is the start index where the slice begins (inclusive)

• end is the index at which the slice ends (non-inclusive)

• stepthe number of characters to skip between each character in

the slice

text = "Python Programming"

print(text[0:6]) # Output: Python

print(text[7:18]) # Output: Programming

You can omit any of the parameters, and Python will use default

values:

print(text[:6]) # Output: Python (start defaults to 0)

print(text[7:]) # Output: Programming (end defaults to len(text))

print(text[:]) # Output: Python Programming (copies the entire

string)

Negative indices count from the end of the string:

print(text[-11:]) # Output: Programming

print(text[:-12]) # Output: Python

The step parameter allows you to take every nth character:

print(text[::2]) # Output: Ptorgamn (every 2nd character)

print(text[::-1]) # Output: gnimmargorPnohtyP (reverse the string)

So these are the blog posts related to string slicing, a powerful tool for

string manipulation used in different text processing task.

String Encoding and Decoding

Text in python 3 is actually Unicode by default (everything should be

Unicode (Unicode is basically a standard of characters.)) However,

when dealing with files, network protocols, or external systems, you

53
MATS Centre for Distance and Online Education, MATS University

Notes frequently have to encode strings to byte sequences or decode byte

sequences to strings.

The encode() method converts a string to a bytes object:

text = "Python Programming"

encoded = text.encode("utf-8")

print(encoded) # Output: b'Python Programming'

The decode() method converts a bytes object back to a string:

decoded = encoded.decode("utf-8")

print(decoded) # Output: Python Programming

UTF-8 is the most common encoding, but Python supports many other

encodings:

text = "Python Programming"

encoded_latin1 = text.encode("latin-1")

encoded_utf16 = text.encode("utf-16")

When working with files, you can specify the encoding when opening

the file:

with open("file.txt", "w", encoding="utf-8") as f:

f.write("Python Programming")

with open("file.txt", "r", encoding="utf-8") as f:

 content = f.read()

For example, string encoding and decoding is an important concept to

understand when dealing with international text or when performing

file I/O or network communication.

String Formatting Using % Operator

The % operator was the traditional way to format strings in Python

before the advent of the format() method and f-strings. It is somewhat

old-fashioned, but you may find it used in older code you come

across:

name = "Alice"

age = 30

message = "My name is %s and I am %d years old." % (name, age)

print(message) # Output: My name is Alice and I am 30 years old.

The % operator works with format specifiers:

• %s for strings

• %d for integers

• %f for floating-point numbers

• %x for hexadecimal integers

54
MATS Centre for Distance and Online Education, MATS University

Notes • %% for a literal '%' character

You can also include formatting options:

value = 3.14159

print("The value is %.2f" % value) # Output: The value is 3.14

For multiple replacements, you can use a tuple:

print("%s is %d years old and has $%.2f" % (name, age, 123.456))

Or a dictionary with named placeholders:

print("%(name)s is %(age)d years old" % {"name": name, "age":

age})

Even so, the % operator still works for backwards compatibility, it is

much better practice and recommended for new code to use format()

method or f-strings.

ReX for Strings: Typical Expressions A string of characters known as

a regular expression (regex, re) indicates a search pattern.

If you need more complex string manipulation, you can rely on

regular expressions by using Python's re module. Regular expressions

（regex or regexp） are the character sequence that is used to match

the character combinations in strings.

Basic Pattern Matching

The re.search () function determines whether a string contains a

pattern:

import re

text = "Python is awesome"

match = re.search(r"Python", text)

if match:

print("Pattern found!") # Output: Pattern found!

This raw string creation (the r prefix before the pattern string) is

commonly used with regular expressions, since backslashes would

normally have to be escaped.

Day 19: Pattern Matching With Special Characters

Regular expressions contain special symbols that denote character

classes, repetitions, etc:

import re

Match any digit

match = re.search(r"\d+", "The price is $25.99")

print(match.group()) # Output: 25

55
MATS Centre for Distance and Online Education, MATS University

Notes # Match word characters

match = re.search(r"\w+", "Hello, World!")

print(match.group())

Introduction to NumPy: Arrays, Operations, Indexing & Slicing

NumPy One of the simplest Python packages is (Numerical Python

for scientific computing. It is designed for extremely efficient

implementation of arrays with several dimensions and a vast array of

mathematical operations. From manipulating large datasets to running

modeling algorithms, bioinformatics simulations and scientific

simulations, NumPy provides the basic building blocks for numerical

computational tasks.

We will cover everything from basic array structure to advanced

operations, manipulation techniques, and optimizing performance

with this comprehensive guide on NumPy. Following your reading of

this lesson, you will have a solid grasp of using NumPy.

NumPy Fundamentals

What is NumPy?

The NumPy, or Numerical Python, is an open-source Python library,

supports massive, multidimensional arrays and matrices and offers a

number of mathematical methods for efficiently working with big

arrays. The Arrays part of NumPy build upon and serve as a

successor to the older Numeric library, but NumPy has since become

the fundation for scientific computing in python.

Fig: 4.1 Uses of NumPy

[Source: https://decodingdatascience.com]

https://decodingdatascience.com/

56
MATS Centre for Distance and Online Education, MATS University

Notes The ndarray (n-dimensional array) object, a homogenous fixed-size

multi-dimensional container of identically sized and typed items, is

the fundamental component of NumPy. The internal structure of these

data types allows for operations to be vectorized which means that

rather than looping through every element one at a time, you can

instead perform a mathematical operation over the entire array at

once, in a way that is fast and compact.

import numpy as np

Creating a simple NumPy array

arr = np.array([1, 2, 3, 4, 5])

print(arr) # Output: [1 2 3 4 5]

print(type(arr)) # Output: <class 'numpy.ndarray'>

Why NumPy?

You may be thinking, why is NumPy used instead of regular Python

lists for numerical computations? Below are some reasons to

consider:

1. Performance: The NumPy arrays are kept in memory in a

single, continuous location, therefore they can perform

mathematical operations faster than the lists. Python lists are,

however, they objects that store references to other objects,

which brings with it extra overhead.

2. Vectorization: NumPy allows element-wise array operations

that do not require explicit loops. Vectorization not only

makes so much more concise code but makes it much more

efficient!

3. Broadcasting: NumPy can handle arrays of differing shapes,

or dimensions, via a method called broadcasting, which

smartly broadcasts these differences.

4. Data Efficiency: NumPy arrays use less memory as compared

to a Python List.

5. Rich Functionality: NumPy includes a full arsenal ofFourier

transforms, random numbers, mathematical functions, and

linear algebra procedures functions and so on.

57
MATS Centre for Distance and Online Education, MATS University

Notes 2.3 Introduction to NumPy: Arrays, Operations, Indexing &

Slicing

import numpy as np

import time

Python list

python_list = list(range(1000000))

start_time = time.time()

result_list = [x ** 2 for x in python_list]

list_time = time.time() - start_time

NumPy array

numpy_array = np.array(python_list)

start_time = time.time()

result_array = numpy_array ** 2

numpy_time = time.time() - start_time

print(f"Python list time: {list_time:.6f} seconds")

print(f"NumPy array time: {numpy_time:.6f} seconds")

print(f"NumPy is {list_time / numpy_time:.1f}x faster")

You should see that for this operation, NumPy is orders of magnitude

faster—commonly ranging from 10-100x faster depending on the

operation and hardware.

Installation and Setup

To get started with Let's first confirm that NumPy is operational:

 # Use pip to install NumPy.

pip install numpy

Or using conda (if you use Anaconda or Miniconda)

conda install numpy

Once installed NumPy should be able to be imported into your Python

program scripts as follows:

import numpy as np

It is customary in NumPy to import it as np, so the code is more

readable and concise.

To check your NumPy version:

import numpy as np

58
MATS Centre for Distance and Online Education, MATS University

Notes print(np.__version__)

NumPy Arrays

Creating Arrays

NumPy offers a number of techniques for building arrays: from

Python lists, number sequences, or particular patterns:

1. From Python lists or tuples:

1D array

arr1d = np.array([1, 2, 3, 4, 5])

print(arr1d) # Output: [1 2 3 4 5]

2D array (matrix)

arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(arr2d)

Output:

[[1 2 3]

[4 5 6]

[7 8 9]]

3D array

arr3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

print(arr3d)

Output:

[[[1 2]

[3 4]]

[[5 6]

[7 8]]]

2. Common initialization functions:

Create array filled with zeros

zeros = np.zeros((3, 4))

print(zeros)

Output:

[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[0. 0. 0. 0.]]

Create array filled with ones

ones = np.ones((2, 3, 4))

print(ones.shape) # Output: (2, 3, 4)

59
MATS Centre for Distance and Online Education, MATS University

Notes

Create array filled with a specific value

full = np.full((2, 2), 7)

print(full)

Output:

[[7 7]

[7 7]]

Create identity matrix

identity = np.eye(3)

print(identity)

Output:

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]]

Create array with random values

random = np.random.random((2, 3))

print(random)

Output (example):

[[0.82467143 0.29886036 0.72284124]

[0.60644734 0.06400407 0.19203554]]

3. Sequences and ranges:

Create evenly spaced values within a range

arange = np.arange(0, 10, 2) # start, stop, step

print(arange) # Output: [0 2 4 6 8]

Create evenly spaced values by specifying number of samples

linspace = np.linspace(0, 1, 5) # start, stop, num

print(linspace) # Output: [0. 0.25 0.5 0.75 1.]

Create array with logarithmically spaced values

logspace = np.logspace(0, 2, 5) # start, stop (in powers of 10), num

print(logspace) # Output: [1. 3.16227766 10.

31.6227766 100.]

4. From existing arrays:

Create a copy of an array

original = np.array([1, 2, 3])

60
MATS Centre for Distance and Online Education, MATS University

Notes copy = np.copy(original)

copy[0] = 99 # This won't affect the original array

print(original) # Output: [1 2 3]

print(copy) # Output: [99 2 3]

Create view of an array with the same data

view = original.view()

view[1] = 88 # This will affect the original array

print(original) # Output: [1 88 3]

print(view) # Output: [1 88 3]

Create an array with the same shape but different content

like = np.zeros_like(original)

print(like) # Output: [0 0 0]

Array Attributes

But there are some attributes of NumPy arrays that give you

information about their structure and content:

arr = np.array([[1, 2, 3], [4, 5, 6]])

Shape: dimensions of the array

print(arr.shape) # Output: (2, 3)

Size: total number of elements

print(arr.size) # Output: 6

Dimension: number of axes (ndim)

print(arr.ndim) # Output: 2

Data type

print(arr.dtype) # Output: int64

Item size in bytes

print(arr.itemsize) # Output: 8 (for int64)

Total memory used in bytes

print(arr.nbytes) # Output: 48 (6 elements * 8 bytes)

Strides: the number of bytes to move through each dimension when

61
MATS Centre for Distance and Online Education, MATS University

Notes print(arr.strides) # Output: (24, 8) - for a 2x3 array of int64

Familiarity with these properties can help ensure efficient memory

allocation and access to large arrays down the line.

Array Types

NumPy gives you domain-specific abilities making it effective for big

array operations:

Integer types

int_arr = np.array([1, 2, 3], dtype=np.int32)

print(int_arr.dtype) # Output: int32

Float types

float_arr = np.array([1.0, 2.0, 3.0], dtype=np.float64)

print(float_arr.dtype) # Output: float64

Complex types

complex_arr = np.array([1+2j, 3+4j], dtype=np.complex128)

print(complex_arr.dtype) # Output: complex128

Boolean type

bool_arr = np.array([True, False, True], dtype=np.bool_)

print(bool_arr.dtype) # Output: bool

String types

str_arr = np.array(['apple', 'banana', 'cherry'], dtype='<U10')

print(str_arr.dtype) # Output: <U10 (Unicode string of max length

10)

You can also convert arrays from one type to another:

Converting array type

float_arr = np.array([1.1, 2.2, 3.3])

int_arr = float_arr.astype(np.int32)

print(float_arr) # Output: [1.1 2.2 3.3]

print(int_arr) # Output: [1 2 3]

It is crucial from memory efficiency and computational accuracy

perspective to decide the right data type to be used. If the data being

represented can be safely represented as a smaller type, such as int16

instead of int64, which saves 75% of memory in each of those fields.

Memory Layout

The reason for this is that NumPy arrays are kept in contiguous

memory blocks which gives NumPy a performance edge. First, we

have 2 major memory layouts:

62
MATS Centre for Distance and Online Education, MATS University

Notes 1. C-continous(row-major): Row elements are together in

memory. This is turned on by default for NumPy arrays

(created with functions such as np. array().

2. Fortran-contiguous (column-major): Columns are co-

located in memory.

Creating arrays with specific memory layouts

c_array = np.array([[1, 2, 3], [4, 5, 6]], order='C') # C-contiguous

f_array = np.array([[1, 2, 3], [4, 5, 6]], order='F') # Fortran-

contiguous

print(c_array.flags['C_CONTIGUOUS']) # Output: True

print(c_array.flags['F_CONTIGUOUS']) # Output: False

print(f_array.flags['C_CONTIGUOUS']) # Output: False

print(f_array.flags['F_CONTIGUOUS']) # Output: True

The memory layout can significantly impact performance for certain

operations, especially when working with large arrays and accessing

elements along specific axes.

Array Operations

Operations in Arithmetic

Arrays may perform element-wise arithmetic operations on

corresponding elements thanks to NumPy:

Element-wise operations

a = np.array([1, 2, 3])

b = np.array([4, 5, 6])

Supplement

print(a + b) # Output: [5 7 9]

print(np.add(a, b)) # Same as above

Deduction

print(a - b) # Output: [-3 -3 -3]

print(np.subtract(a, b)) # Same as above

Multiplication

print(a * b) # Output: [4 10 18]

print(np.multiply(a, b)) # Same as above

Division

print(a / b) # Output: [0.25 0.4 0.5]

print(np.divide(a, b)) # Same as above

Power

63
MATS Centre for Distance and Online Education, MATS University

Notes print(a ** 2) # Output: [1 4 9]

print(np.power(a, 2)) # Same as above

Modulus

print

2.4 Introduction to Pandas: Series, DataFrames, Basic Operations

Its one of the important libraries in Python especially to manipulate

and analyze data. It contains rich data structures that make easy to

process structured data, and this feature makes it one of the most

widely used tools by data scientists and analysts. Pandas mainly

provides only two data structures, Series and DataFrames. These

structures allow the user to make handling big datasets, statistical

analysis and preprocessing for data exploration. Pandas is an

indispensable library for dealing with real-world datasets, whether

they come from financial records or scientific research data, due to its

simplicity and flexibility. Pandas is really built on the idea of working

with labeled and relational data intuitively. Pandas sits built on top of

NumPy and being part of the ecosystem of scientific computing

libraries it integrates easily with them. It lets users import, clean,

analyze, and visualize data with little effort. Pandas has changed the

way in which we handle data in Python through its functionalities

which allow users to easily manipulate tabular data. This Module will

teach you the basics of pandas structures Series and DataFrames; you

will perform basic operations to discover how these structures make

it easy to manipulate data.

Fig: 4.2 Series and Dataframes

[Source: https://miro.medium.com/]

https://miro.medium.com/

64
MATS Centre for Distance and Online Education, MATS University

Notes Comprehending the Pandas Series

A one-dimensional array called a Pandas A series can store data of

several kinds, including texts, floats, integers, and even complex

object types. A Series is labeled, in contrast to a standard NumPy

array, which means each element has an associated index. This allows

the data to be labeled which allows them to be retrieved only when

needed and also modified. This feature of using positional as well as

labelled indexing to access data makes Series a very robust tool to

deal with one-dimensional data.

So we utilize the pd to generate a sequence. The Library Series of

Pandas () function. For example, consider the following statement:

import pandas as pd

data = [10, 20, 30, 40]

series = pd.Series(data)

print(series)

First we create a simple Series with int values. You may notice that

each element is given an index starting from zero by default in

Pandas. But you can also use custom indexing, letting users assign

meaningful labels.

index_labels = ['A', 'B', 'C', 'D']

custom_series = pd.Series(data, index=index_labels)

print(custom_series)

This enables effective data modification and retrieval. A Series

supports operations such as slicing, filtering, and mathematical

computations directly on it. For example, using indexes to access

elements:

print(custom_series['B'])

print(custom_series[1])

Both of those return the second element showing that Pandas access

in both label and positional.

DataFrames in Pandas

Whereas a Series is a single column of data, A data structure that

resembles a two-dimensional table and has labeled rows and columns

is known as a dataframe). The most frequently used Pandas data

structures are DataFrames for real-time data processing. Similar to

SQL tables or spreadsheets, data frames enable users to keep, work

65
MATS Centre for Distance and Online Education, MATS University

Notes with, and evaluate data. Several sources, like a dictionary, list, CSV

file, etc., can be used to construct a DataFrame. Think about creating a

DataFrame with a dictionary:

data_dict = {

 'Name': ['Alice', 'Bob', 'Charlie', 'David'],

 'Age': [25, 30, 35, 40],

 'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']

}

df = pd.DataFrame(data_dict)

print(df)

Our DataFrame has three columns: Name, Age, and City. The

structure makes it possible to manipulate the data efficiently, where

each column is a Pandas Series. It is also easy to access individual

columns or rows:

Accessing a column print(df['Name'])

print(df. loc[1]) # Row access by label-based indexing

print(df. iloc[2]) # Get one row via position-based indexing

A panda has a lot of methods to investigate and summarize the

information in DataFrames. We can then Point out the first and end

lines using the head() and tail() functions, giving a quick overview of

the dataset:

print(df.head(2))

print(df.tail(2))

Pandas provide the info() and describe() methods to gain insight into

the dataset structure, as well as its statistical properties:

print(df.info())

print(df.describe())

These functions are useful to examine the datatypes, missing values,

and summary statistics of the data, which are important steps to data

preprocessing.

Basic Operations in Pandas

It is easy to select, filter, group, and apply functions to datasets with

the Pandas method. Operations can be also performed on Series and

66
MATS Centre for Distance and Online Education, MATS University

Notes DataFrames, enabling faster data analysis. Basic mathematical

operations on Series:

numbers = pd.Series([5, 10, 15, 20])

print(numbers + 5) # Adding a scalar to each element

print(numbers * 2) # Multiplying each element

DataFrames support similar operations, vectorized arithmetic. In this

exercise, we are going to modify a single DataFrame:

df['Age'] = df['Age'] + 5

print(df)

Pandas filtering data is one of the important operations. For example,

the following selects the rows for which Age > 30:

filtered_df = df[df.Age

print(filtered_df)

I think grouping and aggregating is an excellent method for drawing

conclusions from your information. With the groupby() function's

assistance, we able to analyze our data. For example: I use groupby

function to group my data on the basis of City column:

grouped = df. groupby('City')['Age']. mean()

print(grouped)

For better organization, DataFrames can be sorted. The sort_values()

method sorts data based on specific conditions:

sort_values(by='Age', ascending=False) = df. sorted_df)

print(sorted_df)

Handling Missing Data

There are often missing values in real-world data. There are tools in

pandas to deal with this sort of thing. Based on the above code, we

67
MATS Centre for Distance and Online Education, MATS University

Notes can see that the isna() function is to detect the fillna()is employed to

substitute the appropriate values for the missing ones:

df.loc[2, 'Age'] = None # Introducing a missing value

print(df.isna())

df['Age'].fillna(df['Age'].mean(), inplace=True) # Filling missing

values with mean

print(df)

Dropping missing values is another approach, using the dropna()

function:

clean_df = df.dropna()

print(clean_df)

To ease the manipulation of the data, Pandas provides some good

abstraction of data like Series and DataFrames. It is widely adopted

to facilitate data processing with flexible indexing, arithmetic

operations, filtering, grouping, and missing value handling. With

Pandas, you will have a handle on discovering and filtering data for

processing in future machine learning and statistical modelling. The

friendliest of user functions with the highest of performances, Pandas

is also among the most popular Python libraries due to data-driven

applications that require this library.

Data Visualization with Matplotlib

Visual analytics is a basis of data analysis and interpretation. It serves

the purpose of conveying the research, analysis, and insights more

powerfully through visualized formats. Matplotlib is one such popular

library for Python data visualization. A Python package called

Matplotlib is used for scientific plotting, in this Module we will

discuss the key to Matplotlib(popup library); like the creation of line

plots, bar charts, and scatter plots. Different types of visualization

contextualize different use cases and perspectives on the underlying

data.

Overview of Matplotlib

 Matplotlib is a comprehensive set of charting tools for Python to

produce both static and animated displays. It offers a MATLAB-like

interface through the pyplot module that makes and plot graphs

easier. Matplotlib has a simple workflow, such a importing the library-

>Data preparation->Graph plotting->Title labels customization. Let's

begin with the fundamentals of installing and importing Matplotlib,

before getting into the different types of plots.

68
MATS Centre for Distance and Online Education, MATS University

Notes Installing matplotlib # using pip matplotlib

pip install matplotlib

After you install, start plotting:

import matplotlib. pyplot as plt

import numpy as np

Matplotlib is a Python toolkit for graphical charting and data

visualization. Now, let us go through each of these visualization

techniques in detail.

Line Plots

Among the most basic and widely utilized plot kinds in data

visualization is a line plot. There are helpful for presenting trends with

time, how variables are correlated and the way data is distributed.

Creating a Simple Line Plot

Matplotlib.pyplot is imported as plt.

import numpy as np

Generating data

t = np.linspace(0, 10, 100)

y = np.sin(t)

Creating the plot

plt.plot(t, y, label='Sine Wave', color='blue', linestyle='-', linewidth=2)

Adding labels and title

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.title('Simple Line Plot')

plt.legend()

plt.grid()

Display the plot

plt.show()

Example: Plot a sin wave using NumPy and plot() function to plot it.

X label function, Y label function and title function in Matplotlib

adds appropriate labels and title to the plot. We utilize the legend in

order to include it() function, and for making it more readable, we use

grid().

69
MATS Centre for Distance and Online Education, MATS University

Notes Multiple Line Plots in One Graph

Matplotlib.pyplot is imported as plt.

import numpy as np

Generating data

t = np.linspace(0, 10, 100)

y1 = np.sin(t)

y2 = np.cos(t)

Creating the plot

plt.plot(t, y1, label='Sine Wave', color='blue')

plt.plot(t, y2, label='Cosine Wave', color='red')

Adding labels and title

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.title('Multiple Line Plots')

plt.legend()

plt.grid()

Display the plot

plt.show()

This is how we can plot multiple lines in one chart and compare

different data series.

Bar Charts

There are several different types of charts, including bar charts in

which rectangular bars show the sizes of different values. They are

good for comparing amounts among categories.

70
MATS Centre for Distance and Online Education, MATS University

Notes Creating a Simple Bar Chart

Matplotlib.pyplot is imported as plt.

Data

categories = ['A', 'B', 'C', 'D', 'E']

values = [10, 15, 7, 20, 13]

Creating the bar chart

plt.bar(categories, values, color='green')

Adding labels and title

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Simple Bar Chart')

plt.grid(axis='y')

Display the plot

plt.show()

A bar chart is made using the bar() function. Horizontal grid lines are

added using the grid(axis='y') method for improved readability.

Horizontal Bar Chart

Matplotlib.pyplot is imported as plt.

Data

categories = ['A', 'B', 'C', 'D', 'E']

values = [10, 15, 7, 20, 13]

Creating the horizontal bar chart

plt.barh(categories, values, color='purple')

Adding labels and title

plt.xlabel('Values')

plt.ylabel('Categories')

plt.title('Horizontal Bar Chart')

plt.grid(axis='x')

Display the plot

plt.show()

For long category names or cases where you want to visualize them

horizontally, a horizontal bar chart is useful.

71
MATS Centre for Distance and Online Education, MATS University

Notes Plots of scatter

They are employed to show how two numerical variables relate to one

another. Each point corresponds to an observation in a data set.

Creating a Simple Scatter Plot

Matplotlib.pyplot is imported as plt.

import numpy as np

Generating random data

x = np.random.rand(50)

y = np.random.rand(50)

Creating the scatter plot

plt.scatter(x, y, color='red', marker='o')

Adding labels and title

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Simple Scatter Plot')

plt.grid()

Display the plot

plt.show()

Scatter plots are ideal for identifying relationships, clusters, and

outliers in a dataset.

Scatter Plot with Color Mapping

import matplotlib.pyplot as plt

import numpy as np

Generating random data

x = np.random.rand(100)

y = np.random.rand(100)

colors = np.random.rand(100)

sizes = np.random.rand(100) * 500

Creating the scatter plot

plt.scatter(x, y, c=colors, s=sizes, alpha=0.5, cmap='viridis')

plt.colorbar(label='Color Intensity')

72
MATS Centre for Distance and Online Education, MATS University

Notes # Adding labels and title

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Scatter Plot with Color Mapping')

plt.grid()

Display the plot

plt.show()

In this example, the points' color and size are dynamic assignments,

facilitating the visualization of more dimensions of data.

Data visualization in Python usually calls for Matplotlib, which

provides various forms of Plots. In this Module, we introduced three

of the most basic Line graphs, bar charts, and scatter plots are

examples of plot types. With each visualization method you can get

some unique insights into the data which can help you make better

decisions. Working with the full power of Matplotlib you can build

publications quality informative graphs to improve your data analysis

workflow.

2.5 Matplotlib: Data Visualization Basics (Line Plot, Bar Chart,

Scatter Plot)

You are opened on information visualization, an incredibly important

section of knowledge analysis and interpretation. It enables

researchers, analysts, and data scientists to share their ideas in an

intuitive way by employing graphical representations.One Matplotlib

is one of the most widely used Python tools for data visualization,

which provides you with flexibility, ease of use, and a lot of features.

Because of just Matplotlib, we are able to show static, animated as

well as interactive plots. Matplotlib is introduced in this Module,

along with demonstrates how to generate line charts, bar graphs, and

scatter plots. There are multiple types of different visualization tools

that have their individual practice and allow you to understand data

from different angles.

Introduction to Matplotlib

Matplotlib is a charting tool for NumPy, a Python computer language

extension for numerical mathematics. It provides a MATLAB-like

interface through the pyplot module which makes it easy to plot a

graph. A simple end-to-end workflow of the Matplotlib library would

be importing the library, generating the data, plotting the graph, and

73
MATS Centre for Distance and Online Education, MATS University

Notes finally modifying it as per our requirements. So before exploring

specific types of plots, let’s install and import Matplotlib.

The command below can be used to install Matplotlib:

Pip installs matplotlib Now that you have installed this library, import

it and plot:

Import pyplot as plt from matplotlib.

Import numpy as np Matplotlib is a Python package, and NumPy, its

numerical extension, is used for mathematical operations such as

plotting in the language. Overview of visualization techniques in

machine learning.

Line Plots

One of the most popular and straightforward plot types for data is the

line plot visualization. It is helpful for displaying trends over time,

relationships between variables, and overall distributions in data.

Creating a Simple Line Plot

Matplotlib.pyplot is imported as plt.

import numpy as np

Generating data

t = np.linspace(0, 10, 100)

y = np.sin(t)

Creating the plot

plt.plot(t, y, label='Sine Wave', color='blue', linestyle='-', linewidth=2)

Adding labels and title

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.title('Simple Line Plot')

plt.legend()

plt.grid()

Display the plot

plt.show()

For instance, we can use NumPy to generate a sine wave and graph it

using the plot() method. Also move the adequat x and y labels with

xlabel(), ylabel() and add a title with title(). Adding to those plots, the

74
MATS Centre for Distance and Online Education, MATS University

Notes legend() function adds a legend and grid() makes it a lot easier to

read.

Multiple Line Plots in One Graph

Matplotlib.pyplot is imported as plt.

import numpy as np

Generating data

t = np.linspace(0, 10, 100)

y1 = np.sin(t)

y2 = np.cos(t)

Creating the plot

plt.plot(t, y1, label='Sine Wave', color='blue')

plt.plot(t, y2, label='Cosine Wave', color='red')

Adding labels and title

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.title('Multiple Line Plots')

plt.legend()

plt.grid()

Display the plot

plt.show()

This is an example of how to plot multiple lines on the same graph to

make comparisons between different data series easier.

Bar Charts

The BAR chart is a common kind of visualization in which

rectangular bars with varying heights or lengths are used to depict

categorical data. They are used to compare quantities for different

categories.

Creating a Simple Bar Chart

Matplotlib.pyplot is imported as plt.

Data

categories = ['A', 'B', 'C', 'D', 'E']

values = [10, 15, 7, 20, 13]

75
MATS Centre for Distance and Online Education, MATS University

Notes # Creating the bar chart

plt.bar(categories, values, color='green')

Adding labels and title

plt.xlabel('Categories')

plt.ylabel('Values')

plt.title('Simple Bar Chart')

plt.grid(axis='y')

Display the plot

plt.show()

A bar chart is plotted using the bar() technique. The y axis in this

instance is situated at the origin due to the parameter axis='y', in

addition to horizontal grid lines for better readability using the grid()

function.

Horizontal Bar Chart

Matplotlib.pyplot is imported as plt.

Data

categories = ['A', 'B', 'C', 'D', 'E']

values = [10, 15, 7, 20, 13]

Creating the horizontal bar chart

plt.barh(categories, values, color='purple')

Adding labels and title

plt.xlabel('Values')

plt.ylabel('Categories')

plt.title('Horizontal Bar Chart')

plt.grid(axis='x')

Display the plot

plt.show()

A horizontal bar chart is useful when the names of the categories are

long or horizontal visualisation is preferred.

Scatter Plots

Scatter plot (or scatter diagram) used for plotting the relationship

between tow numerical variable. Every point represents an

observation in your data set.

76
MATS Centre for Distance and Online Education, MATS University

Notes Creating a Simple Scatter Plot

Matplotlib.pyplot is imported as plt.

import numpy as np

Generating random data

x = np.random.rand(50)

y = np.random.rand(50)

Creating the scatter plot

plt.scatter(x, y, color='red', marker='o')

Adding labels and title

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Simple Scatter Plot')

plt.grid()

Display the plot

plt.show()

Scatter plots are ideal for identifying relationships, clusters, and

outliers in a dataset.

Scatter Plot with Color Mapping

import matplotlib.pyplot as plt

import numpy as np

Generating random data

x = np.random.rand(100)

y = np.random.rand(100)

colors = np.random.rand(100)

sizes = np.random.rand(100) * 500

Creating the scatter plot

plt.scatter(x, y, c=colors, s=sizes, alpha=0.5, cmap='viridis')

plt.colorbar(label='Color Intensity')

Adding labels and title

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

77
MATS Centre for Distance and Online Education, MATS University

Notes plt.title('Scatter Plot with Color Mapping')

plt.grid()

Display the plot

plt.show()

In this example, point colors and sizes are adjusted dynamically

allowing for additional data dimension displays.

Additional Examples

(30 more programming examples would be added here on, using

advanced line plots, stacked bar charts, 3D scatter plots, histogram,

box plot, violin plot, pie chart visualizations, etc).

In this Module we learned about three of the building blocks of plots;

line plot, bar chart and scatter plot There are many ways that data can

be presented visually, and each method offers its own insights and

allows for different decisions to be made, depending on the

information presented. With Matplotib training, you can utilize its

features to generate professional insightful graphs and elevate your

data analysis workflow.

MCQs:

1. Which data structure is unordered and does not allow

duplicate values?

a) List

b) Tuple

c) Set

d) Dictionary

2. Which of the following functions is used to add an element

to a list in Python?

a) add()

b) insert()

c) append()

d) extend()

3. Which method is used to convert a string to lowercase in

Python?

a) lowercase()

b) tolower()

c) lower()

d) casefold()

78
MATS Centre for Distance and Online Education, MATS University

Notes 4. Which Python library is primarily used for numerical

computations?

a) Pandas

b) NumPy

c) Matplotlib

d) Seaborn

5. What is the output of the following NumPy operation?

np.array([1, 2, 3]) + np.array([4, 5, 6])

a) [1, 2, 3, 4, 5, 6]

b) [5, 7, 9]

c) Error

d) [4, 5, 6, 1, 2, 3]

6. Which function is used to create a Pandas DataFrame?

a) pd.DataFrame()

b) pd.create_df()

c) pd.Data()

d) pd.createDataFrame()

7. What does df.head(3) do in Pandas?

a) Shows the last 3 rows

b) Shows the first 3 rows

c) Deletes 3 rows

d) Displays column names

8. Which of the following is NOT a type of plot in Matplotlib?

a) Line Plot

b) Bar Chart

c) DataFrame Plot

d) Scatter Plot

9. Which function is used to create a scatter plot in

Matplotlib?

a) plt.scatter()

b) plt.plot()

c) plt.bar()

d) plt.hist()

10. What will len({1, 2, 2, 3, 4}) return?

a) 4

b) 5

c) 3

d) Error

79
MATS Centre for Distance and Online Education, MATS University

Notes Short Questions:

1. What is the difference between Lists, Tuples, Sets, and

Dictionaries?

2. How do you add, remove, and modify elements in a Python

list?

3. Explain different string manipulation techniques in Python.

4. What is NumPy, and why is it used in Python?

5. How do you perform indexing and slicing in NumPy arrays?

6. What are Pandas Series and DataFrames? How are they

different?

7. How do you read and write CSV files using Pandas?

8. What is the role of Matplotlib in Python?

9. How can you create a line plot and bar chart using Matplotlib?

10. Write a Python program to create a scatter plot using

Matplotlib.

Long Questions:

1. Explain the differences between Lists, Tuples, Sets, and

Dictionaries with examples.

2. Write a Python program to perform basic string operations like

slicing, formatting, and case conversion.

3. Discuss NumPy arrays, their operations, and indexing with

examples.

4. Write a Python program to create and manipulate Pandas Data

Frames.

5. Explain data visualization using Matplotlib with different plot

types.

6. How does NumPy improve performance over Python lists?

Provide examples.

7. Write a Python program to perform arithmetic operations on

NumPy arrays.

8. Explain basic Pandas operations such as filtering, sorting, and

grouping.

9. Write a Python program to visualize data using line and bar

charts in Matplotlib.

10. Discuss the importance of data handling and visualization in

Python with real-world applications.

80

Module 3

DATABASE AND GUI

3.0 LEARNING OUTCOMES

• Understand how to connect Python with databases (MySQL,

SQLite).

• Learn about CRUD operations (Create, Read, Update, Delete)

using Python and databases.

• Explore Tkinter for GUI development in Python.

• Learn about basic Tkinter widgets such as Button, Label,

Entry, Frame, and Menu.

• Understand the concept of event handling in GUI applications.

81
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: MySQL with Python

3.1 Introduction to MySQL and SQLite

MySQL vs. SQLite are two of the most used database management

systems in software development. With both using SQL language for

working with databases, they are both having their own use cases and

strength areas. MySQL is a powerful client-server relational database

system used in many web applications and enterprise solutions where

data integrity, performance, and concurrent access are critical. Unlike

SQLite, which is an embedded, file-based database engine with little

overhead and no separate server process.An introduction/overview of

both systems, comparison of their architectures, pros and cons, best-

use-cases are discussed. Having an awareness of the key differences

between MySQL and SQLite, developers will possess the ability to

select the appropriate database technology for their needs. During this

journey, we will present a range of practical demonstrations of

standard operations and techniques that illustrate the capabilities of

our different systems.

Fig: 5.1 MySQL and SQLite

[Source: https://pythontic.com/]

https://pythontic.com/

82
MATS Centre for Distance and Online Education, MATS University

Notes What You Should Know About Relational Databases

Basically, Both MySQL and SQLite are relational database

management systems (RDBMS) which saving tables with rows and

columns that contain the data. Edgar F. Codd first presented the

relational model in 1970, and it continues to network most database

system utilized today. This is done such that data can be organized to

minimize data redundancy and optimize data integrity as well as

query capabilities.Relational databases use tables to represent

columns to specify properties of those entities (such as name, price),

and entities (such as users, products, and orders., date), and rows to

store actual data instances. The relationships between tables are

defined by keys, typically foreign keys that point to primary keys in

other tables. This structure allows for the powerful join operations

and complex queries that make relational databases so

flexible.MySQL and SQLite are both implementations of The

standard language for querying relational databases is called SQL

(Structured Query Language). Data Definition Language (DDL), Data

Manipulation Language (DML), and Data Control Language (DCL)

are used to create database structures, modify data, and control access.

Are all possible with SQL commands Note that though both databases

are based on core SQL syntax, it does, of course, have unique

extensions and limitations to each database having its own dialect.

MySQL: the enterprise-grade solution

MySQL® was founded in the mid-90s by MySQL AB in, which went

on to be acquired by Sun Microsystems, which Oracle Corporation

later purchased. These days, it is among the the most widely used

open-source database worldwide systems, especially for web

applications. MySQL is another crucial component of the the acronym

LAMP stands for PHP/Python/Perl, Apache, MySQL, and Linux. Has

been instrumental in the rise of dynamic websites and content

management systems.

Design Philosophy and Architecture

MySQL uses a client-server architecture where a central MySQL

server process manages database files, and client requests. This

architecture makes it possible for several applications and users to

access the database at a time. The server-side is the MySQL daemon

(mysqld) that manage connections, authentication, query processing

and transaction. MySQL's design philosophy prioritizes reliability,

83
MATS Centre for Distance and Online Education, MATS University

Notes performance, and feature richness. It supports different storage

engines with different capabilities so that developers can pick them to

meet their requirements. Here are the most popular Storage Engines:

1. InnoDB: The default engine since full ACID is supported by

MySQL 5.5 compliance, transaction support, and foreign key

constraints.

2. MyISAM: An old engine with read-heavy optimization but

no transaction support.

3. Memory: All data is kept in memory access very quickly

(non-persistent) but data will be lost on restart.

4. Archive: extremely fast Inserts, compressed storage.

This pluggable storage engine architecture is one of MySQL's

distinguishing features, offering flexibility that few other database

systems can match.

Key Features of MySQL

MySQL has an extensive feature set that is ideal for enterprise

applications:

Data organization is the process of data storage arrangement into

structured for high performance storage using InnoDB MySQL which

is completely compliant with ACID (Atomicity, Consistency,

Isolation, Durability) and enables transactional capabilities including

atomicity, meaning that all interactions with a MySQL instance are

completed successfully or not at all.

• Replication and High Availability: MySQL has several

replication configurations master-slave/mater-master, for

example that provides load balancing, redundancy, and high

availability.

• Security: MySQL uses a privilege-based security model that

provides fine-grained access control.

• Scalability: Supports databases with several million records

and thousands of concurrent connections; MySQL can scale

vertically with more powerful hardware or horizontal by

partitioning.

• Strong Tools: MySQL has lots of tools in its ecosystem for

administration (MySQL Workbench), performance monitoring,

backup and recovery, and database design.

84
MATS Centre for Distance and Online Education, MATS University

Notes • Security: MySQL features built-in data encryption, secure

client-server connections, and extensive user and role

management capabilities to ensure data safety.

Use Cases for MySQL

MySQL is best for scenarios where you need:

1. Web Applications include social media, e-commerce

platforms, and content management systems like WordPress.

Applications of media.

2. Enterprise Applications: CRM systems, ERP solutions, data

warehousing.

3. Hot Services: The online services which support many

concurrent connections and transactions.

4. Distributed Systems for applications needing to replicate data,

cluster, or shard the data.

5. Mission Critical Systems Where data integrity, backup and

recovery capabilities are the most important.

SQLite: The Embedded Database

SQLite’s original author D. Richard Hipp has a radically different

vision of a database management system in a world dominated by

SQL since its original release in 2000. SQLite is not an engine for

client-server databases. that runs on its own, but rather a self-

contained, serverless database engine that directly reads and writes to

standard disk files. It is saved in a single cross platform disk file

which contains the complete database that includes multiple tables,

indices, triggers and views.

Architecture and Design Philosophy

SQLite has a design that prioritizes simplicity, reliability, and

portability. There is no dedicated server process, no configuration

files, or access control like there is in File-based MySQL. It is

implemented as a small C library that can be embedded in

applications. Databases created with prior versions can be read with

last versions as the format of database files is stable, cross platform

and backward compatible.

The design philosophy of SQLite focuses on:

1. No Configuration: No configuration or management required.

2. Self-Contained: Everything in a tiny C library.

3. No client-server architecture; applications directly access the

database file.

85
MATS Centre for Distance and Online Education, MATS University

Notes 4. It is transactional, meaning full ACID compliance, perhaps

despite its simplicity.

5. Reliability: All permissions and data are stored on disk.

Key Features of SQLite

For a lightweight database, SQLite packs a punch when it comes to its

features:

Slim and Small: Less than 600KB for the whole library with all

features perfect for resource-limited environmentsNo Set Up

Required: Because SQLite is serverless, it doesn't require installation,

setup, or administration. Machine-Agnostic File Format: Database

files on one machine are easily copied to another of a different

architecture and accessed.Dynamic Typing: Most SQL databases use

static typing for tables, but SQLite uses dynamic typing.

Remembering a value's datatype is crucial is tied to the value and not

the column where it is stored.ACID Compliance: SQLite follows the

atomic transactions principle so that data does not get corrupted even

if the program crashes or your computer loses power.Rich SQL

Implementation: Implements a large chunk of the SQL-92 standard,

and supports complex queries, joins, views, and triggers. Support for

Multiple Languages: Almost every language under the sun including

C/C++, Python, JavaScript, Java, C#, and a bunch more.

Applications of SQLite

SQLite is most suited to:

1. Embedded systems: IoT (internet of things) devices,

appliances and other embedded systems.

2. Mobile Apps: iOS and Android applications that require local

storage.

3. Desktop Applications: Development Tools, Local Data

Storing, Configuration Storing.

4. Prototyping and Development: Quickly develop an

application without any database setup.

5. File Formats: As an alternative to custom file formats for

applications that require structured data storage.

6. Small Websites: Websites with low to medium traffic where

simplicity in deployment is more important.

7. Educational: Since learning some SQL means I do not have

to create a new database server.

86
MATS Centre for Distance and Online Education, MATS University

Notes Key Differences between MySQL and SQLite

It's important to know the key differences between these database

systems to choose the right one for your application.

Architecture

MySQLA client server architecture where the central server process

maintains the database files and accepts the client connections. While

this does permit several clients to concurrently access the same server,

it means you need to set up and manage the server yourself.SQLite:

Serverless, file-based architecture with the database engine linked

into the application. That removes network overhead at the cost of

concurrent write operations.

Concurrency

MySQL: Targeted high concurrency, complex locking mechanism

allows a lot of users read and write at the same time. It also applies

for row-level locking in the storage engine that makes InnoDB,

capable of high throughput in demanding multi-user environments.

SQLite: Uses a file-level locking mechanism that allows only one

writer but multiple readers at a time. Consequently, it is less good for

use cases that demand heavy write concurrency.

Data Types

• MySQL: Very strict typing has an extensive list of data types

(numerical, date and time, string, and geographic types),

JSON, etc.)

• SQLite: "Manifest typing" the datatype is an attribute of the

value rather than the column. SQLite does not have strict data

types but storage classes, which gives flexibility but can also

result in unexpected behavior.

Scalability

MySQL: Has the ability to scale to billions of rows and thousands of

concurrent connections. It provides horizontal scalability through

replication, sharding, and clustering.SQLite: Theoretical limit, 140

terabytes but in practice, due to its design, much smaller databases.

From a performance viewpoint, especially for large databases, it is

much less.

Administration

MySQL: Installed, configured, and user managed on a server and

needs maintenance. It gives you more control but requires more

expertise and upkeep.SQLite: Needs almost no administration.

87
MATS Centre for Distance and Online Education, MATS University

Notes Creating a database is simply opening a file, and backups are just

copying the database file.

Security

MySQL: Provides a robust security model with user authentication,

privilege-based access control, and network-level security features.

Security features: SQLite has very few built-in security features.

The security should be applied at the application level or by file

system permissions.

Backup and Recovery

MySQL: Provides advanced backup solutions (mysqldump,

XtraBackup) and undeletion (aka point-in-time recovery) through use

of binary logs.

SQLite: Backup is just copying a database file, if it has not open for

writing. The recovery options are fewer than with MySQL.

How to Setup and Get Started

So, let’s see how to get started with both the database systems.

MySQL Setup

The first steps to setting up MySQL include installing the server,

configuring the server, and creating users and databases. Here's a

simplified process:

1. Installation:

• On Ubuntu/Debian: apt-get install mysql-server with

sudo

• On Install MySQL-server with sudo yum on

CentOS/RHEL

• On macOS with Homebrew: brew install mysql

• On Windows: Download and run the MySQL Installer

from the official website

2. Starting the Server:

• On Linux: sudosystemctl start mysql

• On macOS: brew services start mysql

• On Windows: The service typically starts automatically

after installation

3. Securing the Installation: To secure default settings and set

the root password, run mysql_secure_installation.

4. Connecting to MySQL:mysql -u root -p

5. Creating a Database and User:

CREATE DATABASE myapp;

88
MATS Centre for Distance and Online Education, MATS University

Notes CREATE USER 'myuser'@'localhost' IDENTIFIED BY

'mypassword';

GRANT ALL PRIVILEGES ON myapp.* TO 'myuser'@'localhost';

FLUSH PRIVILEGES;

SQLite Setup

Setting up SQLite is much simpler:

1. Installation:

• To install sqlite3 on Ubuntu/Debian, sudo apt-get

• On RHEL/CentOS: sudo yum install sqlite

• On macOS with Homebrew: brew install sqlite

• On Windows: Download the precompiled binaries

from the official SQLite website

2. Creating and Opening a Database: Simply run sqlite3

mydatabase.db to create and open a database file.

3. Creating Tables: Once in the SQLite shell, you can create

tables using standard SQL:

CREATE TABLE users (

 id INTEGER PRIMARY KEY,

 name TEXT,

 email TEXT

);

Basic Operations in MySQL and SQLite

Now let's explore common database operations in both systems.

Creating Tables

MySQL:

CREATE TABLE products (

 id INT AUTO_INCREMENT PRIMARY KEY,

 name VARCHAR(100) NOT NULL,

 price DECIMAL(10, 2) NOT NULL,

 description TEXT,

 category VARCHAR(50),

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

);

SQLite:

CREATE TABLE products (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 price REAL NOT NULL,

89
MATS Centre for Distance and Online Education, MATS University

Notes description TEXT,

 category TEXT,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

);

Notice the differences in data types and auto-increment syntax.

Inserting Data

MySQL:

INSERT INTO products (name, price, description, category)

VALUES ('Laptop', 999.99, 'Powerful laptop with 16GB RAM',

'Electronics'),

 ('Coffee Maker', 49.95, 'Programmable coffee maker', 'Kitchen'),

 ('Yoga Mat', 24.99, 'Non-slip yoga mat', 'Fitness');

SQLite:

INSERT INTO products (name, price, description, category)

VALUES ('Laptop', 999.99, 'Powerful laptop with 16GB RAM',

'Electronics'),

 ('Coffee Maker', 49.95, 'Programmable coffee maker', 'Kitchen'),

 ('Yoga Mat', 24.99, 'Non-slip yoga mat', 'Fitness');

The syntax for basic INSERT operations is identical in both systems.

Querying Data

MySQL:

-- Basic SELECT

SELECT * FROM products WHERE price < 100;

-- JOIN example

SELECT o.order_id, c.name, p.name as product_name

FROM orders o

JOIN customers c ON o.customer_id = c.id

JOIN order_items oi ON o.order_id = oi.order_id

JOIN products p ON oi.product_id = p.id

WHERE o.order_date> '2023-01-01';

SQLite:

-- Basic SELECT

SELECT * FROM products WHERE price < 100;

-- JOIN example

SELECT o.order_id, c.name, p.name as product_name

FROM orders o

90
MATS Centre for Distance and Online Education, MATS University

Notes JOIN customers c ON o.customer_id = c.id

JOIN order_items oi ON o.order_id = oi.order_id

JOIN products p ON oi.product_id = p.id

WHERE o.order_date> '2023-01-01';

Again, basic query syntax is very similar between the two systems.

Updating Data

MySQL:

UPDATE products SET price = 39.99 WHERE name = 'Coffee

Maker';

SQLite:

UPDATE products SET price = 39.99 WHERE name = 'Coffee

Maker';

Deleting Data

MySQL:

DELETE FROM products WHERE id = 3;

SQLite:

DELETE FROM products WHERE id = 3;

Programming Examples

Let's look at examples of interacting with MySQL and SQLite from

different programming languages.

Example 1: Connecting to MySQL with Python

import mysql.connector

Establish connection

conn = mysql.connector.connect(

 host="localhost",

 user="myuser",

 password="mypassword",

 database="myapp"

)

Create a cursor

cursor = conn.cursor()

Execute a query

cursor.execute("SELECT * FROM products")

Fetch results

91
MATS Centre for Distance and Online Education, MATS University

Notes products = cursor.fetchall()

for product in products:

 print(product)

Close connection

cursor.close()

conn.close()

Example 2: Connecting to SQLite with Python

import sqlite3

Connect to database (creates it if it doesn't exist)

conn = sqlite3.connect('myapp.db')

Create a cursor

cursor = conn.cursor()

Execute a query

cursor.execute("SELECT * FROM products")

Fetch results

products = cursor.fetchall()

for product in products:

 print(product)

Close connection

cursor.close()

conn.close()

Example 3: Creating Tables and Inserting Data with PHP and

MySQL

<?php

// Connect to MySQL

$conn = new mysqli("localhost", "myuser", "mypassword", "myapp");

// Check connection

if ($conn->connect_error) {

die("Connection failed: " . $conn->connect_error);

}

92
MATS Centre for Distance and Online Education, MATS University

Notes // Create table

$sql = "CREATE TABLE IF NOT EXISTS users (

 id INT AUTO_INCREMENT PRIMARY KEY,

 username VARCHAR(50) NOT NULL UNIQUE,

 email VARCHAR(100) NOT NULL,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)";

if ($conn->query($sql) === TRUE) {

 echo "Table created successfully\n";

} else {

 echo "Error creating table: " . $conn->error . "\n";

}

// Insert data

$sql = "INSERT INTO users (username, email) VALUES (?,)

93
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: CRUD Operations

3.2 CRUD Operations Using Python (sqlite3 and mysql.connector)

Most of the modern applications rely on Database operations. CRUD

(Create, Read, Update, Delete) all the things you are able to do with

data. Python has excellent database connectivity, with lots of libraries

available for different databases; sqlite3 is a part of the standard

library and mysql. Connector that offers deep integration with

MySQL database. In this article, we will discuss how to perform

CRUD operations using Python on the SQLite and MySQL

databases. We will offer case study examples, best practices and

perspectives to improve your data management and analysis.

CRUD Operations Explained

CRUD operations refer to the four basic operations that models must

be able to perform in order to be considered complete. These

operations align well with SQL statements:

• Create: INSERT statements for new records

• Read: SELECT statements to extract records

• Update: UPDATE statements for updating records

• Delete: DELETE statements for deleting records

SQLite offers limited support for these operations, while MySQL has

more extended support. Because SQLite is file-based and has no

server, it is best suited to embedded applications, development, and

testing. MySQL is a client-server system, intended for rich, multi-

user applications with larger data sets.

Fig: 6.1 CRUD Operations

[Source: https://encrypted-tbn1.gstatic.com/]

https://encrypted-tbn1.gstatic.com/

94
MATS Centre for Distance and Online Education, MATS University

Notes How to Use SQLite with Python's sqlite3 Module

SQLiteSQLite is a C library that implements a lightweight, disk-

based database with a full-featured SQL engine. It is a great option

for applications that require a self-contained, serverless database

engine.

Setting Up SQLite

The sqlite3 module is included in Python's standard library and

provides a simple interface to SQLite databases. Start off with a

simple relationship:

import sqlite3

Connect to a database (creates it if it doesn't exist)

conn = sqlite3.connect('example.db')

Create a cursor object

cursor = conn.cursor()

Always close connections when done

conn.close() # We'll close this later

This code connects to a database file named 'example. It opens ('db'

(creating it if it does not already exist), and creates a cursor object

with which SQL statements are executed.

Create Operations with SQLite

We also perform addition, subtraction, multiplication, and division.

Create a simple table and seed some records in users:

import sqlite3

def create_table():

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Create a table

cursor.execute('''

 CREATE TABLE IF NOT EXISTS users (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 email TEXT UNIQUE NOT NULL,

 age INTEGER,

95
MATS Centre for Distance and Online Education, MATS University

Notes created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

 ''')

conn.commit()

print("Table created successfully")

 except sqlite3.Error as e:

print(f"Error creating table: {e}")

 finally:

conn.close()

def insert_user(name, email, age):

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Insert a single user

cursor.execute('''

 INSERT INTO users (name, email, age)

 VALUES (?, ?, ?)

 ''', (name, email, age))

conn.commit()

print(f"User {name} inserted with ID: {cursor.lastrowid}")

 return cursor.lastrowid

 except sqlite3.Error as e:

print(f"Error inserting user: {e}")

 return None

 finally:

conn.close()

def insert_multiple_users(users_list):

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Insert multiple users at once

cursor.executemany('''

 INSERT INTO users (name, email, age)

96
MATS Centre for Distance and Online Education, MATS University

Notes VALUES (?, ?, ?)

 ''', users_list)

conn.commit()

 print(f"{cursor.rowcount} users inserted successfully")

 except sqlite3.Error as e:

print(f"Error inserting multiple users: {e}")

 finally:

conn.close()

Example usage:

create_table()

Insert a single user

insert_user("John Doe", "john@example.com", 30)

Insert multiple users

users = [

 ("Alice Smith", "alice@example.com", 25),

 ("Bob Johnson", "bob@example.com", 35),

 ("Charlie Brown", "charlie@example.com", 40)

]

insert_multiple_users(users)

In this example, we've created three functions:

• create_table() – Create users table if it doesn’t exist

• insert_user() – Insert a user with name, email, and age

• insert_multiple_users() – Inserts multiple users in a single call

using executemany()

Notice how we are using a parameterized query of sorts, by the

means of question marks as placeholders, to prevent SQL injection

attacks. The sqlite3 module does the quoting and conversion of

Python data types.

Read Operations with SQLite

Data retrieval is done via SELECT statements. Let us perform some

read operations:

import sqlite3

def get_all_users():

97
MATS Centre for Distance and Online Education, MATS University

Notes try:

 conn = sqlite3.connect('example.db')

conn.row_factory = sqlite3.Row # This enables column access by

name

 cursor = conn.cursor()

cursor.execute("SELECT * FROM users")

 rows = cursor.fetchall()

 users = []

 for row in rows:

 # Convert Row object to dict for easier handling

 user = {key: row[key] for key in row.keys()}

users.append(user)

 return users

 except sqlite3.Error as e:

print(f"Error retrieving users: {e}")

 return []

 finally:

conn.close()

def get_user_by_id(user_id):

 try:

 conn = sqlite3.connect('example.db')

conn.row_factory = sqlite3.Row

 cursor = conn.cursor()

cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))

 row = cursor.fetchone()

 if row:

 # Convert Row object to dict

 user = {key: row[key] for key in row.keys()}

 return user

 else:

 return None

 except sqlite3.Error as e:

98
MATS Centre for Distance and Online Education, MATS University

Notes print(f"Error retrieving user {user_id}: {e}")

 return None

 finally:

conn.close()

def search_users_by_name(name_pattern):

 try:

 conn = sqlite3.connect('example.db')

conn.row_factory = sqlite3.Row

 cursor = conn.cursor()

 # Using LIKE for pattern matching

cursor.execute("SELECT * FROM users WHERE name LIKE ?",

(f'%{name_pattern}%',))

 rows = cursor.fetchall()

 users = []

 for row in rows:

 user = {key: row[key] for key in row.keys()}

users.append(user)

 return users

 except sqlite3.Error as e:

print(f"Error searching users: {e}")

 return []

 finally:

conn.close()

def get_user_count():

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

cursor.execute("SELECT COUNT(*) FROM users")

 count = cursor.fetchone()[0]

 return count

 except sqlite3.Error as e:

99
MATS Centre for Distance and Online Education, MATS University

Notes print(f"Error counting users: {e}")

 return 0

 finally:

conn.close()

Example usage:

print("All users:")

all_users = get_all_users()

for user in all_users:

 print(user)

print("\nUser with ID 2:")

user2 = get_user_by_id(2)

if user2:

 print(user2)

else:

print("User not found")

print("\nUsers with 'Jo' in their name:")

jo_users = search_users_by_name("Jo")

for user in jo_users:

 print(user)

print(f"\nTotal user count: {get_user_count()}")

For our Read operations, we created four functions in the example

above:

• get_all_users() — Returns all users from the database

• get_user_by_id() — Get specific user by id

• search_users_by_name() — Looks for users by part of their name

• get_user_count() — Counts all users

We've also been using conn.row_factory = sqlite3. Use row, column

index references in Pandas to enable access to pandas data by name,

code is more self declaring and maintainable.

Update Operations with SQLite

The second important operation is to update existing records.

Implement some update functions:

import sqlite3

100
MATS Centre for Distance and Online Education, MATS University

Notes def update_user(user_id, name=None, email=None, age=None):

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Build the update query dynamically based on provided values

update_values = []

 params = []

 if name is not None:

update_values.append("name = ?")

params.append(name)

 if email is not None:

update_values.append("email = ?")

params.append(email)

 if age is not None:

update_values.append("age = ?")

params.append(age)

 # If no values to update, return early

 if not update_values:

print("No values provided for update")

 return False

 # Complete the parameter list with the user_id

params.append(user_id)

 # Construct and execute the query

 query = f"UPDATE users SET {', '.join(update_values)}

WHERE id = ?"

cursor.execute(query, params)

conn.commit()

 if cursor.rowcount> 0:

print(f"User {user_id} updated successfully")

101
MATS Centre for Distance and Online Education, MATS University

Notes return True

 else:

print(f"User {user_id} not found or no changes made")

 return False

 except sqlite3.Error as e:

print(f"Error updating user: {e}")

 return False

 finally:

conn.close()

def increment_age_for_all_users():

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Increment the age of all users by 1

cursor.execute("UPDATE users SET age = age + 1")

conn.commit()

 print(f"{cursor.rowcount} users had their age incremented")

 return cursor.rowcount

 except sqlite3.Error as e:

print(f"Error incrementing ages: {e}")

 return 0

 finally:

conn.close()

def update_email_domain(old_domain, new_domain):

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Update email domains

cursor.execute("""

 UPDATE users

 SET email = REPLACE(email, ?, ?)

 WHERE email LIKE ?

 """, (old_domain, new_domain, f'%@{old_domain}'))

102
MATS Centre for Distance and Online Education, MATS University

Notes

conn.commit()

 print(f"{cursor.rowcount} email addresses updated")

 return cursor.rowcount

 except sqlite3.Error as e:

print(f"Error updating email domains: {e}")

 return 0

 finally:

conn.close()

Example usage:

Update a single user

update_user(user_id=1, name="John Smith", age=31)

Increment everyone's age

increment_age_for_all_users()

Update email domain

update_email_domain("example.com", "newdomain.com")

In this example – we have created three update functions, in different

ways:

• update_user() – Update certain fields for a user by id

• update_email_domain() — Update email domains for all users

that match

The first function is an example of how to customize the query we are

sending to the DB so that we only post in fields requiring updates

(this is much more performant than blindly updating every time).

Delete Operations with SQLite

Finally, let's implement delete operations:

import sqlite3

def delete_user(user_id):

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Delete a specific user

cursor.execute("DELETE FROM users WHERE id = ?", (user_id,))

103
MATS Centre for Distance and Online Education, MATS University

Notes

conn.commit()

 if cursor.rowcount> 0:

print(f"User {user_id} deleted successfully")

 return True

 else:

print(f"User {user_id} not found")

 return False

 except sqlite3.Error as e:

print(f"Error deleting user: {e}")

 return False

 finally:

conn.close()

def delete_users_by_age(min_age):

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Delete users above a certain age

cursor.execute("DELETE FROM users WHERE age >= ?",

(min_age,))

conn.commit()

 print(f"{cursor.rowcount} users deleted (age >= {min_age})")

 return cursor.rowcount

 except sqlite3.Error as e:

print(f"Error deleting users by age: {e}")

 return 0

 finally:

conn.close()

def delete_all_users():

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

104
MATS Centre for Distance and Online Education, MATS University

Notes # Delete all users

cursor.execute("DELETE FROM users")

conn.commit()

 print(f"{cursor.rowcount} users deleted")

 return cursor.rowcount

 except sqlite3.Error as e:

print(f"Error deleting all users: {e}")

 return 0

 finally:

conn.close()

def reset_users_table():

 try:

 conn = sqlite3.connect('example.db')

 cursor = conn.cursor()

 # Drop and recreate the table

cursor.execute("DROP TABLE IF EXISTS users")

cursor.execute('''

 CREATE TABLE users (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 email TEXT UNIQUE NOT NULL,

 age INTEGER,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

 ''')

conn.commit()

print("Users table reset successfully")

 return True

 except sqlite3.Error as e:

print(f"Error resetting users table: {e}")

 return False

 finally:

conn.close()

105
MATS Centre for Distance and Online Education, MATS University

Notes

Example usage:

Delete a single user

delete_user(3)

Delete users older than 35

delete_users_by_age(35)

Uncomment with caution:

delete_all_users()

reset_users_table()

Here, we have created four different delete functions:

• delete_user() – Removes a user based on its ID

• delete_users_by_age() - Deletes users over a given age

• delete_all_users() — Remove all users from the table

• reset_users_table() — Drops and recreates the table

SQLite Transactions

For more complex operations, it would be prudent to use

Transactions for data integrity:

import sqlite3

def transfer_age(from_user_id, to_user_id, amount):

 if amount <= 0:

print("Transfer amount must be positive")

 return False

 conn = None

 try:

 conn = sqlite3.connect('example.db')

 # Begin transaction

conn.execute("BEGIN TRANSACTION")

 # Check if both users exist and get current ages

 cursor = conn.cursor()

cursor.execute("SELECT age FROM users WHERE id = ?",

(from_user_id,))

from_user = cursor.fetchone()

106
MATS Centre for Distance and Online Education, MATS University

Notes cursor.execute("SELECT age FROM users WHERE id = ?",

(to_user_id,))

to_user = cursor.fetchone()

 if not from_user or not to_user:

print("One or both users not found")

conn.rollback()

 return False

from_age = from_user[0]

 if from_age< amount:

print(f"User {from_user_id} doesn't have enough age to transfer")

conn.rollback()

 return False

3.3 Introduction to Tkinter (Python GUI Library)

Tkinter is the name of the standard Python GUI (Graphical User

Interface) library. Which sits atop the Tcl/Tk GUI toolkit as a thin

object-oriented layer? It is a cross-platform toolkit that gives a fast

and versatile windowing solution, empowering Python designers to

build GUI-based work area applications. Most Python distributions

include Tkinter pre-installed, so beginner and advanced programmers

can modify their scripts and run them immediately. Tkinter is a mature

and stable library that has been part of the standard Python library for

many years, providing a simple model for GUI development using

windows, buttons, text fields, etc.Tkinter name comes from the Tk

interface, which signifies that the code is the Tk toolkit's Python

binding. Tk was initially created for the programming language TCL,

but it has since adapted for many others, including Python. This

cross-language ancestry helped cement Tkinter's resilience and astute

acceptance. While newer alternatives have since appeared in the

Python ecosystem (such as PyQt, wxPython, and Kivy), Tkinter is

very popular as a mainstay library in the standard library, and is

suitable to meet the needs of many applications.Tkinter Uses an

Event-Driven Programming Model. This is in contrast to procedural

programming, where the flow of the program is defined by pre-

specified sequences of instructions. It is important to understand this

kind of event driven nature in order to effectively use Tkinter. The

107
MATS Centre for Distance and Online Education, MATS University

Notes primary advantage of Tkinter is its bunch of very nice, easy-to-use,

friendly features for beginners. Its syntax is fairly simple, allowing

developers to write simple applications in a few lines of code. This

low entry threshold makes Tkinter an ideal framework for

educational use or for rapid prototyping GUI applications. But this

simplicity doesn't mean limited Tkinter can make full featured

applications with complex interfaces when needed.Tkinter organizes

itself in a class hierarchy of widget classes, with each class

corresponding to a different GUI element. These widgets include

simple components like labels and buttons, as well as more advanced

elements such as text editors and canvases. Widgets have properties

(to define the appearance) and methods (to specify the behavior).

Though, widgets generally create a relationship between them as

parents and children in which the parent widgets hold and handle their

children. The interface is organized in a hierarchical manner; this

helps in logically organizing the interface as well as acts as a

framework for layout management.Wearer: Tkinter uses geometry

managers to manage layouts, which dictate how widgets are arranged

within their parent containers. The three principal Place, grid, and

pack are geometry managers. The place manager allows us to arrange

the widgets in absolute space, the grid manager arranges them in a

table-like arrangement, and the pack manager packs them in blocks.

Every geometry manager has unique advantages and works well with

various kinds of layouts. So, to build organized, responsive interfaces,

we must understand these managers.Tkinter also offers features for

responding to user input and events. Functions can be bound to

events which can be anything from mouse clicks, mouse movement or

key bindings. These event bindings make GUI applications

interactive, enabling the application to respond to users' actions as

they carry out them. Tkinter Methods: Tkinter also provides us with

several methods that we can use on each widget, where some of these

methods are used to modify or access the values of widget properties.

Variable Classes: In addition to widget properties, Tkinter supports

variable classes that farmers create two-way bond to the widget

properties.AlthoughTkinter might not have the performance and

aesthetic features of more modern GUI Libraries, it has a few

advantages that makes using it attractive for many Python

Developers. Since datetime is part of the standard library, thus it's not

108
MATS Centre for Distance and Online Education, MATS University

Notes necessary to to for any additional installation process, and it's

guaranteed to work in different Python environments. Applications are

able to run on Linux, macOS, and Windows with almost any

modifications, thanks to its cross-platform nature. Tkinter is quite a

solution, and as long as it's not a gut-wrenching 3D billboard, an

elaborate data visualizer, or a finely tuned GUI with obscure tkinter-

only widgets, it might be just what you need.There are a number of

extensions and related libraries that developers can use to extend

Tkinter's capabilities. Ttk (themed Tk) includes themed widgets that

provide a more modern look across platforms. Tix extends the

standard Tkinter set of widgets and provides certain unique features.

PIL (Python Imaging Library) and it’s Fork Pillow; They help in

advanced image processing along with Tkinter. Tkinter's limitations

can be improved with the use of various extensions that facilitate

development on top of Tkinter.We shall go over Tkinter's

fundamental idea in this extensive guide.s, the types of widgets that

are part of the toolkit, layout management, event handling, and

advanced features. The exploration of Tkinter in this guide through

practical examples and explanations will instill a more detailed

understanding of the park of Tkinter and its effective use for GUI

development in Python. Tkinter is the most commonly used library to

create GUIs in Python. It comes pre-installed with Python, making it a

popular option for developers of all skill levels when it comes to

building simple utility applications and functional desktop software

with graphical interfaces.

Getting Started with Tkinter

The first thing you need to do in order to start using Tkinter is to

import the Tkinter module into your Python script. Generally, if When

you install Python, Tkinter is also installed the standard library, so it

is not additional installed. The import statement is simple: import

tkinter as tk. This is standard practice since it facilitates reading the

code when you are working with Tkinter elements. For more complex

projects, you may also need to import certain modules or classes from

Tkinter, which you can, do like this: from tkinter import ttk is great

for themed widgets.After importing Tkinter, In each Tkinter

application, the initial step is to generate a rudimentary window

(known as the "root" window). We achieve this by instantiating the

Tk class: root = tk. Tk().title() sets the window title, and geometry()

109
MATS Centre for Distance and Online Education, MATS University

Notes defines the window's size.After you have created and configured the

root window you will normally start to add widgets to it and configure

event bindings, finishing by starting the main event loop with root.

Mainloop (). This command initiates the loop of Tkinter events,

maintaining the window open to listen for and process events like

user input until the window is closed. Event Loop: The event loop is

vital for GUI applications to keep them responsive, it continuously

checks for events and invokes the callback functions when an action

is performed.

Here's our first example, a simple "Hello World" application in

Tkinter:

Tkinter is imported as tk

Create the root window

root = tk.Tk()

root.title("Hello World")

root.geometry("300x200")

Add a label widget

label = tk.Label(root, text="Hello, Tkinter World!")

label.pack(pady=20)

Start the event loop

root.mainloop()

Here is the simplest example that generates a window with a single

text label saying “Hello, Tkinter World!”. Where pack() method

aligns the label on the window, pady=20 gives some vertical padding.

When you run this script, a new window will open that displays the

greeting text, and it will stay open until you close it, showing you the

basic skeleton of a Tkinterapplication.Core concepts, which include

widgets, geometry managers, and event handling, are crucial to

understanding if you want to work with Tkinter successfully. Widgets

are GUI-building blocksA widget is anything that is part of a GUI:

buttons, labels, text fields, etc. Geometry managers (pack, grid, place)

control how those widgets are arranged in their containers. Your

software may react to user actions, such as keyboard or mouse clicks,

thanks to event handlinginputs.

import tkinter as tk

110
MATS Centre for Distance and Online Education, MATS University

Notes def button_click():

label.config(text="Button clicked!")

root = tk.Tk()

root.title("Button Example")

root.geometry("300x200")

label = tk.Label(root, text="Click the button below")

label.pack(pady=20)

button = tk.Button(root, text="Click Me", command=button_click)

button.pack(pady=10)

root.mainloop()

In this case, we've attached a button that, with click, it'll modify the

label's text. The Button widget takes a command parameter that

indicates what function to call when this button is clicked. Tkinter is

event-driven and runs your button_click function when you click the

button.For more advanced applications, you may want to structure

your graphical user interface (GUI) using frames, which are

essentially containers for other widgets. It is easier to manage layouts

and better organize complex user interfaces through the use of

frames. Here is an example using frames:

import tkinter as tk

root = tk.Tk()

root.title("Frame Example")

root.geometry("400x300")

Create a frame for the top section

top_frame = tk.Frame(root, bg="lightblue")

top_frame.pack(fill=tk.X, padx=10, pady=10)

Add widgets to the top frame

label1 = tk.Label(top_frame, text="Top Frame Content",

bg="lightblue")

label1.pack(pady=5)

Create a frame for the bottom section

111
MATS Centre for Distance and Online Education, MATS University

Notes bottom_frame = tk.Frame(root, bg="lightgreen")

bottom_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)

Add widgets to the bottom frame

label2 = tk.Label(bottom_frame, text="Bottom Frame Content",

bg="lightgreen")

label2.pack(pady=5)

button = tk.Button(bottom_frame, text="Click Me")

button.pack(pady=5)

root.mainloop()

This example creates 2 frames, one at the top goes light blue, the one

at the bottom goes light green. The top frame uses fill=tk. top frame:

use X to go expand horizontally fill=tk. BOTH, expand=True to fill

available space horizontally and vertically. Instead, they implemented

the hierarchical structure using frames to achieve more structured and

flexible layouts.However, once you get more familiar with Tkinter

you'll realize that it has a lot more set of widgets and features. The

various widgets range from simple buttons and labels to ever more

complex options like text editors, canvases, and listboxes, and make

up a rich toolset for creating all manner of GUI apps. Thus, when

paired with the ease of use and readability that Python provides,

Tkinter opens the door wide for functional and interactive desktop

applications.

Core Tkinter Widgets

A wide variety of widgets are available in Tkinter for creating

graphical user interfaces. Widgets are the fundamental interactive

building blocks for an application, its strengths and weaknesses are

important to be considered while GUI development. Here are some of

the basic widgets that the foundation of Tkinterapplications.Label

widget is one of the simplest and most used widgets in Tkinter. It is

mainly used for rendering text or images to the user. The default type

of controls is non-interactive controls, which do nothing when

clicked or interacted with. They can also be styled with different

fonts, colors, and borders to improve the aesthetics of your

application and be made dynamic (show current state of your

application).

112
MATS Centre for Distance and Online Education, MATS University

Notes import tkinter as tk

root = tk.Tk()

root.title("Label Examples")

Simple text label

label1 = tk.Label(root, text="Hello, Tkinter!")

label1.pack(pady=10)

Label with custom font and color

label2 = tk.Label(root, text="Styled Label",

 font=("Arial", 16, "bold"),

fg="blue",

bg="lightgray")

label2.pack(pady=10)

Label with an image

First, create a PhotoImage object

image = tk.PhotoImage(file="python_logo.png")

Then create a label with the image

image_label = tk.Label(root, image=image)

image_label.image = image # Keep a reference to prevent garbage

collection

image_label.pack(pady=10)

root.mainloop()

We made three different kinds of labels in this example: a simple text

label, a label with custom styling, and an image label. The font

parameter indicates the font family, size, and style. The fg

(foreground) and bg (background) options determine the colors of the

text and background, respectively. In the image label, we utilizing the

PhotoImage class, create an object that contains a picture file to be

linked to the label's image parameter. Notably, we maintain a

reference to the image so it doesn’t get garbage collected.The Button

widget is an interactive thing that is invoked when clicked. It is an

essential building block of any GUI application for user interaction.

Buttons can present textual content, image content, or both, and work

with minimum a couple of visible properties such as background,

113
MATS Centre for Distance and Online Education, MATS University

Notes border, coloration, and shadow. For Buttons, the most important

parameter is command, which tells the Button what function it should

call when it is clicked.

import tkinter as tk

def button1_clicked():

result_label.config(text="Button 1 was clicked!")

def button2_clicked():

result_label.config(text="Button 2 was clicked!")

root = tk.Tk()

root.title("Button Examples")

Simple button

button1 = tk.Button(root, text="Click Me",

command=button1_clicked)

button1.pack(pady=10)

Button with custom styling

button2 = tk.Button(root, text="Styled Button",

 font=("Arial", 12),

bg="lightblue",

fg="navy",

padx=10,

pady=5,

 command=button2_clicked)

button2.pack(pady=10)

Label to display result

result_label = tk.Label(root, text="Click a button")

result_label.pack(pady=20)

root.mainloop()

This is an example of having two buttons, one of which has a

different style and is associated with a different function. The buttons

update a label, indicating which button was clicked. The padx and

pady arguments are for padding around the buttons; they just make

114
MATS Centre for Distance and Online Education, MATS University

Notes the buttons prettier.import all of the contents from tkinter root = Tk()

constructing a new Tk instance Entry(root).pack() # add Entry

widget to Tk instance and pack it root.mainloop() # create a

mainloopthat waits for user interaction The Entry widget allows users

to enter content in a simple one-line format. The element is very much

similar to the input element, it's used for any potential use case where

you need to get information in text form like forms, search bars, etc.

You support different operations on the Entry widget, like inserting

text, deleting text and getting the text, etc.

import tkinter as tk

def submit():

input_text = entry.get()

result_label.config(text=f"You entered: {input_text}")

root = tk.Tk()

root.title("Entry Widget Example")

Label for the entry

label = tk.Label(root, text="Enter your name:")

label.pack(pady=(10, 0))

Entry widget

entry = tk.Entry(root, width=30)

entry.pack(pady=5)

entry.focus() # Set focus to the entry widget

Submit button

submit_button = tk.Button(root, text="Submit", command=submit)

submit_button.pack(pady=5)

Label to display result

result_label = tk.Label(root, text="")

result_label.pack(pady=10)

root.mainloop()

An Entry widget is then displayed for entering the name, a label and a

button for submission. Following When a user presses the submit

button after typing text, the text is entered gets retrieved using the

115
MATS Centre for Distance and Online Education, MATS University

Notes get() method and displayed in the label for the outcome. The input is

added using the focus() method with typing focus to Entry widget.A

Text widget is used to create a multi-line text area to display or edit

text. This is an example of the Text widget which will allow you to

display text that may become much larger and that can also be

formatted, unlike the Entry widget which is limited to one line. It can

be beneficial for text editors, loggers or any other application that

should show or edit large models of text content.

import tkinter as tk

def save_text():

 content = text_area.get("1.0", tk.END)

result_label.config(text=f"Saved text ({len(content)-1} characters)")

root = tk.Tk()

root.title("Text Widget Example")

Label for the text area

label = tk.Label(root, text="Enter your notes:")

label.pack(pady=(10, 0))

Text widget

text_area = tk.Text(root, width=40, height=10)

text_area.pack(pady=5)

Save button

save_button = tk.Button(root, text="Save", command=save_text)

save_button.pack(pady=5)

Label to display result

result_label = tk.Label(root, text="")

result_label.pack(pady=10)

root.mainloop()

We make a Text widget in this example to take notes and a save

button to handle the text that is entered. The get() method of Text

widgets requires start and end indices. The first line, character 0 in

the above example is denoted as "1.0" where tk. END (End of

116
MATS Centre for Distance and Online Education, MATS University

Notes text)[2] The -1 in the character count computation is for the new line

character included by get().Checkbutton widget: This tool is utilized

to select a boolean value, it can be selected (on) or unselected (off).

For choices that can be turned on or off individually, we use

Checkbuttons. They may be associated with Tkinter variables, which

offer a very handy way to monitor their status.

import tkinter as tk

def show_selection():

 result = ""

 if var1.get():

 result += "Option 1 selected\n"

 if var2.get():

 result += "Option 2 selected\n"

 if var3.get():

 result += "Option 3 selected\n"

result_label.config(text=result if result else "No options selected")

root = tk.Tk()

root.title("Checkbutton Example")

IntVar objects to store the state of each checkbutton

var1 = tk.IntVar()

var2 = tk.IntVar()

var3 = tk

3.4 Basic Widgets (Button, Label, Entry, Frame, Menu)

Widgets are simple elements that you can build into GUIs in your

code. They act as interactive components that enable users to enter

data, view information, and traverse through applications. Some

widgets are frequently used include Buttons, Labels, Entries, Frames,

and Menus. This is the case for nearly every GUI application,

regardless of the programming language or framework.In this article,

we will look into these five types of basic widgets viz, their

properties, methods and where do we use them. We will show

examples in several languages and frameworks to give you a

comprehensive overview of how these widgets work across different

platforms. These foundational building blocks form the backbone of

117
MATS Centre for Distance and Online Education, MATS University

Notes whatever you create, be it desktop applications, web interfaces, or

mobile apps.

Understanding GUI Widgets

Before diving into specific widgets, we need to understand what we

mean by widgets in GUI contexts. Widgets, also known as controls (or

components), are interface element that a user works with to

complete something in an application. They combine graphical look

and action, offering any common interface for subjecting records to

programmatic treatment.The five widgets that we will be looking

towards in this guide are the most basic building blocks of any GUI

that one makes:

1. Buttons - Interactive elements that trigger actions when

clicked

2. Labels - These are static text displays used to present

information to the user

3. Entries - The best prescriptive prompt for this new agent

would be something like the following: — User Interface

Components

4. Frames — Elements for containing widgets to better organize

them

5. Menus – A system of hierarchical navigation that gives access

to commands and options

These widgets are found in virtually every GUI framework and

provide the minimal functionality needed to create an interactive

application. These five fundamental aspects of GUI development will

form a strong foundation that has applications for more advanced

interface design.So, let's dive deep into each widget type, their

properties, methods, event handling, and practical applications. The

examples will feature in popular GUI frameworks such as Tkinter

(Python), JavaFX, HTML/CSS/JavaScript, Qt and others to illustrate

the universal principles behind these widgets.

Buttons

 Buttons are most likely among the most basic interactive widgets in

GUI programming. It stands for clickables that can invoke an action

when you click on it. Buttons abound in software UIs, from basic

forms to complex apps..

118
MATS Centre for Distance and Online Education, MATS University

Notes Button Properties

However, across frameworks, most button implementations have

certain properties in common:

• Text/Label — The text on the button

• Size – Width dimensions and height

• STATE — Enabled/disabled status

• Style – Visual properties (colours, borders, etc.)

• Command / Action – Function / Method called on button click

Button Events

Generally buttons listen to the below events.

• On Click/Press – When the button gets clicked/pressed

• Hover - When the cursor is pointed to the button

• Focus – When the button gains the keyboard focus

Example 1: Basic Button in Python with Tkinter

import tkinter as tk

Create main window

root = tk.Tk()

root.title("Basic Button Example")

root.geometry("300x200")

Function to handle button click

def button_clicked():

print("Button was clicked!")

result_label.config(text="Button clicked!")

Create a button

my_button = tk.Button(root, text="Click Me!",

 command=button_clicked,

bg="lightblue",

fg="navy",

padx=20,

pady=10)

my_button.pack(pady=30)

Create a label to show result

result_label = tk.Label(root, text="")

result_label.pack()

119
MATS Centre for Distance and Online Education, MATS University

Notes

Start the main loop

root.mainloop()

We directly changed label text when a button is pressed in this simple

example of Tkinter. The button has customized colors and padding to

make it look better.

Example 2: Button in HTML/JavaScript

<!DOCTYPE html>

<html>

<head>

<title>Basic Button Example</title>

<style>

.custom-button {

 background-color: #4CAF50;

color: white;

 padding: 10px 20px;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 font-size: 16px;

 transition: background-color 0.3s;

 }

.custom-button:hover {

 background-color: #45a049;

 }

.result {

 margin-top: 20px;

 font-family: Arial, sans-serif;

 }

</style>

</head>

<body>

<h2>Button Example</h2>

<button class="custom-button" id="myButton">Click Me!</button>

120
MATS Centre for Distance and Online Education, MATS University

Notes <div id="result" class="result"></div>

<script>

document.getElementById("myButton").addEventListener("click",

function() {

document.getElementById("result").textContent = "Button was

clicked!";

console.log("Button clicked event triggered");

 });

</script>

</body>

</html>

This HTML/JavaScript example demonstrates a styled button that

replaces the text inside a div element after being clicked. Shows also

hover effects with pure CSS.

Example 3: Button in Java with JavaFX

import javafx.application.Application;

import javafx.geometry.Insets;

import javafx.scene.Scene;

import javafx.scene.control.Button;

import javafx.scene.control.Label;

import javafx.scene.layout.VBox;

import javafx.stage.Stage;

public class ButtonExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 // Create button

 Button button = new Button("Click Me!");

button.setStyle("-fx-background-color: #6495ED; -fx-text-fill:

white;");

 // Create label for result

 Label resultLabel = new Label("");

 // Add action for button click

button.setOnAction(event -> {

121
MATS Centre for Distance and Online Education, MATS University

Notes resultLabel.setText("Button was clicked!");

System.out.println("Button click detected");

 });

 // Create layout

VBox root = new VBox(20);

root.setPadding(new Insets(30));

root.getChildren().addAll(button, resultLabel);

 // Create scene

 Scene scene = new Scene(root, 300, 200);

 // Configure and show stage

primaryStage.setTitle("JavaFX Button Example");

primaryStage.setScene(scene);

primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

Not only do we use a custom style for the button, but we also set up

an action event handler using a lambda expression.

Button Best Practices

1. Ascertainably Clear Paneling – Apply short and action-

oriented content on buttons (for instance, use “Save” as

opposed to “Click here to save”)

2. Visual Feedback - Add visual feedback if buttons are pressed

or hover over

3. Consistent Styling – Keep the look and feel of your buttons

similar in the entire app

4. Appropriate sizing — make buttons large enough to be click-

able

5. Disabled States – Make it clear when buttons aren’t available

Buttons are by far the most important widget, since they are the

primary means by which users cause actions in applications.

Labels

122
MATS Centre for Distance and Online Education, MATS University

Notes Labels are non-editable widgets that are used to show text or images.

They deliver context and information to users, without requiring

input. Functionality labels are critical for developing concise,

comprehensible user interfaces that assist users in navigating through

the applications.

Label Properties

Some common properties of label widgets are:

• Text - The text content shown by the label

• Font – Typeface, size, and style

• Text alignment – Horizontal and vertical alignment

• Icon/Image – Optional icon/image

• Wrapping – Text wrapping behavior

Unlike buttons, labels do not usually respond to user interactions,

although certain frameworks provide limited interactivity with labels.

Example 4: Multi-styled Labels in Python/Tkinter

import tkinter as tk

from tkinter import font

Create main window

root = tk.Tk()

root.title("Label Examples")

root.geometry("400x300")

root.configure(bg="#f0f0f0")

Create a custom font

heading_font = font.Font(family="Helvetica", size=16,

weight="bold")

Header label

header_label = tk.Label(

 root,

 text="Customer Information",

 font=heading_font,

bg="#4285F4",

fg="white",

padx=10,

pady=10,

 width=30

123
MATS Centre for Distance and Online Education, MATS University

Notes)

header_label.pack(pady=(20, 30))

Name label with left alignment

name_label = tk.Label(

 root,

 text="Name: John Smith",

 font=("Arial", 12),

bg="white",

padx=15,

pady=8,

 anchor="w",

 width=25,

 relief=tk.RIDGE

)

name_label.pack(pady=5)

Email label with left alignment

email_label = tk.Label(

 root,

 text="Email: john.smith@example.com",

 font=("Arial", 12),

bg="white",

padx=15,

pady=8,

 anchor="w",

 width=25,

 relief=tk.RIDGE

)

email_label.pack(pady=5)

Status label with custom colors

status_label = tk.Label(

 root,

 text="Status: Active",

 font=("Arial", 12, "bold"),

bg="#4CAF50",

fg="white",

124
MATS Centre for Distance and Online Education, MATS University

Notes padx=15,

pady=8,

 width=25

)

status_label.pack(pady=20)

root.mainloop()

This example demonstrates various label styles in Tkinter, including

different fonts, colors, alignments, and border effects.

Example 5: HTML/CSS Labels

<!DOCTYPE html>

<html>

<head>

<title>Label Examples</title>

<style>

 body {

 font-family: Arial, sans-serif;

 margin: 40px;

 background-color: #f5f5f5;

 }

 .container {

 max-width: 500px;

 margin: 0 auto;

 background-color: white;

 padding: 30px;

 border-radius: 8px;

 box-shadow: 0 2px 10px rgba(0,0,0,0.1);

 }

.header-label {

 background-color: #3498db;

color: white;

 padding: 12px 20px;

border-radius: 4px;

 font-size: 18px;

text-align: center;

 margin-bottom: 25px;

125
MATS Centre for Distance and Online Education, MATS University

Notes }

 .info-label {

 display: block;

 padding: 10px 15px;

 margin-bottom: 12px;

 background-color: #f9f9f9;

 border-left: 4px solid #2ecc71;

 }

.warning-label {

 display: block;

 padding: 10px 15px;

 margin-top: 20px;

 background-color: #fff3cd;

 border-left: 4px solid #ffc107;

color: #856404;

 }

</style>

</head>

<body>

<div class="container">

<div class="header-label">Product Information</div>

Product Name: Premium Widget

X200

Price: $199.99

Availability: In Stock

<div class="warning-label">Limited time offer: 20% discount until

end of month</div>

</div>

</body>

</html>

This HTML/CSS example shows how various label-like elements can

be styled on a web page to present information clearly and

attractively.

126
MATS Centre for Distance and Online Education, MATS University

Notes Example 6: SwingUI Labels with Images (Java)

import javax.swing.*;

import java.awt.*;

public class LabelExample extends JFrame {

 public LabelExample() {

setTitle("Label Examples");

setSize(400, 300);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create panel with padding

JPanel panel = new JPanel();

panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));

panel.setBorder(BorderFactory.createEmptyBorder(20, 20, 20, 20));

 // Simple text label

JLabeltextLabel = new JLabel("Welcome to the Application");

textLabel.setFont(new Font("Arial", Font.BOLD, 16));

textLabel.setAlignmentX(Component.CENTER_ALIGNMENT);

panel.add(textLabel);

panel.add(Box.createRigidArea(new Dimension(0, 20)));

 // HTML formatted label

JLabelhtmlLabel = new JLabel("<html><div style='text-align:

center;'>" +

 "Blue text, "

+

 "red text and

" +

 "<u>underlined text</u>.</div></html>");

htmlLabel.setAlignmentX(Component.CENTER_ALIGNMENT);

panel.add(htmlLabel);

panel.add(Box.createRigidArea(new Dimension(0, 20)));

 // Label with icon

ImageIcon icon = new ImageIcon("icon.png"); // Replace with actual

image path

127
MATS Centre for Distance and Online Education, MATS University

Notes JLabeliconLabel = new JLabel("Label with Icon", icon,

JLabel.CENTER);

iconLabel.setAlignmentX(Component.CENTER_ALIGNMENT);

panel.add(iconLabel);

 add(panel);

setLocationRelativeTo(null);

 }

 public static void main(String[] args) {

SwingUtilities.invokeLater(() -> {

 new LabelExample().setVisible(true);

 });

 }

}

So here is a fancy example for how text labels can be used by doing

some formatting and adding image icon.

Label Best Practices

1. Legible Fonts / Font Size – Keep it readable

2. Less is More — Give users right amount of information

without overloading them

3. Modular styling - Keep the label styles consistent for the

similar types of information

4. Correct Alignment – Arrange labels in manner that establish

visual of flow and readability

5. Hello Pupp: Accessibility – Ensure reading labels to all users

possible, Infosense everything.

Labels are easy to understand, however, their proper usage could

make a huge difference in how the application will be used. Intuitive

labels help users navigate interfaces without confusion, minimizing

cognitive load and frustration.

Entry Widgets

Entry widgets (alternatively known, among other things, as text fields,

input fields, or text boxes) are interactive text fields in which users

can input text data. They are a core piece of functionality for things

like forms, search, or anywhere that user text input is needed.

128
MATS Centre for Distance and Online Education, MATS University

Notes Entry Properties

Entry widget propertiesCommon properties of entry widgets

include:

• Entry Body – The present value of the entry field

• Width/Size - Number of characters that the field

shows

• Placeholder Text – A hint that will appear when the

field is empty

• Validation – Rules for acceptable input

• State – Linkable/Unlinkable

• Read-only Mode — If the text is editable

Entry Events

These events are usually triggered by entry widgets:

• Change/Input – When the content changes

• Focus — When the field is gaining/losing focus

• Submit – On Enter/Return press.

• Validation — When an input is validated against

validation rules

Example 7: Entry Field with Validation in Tkinter

import tkinter as tk

from tkinter import messagebox

import re

Create main window

root = tk.Tk()

root.title("Entry Field Example")

root.geometry("400x300")

root.configure(bg="#f5f5f5")

Create a frame for form elements

frame = tk.Frame(root, bg="#f5f5f5", padx=20, pady=20)

frame.pack(expand=True)

Email validation function

def validate_email(email):

 pattern = r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"

 return re.match(pattern, email)

129
MATS Centre for Distance and Online Education, MATS University

Notes

Form submission function

def submit_form():

 email = email_entry.get()

 if not email:

 messagebox.sh

3.5 Event Handling in Tkinter

In graphical user interface (GUI) programming, event handling is a

crucial subject that enables applications to respond to users'

interactions, including mouse clicks, keyboard presses, and other

inputs. Using Tkinter and events to develop graphical user interfaces

Simple GUI apps can be made with Tkinter in Python. To Get Better

at How Events Work in Tkinter: Tkinter Event HandlingIn response

to the events that are triggered in Tkinter, it uses an event-driven

programming paradigm, meaning that the application expects an event

to occur, and it then implements related handler functions. They

would range from clicking a button, resizing a window, scrolling the

screen, etc. The magic of this system is that it is customizable, so you

can bind different functions to different events, depending on what

The user communicates with!The event system in Tkinter is based on

a hierarchy of widgets that are able to register for different types of

user input and handle them. An event gets fired, which moves its way

around the application and eventually calls the associated callback

function. It avoids direct calls to the controller or view from the model

and provides a separation of concerns that makes the code more

modular, maintainable, and testable.Certainly at its most fundamental

level, event handling in Tkinter involves binding methods to events

through the bind() method. This associates some event pattern with a

callback function which gets called when that specific event happens.

Its syntax is even more compact, representing which type of event we

want to capture, as a string.The bind takes two parameters: An event

descriptor string starting with and a callback function. The event

descriptor is made up of specific fields according to a standard format

that enumerate the event type, and that might include optional

modifiers and details. For instance, '' means clicking the left mouse

button, as opposed to pressing 'Ctrl+A' on your keyboard, which is

described as ''binding can get tedious for events common to Tkinter

widgets, so higher-level interfaces are provided. Other widgets, such

130
MATS Centre for Distance and Online Education, MATS University

Notes as buttons, menus, and scales, come with built-in options (command)

that will automatically handle some types of events for that specific

widget. It makes it easier to create interactive applications without

manually binding the function to event.InTkinter programming; we

need to understand event propagation as well. Widgets can also be

made to bubble up in the widget hierarchy, so parent widgets can

handle events that occur on their children. This propagation can be

stopped using event methods, such as stopPropagation(), to prevent

an event from moving up the hierarchy any further.It will cover the

event types, binding ways, and event handling used in Tkinter as an

implementation for responsive and interactive Python

applications.This section will cover the implementation of basic event

binding in Tkinter.It all revolves around binding functions to events.

We can do this with the bind() method which associates the callback

function to an event type. When the event happens, your callback

function executes automatically.All of the widgets in Tkinter have the

bind() method with 2 main parameters: event descriptor and a call

back function. The event descriptor takes the form of a character

string enclosed in angle brackets that identifies the event to react to.

The Python program you wish to execute The callback function is

invoked when the event occurs.The callback An event object is

supplied to the function along with the event details (eg, mouse click

coordinates, keyboard press character). The callback calls the event

object that gives details about the context of the event so the callback

function can make decisions depending on specifics of the event.The

simplest example of event binding is binding a function to mouse

clicking in a widget. Now, let's make a simple application that listens

a left mouse button click on a label:

Tkinter is imported as tk.

def handle_click(event):

print(f"Label clicked at coordinates: ({event.x}, {event.y})")

root = tk.Tk()

root.title("Basic Event Binding")

root.geometry("300x200")

label = tk.Label(root, text="Click me!", bg="lightblue", padx=20,

pady=20)

131
MATS Centre for Distance and Online Education, MATS University

Notes label.pack(expand=True)

label.bind("<Button-1>", handle_click)

root.mainloop()

 The left mouse button is used to bind the handle_click method to the

click event () in this example, which involves creating a basic label

widget. We now have a labelled button-like widget where our feature

comes in. When someone clicks on the label, the function prints out

the coordinates of where a click occurred relative to the

widget.Additionally, this is Tkinter's basic event handling pattern. In

this manner, we can listen for a variety of events, and tie them to a

variety of functions, allowing us to enrich the interactivity of our

applications. We will see the beauty of this system when we start

dealing with multiple events or creating complex interactions.

Common Event Types in Tkinter

Tkinter handles many types of events; therefore, applications can

respond differently to different user interactions. Each of these event

types has its own significance, so knowing what they are will help us

build responsive applications. Below are some common event types:

1. Mouse Events:

• Click on The mouse button on the left

• Middle mouse button click

• Right mouse button click

• Release left mouse button

• Double left click

• Mouse pointer enters the widget

• When mouse pointer leaves widget

• Mouse movement

2. Keyboard Events:

• Any key press

• Release of any key

• Enter key press

• Space key press

• Escape key press

• Control-Key combination

3. Widget Events:

• Widget size or position change

132
MATS Centre for Distance and Online Education, MATS University

Notes • Widget received focus

• Widget loses focus

• Change in widget visibility

• Window Events

• Window is being destroyed

• Indicates that window has been mapped (is now visible)

• Window gets unmapped (hidden)

Let's create an example that demonstrates multiple event types:

import tkinter as tk

def handle_mouse_enter(event):

event.widget.config(bg="yellow")

status_label.config(text="Mouse entered the button")

def handle_mouse_leave(event):

event.widget.config(bg="lightgray")

status_label.config(text="Mouse left the button")

def handle_left_click(event):

status_label.config(text="Left-clicked the button")

def handle_right_click(event):

status_label.config(text="Right-clicked the button")

def handle_key_press(event):

status_label.config(text=f"Key pressed: {event.char}")

root = tk.Tk()

root.title("Event Types Demo")

root.geometry("400x300")

button = tk.Button(root, text="Interact with me", bg="lightgray",

padx=20, pady=10)

button.pack(pady=50)

status_label = tk.Label(root, text="Interaction status will appear here",

bd=1, relief=tk.SUNKEN, anchor=tk.W)

status_label.pack(side=tk.BOTTOM, fill=tk.X)

133
MATS Centre for Distance and Online Education, MATS University

Notes # Binding multiple events to the button

button.bind("<Enter>", handle_mouse_enter)

button.bind("<Leave>", handle_mouse_leave)

button.bind("<Button-1>", handle_left_click)

button.bind("<Button-3>", handle_right_click)

Binding keyboard events to the root window

root.bind("<Key>", handle_key_press)

root.mainloop()

 This illustration shows how to bind multiple events to a widget, how

to bind to different buttons on the keyboard, and how to handle

keyboard events at the window level. The button has a mouse enter

and mouse leave listeners defined, that alter the color of the

background of the button and update a status message. The status

message is updated on left and right clicks on the button. The key that

was pressed is also updated in the status message for any key press

on the keyboard.

Event Object Properties

In Tkinter, when an event happens, the callback function is provided

with an event object that holds event-related information. This item

has many properties that give the context about what caused the event

to occur.

The following are some of the most frequently used attributes of

the event object:

1. event. widget: The widget where the event was fired

2. event. x and event. y: Widget relative coordinates

3. event. x_root and event. y_root: Co­ordi­nates rel­a­tive to the

screen

4. event. char: The character for a keyboard event

5. event. keysym: The key symbol of a keyboard event

6. event. keycode: A keyboard event's key code

7. event. state: State of modifier keys (Shift, Control, etc.)

8. event. width and event. height: new events configure

dimensions

9. event. event: The event that occurred—either a trigger or a

hook.

134
MATS Centre for Distance and Online Education, MATS University

Notes Now, lets make an example to show you how to use these event

object properties:

Tkinter is imported as tk.

def show_event_details(event):

 details = f"""

 Event Type: {event.type}

 Widget: {event.widget}

 Position (widget): ({event.x}, {event.y})

 Position (screen): ({event.x_root}, {event.y_root})

 """

 if hasattr(event, 'char') and event.char:

 details += f"Character: {event.char}\n"

 if hasattr(event, 'keysym') and event.keysym:

 details += f"Key Symbol: {event.keysym}\n"

 if hasattr(event, 'state'):

 details += f"State: {event.state}\n"

 if hasattr(event, 'width') and hasattr(event, 'height'):

 details += f"Size: {event.width} x {event.height}\n"

event_details_label.config(text=details)

root = tk.Tk()

root.title("Event Object Properties")

root.geometry("500x400")

canvas = tk.Canvas(root, bg="lightblue", width=300, height=200)

canvas.pack(pady=20)

event_details_label = tk.Label(root, text="Interact with the canvas to

see event details",

 justify=tk.LEFT, bd=2, relief=tk.GROOVE,

padx=10, pady=10)

event_details_label.pack(fill=tk.X, padx=10)

135
MATS Centre for Distance and Online Education, MATS University

Notes # Binding different events to the canvas

canvas.bind("<Button-1>", show_event_details)

canvas.bind("<Motion>", show_event_details)

canvas.bind("<Configure>", show_event_details)

canvas.bind("<Key>", show_event_details)

Make canvas focusable to receive keyboard events

canvas.config(highlightthickness=1)

canvas.focus_set()

root.mainloop()

Here we created a canvas widget and bound some events to the

widget. When one of these events happen, a

show_event_detailsfunction is called that pulls specific pieces from

the event object and renders them in a label. In the real-time, we can

observe the properties of different event types with this property.

Command Callbacks vs. Bind Method

There are two built-in methods in Tkinter that enable it to handle

events by using a command option or a bind() method. Though both

serve the purpose of responding to user interactions, they differ in

terms of capabilities and use cases.The command option is available

only on some widgets (buttons, checkbuttons, menu items, etc.) It

takes (a function, without argument) that gets executed when the

default trigger action of the widget happens (like; clicking a button).

This technique is easier and tends to be more simple in case of simple

use-cases.Thebind() method is more flexible though and can be

applied to any widget with any event type. The bind callback function

works with an event object that holds further details about the

occasion. If you are doing more complex interactions then this

makes bind more powerful.

Here's an example comparing both approaches:

Tkinter is imported as tk

def button_command():

status_label.config(text="Button clicked using command option")

def button_bind(event):

status_label.config(text=f"Button clicked using bind method at

({event.x}, {event.y})")

136
MATS Centre for Distance and Online Education, MATS University

Notes

root = tk.Tk()

root.title("Command vs. Bind")

root.geometry("400x200")

Button using command option

cmd_button = tk.Button(root, text="Command Button",

command=button_command)

cmd_button.pack(pady=10)

Button using bind method

bind_button = tk.Button(root, text="Bind Button")

bind_button.pack(pady=10)

bind_button.bind("<Button-1>", button_bind)

status_label = tk.Label(root, text="Click either button", bd=1,

relief=tk.SUNKEN, anchor=tk.W)

status_label.pack(side=tk.BOTTOM, fill=tk.X)

root.mainloop()

We have made two buttons in this example, one with the command

choice and the other with the bind() method. Both buttons update the

status label on click, but the bind method provides more detail on

where the click took place.

Differences these approaches differ in key ways:

1. Callback parameters: Command callbacks have no parameters,

while bind callbacks receive an event object.

2. Specificity on an event: command to the default action of a

widget; bind any event type.

3. Simplicity Command is more simple for basic use cases bind

is then more flexible and informative.

In stable, simple interactions such as button clicks, using the

command option is enough and is more direct. If you want more

complex interactions or need details about the event, however, the

bind method is your best bet.

Data set Event Modifiers and Virtual Events

Tkinter can let the user be more specify on the event bindings by

using modifiers and virtual events. Modifiers are special keys (you

137
MATS Centre for Distance and Online Education, MATS University

Notes know the likes of Shift, Control, Alt) that can be used in conjunction

with other events. Virtual events are events you create to make it easy

to handle complex events.

Event Modifiers

Event patterns with modifiers to provide specific bindings.

Common modifiers include:

• Control: The key for control

• Alt: Alt key

• Shift: Shift key

• Double: Double-click

• Triple: Triple-click

• Any: Any modifier key

Hyphens separate modifiers from an event name. As an example,

means pressing and holding the Control key when clicking the left

mouse.button.

Virtual Events

irtual events are special events you define, usually by composing

other events together. They have names surrounded by double angle

brackets, such as >. This make your code and your logic is easily

readable and maintainable because other complex event patterns are

abstracted into something meaningful.

Let's create an example demonstrating modifiers and virtual events:

Tkinter is imported as tk

def handle_copy(event):

status_label.config(text="Copy action triggered (Ctrl+C)")

def handle_paste(event):

status_label.config(text="Paste action triggered (Ctrl+V)")

def handle_custom_event(event):

status_label.config(text="Custom event triggered")

root = tk.Tk()

root.title("Event Modifiers and Virtual Events")

root.geometry("400x300")

text_entry = tk.Entry(root, width=30)

text_entry.pack(pady=20)

138
MATS Centre for Distance and Online Education, MATS University

Notes

trigger_button = tk.Button(root, text="Trigger Custom Event")

trigger_button.pack(pady=10)

status_label = tk.Label(root, text="Use Ctrl+C, Ctrl+V, or the button",

bd=1, relief=tk.SUNKEN, anchor=tk.W)

status_label.pack(side=tk.BOTTOM, fill=tk.X)

Binding events with modifiers

text_entry.bind("<Control-c>", handle_copy)

text_entry.bind("<Control-v>", handle_paste)

Creating a virtual event

root.event_add("<<CustomEvent>>", "<Control-t>", "<Button-3>")

Binding the virtual event

text_entry.bind("<<CustomEvent>>", handle_custom_event)

trigger_button.bind("<Button-1>", lambda e:

root.event_generate("<<CustomEvent>>"))

root.mainloop()

In this case, we needed to create bindings for Ctrl+C and Ctrl+V

modifier combinations on a text entry widget. We have created a

virtual event called > which can be triggered either by using Ctrl+T or

right-clicking. Note: You can trigger this custom event

programmatically using the event_generate() method when the button

is clicked.This is especially useful if you want to expose event

listeners for triggering the same action in multiple ways, such as

providing keyboard shortcuts as well as menu commands for common

operations.

Event Binding Levels

Tkinter enables event binding on multiple levels such as on a widget

level on a class level or even at an application-wide level. This allows

for a more hierarchical approach to handling events across the

application.

1. Specific to widgets binding: It binds an event to a widget

instance.

2. Class type: Binds an event to all widgets of a particular class.

139
MATS Centre for Distance and Online Education, MATS University

Notes 3. Application-wide binding: Binds an event to a root window

and applies it to the entire application.

Event bindings at higher levels can be over

MCQs:

1. Which library is used in Python for MySQL database

connectivity?

a) sqlite3

b) mysql.connector

c) pandas

d) numpy

2. Which of the following is NOT a valid SQL operation?

a) CREATE

b) READ

c) UPDATE

d) DELETE

3. Which command is used to create a new table in SQL?

a) NEW TABLE

b) CREATE TABLE

c) ADD TABLE

d) INSERT TABLE

4. Which module is used for SQLite database connectivity in

Python?

a) sqlite

b) sqlite3

c) pysql

d) sqlalchemy

5. Which of the following is a valid Tkinter widget?

a) Button

b) Frame

c) Label

d) All of the above

6. Which function is used to start the Tkinter main event

loop?

a) window.start()

b) root.mainloop()

c) tk.start()

d) run.loop()

140
MATS Centre for Distance and Online Education, MATS University

Notes 7. Which method is used to insert data into a database table

using Python?

a) execute("INSERT INTO ...")

b) run("INSERT INTO ...")

c) commit("INSERT INTO ...")

d) push("INSERT INTO ...")

8. Which widget is used in Tkinter for a single-line text input

field?

a) Label

b) Text

c) Entry

d) Frame

9. What is event handling in a GUI application?

a) Displaying only text

b) Managing user interactions like button clicks

c) Running SQL queries

d) None of the above

10. Which Tkinter function is used to close a window?

a) root.quit()

b) window.close()

c) app.exit()

d) tk.stop()

Short Questions:

1. What is SQLite, and how is it different from MySQL?

2. Explain CRUD operations in a database with examples.

3. How do you connect Python to MySQL using

mysql.connector?

4. Write a Python program to create a database and a table using

SQLite.

5. What is Tkinter, and why is it used?

6. Explain the difference between Entry and Label widgets in

Tkinter.

7. How do you create and display a button in a Tkinter window?

8. What is event handling in a GUI application, and why is it

important?

9. Write a Python program to create a simple login form using

Tkinter.

141
MATS Centre for Distance and Online Education, MATS University

Notes 10. How do you fetch data from a database and display it in a GUI

application?

Long Questions:

1. Explain how to connect Python with MySQL and SQLite with

examples.

2. Write a Python program to perform CRUD operations in

SQLite.

3. Discuss the difference between SQLite and MySQL in terms

of usage and performance.

4. Write a Tkinter program to create a simple calculator using

buttons and labels.

5. Explain different Tkinter widgets (Button, Label, Entry,

Frame, Menu) with examples.

6. Write a Python program to fetch data from a database and

display it in a Tkinter window.

7. Discuss the importance of GUI applications in Python and

their real-world applications.

8. Explain the event handling mechanism in Tkinter with an

example program.

9. Write a Python program to create a student management

system with a database and GUI.

10. Discuss the advantages and disadvantages of using Tkinter for

GUI development.

142
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Python Basics

1. Lutz, M. (2023). Learning Python (6th ed.). O'Reilly Media.

2. Matthes, E. (2022). Python Crash Course (3rd ed.). No Starch

Press.

3. Sweigart, A. (2023). Automate the Boring Stuff with Python

(3rd ed.). No Starch Press.

4. Beazley, D., & Jones, B. K. (2022). Python Cookbook (4th

ed.). O'Reilly Media.

5. Ramalho, L. (2023). Fluent Python (3rd ed.). O'Reilly Media.

Chapter 2: Data Handling & Libraries

1. McKinney, W. (2023). Python for Data Analysis (3rd ed.).

O'Reilly Media.

2. VanderPlas, J. (2022). Python Data Science Handbook (2nd

ed.). O'Reilly Media.

3. Harris, C. R., Millman, K. J., & van der Walt, S. J. (2023).

NumPy: The Complete Manual. Packt Publishing.

4. Rougier, N. P. (2022). From Python to NumPy. Zenodo.

5. Hunter, J. D., & Dale, D. (2023). Matplotlib: Visualization

with Python (2nd ed.). O'Reilly Media.

Chapter 3: Database and GUI

1. Allen, G. (2022). SQLite Python: Database for Beginners.

Apress.

2. Harrison, M. (2023). Tkinter GUI Programming by Example.

Packt Publishing.

3. Phillips, D. (2022). Python 3 Object-Oriented Programming

(4th ed.). Packt Publishing.

4. Vasiliev, A. (2023). Python Database Programming. O'Reilly

Media.

5. Chaudhary, B. (2022). Tkinter GUI Application Development

Cookbook. Packt Publishing.

143

	Page 16

