
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Object Oriented Programing Concepts
Bachelor of Computer Applications (BCA)

Semester - 2

Course Introduction 1

Module 1

Object-oriented concepts

3

Unit 1: Principles of OOP, Classes and Objects 7

Unit 2: Member Functions 42

Unit 3: Array, Memory Management 49

Module 2

Functions, constructors, and destructors

78

Unit 4: Memory Allocation of Objects, Friend Function 79

Unit 5: Constructors 105

Unit 6: Destructors 116

Module 3

Operator overloading and inheritance

124

Unit 7: Operator Overloading Basics 125

Unit 8: Types of Inheritance, Inheritance Implementation 136

Unit 9: Constructors in Derived Classes and Member Classes 147

Module 4

Pointer, virtual function, and polymorphism

162

Unit 10: Pointers in C++ 164

Unit 11: Virtual Functions 171

Unit 12: Overloading and overriding 176

Module 5

Console i/o operations and file handling

190

Unit 13: Console-Based I/O Operations 193

Object Oriented Programing Concepts
 ODL BCA DSC 04

Bachelor of Computer Applications

3

Unit 14: File Handling in C++ 201

References 228

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATSUniversity, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSECOORDINATOR

Prof. (Dr.) Bhavna Narain, Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) Bhavna Narain, Professor and Mrs. Hemlata Patel, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-99-9

@MATS Centre for Distance and Online Education, MATSUniversity, Village-Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may bereproduced or transmitted or utilized or stored in

any form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

MeghanadhuduKatabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this completely depends onAUTHOR’SMANUSCRIPT.

Printedat: TheDigital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

This course provides a comprehensive understanding of Object-

Oriented programming (OOP), covering fundamental concepts,

functions handling, operator overloading, inheritance, polymorphism,

and file handling. It aims to build a strong foundation for designing

and implementing efficient object- oriented applications.

Module 1: Object Oriented Concepts

This Module introduces the fundamental principles of

Object- Oriented Programming including encapsulation,

abstraction, inheritance, and polymorphism.

Module 2: Functions, Constructors, and Destructors

A Function play a crucial role in structuring code efficiently.

This Module covers differently types of functions, function

overloading, constructors, and destructors.it emphasizes their

importance in managing object lifecycle and resource

allocation.

Module 3: Operator Overloading and Inheritance

Operator Overloading enhances the functionality of

operators to work with user-defined datatypes. This Module

explores operator overloading techniques and their

applications. Additionally, it delves into inheritance,

covering types of inheritance and their impact on code reuse

and hierarchy management.

Module 4: Pointers, Virtual Functions, and

Polymorphism

Data Pointers are essential for dynamic memory

management in OOP. This Module covers pointer concepts,

virtual functions, and polymorphism, demonstrating how

runtime behaviour can be modified dynamically though

method overriding and function pointers.

Module 5: Console I/O Operations and File Handling

The Efficient data input and output are crucial in

programming. This Module focuses on consolebased

input/output operations and file handling techniques,

including reading from and writing to files, handling

Streams, and file manipulation for storage.

1
MATS Centre for Distance and Online Education, MATS University

By This course equips learners with the necessary skills to effectively

implement Object Oriented programming principles in real words

applications.

2
MATS Centre for Distance and Online Education, MATS University

MODULE 1

OBJECT-ORIENTED CONCEPTS

LEARNING OUTCOMES

• Understand the features and structure of a C++ program.

• Learn the fundamentals of Object-Oriented Programming

(OOP) and its advantages.

• Understand the concepts of objects and classes in C++.

• Learn about member functions in a class.

• Understand the use of arrays within a class in C++.

3

Notes Unit 1: Principles of OOP, Classes and Objects

1.1 Features and Structure of C++ Program

Extending the powers of C, the strong, flexible programming

language C++ brings object-oriented elements. Originally created by

Bjarne Stroustrup in the early 1980s, C++ has become among the

most widely used programming languages nowadays. Let's examine

its salient characteristics and organizational framework.

Core Features of C++

Multi-Paradigm Support

C++ supports multiple programming paradigms, making it

exceptionally flexible:

• Procedural programming: Like C, it allows structured, top-

down code organization

• Object-oriented programming: Supports classes, inheritance,

polymorphism, and encapsulation

• Generic programming: Through templates, enabling type-

independent code

• Functional programming: With lambda expressions and

higher-order functions

This versatility allows developers to choose the most appropriate

approach for each situation rather than forcing a single paradigm.

Performance and Efficiency

• Low-level memory manipulation: Direct access to memory

through pointers

• Compile-time polymorphism: Using templates and function

overloading

• Zero-overhead principle: You don't pay for features you don't

use

• Efficient memory management: Control over allocation and

deallocation

• Inline functions: Reducing function call overhead

• RAII (Resource Acquisition Is Initialization): Efficient

resource management

These features make C++ suitable for performance-critical

applications including game development, real-time systems, and

high-frequency trading.

4
MATS Centre for Distance and Online Education, MATS University

Notes Rich Standard Library

The C++ Standard Library provides a comprehensive collection of

classes and functions:

• Containers: vector, list, map, set, etc.

• Algorithms: sort, find, transform, etc.

• Iterators: For traversing container elements

• Strings: Sophisticated string handling capabilities

• Streams: Input/output operations

• Smart pointers: For safer memory management (shared_ptr,

unique_ptr)

• Utilities: pair, tuple, optional, any, variant

• Thread support: For concurrent programming

• Regular expressions: Pattern matching functionality

Major component of the C++ Standard Library, the Standard

Template Library (STL) uses generic programming approaches to

accomplish many of these capabilities.

Backward Compatibility

C++ maintains strong compatibility with C, allowing:

• Compilation of most C code as C++

• Integration of legacy C code with new C++ code

• Use of C libraries within C++ programs

This compatibility has been instrumental in C++'s adoption and

longevity.

Modern Features

Since C++11, many modern features have been added:

• Auto type deduction: Simplifying variable declarations

• Range-based for loops: Easier container iteration

• Lambda expressions: Anonymous functions

• Move semantics: Optimizing resource transfers

• Smart pointers: Automated memory management

• Concepts (C++20): Constraints on template parameters

• Modules (C++20): Better organization of code

• Coroutines (C++20): Simplified asynchronous programming

These features have significantly modernized C++, making it more

expressive and safer while maintaining its performance

characteristics.

Structure of a C++ Program

5

Notes

A typical C++ program consists of several components:

Header Files and Includes

#include <iostream> // Standard library header

#include <vector> // Container header

#include "myheader.h" // User-defined header

The #include directive brings in declarations from:

• Standard library headers (enclosed in <>)

• User-defined headers (enclosed in quotation marks)

These headers contain declarations of functions, classes, and variables

that will be used in the program.

Namespaces

using namespace std; // Using entire namespace (generally avoided in

practice)

// Preferred approach:

using std::cout;

using std::vector;

// Or accessing with scope resolution operator:

std::string myString;

Figure 1 Structure of OOPS
[Source: https://www.istockphoto.com]

6
MATS Centre for Distance and Online Education, MATS University

Notes Namespaces prevent naming conflicts by grouping related

declarations under a common name. The Standard Library

components are found in std namespace.

Main Function

int main() {

 // Program execution begins here

 // Code statements

 return 0; // Return value indicates execution status

}

Every C++ application has to include a main() function as the

entrance point. Execution begins at the first statement in main() and

the return value indicates the program's execution status (0 typically

indicates successful execution).

Functions and Methods

// Function declaration

return_typefunction_name(parameter_list);

// Function definition

return_typefunction_name(parameter_list) {

 // Function body

 return value; // Optional, depends on return_type

}

Functions encapsulate reusable code blocks. They might be either part

of a class or stand-alone free functions.

 (methods).

Classes and Objects

// Class declaration

class ClassName {

private:

 // Private members

 int privateData;

public:

 // Constructor

ClassName(int data) : privateData(data) {}

7

Notes // Methods

 void method1() {

 // Method implementation

 }

 int method2(double parameter);

};

// Method definition outside class

int ClassName::method2(double parameter) {

 // Implementation

 return privateData;

}

// Creating objects

ClassName object1(10); // Stack allocation

ClassName* object2 = new ClassName(20); // Heap allocation

Classes are the fundamental building blocks of object-oriented

programming in C++. They encapsulate data (members) and behavior

(methods) into a single Module .

Comments

// Single-line comment

/*

 Multi-line

 comment

*/

/// Documentation comment for tools like Doxygen

Comments explain the code's purpose and functionality, making it

more maintainable.

A Complete Example

Here's a complete C++ program demonstrating these structural

elements:

// Include standard library headers

#include <iostream>

#include <string>

#include <vector>

8
MATS Centre for Distance and Online Education, MATS University

Notes

// User-defined class

class Student {

private:

 std::string name;

 int id;

 std::vector<double> grades;

public:

 // Constructor

 Student(const std::string&studentName, int studentId)

 : name(studentName), id(studentId) {}

 // Methods

 void addGrade(double grade) {

grades.push_back(grade);

 }

 double getAverageGrade() const {

 if (grades.empty()) return 0.0;

 double sum = 0.0;

 for (double grade : grades) {

 sum += grade;

 }

 return sum / grades.size();

 }

 void displayInfo() const {

 std::cout<< "Student: " << name << " (ID: " << id << ")\n";

 std::cout<< "Average Grade: " <<getAverageGrade() <<

std::endl;

 }

};

// Function declaration

void processStudents(const std::vector<Student>& students);

9

Notes // Main function - program entry point

int main() {

 // Creating objects

 Student alice("Alice Smith", 12345);

 Student bob("Bob Johnson", 67890);

 // Using object methods

alice.addGrade(85.5);

alice.addGrade(92.0);

alice.addGrade(88.5);

bob.addGrade(77.0);

bob.addGrade(81.5);

 // Storing objects in a container

 std::vector<Student>studentList = {alice, bob};

 // Function call

processStudents(studentList);

 return 0; // Indicate successful execution

}

// Function definition

void processStudents(const std::vector<Student>& students) {

 std::cout<< "Student Information:\n";

 std::cout<< "-------------------\n";

 for (const auto& student : students) {

student.displayInfo();

 std::cout<< "-------------------\n";

 }

}

This example demonstrates:

• Header inclusion

• Class definition with private data and public methods

• Function declaration and definition

• Container usage

10
MATS Centre for Distance and Online Education, MATS University

Notes • Object creation and manipulation

• Program flow through the main function

Compilation and Execution Process

Understanding how C++ programs are processed is essential:

1. Preprocessing: The preprocessor handles directives like

#include and #define

2. Compilation: The compiler translates source code into object

files

3. Linking: The linker combines object files and libraries into an

executable

4. Execution: The operating system loads and runs the

executable

This multi-stage process allows for separate compilation of program

components, facilitating modular development of large applications.

1.1 Object-Oriented Programming Concepts and Advantages

Using "objects," or instances of classes, object-oriented programming

(OOP) is a paradigm of design for computer programs and

applications. One of the first languages to become really popular with

OOP was Python. Let us investigate the main ideas and benefits of

this method.

Core OOP Concepts in C++

Classes and Objects

Classes are user-defined data types that serve as blueprints for

objects:

class Car {

Figure 2 Concept of OOP’s
[Source: https://www.shutterstock.com]

11

Notes private:

 std::string make;

 std::string model;

 int year;

 double fuelLevel;

public:

 Car(std::string mk, std::string mdl, int yr)

 : make(mk), model(mdl), year(yr), fuelLevel(100.0) {}

 void drive(double distance) {

fuelLevel -= distance * 0.05; // Simulate fuel consumption

 }

 void refuel() {

fuelLevel = 100.0;

 }

 double getFuelLevel() const {

 return fuelLevel;

 }

};

Objects are instances of classes:

Car myCar("Toyota", "Corolla", 2023);

Car yourCar("Honda", "Civic", 2022);

myCar.drive(50); // Each object maintains its own state

yourCar.drive(25);

Classes define both:

• Attributes (data members): The state of an object

• Methods (member functions): The behavior of an object

Encapsulation

Encapsulation is the bundling of data and methods that operate on that

data into a single Module (the class), while restricting direct access to

some of the object's components:

class BankAccount {

private:

12
MATS Centre for Distance and Online Education, MATS University

Notes double balance; // Private data - hidden from outside

 std::string accountNumber;

public:

 // Public interface - controlled access to private data

BankAccount(std::string accNum, double initialDeposit)

 : accountNumber(accNum), balance(initialDeposit) {}

 void deposit(double amount) {

 if (amount > 0) {

 balance += amount;

 }

 }

 bool withdraw(double amount) {

 if (amount > 0 && amount <= balance) {

 balance -= amount;

 return true;

 }

 return false;

 }

 double getBalance() const {

 return balance;

 }

};

Key elements of encapsulation:

• Access specifiers:

▪ private: Accessible only within the class

▪ protected: Accessible within the class and its derived

classes

▪ public: Accessible from anywhere

• Benefits:

▪ Protects data from unintended access and modification

▪ Enables data validation before changing state

▪ Allows implementation changes without affecting

client code

13

Notes ▪ Reduces system complexity by hiding implementation

details

Inheritance

// Base class

class Vehicle {

protected:

 std::string make;

 std::string model;

 int year;

public:

 Vehicle(std::string mk, std::string mdl, int yr)

 : make(mk), model(mdl), year(yr) {}

 void displayInfo() const {

 std::cout<< year << " " << make << " " << model;

 }

 virtual void startEngine() {

 std::cout<< "Vehicle engine started\n";

 }

};

// Derived class

class ElectricVehicle : public Vehicle {

private:

 int batteryCapacity;

public:

ElectricVehicle(std::string mk, std::string mdl, int yr, int battery)

 : Vehicle(mk, mdl, yr), batteryCapacity(battery) {}

 void displayInfo() const {

 Vehicle::displayInfo(); // Call base class method

 std::cout<< " (Battery: " <<batteryCapacity<< " kWh)\n";

 }

 // Override base class method

14
MATS Centre for Distance and Online Education, MATS University

Notes void startEngine() override {

 std::cout<< "Electric motor initialized\n";

 }

 void chargeBattery() {

 std::cout<< "Charging battery...\n";

 }

};

Types of inheritance in C++:

• Single inheritance: A class inherits from one base class

• Multiple inheritance: A class inherits from multiple base

classes

• Multilevel inheritance: A class inherits from a derived class

• Hierarchical inheritance: Multiple classes inherit from a

single base class

• Hybrid inheritance: Combination of multiple inheritance

types

Benefits of inheritance:

• Code reusability

• Establishment of hierarchical relationships

• Creation of specialized classes from general ones

• Implementation of "is-a" relationships

Polymorphism

Polymorphism lets objects of many kinds be handled as objects of a

shared base class, with varied behaviors depending on their real

derived type:

// Base class with virtual function

class Shape {

public:

 virtual double area() const = 0; // Pure virtual function

 virtual void draw() const {

 std::cout<< "Drawing a shape\n";

 }

 virtual ~Shape() {} // Virtual destructor

};

// Derived classes

15

Notes class Circle : public Shape {

private:

 double radius;

public:

 Circle(double r) : radius(r) {}

 double area() const override {

 return 3.14159 * radius * radius;

 }

 void draw() const override {

 std::cout<< "Drawing a circle\n";

 }

};

class Rectangle : public Shape {

private:

 double width, height;

public:

 Rectangle(double w, double h) : width(w), height(h) {}

 double area() const override {

 return width * height;

 }

 void draw() const override {

 std::cout<< "Drawing a rectangle\n";

 }

};

// Using polymorphism

void processShape(const Shape& shape) {

 std::cout<< "Area: " <<shape.area() << std::endl;

shape.draw();

}

16
MATS Centre for Distance and Online Education, MATS University

Notes int main() {

 Circle circle(5.0);

 Rectangle rectangle(4.0, 6.0);

processShape(circle); // Uses Circle's implementations

processShape(rectangle); // Uses Rectangle's implementations

 // Using polymorphism with pointers

 Shape* shapes[] = {

 new Circle(3.0),

 new Rectangle(2.0, 5.0)

 };

 for (Shape* shape : shapes) {

processShape(*shape);

 delete shape; // Clean up dynamic memory

 }

 return 0;

}

C++ supports two main types of polymorphism:

1. Compile-time (static) polymorphism:

• Function overloading: Multiple functions with the

same name but different parameters

• Operator overloading: Customizing operator

behavior for user-defined types

• Template specialization: Different implementations

based on type

2. Runtime (dynamic) polymorphism:

• Virtual functions: Methods that can be overridden in

derived classes

• Pure virtual functions: Abstract methods that must be

implemented by derived classes

• Virtual destructors: Ensure proper cleanup of derived

objects

Benefits of polymorphism:

• Flexibility in designing and extending object hierarchies

17

Notes • Uniform interface for different implementations

• Code that can work with new derived classes without

modification

• Support for the "open-closed principle" (open for extension,

closed for modification)

Abstraction

Abstraction is the simplification of difficult systems by use of

classifications based on fundamental characteristics and behaviors:

// Abstract class (contains at least one pure virtual function)

class DatabaseConnection {

protected:

 std::string connectionString;

 bool isConnected;

public:

DatabaseConnection(const std::string&connStr)

 : connectionString(connStr), isConnected(false) {}

 // Pure virtual functions - must be implemented by derived classes

 virtual bool connect() = 0;

 virtual bool disconnect() = 0;

 virtual bool executeQuery(const std::string& query) = 0;

 virtual ~DatabaseConnection() {

 if (isConnected) disconnect();

 }

 bool isActive() const {

 return isConnected;

 }

};

// Concrete implementation

class MySQLConnection : public DatabaseConnection {

public:

MySQLConnection(const std::string&connStr)

 : DatabaseConnection(connStr) {}

18
MATS Centre for Distance and Online Education, MATS University

Notes

 bool connect() override {

 // MySQL-specific connection logic

 std::cout<< "Connecting to MySQL database...\n";

isConnected = true;

 return true;

 }

 bool disconnect() override {

 // MySQL-specific disconnection logic

 if (isConnected) {

 std::cout<< "Disconnecting from MySQL database...\n";

isConnected = false;

 return true;

 }

 return false;

 }

 bool executeQuery(const std::string& query) override {

 if (!isConnected) return false;

 std::cout<< "Executing MySQL query: " << query << std::endl;

 return true;

 }

};

19

Notes Key aspects of abstraction:

• Hiding implementation details: Focus on what an object

does, not how it does it

• Abstract classes: Classes containing at least one pure virtual

function

• Interfaces: Pure abstract classes (all functions are pure

virtual)

• Implementation independence: Client code depends on

abstract interfaces, not concrete implementations

Advantages of Object-Oriented Programming

Modularity

OOP promotes modularity by encapsulating code and data into self-

contained Module s:

• Benefits:

▪ Easier maintenance and debugging

▪ Independent development of modules

▪ Code can be understood in smaller, manageable pieces

▪ Facilitates team development

▪ Simplifies testing

// Example of a self-contained module

class Logger {

private:

 std::string logFile;

 std::ofstreamfileStream;

LogLevelminLevel;

 void formatLogMessage(LogLevel level, const std::string&

message);

public:

enumLogLevel { DEBUG, INFO, WARNING, ERROR, CRITICAL

};

 Logger(const std::string& filename, LogLevel level = INFO);

 ~Logger();

 void setLogLevel(LogLevel level);

 void log(LogLevel level, const std::string& message);

20
MATS Centre for Distance and Online Education, MATS University

Notes void debug(const std::string& message);

 void info(const std::string& message);

 void warning(const std::string& message);

 void error(const std::string& message);

 void critical(const std::string& message);

};

Reusability

OOP facilitates code reuse through inheritance, composition, and

libraries:

• Inheritance-based reuse: Deriving new classes from existing

ones

• Composition-based reuse: Building classes that contain

instances of other classes

• Class libraries: Collections of reusable classes for common

functionality

// Example of composition-based reuse

class Address {

public:

 std::string street;

 std::string city;

 std::string state;

 std::string zipCode;

 Address(std::string st, std::string c, std::string s, std::string z)

 : street(st), city(c), state(s), zipCode(z) {}

};

class Person {

protected:

 std::string name;

 Address homeAddress; // Composition

public:

 Person(std::string n, Address addr)

 : name(n), homeAddress(addr) {}

 void displayInfo() const {

 std::cout<< "Name: " << name << "\n";

21

Notes std::cout<< "Address: " <<homeAddress.street<< ", "

<<homeAddress.city<< ", " <<homeAddress.state

<< " " <<homeAddress.zipCode<< std::endl;

 }

};

class Employee : public Person { // Inheritance

private:

 int employeeId;

 double salary;

 Address workAddress; // Another instance of Address

(composition)

public:

 Employee(std::string n, Address home, int id, double sal, Address

work)

 : Person(n, home), employeeId(id), salary(sal),

workAddress(work) {}

 void displayEmployeeInfo() const {

displayInfo(); // Reuse Person's method

 std::cout<< "Employee ID: " <<employeeId<< "\n";

 std::cout<< "Work Address: " <<workAddress.street<< ", "

<<workAddress.city<< ", " <<workAddress.state

<< " " <<workAddress.zipCode<< std::endl;

 }

};

Maintainability

OOP improves code maintainability through:

• Encapsulation: Changes to implementation don't affect client

code

• Single Responsibility Principle: Classes have one reason to

change

• Loose coupling: Limited dependencies between components

• High cohesion: Related functionality is grouped together

// Before refactoring (poor maintainability)

class UserManager {

public:

22
MATS Centre for Distance and Online Education, MATS University

Notes void registerUser(std::string username, std::string password) {

 // Validate input

 if (username.empty() || password.empty()) return;

 // Hash password

 std::string hashedPassword = hashFunction(password);

 // Store in database

 std::string query = "INSERT INTO users (username, password)

VALUES ('"

 + username + "', '" + hashedPassword + "')";

executeSQL(query);

 // Send welcome email

 std::string emailBody = "Welcome, " + username + "!";

sendEmail(username + "@example.com", "Welcome", emailBody);

 // Log activity

logActivity("User registered: " + username);

 }

private:

 std::string hashFunction(const std::string& input) { /* ... */ }

 void executeSQL(const std::string& query) { /* ... */ }

 void sendEmail(const std::string& to, const std::string& subject,

const std::string& body) { /* ... */ }

 void logActivity(const std::string& activity) { /* ... */ }

};

// After refactoring (better maintainability)

class PasswordHasher {

public:

 std::string hashPassword(const std::string& password) { /* ... */ }

};

class DatabaseManager {

public:

23

Notes void storeUser(const std::string& username, const

std::string&hashedPassword) { /* ... */ }

};

class EmailService {

public:

 void sendWelcomeEmail(const std::string& username) { /* ... */ }

};

class ActivityLogger {

public:

 void logUserRegistration(const std::string& username) { /* ... */ }

};

class UserManager {

private:

PasswordHasherpasswordHasher;

DatabaseManagerdatabaseManager;

EmailServiceemailService;

ActivityLoggeractivityLogger;

public:

 void registerUser(std::string username, std::string password) {

 if (username.empty() || password.empty()) return;

 std::string hashedPassword =

passwordHasher.hashPassword(password);

databaseManager.storeUser(username, hashedPassword);

emailService.sendWelcomeEmail(username);

activityLogger.logUserRegistration(username);

 }

};

Extensibility

OOP designs are naturally extensible:

• Open-Closed Principle: Classes are open for extension but

closed for modification

• Interface-based programming: Code to interfaces, not

implementations

24
MATS Centre for Distance and Online Education, MATS University

Notes • Pluggable components: New implementations can be

substituted without changing client code

// Base plugin interface

class TextProcessor {

public:

 virtual void processText(std::string& text) = 0;

 virtual ~TextProcessor() {}

};

// Concrete implementations

class SpellChecker : public TextProcessor {

public:

 void processText(std::string& text) override {

 std::cout<< "Spell checking text...\n";

 // Implementation

 }

};

class GrammarChecker : public TextProcessor {

public:

 void processText(std::string& text) override {

 std::cout<< "Grammar checking text...\n";

 // Implementation

 }

};

class PlagiarismDetector : public TextProcessor {

public:

 void processText(std::string& text) override {

 std::cout<< "Detecting plagiarism...\n";

 // Implementation

 }

};

// Extensible document processor using plugins

class DocumentProcessor {

private:

 std::vector<std::unique_ptr<TextProcessor>> processors;

25

Notes

public:

 void addProcessor(std::unique_ptr<TextProcessor> processor) {

processors.push_back(std::move(processor));

 }

 void processDocument(std::string& document) {

 for (auto& processor : processors) {

 processor->processText(document);

 }

 }

};

// Usage

int main() {

DocumentProcessordocProcessor;

 // Add existing processors

docProcessor.addProcessor(std::make_unique<SpellChecker>());

docProcessor.addProcessor(std::make_unique<GrammarChecker>());

 // Later, add a new processor without changing DocumentProcessor

docProcessor.addProcessor(std::make_unique<PlagiarismDetector>())

;

 std::string document = "Sample text to process";

docProcessor.processDocument(document);

 return 0;

}

Reliability and Robustness

OOP enhances software reliability through:

• Data hiding: Prevents unauthorized access and modification

• Strong typing: Catch errors at compile time

• Exception handling: Structured approach to error

management

26
MATS Centre for Distance and Online Education, MATS University

Notes • Invariant maintenance: Classes can ensure their data remains

valid

// Example of robust class design

class RationalNumber {

private:

 int numerator;

 int denominator;

 // Helper to reduce fraction to lowest terms

 void reduce() {

 if (numerator == 0) {

 denominator = 1;

 return;

 }

 int gcd = findGCD(std::abs(numerator), std::abs(denominator));

 numerator /= gcd;

 denominator /= gcd;

 // Ensure denominator is positive

 if (denominator < 0) {

 numerator = -numerator;

 denominator = -denominator;

 }

 }

 // Calculate greatest common divisor

 int findGCD(int a, int b) const {

 while (b != 0) {

 int temp = b;

 b = a % b;

 a = temp;

 }

 return a;

 }

public:

 // Constructors with validation

27

Notes RationalNumber(int num = 0, int denom = 1) {

 if (denom == 0) {

 throw std::invalid_argument("Denominator cannot be zero");

 }

 numerator = num;

 denominator = denom;

 reduce();

 }

 // Arithmetic operations

RationalNumber add(const RationalNumber& other) const {

 int num = numerator * other.denominator + other.numerator *

denominator;

 int denom = denominator * other.denominator;

 return RationalNumber(num, denom);

 }

 // More operations...

 // Safe access methods

 int getNumerator() const { return numerator; }

 int getDenominator() const { return denominator; }

 double toDouble() const { return static_cast<double>(numerator) /

denominator; }

 std::string toString() const {

 if (denominator == 1) {

 return std::to_string(numerator);

 }

 return std::to_string(numerator) + "/" +

std::to_string(denominator);

 }

};

Real-World Modeling

OOP naturally maps to real-world entities and relationships:

• Object correspondence: Software objects represent real

entities

28
MATS Centre for Distance and Online Education, MATS University

Notes • Natural hierarchies: Inheritance models "is-a" relationships

• Has-a relationships: Composition models containment

• Behavior modeling: Methods capture actions and operations

// Real-world university modeling example

class Person {

protected:

 std::string name;

 int age;

 std::string id;

public:

 Person(std::string n, int a, std::string i)

 : name(n), age(a), id(i) {}

 virtual void displayInfo() const {

 std::cout<< "Name: " << name << ", ID: " << id << std::endl;

 }

 virtual ~Person() {}

};

class Student : public Person {

private:

 std::string major;

 double gpa;

 std::vector<std::string>enrolledCourses;

public:

 Student(std::string n, int a, std::string i, std::string m)

 : Person(n, a, i), major(m), gpa(0.0) {}

 void enrollInCourse(const std::string& course) {

enrolledCourses.push_back(course);

 }

 void displayInfo() const override {

 Person::displayInfo();

 std::cout<< "Type: Student, Major: " << major << std::endl;

29

Notes std::cout<< "Enrolled courses: ";

 for (const auto& course : enrolledCourses) {

 std::cout<< course << " ";

 }

 std::cout<< std::endl;

 }

};

class Professor : public Person {

private:

 std::string department;

 std::vector<std::string>taughtCourses;

public:

 Professor(std::string n, int a, std::string i, std::string d)

 : Person(n, a, i), department(d) {}

 void assignCourse(const std::string& course) {

taughtCourses.push_back(course);

 }

 void displayInfo() const override {

 Person::displayInfo();

 std::cout<< "Type: Professor, Department: " << department <<

std::endl;

 std::cout<< "Teaching: ";

 for (const auto& course : taughtCourses) {

 std::cout<< course << " ";

 }

 std::cout<< std::endl;

 }

};

class Course {

private:

 std::string courseCode;

 std::string title;

 Professor* instructor;

30
MATS Centre for Distance and Online Education, MATS University

Notes std::vector<Student*> students;

public:

 Course(std::string code, std::string t, Professor* prof)

 : courseCode(code), title(t), instructor(prof) {

 if (instructor) {

 instructor->assignCourse(courseCode);

 }

 }

 void addStudent(Student* student) {

students.push_back(student);

 student->enrollInCourse(courseCode);

 }

 void displayCourseInfo() const {

 std::cout<< "Course: " <<courseCode<< " - " << title <<

std::endl;

 if (instructor) {

 std::cout<< "Taught by: " << instructor->getName() <<

std::endl;

 }

 std::cout<< "Enrolled students: " <<students.size() << std::endl;

 }

};

class Department {

private:

 std::string name;

 std::vector<Professor*> faculty;

 std::vector<Course*> offerings;

public:

 Department(const std::string& n) : name(n) {}

 void addProfessor(Professor* prof) {

faculty.push_back(prof);

 }

31

Notes

 void addCourse(Course* course) {

offerings.push_back(course);

 }

 void displayDepartmentInfo() const {

 std::cout<< "Department: " << name << std::endl;

 std::cout<< "Number of faculty: " <<faculty.size() << std::endl;

 std::cout<< "Number of courses: " <<offerings.size() <<

std::endl;

 }

};

class University {

private:

 std::string name;

 std::vector<Department*> departments;

public:

 University(const std::string& n) : name(n) {}

 void addDepartment(Department* dept) {

departments.push_back(dept);

 }

 void displayUniversityInfo() const {

 std::cout<< "University: " << name << std::endl;

 std::cout<< "Departments:

1.2 Object and Class

What is an Object?

An object is a real-world entity that has two main properties:

• State (Attributes/Data Members): The characteristics of an

object (e.g., color, model, speed of a Car object).

• Behavior (Methods/Member Functions): The actions an

object can perform (e.g., startEngine (), accelerate() for a Car

object).

Example of an Object:

32
MATS Centre for Distance and Online Education, MATS University

Notes A Car object has attributes like color, brand, model, speed, and

behaviors like start(), brake(), accelerate(), etc.

An object is an instance of a class. It represents a specific entity with

its own unique attribute values.

33

Notes Example of an Object in C++

cpp

Copy

Edit

int main() {

 Car car1; // Creating an object of class Car

 car1.brand = "Toyota";

 car1.model = "Corolla";

 car1.speed = 0;

 car1.accelerate(50);

 car1.display();

 return 0;

}

Table 1.1: Relationship between Class and Object

Class (Blueprint) Object (Instance of Class)

Defines attributes and behavior

Stores actual data and

executes behavior

Acts as a template Created based on the class

Exists once in the program

Multiple objects can be

created from one class

An object is an instance of a class. Using a class, multiple objects can

be created, each with its own values and behavior.

Example in C++

cpp

#include <iostream>

using namespace std;

class Car {

private:

 string brand;

 int speed;

public:

 // Constructor

 Car(string b, int s) {

 brand = b;

34
MATS Centre for Distance and Online Education, MATS University

Notes speed = s;

 }

 // Member function

 void showDetails() {

cout<< "Brand: " << brand << ", Speed: " << speed << " km/h"

<<endl;

 }

};

int main() {

 Car car1("Toyota", 120);

 Car car2("Honda", 140);

 car1.showDetails();

 car2.showDetails();

 return 0;

}

Output:

yaml

Brand: Toyota, Speed: 120 km/h

Brand: Honda, Speed: 140 km/h

What is a Class?

A class is a blueprint/template for creating objects. It defines:

• The attributes (data members) an object will have.

• The methods (functions) the object can perform.

Example in C++

Cpp

class Car {

private:

 string brand;

 string model;

 int speed;

public:

 // Constructor

 Car(string b, string m, int s) {

 brand = b;

35

Notes model = m;

 speed = s

 }

 // Method to accelerate

void accelerate(int value) {

 speed += value;

}

 // Method to display details

void display() {

cout<< "Brand: " << brand << ", Model: " << model << ", Speed: "

<< speed <<endl

 }

};

int main() {

 Car car1("Toyota", "Corolla", 0); // Creating an object

 car1.accelerate(50);

car1.display();

 return 0;

}

A class is a blueprint or template that defines the structure and

behavior of objects. It contains attributes (data members) and methods

(functions) that define how the object behaves.

Example of a Class in C++

Cp

class Car {

public:

 string brand;

string model;

 int speed;

 void accelerate(int value) {

 speed += value;

 }

 void display() {

cout<< "Brand: " << brand << ", Model: " << model << ", Speed: "

<< speed << " km/h" <<endl;

36
MATS Centre for Distance and Online Education, MATS University

Notes }

};

Here, Car is a class with three attributes (brand, model, speed) and

two methods (accelerate() and display()). A class is a blueprint or

template used to create objects. It groups data (attributes) and

functions (member functions) that operate on that data.

37

Notes Unit 2: Member Functions

1.4 Member Functions

What are Member Functions?

Member functions are functions defined inside a class that define the

behavior of objects.

Types of Member Functions

• Simple Member Functions: Perform basic actions.

• Inline Functions: Defined inside the class for efficiency.

• Const Functions: Do not modify class attributes.

• Virtual Functions: Used for polymorphism in inheritance.

• Pure Virtual Functions: Used in abstract classes.

• Static Member Functions: Belong to the class, not to any

object.

• Function Overloading: Multiple functions with the same

name but different parameters.

• Function Overriding: Redefining a function in a derived

class.

• Simple Member Functions – Basic functions that perform

specific tasks.

• Inline Functions – Defined inside the class for efficiency.

• Const Functions – Cannot modify class attributes.

• Virtual Functions – Used for polymorphism in inheritance.

• Pure Virtual Functions – Used in abstract classes.

• Static Member Functions – Belong to the class, not an

object.

• Function Overloading – Multiple functions with the same

name but different parameters.

• Function Overriding – Redefining a function in a derived

class.

Example of Member Functions

Defining Member Functions Inside a Class

cpp

Copy

Edit

class Car {

public:

 int speed;

38
MATS Centre for Distance and Online Education, MATS University

Notes

 void accelerate(int value) {

 speed += value;

 }

};

Defining Member Functions Outside a Class

cpp

Copy

Edit

class Car {

public:

 int speed;

 void accelerate(int value); // Function prototype

};

// Function definition outside the class using ::

void Car::accelerate(int value) {

 speed += value;

}

Virtual and Pure Virtual Functions (Polymorphism Example)

cpp

Copy

Edit

class Vehicle {

public:

 virtual void honk() { // Virtual function

cout<< "Vehicle Honk!" <<endl;

 }

};

class Car : public Vehicle {

public:

 void honk() override { // Function Overriding

cout<< "Car Honk!" <<endl;

 }

};

If we use Vehicle *v = new Car(); v->honk();, it will call Car’s honk()

method due to dynamic binding.

39

Notes A member function is a function defined inside a class. It performs

operations on the class’s attributes.

Defining Member Functions Inside a Class

cpp

class Car {

public:

 int speed;

 void accelerate(int value) {

 speed += value;

 }

};

Member functions are functions defined within a class that operate

on the objects of that class.

cpp

class Rectangle {

public:

 int length, width;

 void setValues(int l, int w) {

 length = l;

 width = w;

 }

 int area() {

 return length * width;

 }

};

Defining Member Functions Outside a Class

cpp

class Car {

public:

 int speed;

 void accelerate(int value); // Function prototype

};

// Function definition outside the class using ::

void Car::accelerate(int value) {

40
MATS Centre for Distance and Online Education, MATS University

Notes speed += value;

}

cpp

#include <iostream>

using namespace std;

class Rectangle {

private:

 int length, width;

public:

 void setValues(int, int);

 int area();

};

// Defining member functions outside the class

void Rectangle::setValues(int l, int w) {

 length = l;

 width = w;

}

int Rectangle::area() {

 return length * width;

}

int main() {

 Rectangle rect;

rect.setValues(5, 10);

cout<< "Area: " <<rect.area() <<endl;

 return 0;

}

Virtual and Pure Virtual Functions (Polymorphism Example)

cpp

class Vehicle {

public:

 virtual void honk() { // Virtual function

cout<< "Vehicle Honk!" <<endl;

 }

41

Notes };

class Car : public Vehicle {

public:

 void honk() override { // Function Overriding

cout<< "Car Honk!" <<endl;

 }

};

If we use Vehicle *v = new Car(); v->honk();, it will call Car’s

honk() method due to dynamic binding.

Output:

makefile

Area: 50

Constructors and Destructors

(A) Constructor

A constructor is a special function that gets called automatically

when an object of a class is created.

(1) Default Constructor

cpp

class Car {

public:

 Car() { // No parameters

cout<< "Car object created!" <<endl;

 }

};

(2) Parameterized Constructor

cpp

class Car {

private:

 string brand;

public:

 Car(string b) { // Constructor with one parameter

 brand = b;

 }

 void showBrand() {

cout<< "Car Brand: " << brand <<endl;

42
MATS Centre for Distance and Online Education, MATS University

Notes }

};

(3) Copy Constructor

cpp

class Car {

private:

 string brand;

public:

 Car(string b) {

 brand = b;

 }

 Car(const Car& c) { // Copy constructor

 brand = c.brand;

 }

 void showBrand() {

cout<< "Car Brand: " << brand <<endl;

 }

};

(B) Destructor

A destructor is a special function that is automatically called when an

object is destroyed.

Example of Destructor in C++

cpp

class Car {

public:

 Car() {

cout<< "Car object created!" <<endl;

 }

 ~Car() { // Destructor

cout<< "Car object destroyed!" <<endl;

 }

};

43

Notes Constructors and Destructors in Java

Constructor in Java

java

class Car {

 String brand;

 Car(String b) { // Constructor

 brand = b;

 }

 void showBrand() {

System.out.println("Car Brand: " + brand);

 }

 public static void main(String[] args) {

 Car car1 = new Car("Toyota");

 car1.showBrand();

 }

}

Destructor in Java (Using Finalizer)

class Car {

 protected void finalize() throws Throwable {

System.out.println("Car object is being destroyed");

 }

 public static void main(String[] args) {

 Car car = new Car();

 car = null; // Mark object for garbage collection

System.gc(); // Request garbage collection

 }

}

44
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Array, Memory Management

1.5 Array within the Class

The first and one of the basic concepts of OOP have been the

inclusion of arrays into a class structure. Embedding array as class

members allows us to create powerful data containers capable of

holding collections of values, all with the added benefits of

encapsulation, inheritance, and polymorphism that class members

bring to the table. This helps developers to write a very good

structured code, flexible and manageable code infrastructure that can

perform complex operations on data relationships.

Basic Concepts

What is an Array?

It means that an array is series of element which usually be stored in

memory locations that are placed one after another directly. It

provides a way to store and manipulate multiple values in a single

variable name, with individual elements accessed via indices.

What is a Class?

In object-oriented programming, a class is a blueprint for creating

objects. It specifies the properties (attributes) and behaviors (methods)

that objects of that class will have. Classes are used to organize the

data functionality that you require.

Arrays as Class Members

Integrating arrays within a class means that we define an array as a

member variable (or attribute) of that class. V simple app that can

also be used as a tiny example app for data collection.

Implementation Approaches

Static Arrays within Classes

Static arrays have fixed sizes determined at compile time. When

included within a class, they provide a predictable memory footprint

for each object instance.

public class StudentRoster {

 private String className;

 private String[] studentNames = new String[30]; // Fixed size array

 private int currentSize = 0;

 public void addStudent(String name) {

 if (currentSize<studentNames.length) {

45

Notes studentNames[currentSize] = name;

currentSize++;

 }

 }

 public String getStudent(int index) {

 if (index >= 0 && index <currentSize) {

 return studentNames[index];

 }

 return null;

 }

}

Here, a given StudentRoster object has an array of size 30 that stores

names of students. The class contains methods to add and get student

information in a safe manner.

Dynamic Arrays within Classes

Dynamic arrays, on the other hand, can grow and shrink during

runtime, providing flexibility when we do not know in advance how

many elements we are going to have. In different programming

languages, this gets implemented as built-in collection classes.

class ShoppingCart:

 def __init__(self):

self.items = [] # Dynamic array (list in Python)

 def add_item(self, item_name, price):

self.items.append({"name": item_name, "price": price})

 def remove_item(self, index):

 if 0 <= index <len(self.items):

 return self.items.pop(index)

 return None

 def calculate_total(self):

 return sum(item["price"] for item in self.items)

46
MATS Centre for Distance and Online Education, MATS University

Notes This Python ShoppingCart class maintains a dynamic list of items,

allowing for an unlimited number of additions and removals.

Multi-dimensional Arrays

Classes can also contain multi-dimensional arrays to represent more

complex data structures, such as matrices or grids.

class GameBoard {

private:

 char board[3][3]; // 3x3 grid for tic-tac-toe

public:

GameBoard() {

 // Initialize empty board

 for (int i = 0; i< 3; i++) {

 for (int j = 0; j < 3; j++) {

 board[i][j] = ' ';

 }

 }

 }

 bool makeMove(int row, int col, char player) {

 if (row >= 0 && row < 3 && col >= 0 && col < 3 &&

board[row][col] == ' ') {

 board[row][col] = player;

 return true;

 }

 return false;

 }

 char getCell(int row, int col) {

 if (row >= 0 && row < 3 && col >= 0 && col < 3) {

 return board[row][col];

 }

 return '\0';

 }

};

This C++ class uses a 2D array to represent a tic-tac-toe board, with

methods to make moves and retrieve cell values.

47

Notes Memory Management Considerations

Stack vs. Heap Allocation

When using arrays within classes, understanding memory allocation is

crucial:

• Stack allocation: Arrays with fixed sizes declared directly

within the class typically use stack memory, which is

automatically managed but limited in size.

• Heap allocation: Dynamically allocated arrays use heap

memory, which requires manual management in languages

without garbage collection but offers more flexibility in size.

class DataProcessor {

private:

 int stackArray[100]; // Stack-allocated fixed-size array

 int* heapArray; // Pointer for heap-allocated array

 int heapSize;

public:

DataProcessor(int size) {

heapSize = size;

heapArray = new int[size]; // Heap allocation

 }

 ~DataProcessor() {

 delete[] heapArray; // Manual cleanup required in C++

 }

};

In this C++ example, the class manages both a stack-allocated fixed

array and a heap-allocated dynamic array, including proper cleanup in

the destructor.

Reference vs. Value Semantics

Arrays within classes can follow either reference or value semantics,

depending on the language:

• In languages like Java and Python, arrays are reference types,

so copying an object with an array member typically creates a

shallow copy.

• In languages like C++, arrays can follow value semantics if

explicitly copied.

public class ArrayHolder {

48
MATS Centre for Distance and Online Education, MATS University

Notes private int[] numbers;

 public ArrayHolder(int[] initialNumbers) {

this.numbers = initialNumbers; // Reference is copied, not the array

contents

 }

 // Method to create a deep copy

 public ArrayHoldercreateDeepCopy() {

ArrayHolder copy = new ArrayHolder(new int[numbers.length]);

System.arraycopy(numbers, 0, copy.numbers, 0, numbers.length);

 return copy;

 }

}

This Java class demonstrates the reference semantics of arrays and

provides a method for deep copying when needed.

Design Patterns Using Arrays in Classes

Iterator Pattern

The Iterator pattern allows sequential access to elements without

exposing the underlying implementation. Classes containing arrays

often implement iterators to provide safe traversal.

public class CustomCollection {

 private String[] elements;

 private int size;

 public CustomCollection(int capacity) {

 elements = new String[capacity];

 size = 0;

 }

 public void add(String element) {

 if (size <elements.length) {

 elements[size++] = element;

 }

 }

 public Iterator getIterator() {

 return new CollectionIterator();

49

Notes }

 // Inner iterator class

 private class CollectionIterator implements Iterator {

 private int currentIndex = 0;

 @Override

 public booleanhasNext() {

 return currentIndex< size;

 }

 @Override

 public String next() {

 if (!hasNext()) {

 return null;

 }

 return elements[currentIndex++];

 }

 }

}

This implementation allows clients to traverse the collection without

direct access to the array.

Composite Pattern

Arrays within classes can facilitate the Composite pattern, which

composes objects into tree structures to represent part-whole

hierarchies.

public class Department {

 private String name;

 private Employee[] employees;

 private int employeeCount;

 private Department[] subDepartments;

 private int subDepartmentCount;

 public Department(String name, int maxEmployees, int

maxSubDepts) {

 this.name = name;

 employees = new Employee[maxEmployees];

subDepartments = new Department[maxSubDepts];

50
MATS Centre for Distance and Online Education, MATS University

Notes }

 public void addEmployee(Employee emp) {

 if (employeeCount<employees.length) {

 employees[employeeCount++] = emp;

 }

 }

 public void addSubDepartment(Department dept) {

 if (subDepartmentCount<subDepartments.length) {

subDepartments[subDepartmentCount++] = dept;

 }

 }

 public int getTotalEmployeeCount() {

 int total = employeeCount;

 for (int i = 0; i<subDepartmentCount; i++) {

 total += subDepartments[i].getTotalEmployeeCount();

 }

 return total;

 }

}

This Department class uses arrays to manage both employees and sub-

departments, creating a hierarchical structure.

Practical Applications

Data Structures Implementation

Arrays within classes form the foundation of many custom data

structures, such as stacks, queues, and hash tables.

public class Stack<T> {

 private Object[] elements;

 private int top;

 private static final int DEFAULT_CAPACITY = 10;

 public Stack() {

 elements = new Object[DEFAULT_CAPACITY];

 top = -1;

 }

51

Notes public void push(T item) {

 if (top == elements.length - 1) {

 // Resize array if full

 Object[] newElements = new Object[elements.length * 2];

System.arraycopy(elements, 0, newElements, 0, elements.length);

 elements = newElements;

 }

 elements[++top] = item;

 }

 @SuppressWarnings("unchecked")

 public T pop() {

 if (isEmpty()) {

 throw new EmptyStackException();

 }

 T item = (T) elements[top];

 elements[top--] = null; // Help garbage collection

 return item;

 }

 public booleanisEmpty() {

 return top == -1;

 }

}

This generic stack implementation encapsulates an array, hiding the

internal representation while providing a clean interface.

Buffering and Caching

Arrays in classes are ideal for implementing buffers and caches that

temporarily store data.

public class CircularBuffer<T> {

 private Object[] buffer;

 private int readIndex;

 private int writeIndex;

 private int size;

 private int capacity;

 public CircularBuffer(int capacity) {

this.capacity = capacity;

52
MATS Centre for Distance and Online Education, MATS University

Notes buffer = new Object[capacity];

readIndex = 0;

writeIndex = 0;

 size = 0;

 }

 public void write(T item) {

 if (size == capacity) {

 // Overwrite oldest item

readIndex = (readIndex + 1) % capacity;

 size--;

 }

 buffer[writeIndex] = item;

writeIndex = (writeIndex + 1) % capacity;

 size++;

 }

 @SuppressWarnings("unchecked")

 public T read() {

 if (size == 0) {

 return null;

 }

 T item = (T) buffer[readIndex];

readIndex = (readIndex + 1) % capacity;

 size--;

 return item;

 }

 public booleanisEmpty() {

 return size == 0;

 }

 public booleanisFull() {

 return size == capacity;

 }

}

53

Notes This circular buffer class uses an array to efficiently store and retrieve

data in a first-in-first-out manner, with automatic overwriting of the

oldest data when full.

Game Development

Arrays within classes are essential in game development for

representing game state, character attributes, and level designs.

class Battlefield:

 def __init__(self, width, height):

self.width = width

self.height = height

self.terrain = [[0 for _ in range(width)] for _ in range(height)] # 2D

array for terrain

self.Module s = [[None for _ in range(width)] for _ in range(height)]

2D array for Module s

 def place_terrain(self, terrain_type, x, y):

 if 0 <= x <self.width and 0 <= y <self.height:

self.terrain[y][x] = terrain_type

 def place_Module (self, Module , x, y):

 if 0 <= x <self.width and 0 <= y <self.height and self.Module

s[y][x] is None:

self.Module s[y][x] = Module

 return True

 return False

 def move_Module (self, from_x, from_y, to_x, to_y):

 if (0 <= from_x<self.width and 0 <= from_y<self.height and

 0 <= to_x<self.width and 0 <= to_y<self.height and

self.Module s[from_y][from_x] is not None and

self.Module s[to_y][to_x] is None):

self.Module s[to_y][to_x] = self.Module s[from_y][from_x]

self.Module s[from_y][from_x] = None

 return True

 return False

54
MATS Centre for Distance and Online Education, MATS University

Notes This Battlefield class uses two 2D arrays to represent the terrain and

Module positions in a game, with methods to manipulate these

elements.

Advanced Topics

Thread Safety

When using arrays in multi-threaded environments, synchronization

becomes essential to prevent data corruption.

public class ThreadSafeBuffer {

 private final Object[] buffer;

 private int count = 0;

 public ThreadSafeBuffer(int size) {

 buffer = new Object[size];

 }

 public synchronized void add(Object item) throws

InterruptedException {

 while (count == buffer.length) {

 wait(); // Buffer full, wait for space

 }

 buffer[count++] = item;

notifyAll(); // Notify waiting threads

 }

 public synchronized Object remove() throws InterruptedException

{

 while (count == 0) {

 wait(); // Buffer empty, wait for items

 }

 Object item = buffer[0];

System.arraycopy(buffer, 1, buffer, 0, --count);

notifyAll(); // Notify waiting threads

 return item;

 }

}

55

Notes This Java class implements a thread-safe buffer using synchronization

to ensure data integrity in concurrent scenarios.

Serialization

Serializing classes with array members requires special attention to

ensure the entire data structure can be properly saved and restored.

public class SerializableDataContainer implements Serializable {

 private static final long serialVersionUID = 1L;

 private String name;

 private int[] values;

 private transient int[] cachedCalculations; // Not serialized

 public SerializableDataContainer(String name, int[] values) {

 this.name = name;

this.values = values.clone(); // Deep copy to ensure encapsulation

this.cachedCalculations = new int[values.length];

 recalculate();

 }

 private void recalculate() {

 for (int i = 0; i<values.length; i++) {

cachedCalculations[i] = values[i] * values[i]; // Example calculation

 }

 }

 // Called when object is deserialized

 private void readObject(ObjectInputStream in) throws

IOException, ClassNotFoundException {

in.defaultReadObject(); // Read the non-transient fields

cachedCalculations = new int[values.length];

 recalculate(); // Reconstruct the transient field

 }

}

This example demonstrates proper serialization of a class with array

members, including handling of transient (non-serialized) calculated

values.

56
MATS Centre for Distance and Online Education, MATS University

Notes Generic Arrays

Creating truly generic arrays in languages like Java presents special

challenges due to type erasure.

public class GenericArrayWrapper<T> {

 private final Object[] array;

 private final Class<T> type;

 @SuppressWarnings("unchecked")

 public GenericArrayWrapper(Class<T> type, int size) {

this.type = type;

 // Cannot create generic arrays directly due to type erasure

 array = new Object[size];

 }

 public void set(int index, T item) {

 if (index >= 0 && index <array.length) {

 array[index] = item;

 } else {

 throw new IndexOutOfBoundsException();

 }

 }

 @SuppressWarnings("unchecked")

 public T get(int index) {

 if (index >= 0 && index <array.length) {

 return (T) array[index];

 } else {

 throw new IndexOutOfBoundsException();

 }

 }

 @SuppressWarnings("unchecked")

 public T[] toArray() {

 T[] result = (T[]) Array.newInstance(type, array.length);

 for (int i = 0; i<array.length; i++) {

 result[i] = (T) array[i];

 }

 return result;

57

Notes }

}

This class works around Java's limitations with generic arrays by

using Object[] internally and providing type-safe access methods.

Language-Specific Implementations

Java

Java arrays are objects with a fixed length. When used within classes,

they are often encapsulated with accessors and mutators.

public class TemperatureTracker {

 private final double[] hourlyTemperatures;

 private final String location;

 public TemperatureTracker(String location) {

this.location = location;

this.hourlyTemperatures = new double[24]; // 24 hours in a day

 // Initialize with default value

Arrays.fill(hourlyTemperatures, Double.NaN);

 }

 public void recordTemperature(int hour, double temperature) {

 if (hour >= 0 && hour < 24) {

hourlyTemperatures[hour] = temperature;

 }

 }

 public double getAverageTemperature() {

 int validReadings = 0;

 double sum = 0;

 for (double temp : hourlyTemperatures) {

 if (!Double.isNaN(temp)) {

 sum += temp;

validReadings++;

 }

 }

 return validReadings> 0 ? sum / validReadings : Double.NaN;

58
MATS Centre for Distance and Online Education, MATS University

Notes }

 public double getMaxTemperature() {

 double max = Double.NEGATIVE_INFINITY;

 for (double temp : hourlyTemperatures) {

 if (!Double.isNaN(temp) && temp > max) {

 max = temp;

 }

 }

 return max != Double.NEGATIVE_INFINITY ? max :

Double.NaN;

 }

}

This Java class tracks hourly temperatures, providing methods to

record readings and calculate statistics.

Python

Python's dynamic nature simplifies array handling within classes

through lists.

class Playlist:

 def __init__(self, name):

 self.name = name

self.songs = [] # Dynamic list (Python's equivalent of a dynamic

array)

self.current_index = -1

 def add_song(self, song):

self.songs.append(song)

 def remove_song(self, song):

 if song in self.songs:

 index = self.songs.index(song)

self.songs.remove(song)

 # Adjust current index if necessary

 if index <= self.current_index and self.current_index> 0:

self.current_index -= 1

 return True

59

Notes return False

 def next_song(self):

 if not self.songs:

 return None

self.current_index = (self.current_index + 1) % len(self.songs)

 return self.songs[self.current_index]

 def previous_song(self):

 if not self.songs:

 return None

self.current_index = (self.current_index - 1) % len(self.songs)

 return self.songs[self.current_index]

 def current_song(self):

 if not self.songs or self.current_index == -1:

 return None

 return self.songs[self.current_index]

 def shuffle(self):

 import random

random.shuffle(self.songs)

self.current_index = -1 # Reset current index

This Python class implements a music playlist with various

operations, using a list to store songs.

C++

C++ offers both static and dynamic arrays, with the additional

complexity of manual memory management.

class ImageProcessor {

private:

 unsigned char* imageData;

 int width;

 int height;

public:

ImageProcessor(int width, int height) : width(width), height(height) {

60
MATS Centre for Distance and Online Education, MATS University

Notes // Allocate memory for the image (assuming grayscale - one byte

per pixel)

imageData = new unsigned char[width * height];

 // Initialize to black

 std::memset(imageData, 0, width * height);

 }

 // Copy constructor - essential for proper resource management

ImageProcessor(const ImageProcessor& other) : width(other.width),

height(other.height) {

imageData = new unsigned char[width * height];

 std::memcpy(imageData, other.imageData, width * height);

 }

 // Move constructor - for efficient transfers of ownership

ImageProcessor(ImageProcessor&& other) noexcept :

width(other.width), height(other.height), imageData(other.imageData)

{

other.imageData = nullptr;

other.width = 0;

other.height = 0;

 }

 // Assignment operator

ImageProcessor& operator=(const ImageProcessor& other) {

 if (this != &other) {

 delete[] imageData;

 width = other.width;

 height = other.height;

imageData = new unsigned char[width * height];

 std::memcpy(imageData, other.imageData, width * height);

 }

 return *this;

 }

 // Destructor

 ~ImageProcessor() {

61

Notes delete[] imageData;

 }

 // Get pixel value

 unsigned char getPixel(int x, int y) const {

 if (x >= 0 && x < width && y >= 0 && y < height) {

 return imageData[y * width + x];

 }

 return 0;

 }

 // Set pixel value

 void setPixel(int x, int y, unsigned char value) {

 if (x >= 0 && x < width && y >= 0 && y < height) {

imageData[y * width + x] = value;

 }

 }

 // Apply blur filter

 void applyBlur() {

 // Create temporary buffer for result

 unsigned char* tempData = new unsigned char[width * height];

 // Simple box blur

 for (int y = 0; y < height; y++) {

 for (int x = 0; x < width; x++) {

 int sum = 0;

 int count = 0;

 // 3x3 kernel

 for (int dy = -1; dy<= 1; dy++) {

 for (int dx = -1; dx <= 1; dx++) {

 int nx = x + dx;

 int ny = y + dy;

 if (nx>= 0 &&nx< width &&ny>= 0 &&ny< height) {

 sum += imageData[ny * width + nx];

 count++;

62
MATS Centre for Distance and Online Education, MATS University

Notes }

 }

 }

tempData[y * width + x] = sum / count;

 }

 }

 // Swap buffers

 std::swap(imageData, tempData);

 delete[] tempData;

 }

};

This C++ class demonstrates advanced memory management for a

class containing a dynamically allocated array representing an image,

including proper copy semantics and a sample image processing

algorithm.

Performance Optimization

Array Resizing Strategies

Efficiently resizing arrays is crucial for dynamic data structures.

public class DynamicArray<T> {

 private Object[] array;

 private int size;

 private static final int DEFAULT_CAPACITY = 10;

 public DynamicArray() {

 array = new Object[DEFAULT_CAPACITY];

 size = 0;

 }

 public void add(T element) {

ensureCapacity(size + 1);

 array[size++] = element;

 }

 @SuppressWarnings("unchecked")

 public T get(int index) {

 if (index < 0 || index >= size) {

63

Notes throw new IndexOutOfBoundsException();

 }

 return (T) array[index];

 }

 public int size() {

 return size;

 }

 private void ensureCapacity(int minCapacity) {

 if (minCapacity>array.length) {

 int newCapacity = Math.max(array.length * 2, minCapacity);

 Object[] newArray = new Object[newCapacity];

System.arraycopy(array, 0, newArray, 0, size);

 array = newArray;

 }

 }

 public void trimToSize() {

 if (size <array.length) {

 Object[] newArray = new Object[size];

System.arraycopy(array, 0, newArray, 0, size);

 array = newArray;

 }

 }

}

This implementation demonstrates efficient array resizing using

exponential growth (doubling) to achieve amortized constant-time

additions.

Memory Layout Optimization

Understanding how arrays are laid out in memory can lead to

performance improvements through cache-friendly access patterns.

class MatrixOperations {

private:

 int rows;

 int cols;

 double* data; // Row-major order for better cache locality

64
MATS Centre for Distance and Online Education, MATS University

Notes public:

MatrixOperations(int r, int c) : rows(r), cols(c) {

 data = new double[rows * cols]();

 }

 ~MatrixOperations() {

 delete[] data;

 }

 // Row-major access

 double get(int row, int col) const {

 return data[row * cols + col];

 }

 void set(int row, int col, double value) {

 data[row * cols + col] = value;

 }

 // Cache-friendly matrix multiplication

MatrixOperations multiply(const MatrixOperations& other) const {

 if (cols != other.rows) {

 throw std::invalid_argument("Matrix dimensions do not match

for multiplication");

 }

MatrixOperations result(rows, other.cols);

 // Traditional multiplication (row by column)

 for (int i = 0; i< rows; i++) {

 for (int j = 0; j <other.cols; j++) {

 double sum = 0.0;

 for (int k = 0; k < cols; k++) {

 sum += get(i, k) * other.get(k, j);

 }

result.set(i, j, sum);

 }

 }

65

Notes return result;

 }

 // Cache-optimized matrix multiplication using blocking

MatrixOperationsmultiplyOptimized(const MatrixOperations& other)

const {

 if (cols != other.rows) {

 throw std::invalid_argument("Matrix dimensions do not match

for multiplication");

 }

MatrixOperations result(rows, other.cols);

 const int blockSize = 32; // Adjust based on cache size

 // Zero initialize result

 for (int i = 0; i< rows * other.cols; i++) {

result.data[i] = 0.0;

 }

 // Blocked multiplication for better cache utilization

 for (int ii = 0; ii < rows; ii += blockSize) {

 for (int jj = 0; jj<other.cols; jj += blockSize) {

 for (int kk = 0; kk < cols; kk += blockSize) {

 // Process block

 for (int i = ii; i< std::min(ii + blockSize, rows); i++) {

 for (int j = jj; j < std::min(jj + blockSize, other.cols);

j++) {

 double sum = result.get(i, j);

 for (int k = kk; k < std::min(kk + blockSize, cols);

k++) {

 sum += get(i, k) * other.get(k, j);

 }

result.set(i, j, sum);

 }

 }

 }

 }

 }

66
MATS Centre for Distance and Online Education, MATS University

Notes

 return result;

 }

};

This C++ class demonstrates cache-friendly matrix operations using

row-major storage and blocked multiplication algorithms.

Testing and Debugging

Module Testing Arrays in Classes

Thorough testing of classes containing arrays requires verifying

boundary conditions, empty states, and full capacity scenarios.

import org.jModule .jupiter.api.Test;

import static org.jModule .jupiter.api.Assertions.*;

class CircularBufferTest {

 @Test

 void testEmptyBuffer() {

CircularBuffer<String> buffer = new CircularBuffer<>(5);

assertTrue(buffer.isEmpty());

assertFalse(buffer.isFull());

assertNull(buffer.read());

 }

 @Test

 void testWriteAndRead() {

CircularBuffer<Integer> buffer = new CircularBuffer<>(3);

buffer.write(1);

buffer.write(2);

assertFalse(buffer.isEmpty());

assertFalse(buffer.isFull());

assertEquals(Integer.valueOf(1), buffer.read());

assertEquals(Integer.valueOf(2), buffer.read());

assertTrue(buffer.isEmpty());

 }

 @Test

67

Notes void testFullBuffer() {

CircularBuffer<Character> buffer = new CircularBuffer<>(2);

buffer.write('A');

buffer.write('B');

assertTrue(buffer.isFull());

 // When full, new writes overwrite oldest data

buffer.write('C');

assertEquals(Character.valueOf('B'), buffer.read());

assertEquals(Character.valueOf('C'), buffer.read());

 }

 @Test

 void testCyclicBehavior() {

CircularBuffer<Integer> buffer = new CircularBuffer<>(3);

 for (int i = 1; i<= 10; i++) {

buffer.write(i);

 // Read every third item to create circular pattern

 if (i % 3 == 0) {

 for (int j = 0; j < 3; j++) {

buffer.read();

 }

assertTrue(buffer.isEmpty());

 }

 }

 }

}

This JModule test class demonstrates comprehensive testing of a

CircularBuffer implementation, covering various scenarios and edge

cases.

Common Bugs and Pitfalls

When working with arrays in classes, several common issues arise:

1. Off-by-one errors

68
MATS Centre for Distance and Online Education, MATS University

Notes 2. Null reference handling

3. Boundary checking

4. Out-of-bounds access

5. Memory leaks (in languages without garbage collection)

public class BuggyArrayHandler {

 private int[] data;

 // Bug 1: No null check in constructor

 public BuggyArrayHandler(int[] initialData) {

this.data = initialData; // Should check for null and make a defensive

copy

 }

 // Bug 2: Off-by-one error in loop

 public int sum() {

 int total = 0;

 // Should be i<data.length

 for (int i = 0; i<= data.length; i++) {

 total += data[i];

 }

 return total;

 }

 // Bug 3: No bounds checking

 public void setValue(int index, int value) {

 data[index] = value; // Should check if index is within bounds

 }

 // Fixed implementation

 public static class FixedArrayHandler {

 private final int[] data;

 public FixedArrayHandler(int[] initialData) {

 // Null check and defensive copy

 if (initialData == null) {

 throw new IllegalArgumentException("Initial data cannot

be null");

 }

69

Notes this.data = initialData.clone();

 }

 public int sum() {

 int total = 0;

 // Correct loop bounds

 for (int i = 0; i<data.length; i++) {

 total += data[i];

 }

 return total;

 }

 public void setValue(int index, int value) {

 // Bounds checking

 if (index < 0 || index >= data.length

MCQs:

1. Which of the following is NOT a feature of C++?

a) Object-Oriented Programming

b) Platform Independence

c) Low-Level Programming

d) Garbage Collection

2. Which of the following is NOT an Object-Oriented

Programming concept?

a) Encapsulation

b) Inheritance

c) Polymorphism

d) Compilation

3. What is an Object in C++?

a) A function that stores data

b) An instance of a class

c) A type of variable

d) A control statement

4. Which of the following best describes a class?

a) A collection of functions

b) A blueprint for creating objects

c) A memory allocation technique

d) A type of loop

70
MATS Centre for Distance and Online Education, MATS University

Notes 5. What does a member function in C++ do?

a) Stores objects in memory

b) Allows functions to access class attributes

c) Creates a new variable

d) Converts one data type to another

6. Which of the following is an advantage of OOP?

a) Reusability of code

b) Increased compilation speed

c) Reduced security

d) High memory usage

7. How is an object of a class created in C++?

a) class obj;

b) object obj();

c) className obj;

d) object = new className;

8. Which feature of OOP allows wrapping data and functions

together?

a) Abstraction

b) Encapsulation

c) Polymorphism

d) Inheritance

9. An array within a class in C++ is used to:

a) Store multiple objects

b) Store multiple values of the same type

c) Convert data types

d) Implement control statements

10. Which feature of OOP allows objects to share

characteristics?

a) Inheritance

b) Encapsulation

c) Polymorphism

d) Data Hiding

Short Questions:

1. What are the key features of C++?

2. Define Object-Oriented Programming (OOP).

3. What are the advantages of OOP over procedural

programming?

4. Explain the difference between classes and objects in C++.

71

Notes 5. What is the role of a member function in a class?

6. How is an object created and used in C++?

7. What is encapsulation, and why is it important in OOP?

8. Explain how arrays can be used within a class.

9. What is the difference between data abstraction and data

hiding?

10. How does OOP improve code reusability?

72
MATS Centre for Distance and Online Education, MATS University

Notes Long Questions:

1. Explain the structure of a C++ program with an example.

2. What are the key Object-Oriented Programming (OOP)

concepts? Explain each with an example.

3. Discuss the advantages of OOP and how it differs from

procedural programming.

4. Define classes and objects in C++ and provide an example of

how they are implemented.

5. What is encapsulation? Explain how it is achieved in C++ with

an example.

6. How do member functions work inside a class? Provide a code

example.

7. Explain the importance of arrays within a class with an

example program.

8. How does OOP help in software development? Discuss real-

world applications.

9. Discuss how data hiding and abstraction improve security in

OOP.

10. Write a C++ program to demonstrate the use of objects,

classes, and member functions.

73
MATS Centre for Distance and Online Education, MATS University

MODULE 2

FUNCTIONS, CONSTRUCTORS, AND DESTRUCTORS

2.0 LEARNING OUTCOMES

• Understand the memory allocation of objects in C++.

• Learn about friend functions and how they interact with

private data.

• Understand the concept of local classes in C++.

• Learn about constructors (Parameterized, Multiple, Default

Argument) and their applications.

• Explore dynamic initialization of objects, copy constructors,

and dynamic constructors.

• Understand the role of destructors in C++.

74
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Memory Allocation of Objects, Friend Function

2.1 Memory Allocation of Objects

What is Object Memory Allocation?

CMPS 101: Memory Allocation Memory allocation is one of the most

fundamental operations in modern computing systems. If program is

to operate with the objects then how such objects are allocated,

accessed and finally deallocated has great impact on performance,

reliability, and utilization of resources of the program. This part of

your learning journey discusses about how object memory allocation

works under the hood, the different approaches anyone can take in

different programming paradigms, and the problems of object

lifetime management. So what it boils down to is that memory

allocation for objects is allocating a section of a computer's memory

to hold the state and structure information of an object. Though

conceptually-simple, the actual implementation reaches into myriad

complexities such as memory hierarchies, allocation algorithms,

garbage collection mechanisms, and optimization techniques. These

concepts give us significant knowledge to help software developers

build efficient, reliable, and performant applications.

Computer Memory – a layman’s explaination

Before we dive specifically into object allocation, it is important to

explain the memory layout not only of object allocation but of modern

computing systems in general. Computer architecture employs a

memory hierarchy which efficiently allocates data across high-speed

but low-capacity caches, slower, large main memory, and even more

cost-efficient but much slower, larger forms of persistent storage.

Even closer to the CPU are registers, ultra-fast, but very small storage

areas that hold the most frequently accessed data and instructions at a

high level. Instead, when they access any information, they use cache

memory to hold recently accessed data, which results in a much

shorter access time because its capacity is minimal. Cache memory is

actually split into several levels, L1, L2, and L3, where L1 is the

fastest but smaller, and L3 is slower but larger. The primary working

area, where currently running programs and data reside, is called

main memory (RAM). RAM is the term used to denote the much

larger but significantly slower data storage compared to the cache.

75

Notes Virtual memory is a concept for unifying RAM and persistent storage

that has been explored a great deal, and there is a hardware-software

combination of paging that allows the memory that would be

allocated to the system to far exceed the physical memory limit of

RAM. Secondary storage, in the form of SSDs and HDDs, is used for

long-term data retention but works at a much lower speed. Types of

behaviour are the interaction between elements of the memory

hierarchy, the effectiveness of caching strategies, how virtual memory

influences performance and so on. Virtual memory is an abstraction

on lower-level storage, offering isolated address spaces to processes,

protection, and the ability for programs to address more memory than

the system actually holds. This abstraction depends on the Memory

Management Module (MMU) and page tables for seamless

conversion from virtual addresses to physical locations. The memory

layout of a process divides memory into regions that lenses through a

systematic and efficient Where the text segment holds code, the data

segment stores initially defined globals and statics. This is the BSS

segment (Block Started by Symbol), which holds all the uninitialized

global and static variables, growing as needed. Another important

memory area is heap memory, which enables dynamic memory

allocation, which allows programs to allocate and release memory as

needed at runtime. Unlike this, the stack handles function calls and

local variables, working in a last-in, first-out (LIFO) fashion. Object

memory models specify how objects are allocated and accessed in

memory, which can affect the efficiency and speed of the program.

There are two fundamental categories of data and they are value

types and reference types. Value types hold their data directly so that

when they are assigned, or passed to a function, they are copied rather

than reference copied. On the other hand, reference types hold

memory location pointers, which means that more than one variable

can point to a single object. For example, in languages like Java,

every object is reference type, while in languages like C# and Swift,

there is an explicit notion of value types and reference types. This

difference is significant for behaviors such as performance

optimization, garbage collection, and object lifetime management in

varying types of languages.

Object Layout in Memory

76
MATS Centre for Distance and Online Education, MATS University

Notes An object gets allocated in memory, which consists of various things

as part of its structure, which helps manage, access, and use it in a

particular runtime environment. Although not the most prominent

feature, one of the most important aspects of an object is type

information (metadata about the object's class/type). In languages that

implement polymorphism, for example C++ or Java, this is usually

stored as a pointer to a type descriptor, or virtual method table

(vtable). In general, an object header stores synchronization/coding

information(gcod data), garbage collection flags and at times hashed

codes generation (for speed so they won't be computed in runtime,

when two objects are compared or retrieved). You have instance fields

which store the data members of the object and how they are

organized on the memory is based on the language rules to make sure

that we can work with the classes in an efficient manner. In addition,

padding is also essential for aligning fields, as well as to keep track of

memory layouts when it comes to CPUs. The precise memory layout

of an instance can differ dramatically between languages and runtime

environments. Like for example, C++ objects have vtable pointers for

polymorphism, Java objects have pointers to class and

synchronization information, C# objects have pointers to type objects

and synchronization information blocks, and Python objects maintain

reference counting and pointers to their types for memory

management. Of course, those differences emphasize how approaches

like this are tuned for performance vs. memory or function vs.

runtime environment etc. An important aspect of object memory

representation is memory alignment and padding, which

significantly influences performance. CPUs are optimized to access

memory in aligned blocks, meaning a 4-byte integer, for instance,

should ideally be stored at a memory address divisible by 4. To

ensure this alignment, compilers often introduce padding bytes

between fields, increasing the object's overall memory footprint but

improving access speed by reducing unaligned memory accesses.

Consider the following C++ class:

class Example {

 char a; // 1 byte

 int b; // 4 bytes

 char c; // 1 byte

 double d; // 8 bytes

77

Notes };

So initial total of field sizes is 14 bytes. However, due to alignment

restrictions, the real object size may well be 24 bytes because of

padding inserted in between fields. The char a is stored first, but to be

able to align the int b, three padding bytes are put after char a.

Likewise, after char c we may have 7 padding bytes inserted before

double d to place it at an 8-byte boundary. This extra memory

consumption optimizes CPU performance by making sure a part of

the memory is accessed faster and preventing needless calculations

where a structure’s data are not aligned in memory. Though padding

does come at a cost in memory consumption, with the acceptable

trade-off for maximum-performance systems in modern computing

architectures. For this reason, it is important for programmers to

understand these concepts when writing the most efficient code

possible, especially when working on performance-critical

applications, including game engines, high-performance computing,

and low-level systems programming.

Allocation Strategies

Efficiently allocating memory for objects is paramount to the

efficiency of an application and by extension to its performance and

memory consumption. Stack allocation is the most straightforward

and fastest since it just manipulates the stack pointer, ensuring that

allocations and deallocations take place in a strict LIFO manner. It

frees allocation automatically when a function returns, is thus very

efficient for local primitive variables, and small and short-lived

objects and no fragmentation is the concern here. For example, stack

allocation for value types in C and C++, and escape analysis for short-

lived objects in Java and C#. But the most significant limitation of

stack allocation lies in its rigidly-function scope dependence in

contrast to the stack; a form of allocation that is not appropriate for

objects whose lifespan must extend beyond their active function.

Heap allocation, on the other hand, provides more flexibility as it

allows objects to outlive the function that created them. It allows

dynamic memory growth and allows allocations and deallocations in

arbitrary order. Because it takes time to find the right chunk of unused

memory, heap allocation is much slower than allocating memory on

the stack. However, it also introduces problems like fragmentation,

where free memory is broken into dispersed pieces not next to each

78
MATS Centre for Distance and Online Education, MATS University

Notes other, and the cost of extra structures needed to manage memory,

tracking which blocks are used or free. We implement fixed-size

allocators for commonly used object sizes to reduce heap

fragmentation and improve speed. Most modern memory managers

use a mixture of both for maximum efficiency. There are many heap

allocation algorithms established to improve memory management.

With the first-fit, the first free block that is greater than or equal to the

requested memory size is selected versus the best-fit, the smallest free

block that is equal to or greater than the requested size is selected

ensuring that memory is allocated in the most efficient way to

minimize fragmentation. The worst-fit strategy, on the other hand,

cuts pieces of memory from the biggest available chunk, trying to

leave large free portions for future allocations. The Buddy system

divides memory in to blocks of power of 2 sizes which allows easier

coalescing of blocks which become free, whereas slab allocation pre-

allocates pools of objects of fixed size, making them especially useful

for system objects which are allocated frequently. Many allocators

have a hybrid approach and use different techniques depending on the

size and patterns of allocations. Different programming languages

have their own unique philosophies when it comes to memory

management, and that affects how they implement object allocation

strategies. C: Memory allocation is entirely manual, Allocates an

object with malloc(), calloc() and releases it with free(). However,

this gives you full control, but you also need to manage it properly

otherwise you would encounter issues like memory leaks, use-after-

free and double-free problems. Automatic garbage collection to

reclaim and free up unused memory is used by languages like Java

and Python, which does reduce the amount of memory-related bugs

but at the expense of runtime overhead. This is where C++ comes in

and helps with manual memory management and allows for the use

of smart pointers to prevent resource leaks. That being said, memory

allocation strategies continue to evolve, and most systems nowadays

are hybrid between allocating small memory chunks and a big and

suited memory chunk, balancing performance, memory efficiency,

and the ease of programming across a wide variety of applications

and computing environments.

Example:

struct Person {

79

Notes char* name;

 int age;

};

// Allocation

struct Person* person = (struct Person*)malloc(sizeof(struct Person));

person->name = (char*)malloc(50); // Allocate space for name

strcpy(person->name, "Alice");

person->age = 30;

// Later: deallocation

free(person->name);

free(person);

This approach offers maximum flexibility and performance but places

a significant burden on developers to manage memory correctly.

C++ and RAII

C++ enhances C's model with several object-oriented features:

• Objects can be allocated on the stack or heap (new operator)

• Constructors and destructors enable the Resource Acquisition

Is Initialization (RAII) pattern

• Smart pointers (unique_ptr, shared_ptr) automate memory

management for heap objects

• Custom allocators allow specialized allocation strategies

Example:

class Person {

private:

 std::string name;

 int age;

public:

 Person(std::string n, int a) : name(n), age(a) {}

 ~Person() { /* Resources automatically cleaned up */ }

};

// Stack allocation

Person alice("Alice", 30);

// Heap allocation with smart pointer

auto bob = std::make_shared<Person>("Bob", 25);

80
MATS Centre for Distance and Online Education, MATS University

Notes // No explicit delete needed; memory freed when last reference

disappears

This model combines manual control with safer abstractions, reducing

common memory management errors.

Java and Garbage Collection

Java represents a fully managed approach:

• All objects are allocated on the heap using the new operator

• A garbage collector automatically reclaims memory when

objects are no longer referenced

• No explicit deallocation mechanism is exposed to developers

• Memory layout and allocation details are abstracted away

Example:

class Person {

 String name;

 int age;

 Person(String name, int age) {

 this.name = name;

this.age = age;

 }

}

// Allocation

Person person = new Person("Alice", 30);

// No deallocation needed; garbage collector handles it

This approach simplifies development but sacrifices some control

over memory management timing and behavior.

Python's Reference Counting and Garbage Collection

Python uses a hybrid mechanism for memory management where it

uses both reference counting and cycle-detecting garbage collector to

increase the usability of object deallocation. The main mechanism is

reference counting, where every object keeps track of how many

references to it exist; when the reference count reaches zero, the

object is freed immediately. Reference counting alone is not enough

to deal with circular references (two or more objects referencing each

other), which keeps their reference counts from reaching zero. To

81

Notes overcome this, Python’s garbage collector has a cycle detection

algorithm that is responsible for finding and deleting these

unreachable objects. Furthermore, allocation in Python is separate

from memory management meaning that developers have to do

things like cleanup. One optimization is object pooling — commonly

used small objects, like integers and strings, are reused for efficiency.

Thus the balance of user-friendliness vs performance. For example,

you have a Python code which allocates an instance of the Person

class in memory and then sets it to None, this instance can be

collected by a garbage collector later:

class Person:

 def __init__(self, name, age):

 self.name = name

self.age = age

Allocation

person = Person("Alice", 30)

Setting reference to None allows object to be collected

person = None

This automatic memory management system requires less effort from

the developer, but ensures that the memory is freed as soon as objects

are no longer required. However, it brings additional runtime

overhead due to tracking references and detecting circular

dependencies. In contrast, Rust has a completely different approach

with an ownership-based memory model, which allows it to be

garbage-collector-free while still providing compile-time memory-

safety guarantees. Rust is a systems programming language in which

every value has a single owner, and when that owner goes out of

scope, the value is automatically cleaned up. This model avoids

memory leaks and dangling pointers without incurring any runtime

garbage collection. Another aspect Rust brings in is the concept of

borrowing, which enables references to data without transferring

ownership. Borrowing, on the other hand, has rigid rules that are

checked at compile time to ensure that references never outlive the

data they point to. These capabilities prevent many memory bugs,

including use-after-free and double free. Here’s an example that

demonstrates Rust’s ownership model:

82
MATS Centre for Distance and Online Education, MATS University

Notes

struct Person {

 name: String,

 age: u32,

}

fn main() {

 // Allocation

 let person = Person {

 name: String::from("Alice"),

 age: 30,

 };

 // Automatic deallocation when `person` goes out of scope

}

In this example, the Person instance is created inside the main

function and gets deallocated once main completes. This model of

memory management gives the safety benefits of garbage collection

without the runtime costs. Rust achieves this by enforcing these rules

at compile time, meaning that safe and efficient memory usage is

guaranteed by default, well ahead of runtime, making it a perfect

choice for performance-critical applications like systems

programming and embedded development.

Item Pools and Specialized Allotment Techniques

Along with default allocation algorithms, advanced allocation

strategies (such as object pooling) can greatly improve performance if

you have strict constraints on allocations per frame (for example

creating and destroying many objects every frame). In this approach,

instead of allocating or deallocating an object you reuse the existing

object which helps in improving performance. Specifically, the

technique consists of pre-allocating a pool of objects that can be

reused; whenever an object of that type is required, it is taken from

the pool rather than allocated. When the object is released, it doesn't

get deallocated; it gets returned to the pool, reducing fragmentation

and improving overall system performance. When appropriate, the

pool size can grow dynamically as needed. In managed environments

this way of using (not over allocating) memory could trigger a lot of

83

Notes garbage collections and lead to performance issues. Moreover, the

locality of object usage is improved since the frequently used objects

remain close to one another in memory, which helps improve cache

behavior and overall system responsiveness. In high-performance

computing and real-time applications, the characteristics of object

pooling make it an indispensable technology. For example, in

situations where small objects are created and destroyed frequently

within the same frame, such as in game development, network packet

processing, or UI frameworks, object pooling is a good way to keep

frame rates and system responsiveness at an acceptable level. The

same applies to resource-capped objects such as database connections,

threads, or file handlers. Object pooling avoids intermittent pauses

due to memory allocation and garbage collection making memory

allocation timing deterministic as needed by real-time systems which

impose strict performance constraints. These applications are typical

of high-throughput systems (e.g. financial systems, or high-frequency

trading platforms), because of the lower allocation overhead, and

therefore the uniform performance when running them with heavy

workloads. Object pooling reduces memory fragmentation and

allocation overhead, optimizing overall resource management and

stability and efficiency of software systems.

Region-Based Allocation

Region-Based Allocation: Benefits and Advantages

This consists of allocating a large block of memory and then

performing allocations that move a pointer in that memory. When

objects are no longer needed, the whole region is freed at once, unlike

more complex garbage collection, which needs to keep track of

individual objects. It is particularly good for phases where lots of

temporary objects are created and abandoned at the same time. This

methodology is commonly used in both parsers and compile

implementations, where ephemeral objects are created for each stage

of processing. For example, request processing in web servers lends

itself well to region based allocation, generating many temporary

objects in the process where allocating and deallocating is cheap and

memory management costs are minimized. This strategy improves

performance and mitigates fragmentation that commonly occurs when

applications frequently allocate and free memory and is widely

84
MATS Centre for Distance and Online Education, MATS University

Notes adopted in a variety of systems in environments running numerous

memory allocation and deallocation cycles.

Optimizing Strategies: Escape Analysis and Custom Allocations

Thus in addition to allocation based on region, modern compilers and

virtual machines do escape analysis to optimize memory usage. This

method analyzes whether an object leaves the method that creates it.

If an entity stays within the boundary of the method, it can be

allocated on stack (instead of the heap) which greatly improves

performance. Stack allocation is more direct because it bypasses heap

overhead and collection. In addition, escape analysis allows compilers

to remove redundant synchronization for non-escaping objects, this

again contributes to the elimination of execution overhead in multi-

threaded environment. Custom memory allocators can provide

additional configurability and performance for specialized allocation

patterns. One way of doing this is through thread-local allocators,

which use a separate memory pool for each thread in order to avoid

contention (in effect, this reduces synchronization overhead in multi-

threaded applications). Different sizes of object are handled with

different strategies in hierarchical allocators. In addition, the use of

specialized domain allocators can optimize memory management for

specific object types or access patterns, improving performance even

more. These techniques, which can help developers enhance

application performance while managing memory effectively, are the

subject of great interest among developers.

Memory Fragmentation

Fragmentation is a common issue in dynamic memory allocation due

to which it wastes a lot of memory and reduces the performance of

computer system. The two common types of fragmentation are

external fragmentation and internal fragmentation. You learn about

external fragmentation, which happens when free memory is broken

into several small block of memory that are not contiguous with each

other and cannot meet an allocation request, even though the total

free memory is large enough. This fragmentation can be attributed to

the allocation and deallocation of small objects of different sizes,

varying lifetimes of objects, and the lack of a compaction mechanism

in the memory management system. There are gaps between the

blocks allocated as memory is allocated and freed dynamically,

making it difficult to find contiguous space for larger allocations. This

85

Notes results in enormous memory wastage over a period of time which

makes the system reject allocation requests even though it has enough

free memory in fragmented form. In order to reduce external

fragmentation different strategies are implemented. Compaction, for

example, organizes the objects in memory to merge free space into

larger contiguous blocks, but usually involves high computational

overhead. Another strategy is coalescing, in which contiguous free

blocks are merged to form larger chunks of usable memory. Buddy

system is a commonly implemented memory management algorithm

which divides and combines memory blocks to satisfy allocation

requests. Other memory allocators implement a number of heaps per

process, where each heap covers a range of size classes, in an effort to

minimize fragmentation by allocating allocations of similar sizes.

Opposite to external fragmentation, it is called internal fragmentation

which happens when allocated memory blocks are larger than

necessary, leaving nonutilized space in each block. This is often due

to several factors, including alignment requirements, where memory

addresses must be aligned on certain boundaries for hardware access

to be efficient, resulting in wasted space in the blocks of memory that

are allocated. In general, fixed-size allocation blocks also create

internal fragmentation, when Memory block assigned is greater than

the requested memory chunk. This is further complicated with

memory management overhead and size class rounding within pool

allocators, where your object would generally be rounded up to fit

into a pool block of memory. Internal fragmentation is common in

systems which favour speed and simple allocation strategies, but

compromise memory utilization due to fixed-size granularity.

Optimizations aim to customize memory allocation according to real

requirements to reduce internal fragmentation. A strategy that is

working especially well is to organize objects to minimize padding

by maintaining efficient struct alignment. Pool allocators can also be

implemented on a more fine-grained basis, where the requested size is

always greater than or equal to the allocated size. Moreover, having

different allocation strategies for different size ranges helps improve

speed and memory conservation. For this reason, external and

internal fragmentation can be reduvely reduced with ensuring more

efficient allocation policies and better internal management

techniques.

86
MATS Centre for Distance and Online Education, MATS University

Notes Related Items Garbage Collection and Automatic Memory

Management

Many modern programming languages, including Java, Python, and

C#, utilize garbage collection to automatically manage memory

allocation, thus easing the burden on developers and mitigating

memory leaks. Garbage collection is fundamentally concerned with

determining which objects are still alive (reachable in the program)

and which objects can be cleaned up (unreachable in the program).

Some garbage collection techniques also include memory compaction

to mitigate fragmentation, enhancing performance and efficiency.

Garbage collection abstracts memory out of a programmer's

responsibility, so they could focus on logic and functionality, and not

manual allocation and deallocation. But such convenience has a price;

the developers traded precise control of memory usage, leading to

inefficiency, unpredictable pauses, and performance trade-offs for

resource-intensive apps. Garbage collection can be tuned in such a

way as to take some of these tradeoffs into account, and there are in

fact different garbage collection strategies, each with its pros and

cons. The simplest garbage collection algorithm is reference

counting, in which each object stores a count of how many references

are pointing to it. If the reference count reaches zero, the object is

deallocated immediately. This gives predictable cleanup and minimal

pause time for algorithm which is beneficial but has the problem of

dealing with cycles as it needs additional way to manage that type of

links. In contrast, tracing garbage collection identifies reachable

memory by following from root objects. Some popular techniques

under this umbrella are mark-sweep (mark the current/live objects

then sweep through memory and delete unmarked ones), mark-

compact (mark current/live objects, then compact memory to

minimise fragmentation), and copying collection (live objects are

copied to a new space and the old space is freed) Generational

garbage collection takes this a step further by grouping objects based

on how long they live, collecting the short-lived ones often while

postponing collection of the long-lived ones. This allows for better

performance by eliminating overhead. While garbage collection

tuning is all about performance at scale it is important because pause

times, cpu usage, memory footprint, and a lot of other metrics have a

substantial influence on an application, responsiveness. Garbage

87

Notes collection is often an automated process, but developers can adjust

parameters like heap size, the frequency of collections, and more, to

improve specific workloads while retaining as much automation as

possible.

Memory Allocation for Special Object Types

Managing memory for various types of objects efficiently is a key

aspect of modern computing. To avoid cache misses and improve

access patterns, arrays and collections are stored continuously in

memory. But their dynamic nature often requires you to over-allocate

to meet future growth needs because it is costly to resize. On the other

hand, when an array or collection exceeds its capacity, a new and

bigger block of memory is allocated and all elements are copied to

that new block, resulting in overhead in terms of performance. To

mitigate this problem, many implementations apply a geometric

growth strategy, for example doubling the overall size of the structure

on an append (which amortizes the reallocation costs over many

operations). There are added complications with larger objects like

large buffers of data or media content. Since allocation of these

objects within the normal heap may cause memory fragmentation,

they are usually allocated within comparatively smaller regions of

memory. For large objects, some runtime environments sidestep

standard allocation mechanisms altogether, relying on memory-

mapped files or specialized memory management strategies that are

more compatible with virtual memory. Furthermore, the garbage

collection for large objects is generally different from small objects,

with separate collection thresholds (or less frequent collection) to

minimize performance impacts. Small objects, on the other hand,

present a whole new set of efficiency problems because of their small

size. The allocation overhead like the space taken up for metadata

can sometimes outstrip an object’s real size, making inefficient use of

your memory. Of course one has to deal with fragmentation since

small objects are more frequent and their scattered allocations can hit

performance in the long run. The above approach causes various

problems, which many runtime environments use dedicated

allocation techniques to solve. For example, object inlining puts small

objects, which are frequently accessed, inside their parent objects,

avoiding pointer dereferencing. They are typically combined with

dedicated small object heaps or memory pools to reduce

88
MATS Centre for Distance and Online Education, MATS University

Notes fragmentation. The heaps in question are often size classes pre-

allocated so all objects of the same size get grouped together for

maximum memory efficiency. Bitmap-based allocation tracking

additionally contributes to lower overall overhead of headers by

representing allocation metadata in a packed format. These pointed

optimizations ensure that the allocation of small and large objects is

done efficiently so as to maintain a balance of higher performance

with optimal memory usage.

The Best Practices for Memory Management in Multi-threaded

Environments

Memory allocation presents a greater challenge to multi-threaded

programs as they require concurrent access to the same resources. The

first major challenge that arises is thread safety between the two

memory allocators, where multiple threads may request, allocate, or

deallocate memory simultaneously. There are several approaches to

this issue. While global locks offer a straightforward approach

through serialization of memory allocation operations, they create

contention that decreases performance. Fine-grained locking

increases concurrency, by locking smaller regions of memory, which

allows multiple threads to allocate memory independently. Using

atomic operations, lock-free algorithms remove the need for explicit

locks altogether, minimizing contention even more. A different and

less level two approach is thread-local allocation where each thread

maintains its own pool of memory, what reduces lock contention.

Finally it reduces contention on the global allocator and improves

performance by having the memory requests from different threads

dont foul up the memory cache with each others requests. However,

misimplementing these strategies can result in fragmentation,

memory wastage and potential race conditions that degrade the

stability and efficiency of the program. What modern memory

allocators do is per-thread caching, which prevents contention on the

global allocator. Each thread has its private cache of free memory

blocks, so the number of synchronization requirements for allocating

to allocation events is very small, since you typically allocate what is

already in the cache. When a thread requires memory, it first tries to

allocate one from its local cache and it only contacts the global

allocator when that is exhausted, saving for expensive calls in the

global allocator. To prevent memory waste, if the cache grows too

89

Notes big, excess memory blocks are returned back to the global pool. When

the local cache becomes exhausted though, more memory is pulled

from the global allocator. Although this strategy increases

performance significantly, it comes with issues like false sharing,

where multiple threads share the same cache line by accident,

resulting in cache evictions and performance disturbances.

Mitigations involve padding out objects to all cache line isolation,

alignment aware allocation to place objects strategically, and thread

aware placement strategies to keep hot objects apart. These techniques

enable memory allocators to achieve high throughput and scalability

in multi-threaded settings while reducing contention and cache-

related inefficiencies.

Debugging and Profiling Memory Allocations

Understanding allocation patterns and potential issues that can

degrade memory performance are parts of effective memory

management. Memory leaks: Memory leaks is one of the most bad

issues in memory management, which occurs when allocated memory

is not released properly, and results in gradual loss of resources.

There are various detection techniques to find such leaks, such as

reference tracking tools, which identify objects without references,

allocation tracking which helps detect unbalanced allocate/free

operations, and heap differencing, which looks at the increase of

memory over time. Statistical sampling further helps in identifying

allocation hotspots, which allows for timely intervention. Another

major difficulty is use-after-free and double-free bugs. A use-after-

free error occurs when a program tries to read or write to a location in

memory after the code has freed the memory, while a double-free

error occurs when a program tries to free the same piece of memory

multiple times, leading to possible undefined behavior. To lesson

these hazards, developers use techniques such as delay-free

mechanisms that place issued memory in quarantine for a period of

time, memory poisoning to overwrite deallocated parts of memory

with known patterns, and guard pages to catch access to element that

was not intended by the programmer. Garbage collection and

reference counting also play strong preventative roles, automatically

freeing memory rather than risk deallocation too early. Allocation

profiling not only detects errors, but also helps to optimize memory

usage. Profiling can reveal where allocation hotspots are, where the

90
MATS Centre for Distance and Online Education, MATS University

Notes allocations are concentrated over time, what distributions of sizes are

used, and how much and how long the objects allocated live. This

perspective leads to memory optimization techniques like object

pooling for commonly allocated objects, creating custom allocators

for specific size classes, arranging your data in a manner that reduces

allocation overhead, and reserving memory ahead of time based on

anticipated workloads. But, even after 40 years, the trends in memory

management are still relevant due to the latest hardware and software

updates. Among them, NUMA (Non-Uniform Memory Access)

awareness is a key improvement in that it is optimized for multi-

socket architecture memory allocation, which means that the memory

will be allocated on the same NUMA node as the thread that wants to

access it, thereby reducing latency and improving performance. It

leverages access patterns across nodes and provides APIs for explicit

placement control as well as automatic migration of objects based on

access behaviors. Emergence of persistent memory technologies like

Intel Optane also introduce a new paradigm for memory allocations,

allowing objects to live across power cycles, which require a different

approach for durability, atomicity, and the recovery of incomplete

operations. Further, hardware supported memory management is just

starting to be adopted, exposing hardware transactional memory to

achieve efficient concurrent allocations, memory tagging to catch

errors, and page usage tracking to improve garbage collection.

Hardware acceleration can also help reducing memory overhead in

address translation. In addition, new domain-specific allocators are

being created more in line with the specific needs of different

computing domains. This opens up new avenues for real-time

systems with predictable, bounded-time guarantees on allocations, and

GPU computing with allocations handled as unified memory so as to

allow an easy movement of data between CPU and GPU. Machine

learning frameworks depend on specific tensor and gradient-

optimized allocation schemes, while edge computing has memory-

efficient allocation schemes for computing resources-constraint

environments. With memory management evolving, these

improvements work together to increase trustworthy system

capabilities and guarantee that applications run precisely in various

computing architectures.

Optimized strategies for distribution of objects

91

Notes In addition to basic allocation strategies, you get several advanced

optimization tricks that make memory usage and performance much

better. One of these techniques is object inlining, where all of the

child objects are directly embedded in their parents, eliminating the

cost of pointer dereferencing, improving cache locality, and lowering

the cost of allocation. So this is an effective way to deal with small

objects that are not often shared because it makes memory

management easier and involves much faster runtime. Another

excellent method modern compilers use is escape analysis which

checks whether an object can be accessed outside its scope. Stack

allocation: Because an object can be allocated on the stack instead of

the heap (which reduces the pressure on garbage collection), the

object need not escape its method or thread. Escape analysis allows,

among other things, scalar replacement to split objects into fields and

thread-local objects to avoid unnecessary synchronization which

boosts execution speed. As value types are allocated on the stack and

immutable and favor time and space efficiency by not needing

synchronization when being used on multi-threaded environments.

Immutable objects are inherently thread-safe and have room for

memory optimizations including structural deduplication and

specialized memory layouts. Cache-aware object allocation optimizes

for alignment with CPU caches to place frequently accessed fields at

the start of objects, or to store related objects together in memory, to

improve performance. Remember, prefetching and cache-line-aware

data ordering are highly encouraged to reduce memory latency and

increase throughput. Last but not least, dynamic adjustments in

memory allocation strategies through serial optimizing compilers and

runtime systems via profiling-based memory allocations, speculative

optimizing, and Just-In-Time (JIT) compilation enable dynamic

adaptation of matrix algorithms based on profile information. Dead

field elimination improves memory footprint even more, since it

trims unused object fields, making applications leaner and more

performant.

2.2 Friend Function

Friend Function in C++: A Comprehensive Explanation

In object-oriented programming (OOP), encapsulation is a

fundamental concept that ensures data security by restricting direct

access to an object's internal state. However, there are situations

92
MATS Centre for Distance and Online Education, MATS University

Notes where we may need to allow an external function or class to access

private and protected members of a class while still maintaining the

integrity of the class structure. In C++, this is achieved using the

friend function. A friend function is a special function that is not a

member of a class but is granted permission to access the class’s

private and protected data members. It is declared inside the class

with the keyword friend and defined outside the class. Unlike member

functions, a friend function is not invoked using the object of the

class; instead, it is called like a normal function.

Declaration and Definition of a Friend Function

A friend function is declared within the class using the friend keyword

but defined outside the class without the scope resolution operator (::).

Below is a basic example to illustrate its syntax:

Example: Using a Friend Function to Access Private Members

#include <iostream>

using namespace std;

class Sample {

private:

 int num;

public:

 Sample(int n) : num(n) {}

 friend void display(const Sample& s); // Friend function declaration

};

void display(const Sample& s) { // Friend function definition

cout<< "The value of num is: " <<s.num<<endl;

}

int main() {

 Sample obj(10);

 display(obj); // Calling the friend function

 return 0;

}

Key Features of a Friend Function

1. Not a Member Function: A friend function is not a member

of the class but is declared inside the class.

93

Notes 2. Defined Outside the Class: Even though it is declared inside

the class, it is defined externally.

3. Access to Private and Protected Members: The primary

purpose of a friend function is to access private and protected

members of a class.

4. Called Like a Normal Function: Unlike member functions, a

friend function does not use the dot (.) or arrow (->) operator.

5. Can Be Used for Multiple Classes: A friend function can be

used to access private members of multiple classes.

Table 2.1: Friend Function vs. Member Function

Feature Friend Function Member Function

Access Specifier Needs friend

keyword

No special keyword

required

Access to Private

Data

Yes Yes (only for its own class)

Invocation Called like a normal

function

Called using an object of

the class

Scope Resolution Not required Required for definition

outside the class

Belongs to Class No Yes

Advantages of Friend Functions

1. Facilitates External Function Access: Sometimes, it is

necessary to allow non-member functions to access private

data.

2. Useful in Operator Overloading: Friend functions play a

crucial role in overloading operators like +, -, and <<.

3. Improves Code Modularity: Certain operations can be kept

separate from the class while still having access to private

data.

Disadvantages of Friend Functions

1. Breaks Encapsulation: Since a friend function can access

private data, it slightly weakens the concept of data hiding.

2. Less Secure: The use of friend functions increases the risk of

accidental modification of private members.

3. Harder to Maintain: Excessive use of friend functions can

make the code harder to manage and maintain.

94
MATS Centre for Distance and Online Education, MATS University

Notes Friend Function in Operator Overloading

One of the most common applications of friend functions is in

operator overloading. Let’s consider an example where we overload

the + operator using a friend function.

Example: Overloading + Operator Using a Friend Function

#include <iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r, int i) : real(r), imag(i) {}

 friend Complex operator+(const Complex& c1, const Complex&

c2);

 void display() {

cout<< real << " + " <<imag<< "i" <<endl;

 }

};

Complex operator+(const Complex& c1, const Complex& c2) {

 return Complex(c1.real + c2.real, c1.imag + c2.imag);

}

int main() {

 Complex c1(3, 4), c2(1, 2);

 Complex c3 = c1 + c2;

 c3.display();

 return 0;

}

Friend Class and Friend Function

A friend class is another concept related to friend functions. If

multiple functions of a class need access to another class’s private

members, instead of making each function a friend, we can declare an

entire class as a friend.

Example: Using a Friend Class

#include <iostream>

95

Notes using namespace std;

class B; // Forward declaration

class A {

private:

 int numA;

public:

 A(int a) : numA(a) {}

 friend class B; // Declaring B as a friend class

};

class B {

public:

 void display(A obj) {

cout<< "Value of numA: " <<obj.numA<<endl;

 }

};

int main() {

 A objA(100);

 B objB;

objB.display(objA);

 return 0;

}

When to Use Friend Functions?

1. When external functions need access to private data without

being part of the class.

2. When overloading certain operators that require access to

private members.

3. When maintaining the encapsulation of a class while allowing

specific functions to interact with private members.

2.3 Local Class

Introduction

Local classes are one of the several class types supported in Java and

other object-oriented languages, and they have importance related to

encapsulation and scoping. Local class — To define a class inside of a

96
MATS Centre for Distance and Online Education, MATS University

Notes block of a code like this block can be method, constructor or

initialization block. In this document, we go in-depth on local classes,

including what they are, their properties, their benefits, their

limitations, and how to use local classes in practice, including some

examples.

Definition and Characteristics

A local class is a nested class defined inside a method or block of

code. It has the following characteristics:

1. Limited Scope: A local class is only accessible within the

block where it is defined.

2. Encapsulation: Since it is defined within a method, it cannot

be accessed outside that method, ensuring better

encapsulation.

3. Access to Enclosing Scope: It can access variables and

methods of the enclosing class, provided they are effectively

final (i.e., they do not change after initialization).

4. No Static Members: Local classes cannot have static

members, except for constant declarations (static final

variables).

5. Can Implement Interfaces and Extend Other Classes: Like

other classes, local classes can extend other classes and

implement interfaces.

Syntax of Local Class

A local class is defined inside a method or block as follows:

class OuterClass {

 void display() {

 class LocalClass {

 void showMessage() {

System.out.println("This is a local class.");

 }

 }

LocalClass obj = new LocalClass();

obj.showMessage();

 }

}

In the above example, LocalClass is defined inside the display()

method of OuterClass. It cannot be accessed outside this method.

Advantages of Local Classes

97

Notes 1. Encapsulation: Since they are defined within a method, they

are not accessible from outside, reducing unwanted

interference.

2. Better Organization: Local classes help organize code by

keeping the class definition close to where it is used.

3. Increased Readability: They improve readability by keeping

the scope of the class limited to its use case.

4. Efficient Memory Utilization: Local classes are only created

when the method is invoked, ensuring efficient memory

utilization.

Limitations of Local Classes

1. Limited Accessibility: They cannot be accessed outside their

enclosing method, which can be restrictive in some scenarios.

2. Cannot Have Static Members: They do not support static

variables or methods, except for constants.

3. Complexity: Overuse of local classes can lead to code that is

harder to maintain and debug.

Use Cases of Local Classes

Local classes are particularly useful in scenarios where a small helper

class is required within a method. Some common use cases include:

1. Event Handling: In GUI-based applications, local classes are

used to handle events.

2. Encapsulation of Logic: When a specific logic is required

only within a method, local classes provide a neat

encapsulation.

3. Threading: Local classes can be used to create Runnable

objects for multi-threading.

Example 1: Using Local Class for Event Handling

import java.awt.*;

import java.awt.event.*;

class ButtonDemo {

 public void createGUI() {

 Frame frame = new Frame("Local Class Example");

 Button button = new Button("Click Me");

button.addActionListener(new ActionListener() {

 class ButtonClickHandler implements ActionListener {

98
MATS Centre for Distance and Online Education, MATS University

Notes public void actionPerformed(ActionEvent e) {

System.out.println("Button Clicked!");

 }

 }

 public void actionPerformed(ActionEvent e) {

 new ButtonClickHandler().actionPerformed(e);

 }

 });

frame.add(button);

frame.setSize(300, 200);

frame.setLayout(new FlowLayout());

frame.setVisible(true);

 }

 public static void main(String[] args) {

 new ButtonDemo().createGUI();

 }

}

In this example, a local class ButtonClickHandler is used to handle

the button click event, encapsulating the logic within the event

handler.

Example 2: Local Class in Multi-threading

class ThreadDemo {

 void startThread() {

 class MyThread implements Runnable {

 public void run() {

System.out.println("Thread is running...");

 }

 }

 Thread t = new Thread(new MyThread());

t.start();

 }

 public static void main(String[] args) {

ThreadDemo demo = new ThreadDemo();

demo.startThread();

 }

}

99

Notes Here, MyThread is a local class used to create a Runnable object for

threading.

Table 2.2: Comparison with Anonymous and Inner Classes

Feature Local Class Anonymous

Class

Inner Class

Defined Inside Method/Block Expression Class

Can Have a

Name

Yes No Yes

Can Implement

Interface

Yes Yes Yes

Can Extend

Class

Yes Yes Yes

Access

Enclosing

Scope

Yes (Effectively

Final)

Yes (Effectively

Final)

Yes

Static Members No No Yes (If Static

Inner Class)

Best Practices for Using Local Classes

1. Use When Necessary: Local classes should be used when a

small, specific functionality is required within a method.

2. Avoid Overuse: Overusing local classes can make code less

readable and harder to debug.

3. Prefer Anonymous Classes for Simplicity: If the class is

used only once, consider using an anonymous class instead.

4. Ensure Encapsulation: Use local classes to encapsulate logic

specific to a method.

100
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Constructures

2.4 Constructors: Parameterized, Multiple, Default Argument

A constructor is a member function we use in an object oriented

programming which invokes automatically when an object of a class

is created. It is mainly utilized for object initialization and allocating

resources. Constructors differ from regular functions as they share the

name of the class that they belong to and they never return any value.

They are responsible for establishing initial state, ensuring that an

object is in a valid state upon creation. We can classify constructors

on the basis of their implementation and method of accepting

parameters. Constructors with default arguments In order to

effectively write code with these types it's important to have a

thorough understanding of each since they make it possible to

initialize objects in a more structured and flexible way.

Parameterized Constructors

A parameterized constructor is a constructor with an argument with

which an object can be initialized to specific values based on the

inputted argument at the object creation time. By default constructor

does not receive parameters and provide brokers, but a parameterized

constructor directly helps.

Syntax of Parameterized Constructor:

class Student {

 string name;

 int age;

public:

 // Parameterized constructor

 Student(string n, int a) {

 name = n;

 age = a;

 }

 void display() {

cout<< "Name: " << name << ", Age: " << age <<endl;

 }

};

int main() {

101

Notes Student s1("John", 20); // Object creation with parameterized

constructor

 s1.display();

 return 0;

}

Advantages of Parameterized Constructors:

1. Customization of Object Initialization – Users can define

object properties at the time of creation rather than assigning

values later.

2. Eliminates the Need for Setter Methods – Since values are

initialized in the constructor itself, additional setter functions

may not be required.

3. Ensures Object Integrity – It ensures that every object

created has meaningful values and is not left in an

uninitialized state.

102
MATS Centre for Distance and Online Education, MATS University

Notes Multiple Constructors (Constructor Overloading)

A class may have more than one constructor with different

parameters. It’s called constructor overloading. Constructors are

overloaded by the number and type of what is passed in. This makes

object creation more efficient with multiple constructors to initialize

objects in a variety of ways.

Example of Constructor Overloading:

class Rectangle {

 int length, width;

public:

 // Default constructor

 Rectangle() {

 length = 0;

 width = 0;

 }

 // Parameterized constructor

 Rectangle(int l, int w) {

 length = l;

 width = w;

 }

 // Copy constructor

 Rectangle(const Rectangle &r) {

 length = r.length;

 width = r.width;

 }

 void display() {

cout<< "Length: " << length << ", Width: " << width <<endl;

 }

};

int main() {

 Rectangle r1; // Default constructor called

 Rectangle r2(10, 20); // Parameterized constructor called

 Rectangle r3(r2); // Copy constructor called

 r1.display();

 r2.display();

103

Notes r3.display();

 return 0;

}

Benefits of Constructor Overloading:

1. Flexibility in Object Creation – Different ways to instantiate

objects based on available data.

2. Improved Code Readability – Different constructors make

code intuitive and easy to understand.

3. Enhanced Code Maintainability – Overloaded constructors

reduce the need for separate initialization methods.

Default Arguments in Constructors

A constructor can have default arguments, meaning some parameters

can take predefined values if no explicit values are provided during

object instantiation. This feature reduces redundancy and provides a

convenient way to initialize objects with common values.

Example of Constructor with Default Arguments:

class Car {

 string model;

 int year;

public:

 // Constructor with default arguments

 Car(string m = "Toyota", int y = 2022) {

 model = m;

 year = y;

 }

 void display() {

cout<< "Model: " << model << ", Year: " << year <<endl;

 }

};

int main() {

 Car c1; // Uses default values

 Car c2("Honda"); // Uses default year, custom model

 Car c3("BMW", 2020); // Uses custom values

 c1.display();

 c2.display();

104
MATS Centre for Distance and Online Education, MATS University

Notes c3.display();

 return 0;

}

Advantages of Default Arguments in Constructors:

1. Less Code Duplication – Avoids creating multiple overloaded

constructors for default values.

2. Increased Usability – Allows users to provide only necessary

values while leaving others as defaults.

3. Better Code Maintainability – If default values need

modification, they only have to be changed in one place.

Table 2.3: Comparison of Different Constructor Types

Feature Default

Constructor

Parameterized

Constructor

Multiple

Constructors

Default

Arguments

Arguments None Yes Varies Some

parameters

have default

values

Purpose Initializes

object with

generic

values

Initializes

object with

user-defined

values

Provides

multiple ways

to create

objects

Provides

optional

values for

parameters

Example Rectangle()

{}

Rectangle(int l,

int w)

Rectangle(),

Rectangle(int),

Rectangle(int,

int)

Rectangle(int

l = 10, int w

= 5)

Flexibility Low Medium High High

105

Notes 2.5 Dynamic Initialization of Objects, Copy Constructor and

Dynamic Constructor

Introduction

Beginning of Subject 2 (OOP): OOP is one of the most important

patterns in modern software development, and a key concept in OOP

is object initialization. Initialization is the part of program execution

that describes how the objects will be created and managed. Object,

Copy constructor and Dynamic constructor are some of the important

and different types of initialization techniques that you are taught

while learning C++ or any other OOP based programming code.

These techniques allow for the effective management of memory

resources, the duplication of objects, and the dynamic allocation of

specific resources. We cover these aspects in-depth in this Module ,

with a focus on their importance, implementation, benefits, and actual

use cases.

_ Do you have an idea for a story we should cover?

Initialization of Dynamic Objects

Concept and Need

In a dynamic initialization, an object is initialized at runtime using

user-provided values or values calculated during execution of the

program. This approach is not as inflexible as static initialization,

which requires values to be known during compile time. Dynamic

initialization is advantageous to use when your program requires

dynamic memory allocation and typically takes user inputs, reads

values from a file, or calculates a value before assigning it to an

object.

Implementation in C++

In C++, dynamic initialization is often performed using constructors

that accept arguments. It utilizes memory allocation functions such as

new and delete to manage resources efficiently.

#include <iostream>

using namespace std;

class Product {

 string name;

106
MATS Centre for Distance and Online Education, MATS University

Notes float price;

public:

 // Parameterized constructor with dynamic initialization

 Product(string pname, float pprice) {

 name = pname;

 price = pprice;

 }

 void display() {

cout<< "Product: " << name << ", Price: " << price <<endl;

 }

};

int main() {

 string pname;

 float pprice;

cout<< "Enter product name: ";

cin>>pname;

cout<< "Enter product price: ";

cin>>pprice;

 Product p(pname, pprice); // Dynamic initialization at runtime

p.display();

 return 0;

}

Advantages of Dynamic Initialization

1. Flexibility – Enables initialization based on user input or

runtime conditions.

2. Efficient Memory Usage – Allocates resources only when

necessary, avoiding unnecessary memory consumption.

3. Scalability – Supports complex data structures and dynamic

resource allocation.

4. Encapsulation and Data Integrity – Keeps data members

private and ensures controlled initialization.

Copy Constructor

Definition and Purpose

107

Notes A copy constructor is a special constructor in C++ that initializes a

new object as a copy of an existing object. It is used to duplicate

objects while preserving their state. The copy constructor is

particularly important in cases where objects contain dynamically

allocated memory or when passing objects by value.

Syntax and Implementation

A copy constructor takes a reference to an object of the same class as

its parameter.

class ClassName {

public:

ClassName(const ClassName&obj) {

 // Copy constructor implementation

 }

};

Example of Copy Constructor

#include <iostream>

using namespace std;

class Student {

 string name;

 int age;

public:

 // Parameterized constructor

 Student(string sname, int sage) {

 name = sname;

 age = sage;

 }

 // Copy constructor

 Student(const Student &obj) {

 name = obj.name;

 age = obj.age;

 }

 void display() {

cout<< "Name: " << name << ", Age: " << age <<endl;

 }

108
MATS Centre for Distance and Online Education, MATS University

Notes };

int main() {

 Student s1("Alice", 20);

 Student s2 = s1; // Invokes copy constructor

 s1.display();

 s2.display();

 return 0;

}

Advantages of Copy Constructor

1. Ensures Deep Copy – Essential for objects containing

dynamically allocated memory.

2. Efficient Object Duplication – Allows copying objects

without manually reassigning values.

3. Simplifies Code Maintenance – Reduces redundancy and

enhances readability.

4. Prevents Unintended Modifications – Protects original data

while working with copies.

Dynamic Constructor

Definition and Functionality

A dynamic constructor is a constructor that dynamically allocates

memory to objects using new or malloc() during object creation.

Unlike traditional constructors, which allocate memory statically,

dynamic constructors allow objects to acquire memory space at

runtime based on program requirements.

Implementation in C++

#include <iostream>

using namespace std;

class DynamicArray {

 int *arr;

 int size;

public:

 // Dynamic constructor

DynamicArray(int n) {

 size = n;

109

Notes arr = new int[size]; // Allocating memory dynamically

 }

 void setValues() {

 for (int i = 0; i< size; i++) {

cout<< "Enter value for index " <<i<< ": ";

cin>>arr[i];

 }

 }

 void display() {

 for (int i = 0; i< size; i++) {

cout<<arr[i] << " ";

 }

cout<<endl;

 }

 ~DynamicArray() {

 delete[] arr; // Freeing memory

 }

};

int main() {

 int n;

cout<< "Enter the number of elements: ";

cin>> n;

DynamicArray d(n); // Dynamic constructor called

d.setValues();

d.display();

 return 0;

}

Advantages of Dynamic Constructor

1. Efficient Memory Management – Allocates memory as

needed, preventing wastage.

2. Scalability – Suitable for handling large datasets and variable-

size structures.

110
MATS Centre for Distance and Online Education, MATS University

Notes 3. Prevention of Memory Fragmentation – Optimizes memory

allocation and deallocation.

4. Supports Real-time Applications – Beneficial in cases where

data size varies dynamically.

111

Notes Unit 6 : Destructures

2.6 Destructors

Destructors in C++

In terms of memory management process in object-oriented

programming (OOP), constructors and destructors are implicitly the

two most vital structures. You work on constructors until you realize

that the destructors are there to make sure things are clean when the

cheese closes off. In this article, we will learn about C++ destructor, a

key special member function that is called automatically on object

destruction. This helps to ensure that any dynamically allocated

resources, such as memory, file handles, or network connections, are

properly released, preventing memory leaks and resource

mismanagement.

Introduction to Destructors

A destructor in C++ is a member function with the same name as the

class, prefixed with a tilde (~). Unlike constructors, destructors take

no arguments and do not return any value. Every class in C++ can

have at most one destructor.

Syntax of a Destructor

The syntax of a destructor in C++ is as follows:

class ClassName {

public:

 ~ClassName() {

 // Destructor body

 }

};

Characteristics of a Destructor

• It is automatically invoked when an object goes out of scope.

• It has the same name as the class but is prefixed with a tilde

(~).

• It cannot be overloaded, meaning a class can have only one

destructor.

• It does not take any parameters and does not return a value.

• It is commonly used to release dynamically allocated memory

or close file handles.

112
MATS Centre for Distance and Online Education, MATS University

Notes Need for Destructors

In C++, dynamic memory allocation is done using the new operator,

and it must be deallocated using delete. If objects allocate memory

dynamically and fail to release it before being destroyed, memory

leaks occur, leading to inefficient memory utilization. Destructors

help in handling such situations by ensuring proper resource

deallocation.

For instance, consider the following example:

#include <iostream>

using namespace std;

class Example {

public:

 Example() {

cout<< "Constructor called" <<endl;

 }

 ~Example() {

cout<< "Destructor called" <<endl;

 }

};

int main() {

 Example obj; // Constructor will be called

 return 0; // Destructor will be called automatically

}

Output:

Constructor called

Destructor called

Destructor and Dynamic Memory Management

To illustrate the role of destructors in managing dynamic memory,

consider a class that dynamically allocates memory inside the

constructor:

#include <iostream>

using namespace std;

class DynamicExample {

private:

113

Notes int* ptr;

public:

DynamicExample() {

ptr = new int; // Allocating memory

cout<< "Memory allocated." <<endl;

 }

 ~DynamicExample() {

 delete ptr; // Releasing memory

cout<< "Memory deallocated." <<endl;

 }

};

int main() {

DynamicExample obj;

 return 0;

}

Output:

Memory allocated.

Memory deallocated.

Without the destructor, the dynamically allocated memory would not

be released, causing a memory leak.

Destructors in Inheritance

In inheritance, it is required to call the destructor of base class and

derived classes properly. In C++, the destructors of the inheritance

hierarchy are called in a top down manner starting from the derived

class to the base class.

Example of Destructors in Inheritance

#include <iostream>

using namespace std;

class Base {

public:

 Base() {

cout<< "Base Constructor" <<endl;

 }

 virtual ~Base() {

cout<< "Base Destructor" <<endl;

 }

114
MATS Centre for Distance and Online Education, MATS University

Notes };

class Derived : public Base {

public:

 Derived() {

cout<< "Derived Constructor" <<endl;

 }

 ~Derived() {

cout<< "Derived Destructor" <<endl;

 }

};

int main() {

 Base* obj = new Derived();

 delete obj; // Ensures proper destruction

 return 0;

}

Output:

Base Constructor

Derived Constructor

Derived Destructor

Base Destructor

Using a virtual destructor ensures that the destructor of the derived

class is called before the base class destructor, preventing memory

leaks when dealing with polymorphism.

Virtual Destructors

In C++, if a class contains virtual functions, it is recommended to

declare its destructor as virtual. A virtual destructor ensures that when

deleting an object through a base class pointer, the destructor of the

derived class gets executed first, followed by the base class destructor.

Example of Virtual Destructors

class Parent {

public:

 Parent() {

cout<< "Parent Constructor" <<endl;

 }

 virtual ~Parent() {

cout<< "Parent Destructor" <<endl;

115

Notes }

};

class Child : public Parent {

public:

 Child() {

cout<< "Child Constructor" <<endl;

 }

 ~Child() {

cout<< "Child Destructor" <<endl;

 }

};

int main() {

 Parent* obj = new Child();

 delete obj;

 return 0;

}

If the destructor is not virtual, only the base class destructor will be

called, leading to resource leaks in the derived class.

Explicitly Calling Destructors

Though destructors are called automatically when an object goes out

of scope, they can be explicitly called using the scope resolution

operator:

obj.~ClassName();

However, explicitly calling destructors is usually unnecessary and

should be done cautiously.

Destructors and Smart Pointers

Modern C++ uses smart pointers (std::unique_ptr, std::shared_ptr) to

manage memory automatically. These smart pointers have destructors

that automatically release resources when they go out of scope.

Example using std::unique_ptr:

#include <iostream>

#include <memory>

using namespace std;

class Sample {

public:

116
MATS Centre for Distance and Online Education, MATS University

Notes Sample() {

cout<< "Resource allocated." <<endl;

 }

 ~Sample() {

cout<< "Resource deallocated." <<endl;

 }

};

int main() {

unique_ptr<Sample>ptr = make_unique<Sample>();

 return 0;

}

Output:

Resource allocated.

Resource deallocated.

Using smart pointers eliminates the need for explicit destructors in

many cases, making memory management safer and more efficient.

MCQs:

1. Which memory is used for object storage in C++?

a) Stack

b) Heap

c) RAM

d) ROM

2. Which of the following statements is true about friend

functions?

a) Friend functions can access private and protected members

of a class

b) Friend functions can only access public members

c) Friend functions belong to the class

d) Friend functions require object instantiation

3. What is a local class in C++?

a) A class defined inside a function

b) A global class

c) A class that can only be used in files

d) A static class

4. What is a constructor in C++?

a) A function that is used to allocate memory

b) A function that initializes objects

117

Notes c) A function that destroys objects

d) A normal function inside a class

5. Which constructor is called when an object is created

without parameters?

a) Copy Constructor

b) Dynamic Constructor

c) Default Constructor

d) Parameterized Constructor

6. Which type of constructor allows an object to be initialized

using another object?

a) Default Constructor

b) Copy Constructor

c) Multiple Constructor

d) Dynamic Constructor

7. Which constructor dynamically allocates memory at

runtime?

a) Copy Constructor

b) Dynamic Constructor

c) Default Constructor

d) Multiple Constructor

8. What is the purpose of a destructor in C++?

a) To allocate memory

b) To initialize objects

c) To release memory and clean up resources

d) To call functions

9. How many destructors can a class have?

a) One

b) Two

c) Multiple

d) None

10. Which operator is used for dynamic memory allocation in

C++?

a) malloc

b) free

c) new

d) delete

Short Questions:

1. What is memory allocation of objects in C++?

118
MATS Centre for Distance and Online Education, MATS University

Notes 2. Explain the concept of a friend function with an example.

3. What is a local class in C++?

4. Define constructors and explain their purpose.

5. What are the different types of constructors?

6. Explain the concept of copy constructors.

7. What is the difference between dynamic constructor and

default constructor?

8. What is the significance of destructors in C++?

9. How does dynamic initialization of objects work?

10. Explain the syntax and purpose of a destructor in C++.

Long Questions:

1. Explain memory allocation of objects in C++ with examples.

2. What is a friend function? Discuss its advantages and

limitations with an example.

3. Define local classes and explain their applications.

4. What are constructors? Discuss parameterized, multiple, and

default argument constructors with examples.

5. Explain the process of dynamic initialization of objects in

C++.

6. What is a copy constructor? Write a program to demonstrate

its use.

7. Compare and contrast dynamic constructors and normal

constructors.

8. What is a destructor, and how does it work in C++? Explain

with an example.

9. Discuss the importance of object initialization and destruction

in memory management.

10. Write a C++ program demonstrating different types of

constructors and destructors.

119
MATS Centre for Distance and Online Education, MATS University

MODULE 3

OPERATOR OVERLOADING AND INHERITANCE

3.0 LEARNING OUTCOMES

• Understand operator overloading and how to overload unary

and binary operators.

• Learn how to overload binary operators using friend functions.

• Understand the rules of operator overloading and type

conversion.

• Learn about inheritance and how derived classes function in

C++.

• Explore different types of inheritance (Single, Multilevel,

Multiple).

• Understand virtual base classes and abstract classes.

• Learn about constructors in derived classes and member

classes.

120
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Operator Overloading Basics

3.1 Operator Overloading: Unary and Binary

Introduction

One of the most influential features of object orientated programming

(OOP) is operator overloading, it enables the programmer to specify

or alter the actions of the built-in operators for user-defined types.

This makes the code easier to read and write, allowing objects to act

like primitive data types and use the same operators. Operator

overloading in C++ is extensively used to make operations for classes

like complex numbers, matrices and vectors intuitive. Operators can

be unary or binary, which refers to the number of operands that they

work on.

Introduction to Operator Overloading

Operator overloading allows us to redefine an operator so that we can

perform a particular operation on user-defined data types. For

fundamental data types, when an operator is overloaded, it has its

normal meaning, while for class objects, it takes on new meaning.

They are special functions used to overload called operator functions,

they can either be class member functions or friend functions.

In C++, operators can be categorized into:

• Unary Operators: Operate on a single operand (e.g., ++, --, !,

-, ~).

• Binary Operators: Require two operands (e.g., +, -, *, /, ==,

!=, >, <).

The syntax for operator overloading follows this general format:

class ClassName {

public:

ReturnTypeoperatorSymbol(Arguments) {

 // Overloaded operator function body

 }

};

Unary Operator Overloading

Unary operators operate on a single operand. Some of the commonly

overloaded unary operators include increment (++), decrement (--),

negation (-), logical NOT (!), and bitwise complement (~).

Example 1: Overloading Unary - Operator

121

Notes #include <iostream>

using namespace std;

class Number {

 int value;

public:

 Number(int v) : value(v) {}

 void display() { cout<< "Value: " << value <<endl; }

 Number operator-() {

 return Number(-value);

 }

};

int main() {

 Number n1(10);

 Number n2 = -n1;

 n1.display();

 n2.display();

 return 0;

}

Explanation:

• The - operator is overloaded using a member function.

• The overloaded operator- negates the value and returns a new

object.

• The main function demonstrates the application of the

overloaded operator.

Example 2: Overloading Increment (++) Operator

#include <iostream>

using namespace std;

class Counter {

 int count;

public:

 Counter() : count(0) {}

 void display() { cout<< "Count: " << count <<endl; }

 Counter operator++() { // Pre-increment

 ++count;

 return *this;

122
MATS Centre for Distance and Online Education, MATS University

Notes }

};

int main() {

 Counter c1;

 ++c1;

 c1.display();

 return 0;

}

Explanation:

• The ++ operator is overloaded to increment count.

• The function returns the modified object.

Binary Operator Overloading

Binary operators require two operands and can be overloaded to

define operations like addition, subtraction, multiplication, and

comparison for user-defined types.

Example 3: Overloading + Operator

#include <iostream>

using namespace std;

class Complex {

 int real, imag;

public:

 Complex(int r = 0, int i = 0) : real(r), imag(i) {}

 void display() { cout<< real << " + " <<imag<< "i" <<endl; }

 Complex operator+(const Complex &c) {

 return Complex(real + c.real, imag + c.imag);

 }

};

int main() {

 Complex c1(3, 4), c2(1, 2);

 Complex c3 = c1 + c2;

 c3.display();

 return 0;

}

Explanation:

• The + operator is overloaded to add two complex numbers.

123

Notes • A new Complex object is returned, encapsulating the sum.

Example 4: Overloading == Operator

#include <iostream>

using namespace std;

class Point {

 int x, y;

public:

 Point(int a, int b) : x(a), y(b) {}

 bool operator==(const Point &p) {

 return (x == p.x&& y == p.y);

 }

};

int main() {

 Point p1(3, 4), p2(3, 4);

 if (p1 == p2)

cout<< "Points are equal" <<endl;

 else

cout<< "Points are not equal" <<endl;

 return 0;

}

Explanation:

• The == operator is overloaded to compare two Point objects.

• It returns true if both x and y coordinates match.

Overloading Operators as Friend Functions

Operators can also be overloaded using friend functions. This is useful

when the left-hand operand is not an object of the class.

Example 5: Overloading * Operator using Friend Function

#include <iostream>

using namespace std;

class Multiply {

 int value;

public:

 Multiply(int v) : value(v) {}

 friend Multiply operator*(const Multiply &m1, const Multiply

&m2);

124
MATS Centre for Distance and Online Education, MATS University

Notes void display() { cout<< "Value: " << value <<endl; }

};

Multiply operator*(const Multiply &m1, const Multiply &m2) {

 return Multiply(m1.value * m2.value);

}

int main() {

 Multiply m1(5), m2(3);

 Multiply m3 = m1 * m2;

 m3.display();

 return 0;

}

Explanation:

• The * operator is overloaded as a friend function.

• It allows multiplication of objects without requiring a member

function.

3.2 Overloading Binary Operators Using Friend Functions

Overloading Binary Operators Using Friend Functions in C++

Introduction

Operator overloading is a crucial feature in C++ that enables operators

to work with user-defined data types. Specifically, binary operator

overloading allows us to define custom behavior for operations such

as addition (+), subtraction (-), multiplication (*), and division (/)

when applied to objects of a class. One way to achieve this is by using

friend functions. This article explores how to overload binary

operators using friend functions in C++ with examples, applications,

and best practices.

Understanding Binary Operator Overloading

A binary operator operates on two operands. In C++, built-in binary

operators such as +, -, *, /, ==, and != can be overloaded to work with

class objects. When overloading binary operators, we must define

how they function when applied to objects of user-defined classes.

There are two primary ways to overload binary operators in C++:

1. Using member functions

2. Using friend functions

Friend Functions for Binary Operator Overloading

125

Notes A friend function is a non-member function that has access to the

private and protected members of a class. It is particularly useful for

binary operator overloading when the left operand is not necessarily

an object of the class.

Syntax of a Friend Function for Overloading a Binary Operator

class ClassName {

 private:

 // Data members

 public:

 // Constructor

 // Friend function prototype

 friend Return Type operator Op Symbol (const ClassName &

obj1, const ClassName&obj2);

};

Steps to Overload a Binary Operator Using Friend Functions

1. Define a class with necessary data members.

2. Declare a friend function inside the class.

3. Define the friend function outside the class to perform the

desired operation.

4. Return the result as an object of the class.

5. Test the overloaded operator in the main () function.

Example: Overloading the + Operator Using a Friend Function

Let's consider a Complex number class where we overload the +

operator using a friend function.

#include <iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex (int r = 0, int i = 0) : real(r), imag(i) {}

 // Friend function declaration

 friend Complex operator+(const Complex &c1, const Complex

&c2);

126
MATS Centre for Distance and Online Education, MATS University

Notes

 void display() {

cout<< real << " + " <<imag<< "i" <<endl;

 }

};

// Friend function definition

Complex operator+(const Complex &c1, const Complex &c2) {

 return Complex(c1.real + c2.real, c1.imag + c2.imag);

}

int main() {

 Complex c1(3, 4), c2(5, 6);

 Complex c3 = c1 + c2; // Overloaded + operator

cout<< "Sum: ";

 c3.display();

 return 0;

}

Explanation

• The Complex class has private data members real and imag.

• A friend functionoperator+ is declared inside the class.

• The function definition is written outside the class, performing

addition on real and imag parts of the two objects.

• The main() function demonstrates how c1 + c2 works

seamlessly due to operator overloading.

127

Notes Example: Overloading the - Operator Using a Friend Function

Similarly, we can overload the - operator for the Complex class.

friend Complex operator-(const Complex &c1, const Complex &c2);

Complex operator-(const Complex &c1, const Complex &c2) {

 return Complex(c1.real - c2.real, c1.imag - c2.imag);

}

Example: Overloading the * Operator Using a Friend Function

To overload the multiplication operator for matrix multiplication:

class Matrix {

private:

 int data;

public:

 Matrix(int val = 0) : data(val) {}

 friend Matrix operator*(const Matrix &m1, const Matrix &m2);

 void display() {

cout<< "Value: " << data <<endl;

 }

};

Matrix operator*(const Matrix &m1, const Matrix &m2) {

 return Matrix(m1.data * m2.data);

}

int main() {

 Matrix m1(4), m2(3);

 Matrix m3 = m1 * m2;

cout<< "Product: ";

 m3.display();

 return 0;

}

Applications of Overloaded Operators

• Mathematical computations (e.g., complex numbers,

matrices, vectors)

• Custom string operations (e.g., concatenation)

• Smart pointers and iterators

• Graphics and game development (e.g., vector arithmetic)

128
MATS Centre for Distance and Online Education, MATS University

Notes • Scientific computing (e.g., statistical calculations, financial

models)

Advantages of Using Friend Functions

1. Allows flexibility when the left operand is not a class object.

2. Directly accesses private members without needing

accessors.

3. Enhances readability by keeping operator logic separate from

the class definition.

Disadvantages of Using Friend Functions

1. Breaks encapsulation since private members are accessible.

2. Cannot use this pointer as it is a non-member function.

3. May lead to performance overhead if not optimized

properly.

Best Practices for Overloading Operators Using Friend Functions

1. Use friend functions only when necessary, such as when the

first operand isn't a class object.

2. Return objects by value, unless performance requires

otherwise.

3. Ensure operators maintain expected mathematical

behavior to avoid confusion.

4. Minimize access to private data to maintain encapsulation

where possible.

5. Keep operator functions simple and efficient to avoid

unnecessary computational overhead.

3.3 Rules of Overloading Operators, Type Conversion

Introduction

Operator overloading is a powerful feature in object-oriented

programming (OOP) that allows operators to be redefined for user-

defined data types. This feature enhances code readability and

expressiveness, making it possible to perform intuitive operations on

objects. However, operator overloading must adhere to specific rules

to maintain program consistency and prevent ambiguity. Similarly,

type conversion enables seamless interactions between different data

types, ensuring type safety and proper interpretation of values.

Rules of Overloading Operators

Operator overloading follows well-defined constraints imposed by

programming languages like C++ to avoid unexpected behavior. The

following rules must be considered when overloading operators:

129

Notes 1. Only Existing Operators Can Be Overloaded Operator

overloading does not allow the creation of new operators. It

only modifies the behavior of existing operators for user-

defined types.

2. Certain Operators Cannot Be Overloaded Some operators

are fundamental to language syntax and cannot be overloaded,

such as:

• Scope resolution operator (::)

• Member access operators (. and .*)

• Ternary conditional operator (?:)

• sizeof and typeid

3. Operator Overloading Must Involve a User-Defined Type

At least one operand in an overloaded operator function must

be a user-defined type (such as a class or structure). This

prevents overloading operators for built-in types, avoiding

conflicts.

4. Preserving Operator Precedence and Associativity

Overloading does not change an operator's precedence or

associativity. The compiler applies the same precedence rules

as for built-in types.

5. Overloading Must Preserve Natural Semantics Operators

should be overloaded in a way that maintains logical

consistency. For example, an overloaded + operator should

perform an addition-like operation, not something unrelated.

6. Overloaded Operators Can Be Member or Non-Member

Functions Operators can be implemented as:

• Member functions, where the left operand must be an

instance of the class.

• Non-member functions, often implemented using

friend functions to allow direct access to private data.

7. Some Operators Must Be Overloaded as Member

Functions Certain operators, such as =, (), [], and ->, must be

overloaded as member functions since they inherently belong

to a specific object.

8. Binary Operators Need Two Parameters When Non-

Member Functions A binary operator, when overloaded as a

non-member function, takes two explicit parameters.

130
MATS Centre for Distance and Online Education, MATS University

Notes However, if defined as a member function, it implicitly takes

the invoking object as the first operand.

9. Unary Operators Take No Parameters When Member

Functions When overloaded as member functions, unary

operators (like -, !, ++, --) do not take explicit parameters. If

implemented as non-member functions, they take one

parameter.

10. Friend Functions for Private Member Access To allow

operator overloading functions to access private class

members, they are often declared as friend functions within

the class.

11. Operators Must Return the Correct Type Overloaded

operators should return an appropriate type. For example,

operator+ typically returns a new object rather than modifying

the existing one.

12. Assignment (=) Operator Requires Proper Memory

Management Overloading the assignment operator (=) must

handle deep copies for objects containing dynamically

allocated memory to prevent memory leaks and shallow copy

issues.

13. Overloaded Increment and Decrement Operators Must

Differentiate Prefix and Postfix

• Prefix (++x, --x) takes no arguments.

• Postfix (x++, x--) takes an int argument to differentiate

it from the prefix version.

14. Logical and Bitwise Operators Should Return Meaningful

Results Logical operators (&&, ||, !) should return Boolean

values, whereas bitwise operators should return modified

versions of the object.

15. Stream Insertion (<<) and Extraction (>>) Operators Must

Be Non-Member Functions Since cout<< obj requires cout

(an ostream object) on the left side, these operators should be

overloaded as friend or non-member functions.

Type Conversion

Type conversion is essential for ensuring compatibility between

different data types. It can be categorized into three types:

1. Implicit Type Conversion (Type Promotion)

• Automatically performed by the compiler.

131

Notes • Converts smaller data types to larger ones (e.g., int to

float).

• Avoids data loss and type mismatches.

2. Explicit Type Conversion (Type Casting)

• Performed using cast operators (static_cast,

dynamic_cast, reinterpret_cast, const_cast in C++).

• Can lead to data loss if improperly used.

• Used when implicit conversion is not sufficient.

3. User-Defined Type Conversion

• Allows custom conversion between user-defined types.

• Implemented using:

▪ Conversion Constructor (Single-argument

constructor that converts other types into the

class type.)

▪ Conversion Operator (operator type())

(Defines conversion from class type to another

type.)

132
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Types of Inheritance

3.4 Inheritance and Derived Classes

Inheritance is one of the key concepts of object-oriented programming

(OOP) that allows a class to inherit properties and behaviour from any

other class. This mechanism fosters code reuse, creates a hierarchical

between classes. Inheritance is a concept in OOP where a class,

known as derived or child class, inherits the properties and behavior

(methods) of another class known as parent base class, essentially

establishing relationships between classes, and is much useful as it

allows the creation of specialized implementations while preserving a

common interface.

Inheritance Explained: The Fundamentals

Inheritance, at its core, signifies an "is-a" relationship (for the base or

parent class), it inherits everything from the parent class, and can add

few features or modify features if required.

The syntax for creating a derived class in C++ is:

class DerivedClass : [access-specifier] BaseClass {

 // Additional members and methods

};

The access specifier (public, private, or protected) determines how the

members of the base class are inherited by the derived class.

Access Specifiers in Inheritance

The access specifier used during inheritance affects how the members

of the base class are accessible in the derived class:

Figure 3 Types of Inheritance

[Source: https://medium.com]

133

Notes 1. Public Inheritance: The public members of the base class

become public members of the derived class, and protected

members remain protected. This is the most common form of

inheritance as it preserves the interface of the base class.

2. Protected Inheritance: The public and protected members of

the base class become protected members of the derived class.

3. Private Inheritance: Both public and protected members of

the base class become private members of the derived class.

For example:

class Base {

public:

 int publicVar;

protected:

 int protectedVar;

private:

 int privateVar;

};

class DerivedPublic : public Base {

 // publicVar remains public

 // protectedVar remains protected

 // privateVar is not accessible

};

class DerivedProtected : protected Base {

 // publicVar becomes protected

 // protectedVar remains protected

 // privateVar is not accessible

};

class DerivedPrivate : private Base {

 // publicVar becomes private

 // protectedVar becomes private

 // privateVar is not accessible

};

Member Access in Derived Classes

Just like C++ in which when we derive a class from a base class, the

derived class would have access to all the public and protected

134
MATS Centre for Distance and Online Education, MATS University

Notes members of the base class. Although private members can not be

accessed directly, they are accessible indirectly through public or

protected member functions of the base class.

class Shape {

protected:

 double width;

 double height;

public:

 void setDimensions(double w, double h) {

 width = w;

 height = h;

 }

};

class Rectangle : public Shape {

public:

 double area() {

 return width * height; // Access to protected members

 }

};

Function Overriding

Derived classes are allowed to implement a function that had been

previously defined in the base class. This is called function

overriding:

class Animal {

public:

 void makeSound() {

 std::cout<< "Some generic sound" << std::endl;

 }

};

class Dog : public Animal {

public:

 void makeSound() { // Overrides the base class method

 std::cout<< "Woof!" << std::endl;

 }

};

135

Notes To call the base class version of an overridden function, you can use

the scope resolution operator (::):

class Dog : public Animal {

public:

 void makeSound() {

 Animal::makeSound(); // Call base class version

 std::cout<< "Woof!" << std::endl;

 }

};

Polymorphism Through Inheritance

Polymorphism — thanks to inheritance, a pointer/reference to a base

class can point to an object of a derived class. This is an incredibly

powerful feature that paves the way for flexible and extensible code:

Animal* pet = new Dog();

pet->makeSound(); // Calls Dog::makeSound() if properly

implemented with virtual

In order for polymorphism to function correctly, the functions of the

base class must be declared virtual, which we will examine in detail

in section 3.6.

3.5 Inheritance: Single, Multilevel, Multiple

Different styles of inheritance structures provided for different design

needs is supported by Object-oriented programming. Single

inheritance, multilevel inheritance, and multiple inheritance are the

major types.

Single Inheritance

Single inheritance is the simplest form where a derived class inherits

from only one base class. This creates a direct parent-child

relationship:

class Animal {

 // Base class members

};

class Dog : public Animal {

 // Single inheritance

};

Single inheritance is straightforward to implement and understand. It's

supported by virtually all object-oriented programming languages,

including Java, C#, and C++.

136
MATS Centre for Distance and Online Education, MATS University

Notes Multilevel Inheritance

Multilevel inheritance involves a derived class that inherits from

another derived class, creating a chain of inheritance:

class Animal {

 // Base class members

};

class Mammal : public Animal {

 // First level derived class

};

class Dog : public Mammal {

 // Second level derived class

};

This structure allows each level to add specialized features while

inheriting all the properties of its ancestors. The Dog class in the

example has access to features from both Animal and Mammal

classes.

Multiple Inheritances

Multiple inheritances occurs when a derived class inherits from two or

more base classes:

class Engine {

 // First base class

public:

 void start() {

 std::cout<< "Engine started" << std::endl;

 }

};

class Wheels {

 // Second base class

public:

 void rotate() {

 std::cout<< "Wheels rotating" << std::endl;

 }

};

class Car : public Engine, public Wheels {

137

Notes // Derives from two base classes

public:

 void drive() {

 start(); // From Engine

 rotate(); // From Wheels

 std::cout<< "Car is moving" << std::endl;

 }

};

In the next section, we will talk about the complexities that arise from

multiple inheritance, such as the diamond problem.

Hierarchical Inheritance

Another common pattern is hierarchical inheritance, in which multiple

derived classes inherit from a single base class:

class Animal {

 // Base class

};

class Dog : public Animal {

 // First derived class

};

class Cat : public Animal {

 // Second derived class

};

class Bird : public Animal {

 // Third derived class

};

This practice is effective when common behavior is defined in one

base class, and inherited by several specialized classes.

Hybrid Inheritance

138
MATS Centre for Distance and Online Education, MATS University

Notes Hybrid inheritance is obtained by combining two or more types of

inheritance types. A class can even use both multiple and multilevel

inheritance, for example:

class A { /* ... */ };

class B { /* ... */ };

class C : public A { /* ... */ };

class D : public B, public C { /* ... */ };

In this example, class D uses multiple inheritance (inheriting from B

and C) and is also part of a multilevel inheritance chain (A to C to D).

3.6 Virtual Base Classes and Abstract Classes

The Diamond Problem

Multiple inheritance can lead to ambiguity known as the "diamond

problem." This occurs when a class inherits from two classes that both

inherit from a common base class:

 A

 / \

 B C

 \ /

 D

In this structure, class D inherits from both B and C, which both

inherit from A. This means D inherits A's members twice, creating

ambiguity.

class A {

public:

 int value;

};

class B : public A { };

class C : public A { };

class D : public B, public C {

 // Problem: D has two copies of A's members

};

int main() {

 D d;

d.value = 10; // Ambiguous: which 'value' - from B or from C?

139

Notes }

Virtual Base Classes

C++ resolves the diamond problem using virtual inheritance. By

declaring base classes as virtual, a class ensures only one instance of

the common ancestor:

class A {

public:

 int value;

};

class B : virtual public A { };

class C : virtual public A { };

class D : public B, public C {

 // D now has only one copy of A's members

};

int main() {

 D d;

d.value = 10; // No ambiguity: only one 'value' exists

}

When you Multiple Inheritance, it is possible that there are 2 copies

of the base class, so Virtual Base classes helps us to avoid this, so in

Virtual Base classes there is only one base class copy no matter how

many multiple inheritance paths there are.

Abstract Classes

An abstract class is a class that cannot be instantiated, but can be

inherited from. It usually has one or more pure virtual function,

which is a declared but not implemented type of function in the base

class:

class Shape {

public:

 // Pure virtual function (makes Shape abstract)

 virtual double area() = 0;

140
MATS Centre for Distance and Online Education, MATS University

Notes virtual void draw() {

 std::cout<< "Drawing a shape" << std::endl;

 }

};

The = 0 syntax marks a function as pure virtual, meaning derived

classes must implement it. Any class with at least one pure virtual

function becomes an abstract class.

class Circle : public Shape {

private:

 double radius;

public:

 Circle(double r) : radius(r) {}

 // Implementation of the pure virtual function

 double area() override {

 return 3.14159 * radius * radius;

 }

};

Interface vs. Implementation Inheritance

Abstract classes emphasise the difference between interface

inheritance and implementation inheritance:

• Interface Inheritance: The derived classes get the interface

(the methods that can be called), but they have to implement

those themselves. This interface is defined by pure virtual

functions.

So the first implementation inheritance is implementation

inheritance: derived classes inherit both the interface and the

implementation. Regular (non-pure) virtual and non-virtual functions

provide implementation inheritance. Abstract classes are often a mix

of both, providing some implementation (common utilities) while

requiring implementations for others.

Virtual Functions and Runtime Polymorphism

Virtual functions enable runtime polymorphism, allowing a base class

pointer to correctly call a derived class's implementation:

Shape* shape = new Circle(5.0);

double a = shape->area(); // Calls Circle::area(), not Shape::area()

This behavior is crucial for building flexible and extensible software

systems.

141

Notes The override and final Specifiers

Modern C++ provides additional keywords to better manage virtual

functions:

• Override: Indicates that a function is intended to override a

virtual function from a base class. The compiler checks that

this is indeed the case:

class Derived : public Base {

public:

 void foo() override; // Compiler checks that Base has a virtual

foo()

};

• final: Prevents further overriding of a virtual function or

inheritance from a class:

class Base {

public:

 virtual void foo() final; // Cannot be overridden further

};

class FinalClass final { }; // Cannot be used as a base class

142
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Constructors in Derived Classes and Member

Classes

3.7 Constructors in Derived Classes and Member Classes

Constructor Execution Order

When a derived class object is created, the constructors execute in a

specific order:

1. Base class constructors (in order of declaration for multiple

inheritance)

2. Member object constructors (in order of declaration)

3. Derived class constructor body

Likewise, destructors execute in the reverse order.

Initializing Base Classes

A derived class constructor can explicitly call a base class constructor

in its initializer list:

class Base {

private:

 int value;

public:

 Base(int v) : value(v) {}

};

class Derived : public Base {

private:

 double data;

public:

 // Calls Base(5) and initializes data to 10.5

Figure 4 Types of Constructor
[Source https://logicmojo.com]

143

Notes Derived() : Base(5), data(10.5) {}

 // Calls Base(v) and initializes data to d

 Derived(int v, double d) : Base(v), data(d) {}

};

When an instance of K is created and the base constructor is not

explicitly called, the default (parameterless) base constructor is

invoked automatically.

Virtual Base Class Constructors

When deriving a class from a virtual base class, construction of the

virtual base is done by the most-derived class, regardless of how deep

the inheritance chain goes:

class A {

public:

 A(int x) {}

};

class B : virtual public A {

public:

 B() : A(10) {} // Calls A's constructor

};

class C : virtual public A {

public:

 C() : A(20) {} // Calls A's constructor

};

class D : public B, public C {

public:

 // D must initialize A, even though B and C also do

 D() : A(30), B(), C() {} // The A(30) call takes precedence

};

144
MATS Centre for Distance and Online Education, MATS University

Notes In this example, despite B and C initializing A, D's initialization of A

takes precedence because D is the most derived class.

Member Classes (Nested Classes)

C++ allows classes to be defined within other classes, creating nested

or member classes:

class Outer {

private:

 int value;

public:

 class Inner {

 private:

 int data;

 public:

 Inner(int d) : data(d) {}

 void display() {

 // Inner can't directly access Outer::value

 std::cout<< "Inner data: " << data << std::endl;

 }

 };

 Inner createInner(int d) {

 return Inner(d);

 }

};

int main() {

 Outer outer;

 Outer::Inner inner = outer.createInner(42);

inner.display();

}

Key characteristics of member classes:

1. A nested class is a member of its enclosing class and has the

same access rights as other members.

2. The nested class can be declared in private, protected, or

public sections of the enclosing class, affecting its visibility.

145

Notes 3. The nested class does not have direct access to the enclosing

class's members without an instance of the enclosing class.

4. The relationship is purely logical nesting; there's no automatic

containment relationship.

Initialization of Member Objects

When a class has member objects (composition), these members are

initialized in the constructor's initializer list:

class Engine {

public:

 Engine(int power) {}

};

class Wheel {

public:

 Wheel(int size) {}

};

class Car {

private:

 Engine engine;

 Wheel wheels[4];

public:

 Car() : engine(150), wheels{18, 18, 18, 18} {}

};

If member objects aren't explicitly initialized, their default

constructors are called.

Delegating Constructors

Modern C++ allows a constructor to delegate to another constructor in

the same class:

class Example {

private:

 int x, y, z;

public:

 // Primary constructor

 Example(int x, int y, int z) : x(x), y(y), z(z) {}

146
MATS Centre for Distance and Online Education, MATS University

Notes // Delegates to the primary constructor

 Example() : Example(0, 0, 0) {}

 // Delegates with some default values

 Example(int x) : Example(x, 0, 0) {}

};

This reduces code duplication and centralizes initialization logic.

Practical Applications of Inheritance

Class Hierarchies in GUI Frameworks

Graphical user interface (GUI) frameworks extensively use

inheritance to create component hierarchies. Consider a simplified

example:

class Widget {

protected:

 int x, y, width, height;

public:

 Widget(int x, int y, int w, int h) : x(x), y(y), width(w), height(h) {}

 virtual void draw() = 0;

 virtual bool handleEvent(const Event& event) = 0;

};

class Button : public Widget {

private:

 std::string label;

 std::function<void()>onClick;

public:

 Button(int x, int y, int w, int h, const std::string& label)

 : Widget(x, y, w, h), label(label) {}

 void draw() override {

 // Draw button with label

 }

 bool handleEvent(const Event& event) override {

 // Handle click events

147

Notes if (event.type == Event::Click &&containsPoint(event.x,

event.y)) {

 if (onClick) onClick();

 return true;

 }

 return false;

 }

 void setOnClickHandler(std::function<void()> handler) {

onClick = handler;

 }

};

class Checkbox : public Widget {

private:

 bool checked;

 std::string label;

public:

 Checkbox(int x, int y, int w, int h, const std::string& label)

 : Widget(x, y, w, h), label(label), checked(false) {}

 void draw() override {

 // Draw checkbox with label and check status

 }

 bool handleEvent(const Event& event) override {

 // Toggle checked state on click

 if (event.type == Event::Click &&containsPoint(event.x,

event.y)) {

 checked = !checked;

 return true;

 }

 return false;

 }

 bool isChecked() const { return checked; }

};

148
MATS Centre for Distance and Online Education, MATS University

Notes Object-Oriented Database Design

Inheritance is crucial in database object models, allowing for

specialized entities while maintaining common traits:

class DatabaseEntity {

protected:

 int id;

 std::string createdAt;

 std::string updatedAt;

public:

 virtual ~DatabaseEntity() = default;

 virtual void save() = 0;

 virtual void load(int id) = 0;

 virtual void remove() = 0;

};

class User : public DatabaseEntity {

private:

 std::string username;

 std::string email;

 std::string passwordHash;

public:

 void save() override {

 // Implementation for saving user data

 }

 void load(int id) override {

 // Implementation for loading user data

 }

 void remove() override {

 // Implementation for removing user data

 }

 // User-specific methods

 bool authenticate(const std::string& password) {

 // Authentication logic

149

Notes return true;

 }

};

class Product : public DatabaseEntity {

private:

 std::string name;

 double price;

 int stockQuantity;

public:

 void save() override {

 // Implementation for saving product data

 }

 void load(int id) override {

 // Implementation for loading product data

 }

 void remove() override {

 // Implementation for removing product data

 }

 // Product-specific methods

 bool isInStock() const {

 return stockQuantity> 0;

 }

};

Game Development Entity System

Game engines often use inheritance for entity systems:

class GameObject {

protected:

 Vector2D position;

 bool active;

public:

GameObject() : active(true) {}

 virtual ~GameObject() = default;

150
MATS Centre for Distance and Online Education, MATS University

Notes

 virtual void update(float deltaTime) = 0;

 virtual void render() = 0;

 void setPosition(const Vector2D& pos) { position = pos; }

 Vector2D getPosition() const { return position; }

 void setActive(bool isActive) { active = isActive; }

 bool isActive() const { return active; }

};

class Player : public GameObject {

private:

 int health;

 float speed;

public:

 Player() : health(100), speed(5.0f) {}

 void update(float deltaTime) override {

 // Update player state, handle input, etc.

 }

 void render() override {

 // Render player sprite

 }

 void takeDamage(int amount) {

 health -= amount;

 if (health <= 0) {

setActive(false); // Player is defeated

 }

 }

};

class Enemy : public GameObject {

private:

 int health;

151

Notes float speed;

 Player* target;

public:

 Enemy(Player* player) : health(50), speed(3.0f), target(player) {}

 void update(float deltaTime) override {

 if (target && target->isActive()) {

 // Move toward player

 Vector2D direction = target->getPosition() - position;

direction.normalize();

 position = position + direction * speed * deltaTime;

 }

 }

 void render() override {

 // Render enemy sprite

 }

 void takeDamage(int amount) {

 health -= amount;

 if (health <= 0) {

setActive(false); // Enemy is defeated

 }

 }

};

Best Practices for Inheritance

Use Inheritance Judiciously

Inheritance creates tight coupling between classes which can make

code a little less flexible. Use composition or interfaces instead if

applicable:

• Use inheritance to model “is-a” relationships

• Composition falls more favorably in “has-a” relationships

• Use interface inheritance instead of implementation inheritance if

you can

152
MATS Centre for Distance and Online Education, MATS University

Notes

153

Notes Plan for Inheritance or Avoid It

A class should either be designed specifically to be the base of

subclasses or explicitly disallowed from being used as a base class:

// Designed for inheritance

class Base {

public:

 virtual ~Base() = default; // Virtual destructor

 virtual void operation() = 0; // Pure virtual function

};

// Prohibited from inheritance

class Utility final {

public:

 static void helperFunction();

};

The Liskov Substitution Principle

Derived classes must be substitutable for their base classes without

affecting the correctness of the program. This is one of the SOLID

design principles, which helps to ensure that inheritance hierarchies

are well-formed:

void processShape(Shape* shape) {

 // Any shape should work here without special cases

 double area = shape->area();

 shape->draw();

}

int main() {

 Circle circle(5);

 Rectangle rectangle(4, 6);

processShape(&circle); // Should work correctly

processShape(&rectangle); // Should work correctly

}

154
MATS Centre for Distance and Online Education, MATS University

Notes Virtual Destructors

Always declare destructors as virtual in base classes to ensure proper

cleanup of derived objects:

class Base {

public:

 virtual ~Base() = default; // Virtual destructor

};

class Derived : public Base {

private:

 Resource* resource;

public:

 Derived() : resource(new Resource()) {}

 ~Derived() override { delete resource; } // Will be called correctly

};

int main() {

 Base* ptr = new Derived();

 delete ptr; // Without virtual destructor, Derived's destructor

wouldn't be called

}

Rule of Three/Five/Zero

When defining custom destructors in a class hierarchy, follow the

Rule of Three (or Five in modern C++):

1. If you need a destructor, you probably need copy constructor

and copy assignment

2. In modern C++, also consider move constructor and move

assignment

3. Or follow the Rule of Zero: define no custom destructor,

copy/move operations if possible

MCQs:

1. Which of the following operators cannot be overloaded in

C++?

a) +

b) =

c) ::

d) *

155

Notes 2. What is operator overloading in C++?

a) Using an operator with multiple values

b) Assigning multiple operators to one function

c) Redefining an operator to work with user-defined data types

d) Making an operator a function

3. Which keyword is used to declare a friend function in

C++?

a) friend

b) private

c) virtual

d) public

4. Which of the following is NOT a rule of operator

overloading?

a) At least one operand must be a user-defined type

b) Overloading an operator must preserve its basic

functionality

c) Operators ::, sizeof, and .* can be overloaded

d) Overloading cannot change operator precedence

5. Which type of inheritance allows a derived class to inherit

from more than one base class?

a) Single Inheritance

b) Multilevel Inheritance

c) Multiple Inheritance

d) Hierarchical Inheritance

6. Which function is called first when a derived class object is

created?

a) Derived class constructor

b) Base class constructor

c) Destructor

d) Member function

7. What is the purpose of a virtual base class?

a) To improve program execution speed

b) To avoid multiple instances of the base class in multiple

inheritance

c) To allow redefinition of private members

d) To restrict inheritance

8. An abstract class is a class that:

a) Cannot have objects

156
MATS Centre for Distance and Online Education, MATS University

Notes b) Must have all pure virtual functions

c) Cannot be inherited

d) Can only contain static functions

9. Which function type must be overridden in a derived class

when declared in a base class?

a) Friend function

b) Virtual function

c) Inline function

d) Destructor

10. Which of the following is an example of a constructor in a

derived class?

a) Base() { }

b) Derived() : Base() { }

c) void Derived();

d) Derived(int x);

Short Questions:

1. What is operator overloading, and why is it used?

2. Explain the difference between unary and binary operator

overloading.

3. How can a friend function be used to overload binary

operators?

4. What are the rules of operator overloading?

5. Define inheritance in C++ and give an example.

6. Differentiate between single and multiple inheritance.

7. What is the purpose of virtual base classes?

8. Explain the concept of abstract classes in C++.

9. How do constructors work in derived classes?

10. What is the role of type conversion in operator overloading?

Long Questions:

1. Explain operator overloading with examples of unary and

binary operator overloading.

2. Write a C++ program demonstrating operator overloading

using friend functions.

3. Discuss the rules and restrictions of operator overloading.

4. What is inheritance? Explain different types of inheritance

with examples.

5. How does multiple inheritance work? Write a program to

illustrate it.

157

Notes 6. What are virtual base classes, and how do they prevent

ambiguity in multiple inheritance?

7. Define abstract classes and explain their significance with an

example.

8. How do constructors work in derived classes? Write a program

to demonstrate their usage.

9. Compare and contrast function overloading, operator

overloading, and method overriding.

10. Explain the process of type conversion in operator overloading

and provide examples.

158
MATS Centre for Distance and Online Education, MATS University

MODULE 4

POINTER, VIRTUAL FUNCTION, AND POLYMORPHISM

4.0 LEARNING OUTCOMES

• Understand the concept of pointers to objects and this pointer.

• Learn about pointers to derived classes and how they work.

• Understand virtual functions and their role in achieving

runtime polymorphism.

• Learn about pure virtual functions and abstract classes.

• Explore compile-time and runtime polymorphism.

• Understand the difference between overloading and

overriding.

159

Notes Unit 10: Pointers in C++

4.1 Pointers: Pointers to Objects, This Pointer

Introduction to Pointers in C++

A Pointer in C++ is a variable that contains the address of another

variable. They form the base for many high-level programming

abstractions and allow you to manipulate memory in an efficient

manner. In the context of objects and classes, pointers become

particularly powerful, as they enable dynamic memory allocation,

polymorphism, and efficient object manipulation

Basic Pointer Syntax

A pointer is declared using the asterisk (*) symbol:

int* pInteger; // Pointer to an integer

double* pDouble; // Pointer to a double

char* pChar; // Pointer to a character

To initialize a pointer, we assign it the address of a variable using the

address-of operator (&):

int number = 10;

int* pNumber = &number; // pNumber now points to number

To access the value at the memory address stored in a pointer

(dereferencing), we use the asterisk operator:

int value = *pNumber; // value = 10

Pointers to Objects

Just like we can create pointers to primitive data types, we can create

them to objects. It is especially helpful during dynamic memory

allocation or polymorphism implementation.

Figure 5 Concept of Pointers in OOP’S
[Source https://www.scholarhat.com]

160
MATS Centre for Distance and Online Education, MATS University

Notes class Rectangle {

private:

 int length;

 int width;

public:

 Rectangle(int l = 0, int w = 0) : length(l), width(w) {}

 int getArea() { return length * width; }

};

// Creating a pointer to a Rectangle object

Rectangle rect(5, 3);

Rectangle* pRect = ▭

// Accessing members using the pointer

int area = pRect->getArea(); // Using arrow operator -> to access

members

When working with pointers to objects, we use the arrow operator (-

>) to access the object's members. This is equivalent to dereferencing

the pointer and then using the dot operator.

int area1 = pRect->getArea(); // Using arrow operator

int area2 = (*pRect).getArea(); // Dereferencing and then using dot

operator

Dynamic Memory Allocation for Objects

We can use pointers to dynamically allocate memory for objects using

the new operator:

Rectangle* pDynamicRect = new Rectangle(10, 5);

When we're done with the dynamically allocated object, we must

release the memory using the delete operator:

delete pDynamicRect;

pDynamicRect = nullptr; // Good practice to set pointer to nullptr

after deletion

For arrays of objects:

Rectangle* pRectArray = new Rectangle[5]; // Array of 5 Rectangle

objects

// ...

delete[] pRectArray; // Note the square brackets for deleting arrays

pRectArray = nullptr;

161

Notes The this Pointer

In C++, every non-static member function receives a hidden pointer

called this, which points to the object that called the function. The this

pointer is implicitly used when accessing members of the class.

class Counter {

private:

 int count;

public:

 Counter(int c = 0) : count(c) {}

 // Using this pointer explicitly

 void increment() {

 this->count++; // Equivalent to count++

 }

 // Returning *this allows for method chaining

 Counter& add(int value) {

 count += value;

 return *this;

 }

 int getCount() {

 return count; // Implicitly uses this->count

 }

};

The this pointer serves several purposes:

1. Resolving Name Conflicts: When a parameter has the same

name as a member variable.

class Person {

private:

 std::string name;

public:

 Person(const std::string& name) {

 this->name = name; // Resolves the name conflict

 }

};

2. Enabling Method Chaining: By returning a reference to the

current object.

162
MATS Centre for Distance and Online Education, MATS University

Notes Counter counter;

counter.add(5).add(10).add(15); // Method chaining

3. Identifying the Current Object: Particularly useful in

complex scenarios or when passing the current object to

functions.

class Node {

private:

 int data;

 Node* next;

public:

 Node(int value) : data(value), next(nullptr) {}

 void setNext(Node* node) {

 next = node;

 }

 void connectToSelf() {

 next = this; // Creating a self-referential structure

 }

};

Common Mistakes and Best Practices with Pointers

1. Memory Leaks: Always delete dynamically allocated

memory when it's no longer needed.

2. Dangling Pointers: After deleting memory, set pointers to

nullptr to avoid accessing freed memory.

3. Null Pointer Dereferencing: Always check if a pointer is

nullptr before dereferencing it.

4. Smart Pointers: Consider using C++11's smart pointers

(unique_ptr, shared_ptr) to avoid manual memory

management issues.

#include <memory>

// Using smart pointers instead of raw pointers

std::unique_ptr<Rectangle>pRect =

std::make_unique<Rectangle>(10, 5);

// No need to manually delete, memory is automatically managed

163

Notes 4.2 Pointer to Derived Classes

Inheritance and Pointers

One of the highlights of C++ is the ability to point to any derived

class from a base class pointer. This enables polymorphism:

class Shape {

public:

 virtual void draw() {

 std::cout<< "Drawing a shape" << std::endl;

 }

};

class Circle : public Shape {

public:

 void draw() override {

 std::cout<< "Drawing a circle" << std::endl;

 }

};

class Rectangle : public Shape {

public:

 void draw() override {

 std::cout<< "Drawing a rectangle" << std::endl;

 }

};

Base Class Pointers to Derived Class Objects

A key feature of C++ is that a pointer to a base class can point to

objects of any derived class. This enables polymorphism:

Shape* pShape1 = new Circle();

Shape* pShape2 = new Rectangle();

pShape1->draw(); // Outputs: "Drawing a circle"

pShape2->draw(); // Outputs: "Drawing a rectangle"

delete pShape1;

delete pShape2;

164
MATS Centre for Distance and Online Education, MATS University

Notes This works as a derived class object has a base class subobject inside

it, hence it is type-compatible to the base class.

Upcasting and Downcasting

Pointers in inheritance hierarchies can be used for two types of

conversions:

1. Upcasting: Converting a derived class pointer to a base class

pointer.

• This is implicit and always safe.

Circle* pCircle = new Circle();

Shape* pShape = pCircle; // Implicit upcast, always safe

2. Downcasting: Converting a base class pointer to a derived

class pointer.

• This requires explicit casting and can be dangerous if

not done correctly.

Shape* pShape = new Circle();

// Two ways to downcast:

// 1. Using static_cast (no runtime check)

Circle* pCircle1 = static_cast<Circle*>(pShape);

// 2. Using dynamic_cast (safer, includes runtime type checking)

Circle* pCircle2 = dynamic_cast<Circle*>(pShape);

if (pCircle2) {

 // Successfully cast to Circle*

}

Dynamic Cast and Runtime Type Identification (RTTI)

dynamic_cast provides type-safe downcasting. It checks at runtime

whether the conversion is valid:

Shape* pShape = new Rectangle();

// This will return nullptr since pShape points to a Rectangle, not a

Circle

Circle* pCircle = dynamic_cast<Circle*>(pShape);

if (pCircle) {

pCircle->draw();

} else {

 std::cout<< "Not a Circle object" << std::endl;

}

165

Notes

// This will succeed

Rectangle* pRect = dynamic_cast<Rectangle*>(pShape);

if (pRect) {

pRect->draw();

}

delete pShape;

Arrays of Pointers to Objects

Using arrays of pointers to objects is a common way to manage

collections of objects in an inheritance hierarchy:

const int SIZE = 3;

Shape* shapes[SIZE];

shapes[0] = new Circle();

shapes[1] = new Rectangle();

shapes[2] = new Circle();

// Polymorphic behavior through base class pointers

for (int i = 0; i< SIZE; i++) {

 shapes[i]->draw();

}

// Cleaning up memory

for (int i = 0; i< SIZE; i++) {

 delete shapes[i];

}

166
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Virtual Function

4.3 Virtual Function, Pure Virtual Function

Virtual Functions

C++ strives for polymorphism via virtual functions. A member

function that is declared in a base class as virtual and redefined

(overridden) in the derived classes. The virtual keyword tells the

compiler to look for an overridden version of the function in derived

classes at runtime.

class Base {

public:

 virtual void display() {

 std::cout<< "Display from Base" << std::endl;

 }

};

class Derived : public Base {

public:

 void display() override { // override keyword is optional but

recommended (C++11)

 std::cout<< "Display from Derived" << std::endl;

 }

};

// Using polymorphism

Base* ptr = new Derived();

ptr->display(); // Outputs: "Display from Derived"

delete ptr;

How Virtual Functions Work: The Virtual Function Table

(vtable)

If a class has any virtual functions, the compiler will create a virtual

function table (vtable) for that class. Each class object has a hidden

pointer (vptr) to this table. The virtual table (vtable) contains function

pointers for the virtual functions that need to be invoked for objects of

that class.

At runtime, when a virtual function is called through a base class

pointer:

167

Notes 1. The program uses the object's vptr to locate its class's vtable

2. It looks up the appropriate function address in the vtable

3. It calls the function at that address

This mechanism allows the correct derived class function to be called,

even when accessed through a base class pointer.

The Importance of Virtual Destructors

When using polymorphism, it's crucial to make the base class

destructor virtual. This ensures that when an object is deleted through

a base class pointer, the correct destructor chain is called.

class Base {

public:

 virtual ~Base() {

 std::cout<< "Base destructor" << std::endl;

 }

};

class Derived : public Base {

public:

 ~Derived() override {

 std::cout<< "Derived destructor" << std::endl;

 }

};

// Without a virtual destructor, only the Base destructor would be

called

Base* ptr = new Derived();

delete ptr; // Calls both Derived and Base destructors

Pure Virtual Functions

A pure virtual function is a virtual function that has no

implementation in the base class and must be overridden by any

concrete derived class. It is declared by adding = 0 to the function

declaration:

class Shape {

public:

 virtual void draw() = 0; // Pure virtual function

 virtual double area() = 0; // Another pure virtual function

};

Abstract Classes

168
MATS Centre for Distance and Online Education, MATS University

Notes A class containing at least one pure virtual function is called an

abstract class. Abstract classes:

1. Cannot be instantiated directly

2. Are used as interfaces or base classes

3. Require derived classes to implement all pure virtual functions

to be concrete

// Shape is an abstract class

// Shape shape; // Error: cannot instantiate abstract class

class Circle : public Shape {

private:

 double radius;

public:

 Circle(double r) : radius(r) {}

 void draw() override {

 std::cout<< "Drawing a circle" << std::endl;

 }

 double area() override {

 return 3.14159 * radius * radius;

 }

};

// Circle is a concrete class that can be instantiated

Circle circle(5.0);

Interfaces in C++

While C++ doesn't have a specific "interface" keyword like some

other languages, abstract classes with only pure virtual functions serve

as interfaces:

class Drawable {

public:

 virtual void draw() = 0;

 virtual ~Drawable() = default; // Virtual destructor

};

class Resizable {

public:

169

Notes virtual void resize(double factor) = 0;

 virtual ~Resizable() = default;

};

// Multiple interface implementation

class Rectangle : public Drawable, public Resizable {

private:

 double width, height;

public:

 Rectangle(double w, double h) : width(w), height(h) {}

 void draw() override {

 std::cout<< "Drawing a rectangle" << std::endl;

 }

 void resize(double factor) override {

 width *= factor;

 height *= factor;

 }

};

Virtual Function Override Rules

When overriding virtual functions, several rules must be followed:

1. The function signature (return type, name, parameters) must

match exactly (except for covariant return types)

2. The function must be declared virtual in the base class

3. The function must be accessible to the derived class (public or

protected in the base class)

4. The function cannot have a more restrictive access modifier in

the derived class

Using the override keyword (C++11) helps catch errors by explicitly

stating that a function is intended to override a virtual function:

class Base {

public:

 virtual void func(int x) {

 // Implementation

 }

};

170
MATS Centre for Distance and Online Education, MATS University

Notes class Derived : public Base {

public:

 // The override keyword causes a compiler error if this doesn't

actually

 // override a base class function

 void func(int x) override {

 // Implementation

 }

 // This would cause a compiler error with override:

 // void func(double x) override; // Error: doesn't override anything

};

171

Notes Unit 12: Overloading and Overriding

4.4 Polymorphism: Compile Time, Run Time

Polymorphism (meaning "many forms") is a foundational principle of

object-oriented programming that allows objects of different classes

to be treated as objects of the same class through a common base

class. There are two major types of polymorphism in C++: compile

time and run time.

Figure 6 Types of Polymorphism

[https://www.tpointtech.com]

Compile-Time Polymorphism (Static Binding)

Compile-time polymorphism is resolved during compilation. It

includes:

1. Function Overloading: Multiple functions with the same

name but different parameters.

2. Operator Overloading: Redefining the behavior of operators

for custom types.

3. Templates: Generic programming that handles different types.

Function Overloading

class Calculator {

public:

 int add(int a, int b) {

 return a + b;

 }

 double add(double a, double b) {

 return a + b;

 }

 int add(int a, int b, int c) {

172
MATS Centre for Distance and Online Education, MATS University

Notes return a + b + c;

 }

};

Calculator calc;

int sum1 = calc.add(5, 10); // Calls add(int, int)

double sum2 = calc.add(3.5, 7.2); // Calls add(double, double)

int sum3 = calc.add(1, 2, 3); // Calls add(int, int, int)

The compiler determines which function to call based on the number

and types of arguments.

Operator Overloading

class Complex {

private:

 double real;

 double imag;

public:

 Complex(double r = 0, double i = 0) : real(r), imag(i) {}

 // Overloading the + operator

 Complex operator+(const Complex& other) const {

 return Complex(real + other.real, imag + other.imag);

 }

 // Overloading the << operator for output

 friend std::ostream& operator<<(std::ostream&os, const Complex&

c) {

os<<c.real<< " + " <<c.imag<< "i";

 return os;

 }

};

Complex c1(3.0, 4.0);

Complex c2(2.0, 5.0);

Complex c3 = c1 + c2; // Uses the overloaded + operator

std::cout<< c3; // Uses the overloaded << operator, outputs: "5 +

9i"

Templates (Generic Programming)

template <typename T>

173

Notes T maximum(T a, T b) {

return (a > b) ? a : b;

}

int maxInt = maximum<int>(10, 20); // maxInt = 20

double maxDouble = maximum<double>(3.14, 2.72); // maxDouble =

3.14

char maxChar = maximum<char>('A', 'Z'); // maxChar = 'Z'

Templates allow you to write generic functions or classes that work

with any data type, providing compile-time polymorphism.

Runtime Polymorphism (Dynamic Binding)

Runtime polymorphism is resolved during program execution. It's

achieved through:

1. Virtual Functions: Member functions that can be overridden

in derived classes.

2. Function Overriding: Redefining a base class function in

derived classes.

Runtime polymorphism relies on virtual functions and inheritance

hierarchies:

class Animal {

public:

 virtual void makeSound() {

 std::cout<< "Animal makes a sound" << std::endl;

 }

};

class Dog : public Animal {

public:

 void makeSound() override {

 std::cout<< "Dog barks: Woof!" << std::endl;

 }

};

class Cat : public Animal {

public:

 void makeSound() override {

 std::cout<< "Cat meows: Meow!" << std::endl;

 }

174
MATS Centre for Distance and Online Education, MATS University

Notes };

// Runtime polymorphism using base class pointers

Animal* animal1 = new Dog();

Animal* animal2 = new Cat();

animal1->makeSound(); // Outputs: "Dog barks: Woof!"

animal2->makeSound(); // Outputs: "Cat meows: Meow!"

delete animal1;

delete animal2;

Table 4.1: Key Differences Between Compile-Time and Runtime

Polymorphism

Feature

Compile-Time

Polymorphism

Runtime

Polymorphism

Binding

Static (early)

binding

Dynamic (late)

binding

Performance

Generally

faster

Slightly slower due

to vtable lookups

Flexibility

Less flexible,

fixed at

compile time

More flexible,

determined at

runtime

Implementation

Function

overloading,

operator

overloading,

templates

Virtual functions,

inheritance

Resolution

Resolved by

the compiler Resolved at runtime

Practical Example Combining Both Types of Polymorphism

class Shape {

public:

 // Runtime polymorphism through virtual functions

 virtual double area() const = 0;

 virtual void draw() const = 0;

 // Compile-time polymorphism through function overloading

 void print() const {

175

Notes std::cout<< "Area: " << area() << std::endl;

 }

 void print(const std::string& prefix) const {

 std::cout<< prefix << " area: " << area() << std::endl;

 }

};

class Circle : public Shape {

private:

 double radius;

public:

 Circle(double r) : radius(r) {}

 double area() const override {

 return 3.14159 * radius * radius;

 }

 void draw() const override {

 std::cout<< "Drawing a circle" << std::endl;

 }

};

class Rectangle : public Shape {

private:

 double width, height;

public:

 Rectangle(double w, double h) : width(w), height(h) {}

 double area() const override {

 return width * height;

 }

 void draw() const override {

 std::cout<< "Drawing a rectangle" << std::endl;

 }

};

176
MATS Centre for Distance and Online Education, MATS University

Notes // Using both types of polymorphism

Shape* shapes[2] = { new Circle(5.0), new Rectangle(4.0, 6.0) };

for (int i = 0; i< 2; i++) {

 shapes[i]->draw(); // Runtime polymorphism

 shapes[i]->print(); // Compile-time polymorphism (first

version)

 shapes[i]->print("Shape"); // Compile-time polymorphism (second

version)

}

delete shapes[0];

delete shapes[1];

Virtual Function Tables and Runtime Polymorphism

Implementation

Knowing the internals of vtables will shed some light on how runtime

polymorphism works:

• Every class with virtual function have a vtable which holds

the address of the functions

• Every instance of such a class will have a secret vptr (virtual

table pointer) to its class's vtable

• When a virtual function is invoked by means of a pointer or

reference, the process:

• Retrieves the vptr of the object to locate the vtable

• Finds the corresponding function in the vtable

• Invokes the function at that address in memory

This dynamic dispatch mechanism allows runtime polymorphism.

The name from the related function table is matched to the name you

have used in your source code.

4.5 Overloading and Overriding

While both overloading and overriding are forms of polymorphism,

they serve different purposes and operate differently.

Function Overloading

Function overloading allows multiple functions with the same name

but different parameter lists to coexist in the same scope. It is a form

of compile-time polymorphism.

Key Characteristics of Function Overloading:

1. Same function name with different parameter lists

2. Can differ in:

177

Notes • Number of parameters

• Type of parameters

• Order of parameters

3. Cannot differ only in return type

4. All overloaded functions exist independently

5. Resolution is done at compile time based on the arguments

passed

Example of Function Overloading:

class MathOperations {

public:

 // Overloaded functions

 int add(int a, int b) {

 return a + b;

 }

 double add(double a, double b) {

 return a + b;

 }

 int add(int a, int b, int c) {

 return a + b + c;

 }

 double add(int a, double b) {

 return a + b;

 }

 double add(double a, int b) {

 return a + b;

 }

};

MathOperations math;

int sum1 = math.add(5, 10); // Calls add(int, int)

double sum2 = math.add(3.5, 7.2); // Calls add(double, double)

int sum3 = math.add(1, 2, 3); // Calls add(int, int, int)

double sum4 = math.add(5, 3.14); // Calls add(int, double)

double sum5 = math.add(2.71, 8); // Calls add(double, int)

178
MATS Centre for Distance and Online Education, MATS University

Notes Function Overriding

Function overriding occurs when a derived class provides a specific

implementation for a function already defined in its base class. It is a

form of runtime polymorphism.

Key Characteristics of Function Overriding:

1. Occurs in an inheritance hierarchy

2. Base class function must be declared as virtual

3. Derived class function must have the exact same signature

(name, parameters, and return type) as the base class function

• Exception: Covariant return types are allowed

(returning a derived type when the base returns the

base type)

4. Access specifier in the derived class cannot be more restrictive

than in the base class

5. Resolution is done at runtime based on the object's actual type

Example of Function Overriding:

class Vehicle {

public:

 virtual void start() {

 std::cout<< "Vehicle starting..." << std::endl;

 }

 virtual void stop() {

 std::cout<< "Vehicle stopping..." << std::endl;

 }

 // Not virtual, can't be overridden polymorphically

 void maintenance() {

 std::cout<< "Vehicle maintenance" << std::endl;

 }

};

class Car : public Vehicle {

public:

 // Override virtual function

 void start() override {

 std::cout<< "Car engine starting..." << std::endl;

 }

179

Notes

 // Override virtual function

 void stop() override {

 std::cout<< "Car engine stopping, applying brakes..." <<

std::endl;

 }

 // Not an override, just a new function with the same name

 void maintenance() {

 std::cout<< "Car maintenance" << std::endl;

 }

};

Vehicle* vehicle = new Car();

vehicle->start(); // Calls Car::start() - polymorphic

vehicle->stop(); // Calls Car::stop() - polymorphic

vehicle->maintenance(); // Calls Vehicle::maintenance() - not

polymorphic

Car car;

car.maintenance(); // Calls Car::maintenance()

delete vehicle;

Operator Overloading

Operator overloading is a special case of function overloading that

allows custom implementations of C++ operators for user-defined

types.

Rules for Operator Overloading:

1. Cannot change the operator precedence

2. Cannot change the number of operands

3. Cannot create new operators

4. Some operators cannot be overloaded (., ::, ?, sizeof)

5. Some operators can only be overloaded as member functions

(=, [], (), ->)

6. Should maintain the semantic meaning of the operator

Example of Operator Overloading:

class Vector {

private:

180
MATS Centre for Distance and Online Education, MATS University

Notes double x, y, z;

public:

 Vector(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z)

{}

 // Overload + operator (member function)

 Vector operator+(const Vector& other) const {

 return Vector(x + other.x, y + other.y, z + other.z);

 }

 // Overload - operator (member function)

 Vector operator-(const Vector& other) const {

 return Vector(x - other.x, y - other.y, z - other.z);

 }

 // Overload * operator for scalar multiplication (member function)

 Vector operator*(double scalar) const {

 return Vector(x * scalar, y * scalar, z * scalar);

 }

 // Overload == operator (member function)

 bool operator==(const Vector& other) const {

 return (x == other.x&& y == other.y&& z == other.z);

 }

 // Overload << operator (friend function)

 friend std::ostream& operator<<(std::ostream&os, const Vector&

v) {

os<< "(" <<v.x<< ", " <<v.y<< ", " <<v.z<< ")";

 return os;

 }

 // Overload * operator for scalar multiplication (friend function)

 friend Vector operator*(double scalar, const Vector& v) {

 return v * scalar; // Reuse the member function

 }

};

Vector v1(1.0, 2.0, 3.0);

181

Notes Vector v2(4.0, 5.0, 6.0);

Vector v3 = v1 + v2; // Using overloaded + operator

Vector v4 = v1 - v2; // Using overloaded - operator

Vector v5 = v1 * 2.0; // Using overloaded * operator (member)

Vector v6 = 3.0 * v2; // Using overloaded * operator (friend)

bool equal = (v1 == v2); // Using overloaded == operator

std::cout<< v3; // Using overloaded << operator

182
MATS Centre for Distance and Online Education, MATS University

Notes Method Hiding (Name Hiding)

Method hiding is where a derived class defines a function with the

same name as a function in the base class, except that the signature is

different. In contrast to overriding, hiding is not a polymorphic

action; it only hides the base class function behind the derived class..

class Base {

public:

 void display() {

 std::cout<< "Base display()" << std::endl;

 }

 void display(int x) {

 std::cout<< "Base display(int): " << x << std::endl;

 }

};

class Derived : public Base {

public:

 // This hides all Base::display() functions

 void display() {

 std::cout<< "Derived display()" << std::endl;

 }

};

Base b;

b.display(); // Calls Base::display()

b.display(5); // Calls Base::display(int)

Derived d;

d.display(); // Calls Derived::display()

// d.display(5); // Error: Derived::display() hides Base::display(int)

// To access the hidden base class function

d.Base::display(5); // OK: Explicitly calling Base::display(int)

To prevent hiding and make all overloads from the base class

available:

class Better : public Base {

public:

183

Notes // Bring all Base::display() functions into scope

 using Base::display;

 // Override just one version

 void display() {

 std::cout<< "Better display()" << std::endl;

 }

};

Better better;

better.display(); // Calls Better::display()

better.display(5); // Calls Base::display(int) - now accessible!

Table 4.2: Key Differences between Overloading and Overriding

Feature Overloading Overriding

Purpose

Provides multiple

functions with the

same name but

different

parameters

Provides a specific

implementation in

derived classes

Scope

Same class or

namespace

Base and derived class

hierarchy

Function

signatures

Same name,

different

parameters

Same name and

parameters

Return type

Can differ as long

as parameters differ

Must be same or

covariant

Resolution time Compile time Runtime

Virtual keyword Not required Required in base class

Polymorphism

type

Compile-time

polymorphism Runtime polymorphism

Best Practices for Overloading and Overriding

1. Use override keyword for functions that override virtual

functions (C++11)

2. Use final keyword to prevent further overriding (C++11)

3. Make base class destructors virtual when using

polymorphism

184
MATS Centre for Distance and Online Education, MATS University

Notes 4. Maintain consistent semantics when overloading operators

5. Consider using using declarations to prevent unintended

hiding

6. Document the behavior of overloaded and overridden

functions

class Base {

public:

 virtual void func1() { /* ... */ }

 virtual void func2() final { /* ... */ } // Cannot be overridden

further

 virtual ~Base() = default;

};

class Derived : public Base {

public:

 void func1() override { /* ... */ } // Clearly marked as override

 // void func2() override { /* ... */ } // Error: cannot override final

function

};

MCQs:

1. What does the this pointer in C++ refer to?

a) The current object of a class

b) A global object

c) A derived class object

d) A pointer to a base class

2. What is the purpose of a pointer to an object?

a) To point to primitive data types

b) To allow indirect access to class members

c) To delete an object from memory

d) To create a new object

3. Which of the following correctly declares a pointer to an

object?

a) Class obj;

b) Class *ptr = new Class();

c) Class ptr;

d) int *ptr = &obj;

4. What is a virtual function?

a) A function that is automatically executed at runtime

185

Notes b) A function that allows function overriding in derived classes

c) A function that cannot be inherited

d) A function that is only used in templates

5. Which keyword is used to declare a virtual function?

a) friend

b) inline

c) virtual

d) static

6. Which of the following is a characteristic of a pure virtual

function?

a) It is implemented in the base class

b) It has no implementation in the base class

c) It cannot be inherited

d) It must be private

7. What is polymorphism in C++?

a) The ability of different objects to respond to the same

function call in different ways

b) The ability to store multiple data types in an array

c) The ability to perform multiple loops at once

d) The ability to overload an operator

8. Which of the following is an example of compile-time

polymorphism?

a) Virtual functions

b) Function overloading

c) Function overriding

d) Dynamic binding

9. Function overriding is an example of:

a) Compile-time polymorphism

b) Run-time polymorphism

c) Operator overloading

d) Static linking

10. Which of the following is NOT a feature of virtual

functions?

a) They enable runtime polymorphism

b) They can be overridden in derived classes

c) They must be declared using the friend keyword

d) They allow dynamic method dispatch

Short Questions:

186
MATS Centre for Distance and Online Education, MATS University

Notes 1. What is a pointer to an object, and why is it useful?

2. Explain the purpose of the this pointer in C++.

3. How do pointers to derived classes work in C++?

4. Define virtual functions and explain their significance.

5. What is a pure virtual function, and how is it different from a

virtual function?

6. What is polymorphism, and why is it important in OOP?

7. Differentiate between compile-time and runtime

polymorphism.

8. Explain function overloading and function overriding with

examples.

9. How does dynamic binding work in C++?

10. What are the advantages of using virtual functions in

inheritance?

Long Questions:

1. Explain the concept of pointers to objects with an example

program.

2. What is this pointer, and how does it help in object-oriented

programming?

3. How does pointer to derived classes work? Provide an

example.

4. Explain virtual functions and their role in achieving runtime

polymorphism.

5. What is a pure virtual function? How does it relate to abstract

classes?

6. Discuss the difference between function overloading and

function overriding.

7. Explain compile-time vs. runtime polymorphism with

examples.

8. Write a C++ program demonstrating the use of virtual

functions.

9. How does method override support polymorphism in object-

oriented programming?

10. Explain the advantages and disadvantages of polymorphism in

C++.

187

Notes

MODULE 5

CONSOLE I/O OPERATIONS AND FILE HANDLING

5.0 LEARNING OUTCOMES

• Understand the stream classes in C++.

• Learn about formatted and unformatted I/O operations.

• Learn how to manage output using manipulators.

• Understand file stream operations and how to handle files in

C++.

• Learn how to open and close files, detect the End-of-File

(EOF) condition, and use file modes.

• Understand file pointers and their manipulations.

• Learn about sequential and random-access file operations.

• Understand error handling in file operations.

188
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Console I/O Operations

5.1 Stream Classes

Intended for C++ File Stream classes are base for output and input

operations. They offer a uniform interface for interacting with

everything from the keyboard and display to files and memory

buffers. It is very important that you understand what these classes

are. There is an inheritance hierarchy for the C++ Standard Library

stream classes, which are meant for specific use cases in the I/O

system. It encourages the reuse of code and provides an abstract layer

for dealing with different types of I/O.

Stream Class Hierarchy

The base classes ios_base and ios are at the top of this hierarchy.

These classes define the basic attributes and behaviour common to all

streams. Many important stream classes are derived from these:

Input Stream Classes

• istream: Handles input operations from various sources

• ifstream: Specializes in input operations from files

• istringstream: Manages input from string objects

Output Stream Classes

• ostream: Handles output operations to various destinations

• ofstream: Specializes in output operations to files

• ostringstream: Manages output to string objects

Bidirectional Stream Classes

• iostream: Combines the functionality of istream and ostream

for bidirectional operations

• fstream: Provides bidirectional file operations

• stringstream: Enables bidirectional string operations

Template Classes and Character Types

The C++ I/O library uses template classes to support different

character types:

// For char type (standard ASCII characters)

typedef basic_istream<char>istream;

typedef basic_ostream<char>ostream;

typedef basic_iostream<char> iostream;

// etc.

189

Notes // For wchar_t type (wide characters)

typedef basic_istream<wchar_t>wistream;

typedef basic_ostream<wchar_t>wostream;

typedef basic_iostream<wchar_t>wiostream;

// etc.

This design allows the same code structure to handle both narrow and

wide character streams, enhancing the library's flexibility.

Standard Stream Objects

C++ provides several predefined stream objects for common I/O

operations:

• cin: Standard input stream (keyboard by default)

• cout: Standard output stream (screen by default)

• cerr: Standard error output stream (unbuffered)

• clog: Standard error output stream (buffered)

And their wide-character counterparts:

• wcin: Wide-character standard input

• wcout: Wide-character standard output

• wcerr: Wide-character unbuffered error output

• wclog: Wide-character buffered error output

These objects are automatically created when a C++ program starts,

providing immediate access to standard I/O capabilities.

Stream Buffer Classes

Every stream object contains a buffer object that manages the actual

transfer of data between the program and the external device. Key

buffer classes include:

• streambuf: Base class for all stream buffers

• filebuf: Buffer for file operations

• stringbuf: Buffer for string operations

These buffer classes handle the low-level details of reading from and

writing to different devices, allowing the stream classes to present a

consistent interface regardless of the underlying I/O mechanism.

190
MATS Centre for Distance and Online Education, MATS University

Notes 5.2 I/O Operations: Unformatted and Formatted

There are two main types of input and output operations in C++ —

unformatted I/O and formatted I/O. Each type has its own use cases

and provides varying degrees of control over data processing.

Unformatted I/O Operations

Unformatted I/O simply reads/writes the data as raw byte sequences,

without any interpretation or conversion. In particular, these

operations are well suited for binary data or when precise control of

the input and output is necessary.

Unformatted Input Operations

The istream class provides several methods for unformatted input:

• get(): Reads a single character

• char ch;

• cin.get(ch); // Reads one character into ch

• *get(char, int, char)**: Reads characters into a buffer until a

delimiter is encountered

• char buffer[100];

• cin.get(buffer, 100, '\n'); // Reads up to 99 chars or until

newline

• *getline(char, int, char)**: Similar to get() but extracts and

discards the delimiter

• char buffer[100];

• cin.getline(buffer, 100, '\n'); // Reads a line of up to 99

characters

• *read(char, int)**: Reads a specified number of bytes

• char buffer[100];

• cin.read(buffer, 50); // Reads exactly 50 bytes

• gcount(): Returns the number of characters extracted by the

last unformatted input operation

• cout<< "Characters read: " <<cin.gcount() <<endl;

Unformatted Output Operations

The ostream class provides these unformatted output methods:

• put(): Writes a single character

• cout.put('A'); // Outputs the character 'A'

• write(): Writes a specified number of bytes

• char buffer[10] = "Hello";

• cout.write(buffer, 5); // Writes 5 bytes from buffer

• flush(): Flushes the output buffer

191

Notes • cout<< "Immediate output" << flush; // Ensures output is

written immediately

Formatted I/O Operations

Formatted I/O interprets data according to its type, converting

between internal representation and human-readable format. This is

the more commonly used approach for most applications.

Formatted Input Operations

The primary mechanism for formatted input is the extraction operator

(>>):

int num;

double value;

string name;

cin>> num >> value >> name; // Reads formatted data into variables

Key points about the extraction operator:

• Skips leading whitespace by default

• Converts external text representation to the appropriate

internal format

• Stops reading at whitespace or invalid characters for the target

type

• Sets error flags if the input doesn't match the expected format

Formatted Output Operations

The insertion operator (<<) handles formatted output:

int num = 42;

double value = 3.14159;

string name = "C++";

cout<< "Number: " << num << ", Value: " << value << ", Name: " <<

name <<endl;

Key points about the insertion operator:

• Converts internal data to text representation

• Applies formatting according to the stream's current format

state

• Does not automatically add spaces between items

• Can be chained for multiple output operations

Type Safety in I/O Operations

C++ I/O operations are type-safe, meaning that the compiler ensures

that data is handled according to its type. The operators << and >> are

192
MATS Centre for Distance and Online Education, MATS University

Notes overloaded for different data types, allowing the same syntax to work

correctly with integers, floating-point numbers, strings, and user-

defined types.

User-defined types can participate in formatted I/O by overloading

these operators:

class Person {

 string name;

 int age;

public:

 // Constructor and other methods...

 friend ostream& operator<<(ostream&os, const Person& p) {

 return os<< p.name << " (age " <<p.age<< ")";

 }

 friend istream& operator>>(istream& is, Person& p) {

 return is >> p.name >>p.age;

 }

};

This extensibility makes C++ I/O both powerful and flexible,

accommodating a wide range of data types and formatting

requirements.

5.3 Managing Output with Manipulators

Manipulators are special types of functions used to change how a

format state is applied to a stream. They allow you to define a

customizable way of inputting and outputting the data without

modifying the actual data.

Basic Manipulators

C++ provides several basic manipulators that don't require additional

parameters:

End-of-Line Manipulators

• endl: Inserts a newline character and flushes the buffer

• cout<< "Hello" <<endl; // Outputs "Hello" followed by a

newline and flushes

• ends: Inserts a null character

• cout<< "Hello" << ends; // Outputs "Hello" followed by a null

character

• flush: Flushes the output buffer without adding any characters

193

Notes • cout<< "Hello" << flush; // Outputs "Hello" and flushes

Formatting Boolean Values

• boolalpha: Displays bool values as "true" or "false"

• cout<<boolalpha<< true; // Outputs "true" instead of "1"

• noboolalpha: Displays bool values as 1 or 0 (default)

• cout<<noboolalpha<< true; // Outputs "1"

Number Base Manipulators

• dec: Sets decimal base for integer I/O (default)

• cout<< dec << 16; // Outputs "16"

• hex: Sets hexadecimal base for integer I/O

• cout<< hex << 16; // Outputs "10"

• oct: Sets octal base for integer I/O

• cout<< oct << 16; // Outputs "20"

Floating-Point Format Manipulators

• fixed: Uses fixed-point notation

• cout<< fixed << 3.14159; // Outputs "3.141590"

• scientific: Uses scientific notation

• cout<< scientific << 3.14159; // Outputs "3.141590e+00"

• defaultfloat: Resets to default floating-point format

• cout<<defaultfloat<< 3.14159; // Outputs "3.14159"

Justification Manipulators

• left: Left-justifies output within its field

• cout<< left <<setw(10) << "Hello"; // Outputs "Hello "

• right: Right-justifies output (default)

• cout<< right <<setw(10) << "Hello"; // Outputs " Hello"

• internal: Uses internal justification (sign left-justified, value

right-justified)

• cout<< internal <<setw(10) << -123; // Outputs "- 123"

Parameterized Manipulators

Some manipulators require parameters. To use these, you need to

include the <iomanip> header:

• setw(int): Sets the field width

• cout<<setw(10) << "Hello"; // Outputs " Hello" (with

default right justification)

• setprecision(int): Sets the precision for floating-point output

• cout<<setprecision(3) << 3.14159; // Outputs "3.14"

• setfill(char): Sets the fill character for padded fields

194
MATS Centre for Distance and Online Education, MATS University

Notes • cout<<setfill('*') <<setw(10) << "Hello"; // Outputs

"*****Hello"

• setbase(int): Sets the base for integer I/O (8, 10, or 16)

• cout<<setbase(16) << 16; // Outputs "10" (hexadecimal)

• setiosflags(fmtflags) and resetiosflags(fmtflags): Set or clear

format flags

• cout<<setiosflags(ios::showpos) << 42; // Outputs "+42"

• cout<<resetiosflags(ios::showpos) << 42; // Outputs "42"

Creating Custom Manipulators

You can create your own manipulators to encapsulate complex

formatting operations:

Parameterless Manipulators

ostream& currency(ostream&os) {

os<< "$" << fixed <<setprecision(2);

 return os;

}

// Usage:

cout<< currency << 12.5; // Outputs "$12.50"

Parameterized Manipulators

class repeat {

 int count;

 char ch;

public:

 repeat(int n, char c) : count(n), ch(c) {}

 friend ostream& operator<<(ostream&os, const repeat& r) {

 for(int i = 0; i<r.count; i++)

os<< r.ch;

 return os;

 }

};

// Usage:

cout<< "Start" << repeat(10, '-') << "End"; // Outputs "Start----------

End"

Manipulator States and Persistence

Manipulators can have different persistence behaviors:

195

Notes 1. One-time manipulators: Affect only the next output

operation

2. cout<<setw(10) << "Hello" << "World"; // Only "Hello" is

affected by setw(10)

3. Persistent manipulators: Affect all subsequent operations

until changed

4. cout<< fixed <<setprecision(2);

5. cout<< 3.14159 <<endl; // Outputs "3.14"

6. cout<< 2.71828 <<endl; // Also outputs with 2 decimal places:

"2.72"

Understanding the persistence of manipulators is crucial for achieving

consistent formatting throughout your program.

196
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: File Handling in C++

5.4 Classes for File Stream Operations

File stream classes in C++ provide specialized functionality for

reading from and writing to files. These classes inherit from the basic

stream classes and add file-specific capabilities.

File Stream Class Hierarchy

The file stream classes extend the general stream classes with file-

specific functionality:

• ifstream: Derived from istream, specialized for file input

operations

• ofstream: Derived from ostream, specialized for file output

operations

• fstream: Derived from iostream, supports both input and

output file operations

These classes include a filebuf object that manages the connection

between the stream and the actual file on disk.

Including the Necessary Headers

To use file streams, include the <fstream> header:

#include <fstream>

using namespace std;

// Now you can use ifstream, ofstream, and fstream

File Stream Class Capabilities

Each file stream class provides specialized functionality:

ifstream (Input File Stream)

The ifstream class is designed for reading data from files:

ifstreaminputFile("data.txt");

if (inputFile.is_open()) {

 string line;

 while (getline(inputFile, line)) {

cout<< line <<endl;

 }

inputFile.close();

}

Key capabilities:

• Opening files for reading

• Reading data using formatted and unformatted operations

• Checking for end-of-file and error conditions

197

Notes • Moving the file position pointer

ofstream (Output File Stream)

The ofstream class is designed for writing data to files:

ofstreamoutputFile("output.txt");

if (outputFile.is_open()) {

outputFile<< "Hello, file I/O!" <<endl;

outputFile<< 123 << " " << 3.14159 <<endl;

outputFile.close();

}

Key capabilities:

• Opening files for writing

• Writing data using formatted and unformatted operations

• Creating new files or truncating existing ones

• Appending to existing files

• Flushing the buffer to ensure data is written

fstream (File Stream)

The fstream class supports both reading and writing:

fstreamdataFile("data.dat", ios::in | ios::out | ios::binary);

if (dataFile.is_open()) {

 // Both read and write operations can be performed

 int value = 42;

dataFile.write(reinterpret_cast<char*>(&value), sizeof(value));

dataFile.seekg(0); // Move to the beginning of the file

 int readValue;

dataFile.read(reinterpret_cast<char*>(&readValue),

sizeof(readValue));

dataFile.close();

}

Key capabilities:

• Opening files for both reading and writing

• Supporting both input and output operations

• Allowing random access within files

• Supporting binary file operations

File Stream Construction and Initialization

File streams can be constructed and opened in several ways:

198
MATS Centre for Distance and Online Education, MATS University

Notes Default Construction and Later Opening

ifstreaminFile;

inFile.open("input.txt");

Construction with File Opening

ofstreamoutFile("output.txt");

Specifying Open Mode During Construction

fstreamdataFile("data.bin", ios::in | ios::out | ios::binary);

Working with File Paths

File streams work with file paths, which can be:

1. Relative paths: Relative to the current working directory

2. ifstream config("config.ini");

3. ifstream log("logs/app.log");

4. Absolute paths: Complete paths from the root directory

5. ifstreamdataFile("/home/user/data/info.txt");

On Windows, backslashes in paths need to be escaped or replaced

with forward slashes:

ifstreamwinFile("C:\\Users\\Username\\Documents\\file.txt");

// or

ifstreamwinFile("C:/Users/Username/Documents/file.txt");

File Stream Buffers

Each file stream contains a file buffer (filebuf) that manages the

connection to the physical file:

ifstreaminFile("data.txt");

filebuf* inBuf = inFile.rdbuf(); // Get the file buffer

// Buffer properties

streamsize size = inBuf->in_avail(); // Get available characters

Understanding file stream classes is essential for effective file I/O in

C++ applications. These classes provide a type-safe, object-oriented

approach to file operations that integrates seamlessly with the rest of

the C++ I/O library.

5.5 Opening and Closing a File, Detecting End-of-File (EOF)

Proper file management in C++ requires understanding how to open

files, close them when operations are complete, and detect when

you've reached the end of a file.

Opening Files

Files can be opened in two ways: during stream construction or using

the open() method.

199

Notes Opening During Construction

ifstreaminputFile("data.txt");

ofstreamoutputFile("output.txt");

fstreamdataFile("data.bin", ios::in | ios::out | ios::binary);

Opening Using the open() Method

ifstreaminputFile;

inputFile.open("data.txt");

ofstreamoutputFile;

outputFile.open("output.txt", ios::app); // Open in append mode

Checking if a File Was Successfully Opened

It's essential to verify that a file was opened successfully before

attempting operations:

ifstreaminputFile("data.txt");

if (!inputFile) {

cerr<< "Failed to open data.txt" <<endl;

 return 1;

}

// or

if (!inputFile.is_open()) {

cerr<< "Failed to open data.txt" <<endl;

 return 1;

}

Closing Files

Files should be closed when they're no longer needed to free system

resources and ensure all data is properly written.

Using the close() Method

ifstreaminputFile("data.txt");

// File operations...

inputFile.close();

Automatic Closing

File streams are automatically closed when they go out of scope or

when their destructors are called:

void processFile(const string& filename) {

ifstreaminputFile(filename);

 // Process file...

 // No explicit close needed; file will be closed when function

returns

200
MATS Centre for Distance and Online Education, MATS University

Notes }

Reopening a File

After closing a file, you can reopen the same stream with a different

file:

ifstreamdataFile("first.txt");

// Operations on first.txt...

dataFile.close();

dataFile.open("second.txt");

// Operations on second.txt...

Detecting End-of-File (EOF)

Detecting when you've reached the end of a file is crucial for

processing file contents completely without attempting to read past

the end.

Using the eof() Method

The eof() method returns true if an end-of-file condition has been

encountered:

ifstreaminputFile("data.txt");

while (!inputFile.eof()) {

 string line;

getline(inputFile, line);

 // Process line...

}

However, this approach has a subtle issue: eof() only becomes true

after an attempt to read past the end of the file.

Better Approach: Testing the Stream State

A more reliable pattern checks the success of each read operation:

ifstreaminputFile("data.txt");

string line;

while (getline(inputFile, line)) {

 // Process line...

}

Reading Individual Values

When reading individual values, check each extraction:

ifstreamdataFile("numbers.txt");

int value;

while (dataFile>> value) {

 // Process value...

201

Notes }

Using fail() and bad()

For more detailed error checking:

ifstreaminputFile("data.txt");

string line;

while (true) {

getline(inputFile, line);

 if (inputFile.eof()) {

 // Reached end of file normally

 break;

 }

 if (inputFile.fail()) {

 // Read operation failed but recovery might be possible

inputFile.clear(); // Clear error flags

inputFile.ignore(numeric_limits<streamsize>::max(), '\n'); // Skip bad

line

 continue;

 }

 if (inputFile.bad()) {

 // Serious I/O error, recovery unlikely

cerr<< "I/O error while reading file" <<endl;

 break;

 }

 // Process line...

}

Best Practices for File Opening and Closing

1. Always check if a file was opened successfully before

performing operations

2. Close files explicitly when they're no longer needed,

especially for output files to ensure all data is written

3. Use RAII (Resource Acquisition Is Initialization) principle

by wrapping file operations in classes or functions to ensure

proper cleanup

202
MATS Centre for Distance and Online Education, MATS University

Notes 4. Handle file errors gracefully using appropriate error

checking and recovery mechanisms

5. Use appropriate file modes when opening files to avoid

unintended data loss

Following these practices helps ensure robust file I/O operations in

C++ applications.

5.6 File Modes, File Pointers, and Their Manipulations

C++ provides various modes for opening files and mechanisms for

controlling the position within a file through file pointers.

File Open Modes

When opening a file, you can specify one or more mode flags to

control how the file is accessed:

Basic Open Modes

• ios::in: Open for input operations (reading)

• ios::out: Open for output operations (writing)

• ios::app: Append mode; all output operations occur at the end

of the file

• ios::ate: Position the file pointer at the end of the file upon

opening

• ios::trunc: Truncate the file to zero length if it exists

• ios::binary: Open in binary mode (as opposed to text mode)

Combining Open Modes

Multiple modes can be combined using the bitwise OR operator (|):

// Open for both reading and writing in binary mode

fstream file("data.bin", ios::in | ios::out | ios::binary);

// Open for writing, creating a new file or truncating an existing one

ofstreamoutFile("output.txt", ios::out | ios::trunc);

// Open for appending

ofstreamlogFile("log.txt", ios::out | ios::app);

Default Modes

Each file stream class has default modes:

• ifstream: ios::in

• ofstream: ios::out | ios::trunc

• fstream: ios::in | ios::out

File Pointers and Their Manipulation

File streams maintain internal pointers that track the current position

for reading (get pointer) and writing (put pointer).

203

Notes Understanding File Pointers

• get pointer (g): Controls where the next read operation occurs

• put pointer (p): Controls where the next write operation

occurs

In text mode, these pointers may not directly correspond to byte

positions due to platform-specific line ending translations.

Retrieving Current File Position

To get the current file position:

ifstream file("data.txt");

streampos position = file.tellg(); // Get the current get pointer position

ofstreamoutFile("output.txt");

streamposoutPosition = outFile.tellp(); // Get the current put pointer

position

Moving File Pointers

C++ provides several ways to move file pointers:

Absolute Positioning

Move to a specific position from the beginning of the file:

file.seekg(100); // Move get pointer to the 100th byte

file.seekp(200); // Move put pointer to the 200th byte

Relative Positioning

Move relative to the current position or file ends:

// Move get pointer 10 bytes forward from current position

file.seekg(10, ios::cur);

// Move get pointer 10 bytes backward from current position

file.seekg(-10, ios::cur);

// Move get pointer to the beginning of the file

file.seekg(0, ios::beg);

// Move get pointer to the end of the file

file.seekg(0, ios::end);

// Move get pointer 100 bytes before the end of the file

file.seekg(-100, ios::end);

The second parameter specifies the reference position:

• ios::beg: Beginning of the file

• ios::cur: Current position

204
MATS Centre for Distance and Online Education, MATS University

Notes • ios::end: End of the file

Synchronizing Get and Put Pointers

In fstream objects, get and put pointers are normally synchronized. To

position both pointers:

fstreamdataFile("data.bin", ios::in | ios::out | ios::binary);

dataFile.seekg(100); // Move both pointers to position 100

To move them independently, you can use both seekg() and seekp().

Practical Applications of File Modes and Pointers

Creating a New File

ofstreamnewFile("new.txt", ios::out | ios::trunc);

// or simply

ofstreamnewFile("new.txt");

Appending to an Existing File

ofstreamlogFile("log.txt", ios::out | ios::app);

logFile<< "New log entry: " <<getCurrentTime() <<endl;

Reading and Writing to the Same File

fstreamdataFile("records.dat", ios::in | ios::out | ios::binary);

// Write a record

Record record = {1, "John Doe"};

dataFile.write(reinterpret_cast<char*>(&record), sizeof(Record));

// Move to the beginning and read it back

dataFile.seekg(0);

Record readRecord;

dataFile.read(reinterpret_cast<char*>(&readRecord), sizeof(Record));

Updating a Specific Record in a Binary File

fstream database("database.bin", ios::in | ios::out | ios::binary);

// Move to the position of the 5th record (assuming fixed-size records)

database.seekg(4 * sizeof(Record));

// Read the record

Record record;

database.read(reinterpret_cast<char*>(&record), sizeof(Record));

// Modify the record

record.value = 100;

205

Notes

// Move back to the same position and write the updated record

database.seekp(4 * sizeof(Record));

database.write(reinterpret_cast<const char*>(&record),

sizeof(Record));

Understanding file modes and pointers is essential for complex file

operations, especially when working with random access files or

when updating specific parts of a file.

5.7 Sequential Input and Output Operations

Sequential file access is the most common pattern for file I/O, where

data is read or written in order from the beginning to the end of a file.

Sequential File Input

Sequential input involves reading data from a file one item at a time,

moving forward through the file.

Reading Text Files Line by Line

The most common approach for text files is to read them line by line:

#include <fstream>

#include <string>

#include <iostream>

using namespace std;

void readTextFile(const string& filename) {

ifstreaminputFile(filename);

 if (!inputFile.is_open()) {

cerr<< "Error opening file: " << filename <<endl;

 return;

 }

 string line;

 while (getline(inputFile, line)) {

cout<< line <<endl;

 // Process the line...

 }

inputFile.close();

}

Reading Formatted Data

206
MATS Centre for Distance and Online Education, MATS University

Notes For files with structured data, you can use the extraction operator:

void readStudentRecords(const string& filename) {

ifstreaminputFile(filename);

 if (!inputFile.is_open()) {

cerr<< "Error opening file: " << filename <<endl;

 return;

 }

 string name;

 int id;

 double gpa;

 // Assuming file format: ID Name GPA

 while (inputFile>> id >> name >>gpa) {

cout<< "Student: " << name << ", ID: " << id << ", GPA: "

<<gpa<<endl;

 // Process the student record...

 }

inputFile.close();

}

Reading Binary Data

For binary files with fixed-size records:

struct Record {

 int id;

 char name[50];

 double value;

};

void readBinaryRecords(const string& filename) {

ifstreaminputFile(filename, ios::binary);

 if (!inputFile.is_open()) {

cerr<< "Error opening file: " << filename <<endl;

 return;

 }

207

Notes Record record;

 while (inputFile.read(reinterpret_cast<char*>(&record),

sizeof(Record))) {

cout<< "ID: " << record.id << ", Name: " << record.name

<< ", Value: " <<record.value<<endl;

 // Process the record...

 }

inputFile.close();

}

Sequential File Output

Sequential output involves writing data to a file one item at a time,

moving forward through the file.

Writing Text to a File

Basic text writing using the insertion operator:

void writeTextFile(const string& filename, const vector<string>&

lines) {

ofstreamoutputFile(filename);

 if (!outputFile.is_open()) {

cerr<< "Error opening file: " << filename <<endl;

 return;

 }

 for (const string& line : lines) {

outputFile<< line <<endl;

 }

outputFile.close();

}

Writing Formatted Data

Writing structured data with proper formatting:

void writeStudentRecords(const string& filename, const

vector<Student>& students) {

ofstreamoutputFile(filename);

 if (!outputFile.is_open()) {

cerr<< "Error opening file: " << filename <<endl;

208
MATS Centre for Distance and Online Education, MATS University

Notes return;

 }

 // Set precision for floating-point output

outputFile<< fixed <<setprecision(2);

 for (const Student& student : students) {

outputFile<< student.id << " "

<< student.name << " "

<<student.gpa<<endl;

 }

outputFile.close();

}

Writing Binary Data

Writing fixed-size records to a binary file:

void writeBinaryRecords(const string& filename, const

vector<Record>& records) {

ofstreamoutputFile(filename, ios::binary);

 if (!outputFile.is_open()) {

cerr<< "Error opening file: " << filename <<endl;

 return;

 }

 for (const Record& record : records) {

outputFile.write(reinterpret_cast<const char*>(&record),

sizeof(Record));

 }

outputFile.close();

}

Combining Sequential Input and Output

Many applications need to read from one file and write to another:

void convertFileFormat(const string&inputFilename, const

string&outputFilename) {

ifstreaminputFile(inputFilename);

ofstreamoutputFile(outputFilename);

209

Notes if (!inputFile.is_open()) {

cerr<< "Error opening input file: " <<inputFilename<<endl;

 return;

 }

 if (!outputFile.is_open()) {

cerr<< "Error opening output file: " <<outputFilename<<endl;

inputFile.close();

 return;

 }

 string line;

 while (getline(inputFile, line)) {

 // Transform or process the line as needed

outputFile<< line <<endl;

 }

inputFile.close();

outputFile.close();

}

Sequential Access Patterns

Scan-and-Process

The most basic pattern reads each record, processes it, and continues:

void scanAndProcess(const string& filename) {

ifstreaminputFile(filename);

 if (!inputFile.is_open()) {

cerr<< "Error opening file" <<endl;

 return;

 }

5.8 Random Access File

Data read/write files (also called random access files) are files which

allow the programs to read from or write data at any position of a file

without needing to sequentially read all the previous data x. This

functionality has important use-cases in databases, game save

systems and any scenario where you need to obtain direct access to

specific sections of data.

Understanding Random Access

210
MATS Centre for Distance and Online Education, MATS University

Notes Unlike sequential access where files are processed from beginning to

end, random access allows:

• Also Jumping to certain locations in a file

• Accessing data on these positions (reading or writing)

• To navigate forwards and backward through the file

• Updating individual records without rewriting the entire file

Random access is especially suited for working with binary files that

contain fixed-size records, although it can work with text files with

some constraints.

Prerequisites for Random Access

To effectively use random access, several conditions should be met:

1. The file should be opened in a mode that supports both reading

and writing

2. The structure of the file should be known, particularly record

sizes or offsets

3. The file pointer position must be precisely controlled

Opening Files for Random Access

Files intended for random access should be opened with the

appropriate modes:

#include <fstream>

using namespace std;

// Open for both reading and writing in binary mode

fstreamdataFile("database.bin", ios::in | ios::out | ios::binary);

// If the file needs to be created if it doesn't exist

fstreamdataFile("database.bin", ios::in | ios::out | ios::binary |

ios::trunc);

The binary mode is particularly important for random access because

it ensures:

• No translation of newline characters

• Consistent byte counts

• Predictable file pointer positions

Positioning the File Pointer

Random access relies on precise control of the file pointer position

using seekg() and seekp():

// Move to the 100th byte

dataFile.seekg(100);

211

Notes // Move 50 bytes forward from the current position

dataFile.seekg(50, ios::cur);

// Move 200 bytes backward from the end of the file

dataFile.seekg(-200, ios::end);

Random Access with Fixed-Size Records

The most common application of random access is with fixed-size

records:

struct Employee {

 int id; // 4 bytes

 char name[50]; // 50 bytes

 double salary; // 8 bytes

}; // Total: 62 bytes per record

void updateEmployeeSalary(fstream& file, int employeeId, double

newSalary) {

 // Determine record size

 const int recordSize = sizeof(Employee);

 Employee emp;

 // Start from the beginning

file.seekg(0, ios::beg);

 while (file.read(reinterpret_cast<char*>(&emp), recordSize)) {

 if (emp.id == employeeId) {

 // Found the employee record

emp.salary = newSalary;

 // Move back to the beginning of this record

file.seekp(-recordSize, ios::cur);

 // Write the updated record

file.write(reinterpret_cast<const char*>(&emp), recordSize);

 return;

 }

 }

212
MATS Centre for Distance and Online Education, MATS University

Notes // Employee not found

cout<< "Employee ID " <<employeeId<< " not found." <<endl;

}

Direct Access Using Record Index

When records have a fixed size, you can calculate the exact position

of any record and jump directly to it:

void getEmployeeById(fstream& file, int recordIndex) {

 const int recordSize = sizeof(Employee);

 Employee emp;

 // Calculate the position

streampos position = recordIndex * recordSize;

 // Move to the calculated position

file.seekg(position);

 // Read the record

 if (file.read(reinterpret_cast<char*>(&emp), recordSize)) {

cout<< "Employee #" <<recordIndex<< ": "

<< emp.id << ", " << emp.name << ", $" <<emp.salary<<endl;

 } else {

cout<< "Record #" <<recordIndex<< " not found." <<endl;

 }

}

Implementing a Simple Random Access Database

Here's a complete example of a simple employee database using

random access:

#include <iostream>

#include <fstream>

#include <string>

#include <cstring>

using namespace std;

struct Employee {

 int id;

 char name[50];

 double salary;

};

213

Notes

class EmployeeDB {

private:

fstream file;

 const string filename;

public:

EmployeeDB(const string&fname) : filename(fname) {

 // Open file for reading and writing in binary mode

file.open(filename, ios::in | ios::out | ios::binary);

 if (!file) {

 // File doesn't exist, create it

file.clear();

file.open(filename, ios::out | ios::binary);

file.close();

file.open(filename, ios::in | ios::out | ios::binary);

 }

 }

 ~EmployeeDB() {

 if (file.is_open()) {

file.close();

 }

 }

 bool addEmployee(const Employee& emp) {

 // Move to the end to append

file.seekp(0, ios::end);

file.write(reinterpret_cast<const char*>(&emp), sizeof(Employee));

 return file.good();

 }

 bool getEmployee(int id, Employee& emp) {

file.seekg(0, ios::beg);

 while (file.read(reinterpret_cast<char*>(&emp),

sizeof(Employee))) {

214
MATS Centre for Distance and Online Education, MATS University

Notes if (emp.id == id) {

 return true;

 }

 }

 return false;

 }

 bool updateEmployee(const Employee& emp) {

file.seekg(0, ios::beg);

 Employee temp;

 while (file.read(reinterpret_cast<char*>(&temp),

sizeof(Employee))) {

 if (temp.id == emp.id) {

 // Move back to the beginning of this record

file.seekp(-static_cast<int>(sizeof(Employee)), ios::cur);

file.write(reinterpret_cast<const char*>(&emp), sizeof(Employee));

 return file.good();

 }

 }

 return false; // Employee not found

 }

 bool deleteEmployee(int id) {

 // Note: This is a logical delete by marking ID as negative

file.seekg(0, ios::beg);

 Employee emp;

 while (file.read(reinterpret_cast<char*>(&emp),

sizeof(Employee))) {

 if (emp.id == id) {

 emp.id = -emp.id; // Mark as deleted

file.seekp(-static_cast<int>(sizeof(Employee)), ios::cur);

file.write(reinterpret_cast<const char*>(&emp), sizeof(Employee));

 return file.good();

 }

 }

 return false; // Employee not found

215

Notes }

 void displayAll() {

file.clear();

file.seekg(0, ios::beg);

 Employee emp;

cout<< "ID\tName\t\t\tSalary" <<endl;

cout<< "--" <<endl;

 while (file.read(reinterpret_cast<char*>(&emp),

sizeof(Employee))) {

 if (emp.id > 0) { // Skip deleted records

cout << emp.id << "\t"

<< emp.name << "\t\t"

<<emp.salary<<endl;

 }

 }

 }

};

Random Access with Variable-Length Records

Working with variable-length records is more complex but possible

using an index:

struct IndexEntry {

 int id; // Record identifier

 long position; // Position in the data file

 int length; // Length of the record

};

// Store variable-length records with an index file

void addRecord(fstream&dataFile, fstream&indexFile, int id, const

string& data) {

IndexEntry entry;

 entry.id = id;

 // Position at the end of data file

dataFile.seekp(0, ios::end);

entry.position = dataFile.tellp();

216
MATS Centre for Distance and Online Education, MATS University

Notes

 // Write the variable-length data

dataFile<< data;

entry.length = data.length();

 // Write the index entry

indexFile.seekp(0, ios::end);

indexFile.write(reinterpret_cast<const char*>(&entry),

sizeof(IndexEntry));

}

// Retrieve a record using the index

string getRecord(fstream&dataFile, fstream&indexFile, int id) {

IndexEntry entry;

 // Search for the record in the index

indexFile.seekg(0, ios::beg);

 while (indexFile.read(reinterpret_cast<char*>(&entry),

sizeof(IndexEntry))) {

 if (entry.id == id) {

 // Found the index entry, now retrieve the data

dataFile.seekg(entry.position);

 // Read the variable-length data

 char* buffer = new char[entry.length + 1];

dataFile.read(buffer, entry.length);

 buffer[entry.length] = '\0';

 string result = buffer;

 delete[] buffer;

 return result;

 }

 }

 return ""; // Record not found

}

217

Notes Random Access in Text Files

Random access in text files is challenging due to variable line lengths,

but can be implemented using line positions:

vector<streampos>buildLineIndex(ifstream&textFile) {

 vector<streampos>linePositions;

textFile.seekg(0, ios::beg);

linePositions.push_back(textFile.tellg());

 string line;

 while (getline(textFile, line)) {

linePositions.push_back(textFile.tellg());

 }

 return linePositions;

}

string getLine(ifstream&textFile, const

vector<streampos>&linePositions, int lineNumber) {

 if (lineNumber>= 0 &&lineNumber<linePositions.size()) {

textFile.seekg(linePositions[lineNumber]);

 string line;

getline(textFile, line);

 return line;

 }

 return ""; // Invalid line number

}

Random access provides powerful capabilities for efficient file

manipulation, especially in applications requiring direct access to

specific portions of data without processing the entire file.

5.9 Error Handling During File Operations

File operations can fail for numerous reasons: files may not exist,

permissions might be insufficient, disks could be full, or hardware

errors might occur. Robust error handling is essential for creating

reliable file I/O code.

Understanding I/O States and Error Flags

218
MATS Centre for Distance and Online Education, MATS University

Notes C++ file streams maintain several state flags that indicate the success

or failure of operations:

• good(): True if no errors have occurred and the file is ready for

I/O

• eof(): True if the end-of-file has been reached

• fail(): True if a formatting or extraction error has occurred

• bad(): True if a serious I/O error has occurred, such as disk

failure

The ! operator on a stream returns true if either fail() or bad() is true,

providing a quick way to check for errors:

ifstreaminputFile("data.txt");

if (!inputFile) {

cerr<< "Error opening file!" <<endl;

}

Basic Error Checking for File Operations

Checking if a File Was Successfully Opened

Always verify that files are opened successfully before attempting

operations:

ifstreaminputFile("data.txt");

if (!inputFile.is_open()) {

cerr<< "Failed to open data.txt" <<endl;

 // Handle the error, perhaps by returning an error code

 return -1;

}

Checking I/O Operations

Verify the success of read and write operations:

int value;

inputFile>> value;

if (inputFile.fail()) {

cerr<< "Failed to read integer from file" <<endl;

 // Handle the error

}

outputFile<< data;

if (!outputFile) {

cerr<< "Failed to write data to file" <<endl;

 // Handle the error

}

219

Notes Comprehensive Error Handling

A more detailed approach uses specific state checking methods:

void processFile(const string& filename) {

ifstream file(filename);

 // Check if file opened successfully

 if (!file.is_open()) {

cerr<< "Error: Could not open file " << filename <<endl;

 return;

 }

 string line;

 while (true) {

getline(file, line);

 if (file.eof()) {

 // Normal end of file reached

 break;

 }

 if (file.fail()) {

 // A recoverable error occurred

cerr<< "Warning: Failed to read a line. Clearing error state." <<endl;

file.clear(); // Clear error flags

file.ignore(numeric_limits<streamsize>::max(), '\n'); // Skip bad line

 continue;

 }

 if (file.bad()) {

 // A non-recoverable error occurred

cerr<< "Error: I/O error while reading file." <<endl;

 break;

 }

 // Process the line...

cout<< "Read: " << line <<endl;

 }

file.close();

220
MATS Centre for Distance and Online Education, MATS University

Notes }

Using Exceptions for Error Handling

C++ streams can be configured to throw exceptions when errors

occur:

#include <iostream>

#include <fstream>

#include <stdexcept>

using namespace std;

void processFileWithExceptions(const string& filename) {

ifstream file;

 // Configure the file stream to throw exceptions

file.exceptions(ifstream::failbit | ifstream::badbit);

 try {

file.open(filename);

 string line;

 while (getline(file, line)) {

 // Process line...

cout<< line <<endl;

 }

file.close();

 }

 catch (const ifstream::failure& e) {

cerr<< "Error processing file: " <<e.what() <<endl;

 if (file.is_open()) {

file.close();

 }

 }

}

Error Recovery Strategies

Different types of errors require different recovery approaches:

Recovering from Formatting Errors

void readNumbers(const string& filename) {

221

Notes ifstream file(filename);

 if (!file.is_open()) {

cerr<< "Error opening file" <<endl;

 return;

 }

 int number;

 while (file >> number) {

 // Process valid number

cout<< "Number: " << number <<endl;

 }

 if (file.fail() && !file.eof()) {

 // Failed to read a number but not at EOF

file.clear(); // Clear error flags

 string invalidInput;

 file >>invalidInput;

cerr<< "Invalid input: " <<invalidInput<<endl;

 // Continue reading after skipping the invalid input

file.clear();

 while (file >> number) {

cout<< "Number: " << number <<endl;

 }

 }

file.close();

}

Handling File Access Errors

bool saveData(const string& filename, const vector<int>& data) {

ofstream file;

 // Try primary location

file.open(filename);

 if (!file) {

cerr<< "Warning: Could not open " << filename <<endl;

222
MATS Centre for Distance and Online Education, MATS University

Notes // Try backup location

 string backupFilename = "backup_" + filename;

file.clear();

file.open(backupFilename);

 if (!file) {

cerr<< "Error: Could not open backup location" <<endl;

 return false;

 }

cerr<< "Using backup location: " <<backupFilename<<endl;

 }

 // Write data

 for (int value : data) {

 file << value <<endl;

 if (!file) {

cerr<< "Error writing to file" <<endl;

file.close();

 return false;

 }

 }

file.close();

 return true;

}

Advanced Error Handling Techniques

Using errno for System-Level Error Information

For more detailed error information, you can use the C-style errno and

related functions:

#include <cerrno>

#include <cstring>

void detailedErrorReport(const string& filename) {

ifstream file(filename);

 if (!file) {

cerr<< "Error opening file: " << filename <<endl;

223

Notes cerr << "System error: " << strerror(errno) << " (errno: " << errno <<

")" << endl;

}

}

Creating a File I/O Error Class

For more sophisticated applications, creating a dedicated error class

can help:

class FileError : public runtime_error {

private:

 string filename;

public:

FileError(const string& msg, const string&fname)

 : runtime_error(msg), filename(fname) {}

 const string&getFilename() const {

 return filename;

 }

};

void safeReadFile(const string& filename) {

ifstream file(filename);

 if (!file.is_open()) {

 throw FileError("Cannot open file", filename);

 }

 // File operations...

 if (file.bad()) {

 throw FileError("I/O error during read", filename);

 }

}

// Usage

try {

safeReadFile("important_data.txt");

}

224
MATS Centre for Distance and Online Education, MATS University

Notes catch (const FileError& e) {

cerr<< "Error: " <<e.what() << " - File: " <<e.getFilename() <<endl;

 // Log the error

logError(e.what(), e.getFilename());

 // Attempt recovery

 if (attemptRecovery(e.getFilename())) {

cerr<< "Recovery successful" <<endl;

 }

}

Best Practices for File Error Handling

1. Always check if files are opened successfully before

performing operations

2. Check the success of each I/O operation, especially in

critical applications

3. Provide meaningful error messages that help diagnose

problems

4. Implement appropriate recovery strategies based on the

type of error

5. Close files properly, even when errors occur

6. Use exception handling for systematic error management in

larger applications

7. Log detailed error information to aid debugging

8. Consider using backup mechanisms for important data

9. Test error scenarios to ensure your code handles them

correctly

10. Use RAII (Resource Acquisition Is Initialization) principles

to ensure proper resource cleanup

Robust error handling is a key aspect of reliable file I/O code. By

implementing these techniques, you can create applications that

gracefully handle the many ways file operations can fail.

MCQs:

1. Which header file is required for file handling in C++?

a) <iostream>

b) <fstream>

c) <stdio.h>

d) <string>

225

Notes 2. Which class is used for reading from a file in C++?

a) ofstream

b) ifstream

c) fstream

d) file

3. Which class is used for both reading and writing to a file?

a) ifstream

b) ofstream

c) fstream

d) streambuf

4. What is the purpose of the seekg() function in file

handling?

a) Move the get (input) pointer

b) Move the put (output) pointer

c) Read the file

d) Write to the file

5. Which function is used to check if a file has reached the

End-of-File (EOF)?

a) eof()

b) close()

c) seekg()

d) fail()

6. Which of the following is NOT a valid file mode in C++?

a) ios::in

b) ios::out

c) ios::print

d) ios::app

7. Which function is used to write data into a file?

a) write()

b) insert()

c) append()

d) print()

8. What is the default mode when opening a file using

ofstream?

a) ios::app

b) ios::out

c) ios::binary

d) ios::trunc

226
MATS Centre for Distance and Online Education, MATS University

Notes 9. What does the tellg() function do?

a) Returns the current position of the input (get) pointer

b) Moves the file pointer to the beginning

c) Reads data from a file

d) Writes data to a file

10. Which file mode allows both input and output operations?

a) ios::out

b) ios::in | ios::out

c) ios::trunc

d) ios::binary

Short Questions:

1. What are stream classes in C++?

2. What is the difference between formatted and unformatted I/O

operations?

3. Explain the purpose of manipulators in C++.

4. How do you open and close a file in C++?

5. What is the function of eof() in file handling?

6. Define file modes and explain their usage.

7. What is the difference between ifstream, ofstream, and

fstream?

8. Explain the use of file pointers (seekg() and seekp()) in file

operations.

9. What is the difference between sequential access and random

access file handling?

10. How do you handle errors in file operations in C++?

Long Questions:

1. Explain stream classes in C++ with examples.

2. What is the difference between formatted and unformatted

I/O operations? Provide examples.

3. Discuss different file handling classes (ifstream, ofstream,

fstream) with examples.

4. Explain file modes and how they affect file operations.

5. Write a C++ program to open, write, and read a file using file

handling.

6. How does the End-of-File (EOF) condition work? Explain

with an example.

7. Explain sequential file access and randomaccess file

operations with examples.

227

Notes 8. What is the role of file pointers (seekg(), seekp(), tellg(),

tellp()) in file handling?

9. Write a C++ program to demonstrate error handling during

file operations.

10. Discuss the importance of file handling in real-world

applications.

228
MATS Centre for Distance and Online Education, MATS University

Notes

References

Object-Oriented Concepts (Chapter 1)

1. Stroustrup, B. (2013). The C++ Programming Language (4th

ed.). Addison-Wesley Professional.

2. Lippman, S. B., Lajoie, J., & Moo, B. E. (2012). C++ Primer

(5th ed.). Addison-Wesley Professional.

3. Prata, S. (2011). C++ Primer Plus (6th ed.). Addison-Wesley

Professional.

4. Lafore, R. (2001). Object-Oriented Programming in C++ (4th

ed.). Sams Publishing.

5. Deitel, P., & Deitel, H. (2016). C++ How to Program (10th

ed.). Pearson.

Functions, Constructors, and Destructors (Chapter 2)

1. Meyers, S. (2005). Effective C++: 55 Specific Ways to

Improve Your Programs and Designs (3rd ed.). Addison-

Wesley Professional.

2. Schildt, H. (2003). C++: The Complete Reference (4th ed.).

McGraw-Hill Education.

3. Eckel, B. (2000). Thinking in C++ (2nd ed.). Prentice Hall.

4. Josuttis, N. M. (2012). The C++ Standard Library: A Tutorial

and Reference (2nd ed.). Addison-Wesley Professional.

5. McConnell, S. (2004). Code Complete: A Practical Handbook

of Software Construction (2nd ed.). Microsoft Press.

Operator Overloading and Inheritance (Chapter 3)

1. Vandevoorde, D., & Josuttis, N. M. (2017). C++ Templates:

The Complete Guide (2nd ed.). Addison-Wesley Professional.

2. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Professional.

3. Coplien, J. O. (1991). Advanced C++ Programming Styles and

Idioms. Addison-Wesley Professional.

4. Martin, R. C. (2008). Clean Code: A Handbook of Agile

Software Craftsmanship. Prentice Hall.

5. Alexandrescu, A. (2001). Modern C++ Design: Generic

Programming and Design Patterns Applied. Addison-Wesley

Professional.

Pointer, Virtual Function, and Polymorphism (Chapter 4)

1. Meyers, S. (2014). Effective Modern C++: 42 Specific Ways

to Improve Your Use of C++11 and C++14. O'Reilly Media.

229

Notes 2. Booch, G. (2007). Object-Oriented Analysis and Design with

Applications (3rd ed.). Addison-Wesley Professional.

3. Lister, A. M., & Eager, R. D. (1988). Fundamentals of

Operating Systems. Springer.

4. Stroustrup, B. (2014). Programming: Principles and Practice

Using C++ (2nd ed.). Addison-Wesley Professional.

5. Koenig, A., & Moo, B. E. (2000). Accelerated C++: Practical

Programming by Example. Addison-Wesley Professional.

Console I/O Operations and File Handling (Chapter 5)

1. Musser, D. R., Derge, G. J., & Saini, A. (2009). STL Tutorial

and Reference Guide: C++ Programming with the Standard

Template Library (3rd ed.). Addison-Wesley Professional.

2. Stevens, W. R., & Rago, S. A. (2013). Advanced

Programming in the UNIX Environment (3rd ed.). Addison-

Wesley Professional.

3. Kerrisk, M. (2010). The Linux Programming Interface: A

Linux and UNIX System Programming Handbook. No Starch

Press.

4. Austern, M. H. (1998). Generic Programming and the STL:

Using and Extending the C++ Standard Template Library.

Addison-Wesley Professional.

5. Stepanov, A., & Rose, D. (2015). From Mathematics to

Generic Programming. Addison-Wesley Professional.

230
MATS Centre for Distance and Online Education, MATS University

•

	Page 10

