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MODULE I  

UNIT I  

RECURRENCE RELATIONS AND GENERATING FUNCTIONS  

Objectives  

• To understand the concept of recurrence relations and their  

significance in discrete mathematics.  

•

•

To analyze different types of number sequences and their properties.  

To explore linear homogeneous and non-homogeneous recurrence  

relations.  

•

•

•

To study generating functions and their applications in solving  

recurrence relations.  

To differentiate between ordinary and exponential generating  

functions.  

To apply recurrence relations and generating functions in real-world  

mathematical problems.  

1.1 Introduction to Recurrence Relations  50

Recurrence relations are equations that define sequences where each term is  

defined as function of previous terms. They're fundamental in understanding  

iterative processes, algorithms, and many mathematical patterns.  

Some Important Number Sequences  

Fibonacci Sequence  

Fibonacci sequence is defined by recurrence relation: F₀ = 0, F₁ = 1 Fₙ = Fₙ₋₁  

+ Fₙ₋₂ for n ≥ 2  

first few terms are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...  

This sequence appears in nature (like the arrangement of leaves on stems  

and seeds in a sunflower) and has connections to the golden ratio.  
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Arithmetic Sequence  Notes  

An arithmetic sequence has a constant difference between consecutive  

terms: a₁ = first term aₙ = aₙ₋₁ + d for n ≥ 2 (where d is the common  

difference)  

The explicit formula is: aₙ = a₁ + (n-1)d  

Example: 3, 7, 11, 15, 19, ... (with a₁ = 3 and d = 4)  

Geometric Sequence  

A geometric sequence has a constant ratio between consecutive terms: a₁ =  

first term aₙ = aₙ₋₁ × r for n ≥ 2 (where r is the common ratio)  

The explicit formula is: aₙ = a₁ × rⁿ⁻¹  

Example: 2, 6, 18, 54, 162, ... (with a₁ = 2 and r = 3)  

Triangular Numbers  

Triangular numbers count objects arranged in an equilateral triangle1 Tₙ =  

Tₙ₋₁ + n T₁ = 1 for n ≥ 2  

The precise equation is Tₙ = n(n+1)/2.The sequence is: 1, 3, 6, 10, 15, 21,  

28, ...  

Catalan Numbers  

The Catalan numbers appear in various counting problems: C₀ = 1 Cₙ = Σ(Cᵢ  

× Cₙ₋ᵢ₋₁) for i = 0 to n-1, n ≥ 1  

The sequence is: 1, 1, 2, 5, 14, 42, 132, 429, ...  

2



UNIT II  Notes  

Linear Homogeneous Relations of Recurrence  

linear homogeneous recurrence relation of order k has the form: aₙ = c₁aₙ₋₁ +  

c₂aₙ₋₂ + ... + cₖaₙ₋ₖ  

Where c₁, c₂, ..., cₖ are constants and cₖ ≠ 0.  

First-Order Linear Homogeneous Recurrence Relations  

These have form: aₙ = c₁aₙ₋₁  

The explicit solution is: aₙ = a₁ × (c₁)ⁿ⁻¹  

Example: aₙ = 3aₙ₋₁ with a₁ = 2 Solution: aₙ = 2 × 3ⁿ⁻¹  

Second-Order Linear Homogeneous Recurrence Relations  

These have form: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂  

Characteristic Equation Method  

To solve a second-order connection of linear homogeneous recurrence:  

1. Create a characteristic formula: r - c₁r - c₂ = 0  2 

2.Find the roots r₁ and r₂ of this equation  

1. The general solution depends on these roots:  

o

o

If r₁ ≠ r₂ (distinct roots): aₙ = α₁r₁ⁿ + α₂r₂ⁿ  

If r₁ = r₂ (repeated roots): aₙ = α₁r₁ⁿ + α₂nr₁ⁿ  

2. Use initial conditions to find constants α₁ and α₂  

Example: For the Fibonacci sequence Fₙ = Fₙ₋₁ + Fₙ₋₂  

•

•

•

Characteristic equation: r² - r - 1 = 0  

Roots: r₁ = (1 + √5)/2 and r₂ = (1 - √5)/2  

General solution: Fₙ = α₁r₁ⁿ + α₂r₂ⁿ  

Using F₀ = 0 and F₁ = 1 to find α₁ and α₂: Fₙ = (1/√5)[(1 + √5)/2]ⁿ - (1/√5)[(1  

- √5)/2]ⁿ  

Higher-Order Linear Homogeneous Recurrence Relations  

For a relation of order k: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + cₖaₙ₋ₖ  

3



1. Form the characteristic equation: rᵏ - c₁rᵏ⁻¹ - c₂rᵏ⁻² - ... - cₖ = 0  Notes  

2. Find all roots of this equation  

3. For each distinct root rᵢ with multiplicity mᵢ, the solution includes  

terms: α₁rᵢⁿ, α₂nrᵢⁿ, α₃n²rᵢⁿ, ..., αₘᵢn^(mᵢ-1)rᵢⁿ  

4. general solution is the sum of all these terms  

5. Use initial conditions to find all constants  

Non-Homogeneous Recurrence Relations  

A non-homogeneous recurrence relation has form: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... +  

cₖaₙ₋ₖ + F(n)  

Where F(n) is a non-zero function of n.  

Method of Undetermined Coefficients  

The solution has two parts: aₙ = aₙʰ + aₙᵖ  

Where:  

•

•

aₙʰ is the general solution to homogeneous relation  

aₙᵖ is a particular solution based on F(n)  

Common forms of F(n) and their particular solutions:  

1. F(n) = pn^s (polynomial):  

o Try aₙᵖ = αₛn^s + αₛ₋₁n^(s-1) + ... + α₁n + α₀  

2. F(n) = pᵏⁿ (exponential):  

o

o

If pᵏ is not a root of the characteristic equation, try aₙᵖ = βpᵏⁿ  

If pᵏ is a root with multiplicity m, try aₙᵖ = βn^m × pᵏⁿ  

3. F(n) = n^s × pᵏⁿ (combination):  

o Combine the approaches above  

Method of Variation of Parameters  

This method is useful for more complex F(n):  

1. Find general solution aₙʰ to homogeneous relation  
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2. Assume a particular solution of the form aₙᵖ with variable  Notes  
coefficients  

3. Substitute into the original relation to find these coefficients  

Solved Problems  

Problem 1: Solve the recurrence relation aₙ = 5aₙ₋₁ - 6aₙ₋₂ with a₀ = 1, a₁  

= 4  

Solution: Step 1: Form the characteristic equation r² - 5r + 6 = 0  

Step 2: Factor the equation (r - 2)(r - 3) = 0  

Step 3: Find the roots r₁ = 2, r₂ = 3  

Step 4: Write the general solution Since we have distinct roots, the general  

solution is: ₙ = α₁(2)ⁿ + α₂(3)ⁿ  

Step 5: Use initial conditions to find α₁ and α₂ For a₀ = 1: 1 = α₁(2)⁰ + α₂(3)⁰  

= α₁ + α₂  

For a₁ = 4: 4 = α₁(2)¹ + α₂(3)¹ = 2α₁ + 3α₂  

From the first equation: α₂ = 1 - α₁ Substituting into the second equation: 4 =  

2α₁ + 3(1 - α₁) = 2α₁ + 3 - 3α₁ = 3 - α₁ α₁ = -1  

Therefore, α₂ = 1 - (-1) = 2  

Step 6: Write the explicit formula aₙ = 2(3)ⁿ - (2)ⁿ = -1(2)ⁿ + 2(3)ⁿ  

1 , a₁ = 2(3)¹ - (2)¹ = 6 - 2 = 4 , a₂ = 2(3)² - (2)² = 18 - 4 = 14 a₃ = 2(3)³ -  

(2)³ = 54 - 8 = 46  

Problem 2: Find general solution of recurrence relation aₙ = 4aₙ₋₁ - 4aₙ₋₂  

Solution: Step 1: Form the characteristic equation r² - 4r + 4 = 0  

Step 2: Factor the equation (r - 2)² = 0  

Step 3: Find the roots r₁ = r₂ = 2 (repeated root with multiplicity 2)  

Step 4: Write the general solution Since we have a repeated root, the general  

solution is: ₙ = α₁(2)ⁿ + α₂n(2)ⁿ  

Step 5: Simplify the solution aₙ = (2)ⁿ(α₁ + α₂n)  

5
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Using initial conditions, we could solve for α₁ and α₂. Without specific initial  Notes  
conditions, this is the general solution.  

Problem 3: Solve non-homogeneous recurrence relation aₙ = 3aₙ₋₁ + 2ⁿ  

with a₀ = 1  

Solution: Step 1: Solve the homogeneous part aₙ = 3aₙ₋₁ characteristic  

equation is r - 3 = 0 root is r = 3 The homogeneous solution is ₙʰ = α(3)ⁿ  

Step 2: Find a particular solution Since F(n) = 2ⁿ is exponential and 2 is not  

a root of the characteristic equation, we try: aₙᵖ = β(2)ⁿ  

Substituting into the original equation: β(2)ⁿ = 3β(2)ⁿ⁻¹ + 2ⁿ β(2)ⁿ = 3β(2)ⁿ/2  

+ 2ⁿ β(2)ⁿ - 3β(2)ⁿ/2 = 2ⁿ β(2)ⁿ(1 - 3/2) = 2ⁿ β(-1/2) = 1 β = -2  

So, aₙᵖ = -2(2)ⁿ  

Step 3: Write the general solution aₙ = aₙʰ + aₙᵖ = α(3)ⁿ - 2(2)ⁿ  

Step 4: Use the initial condition a₀ = 1 1 = α(3)⁰ - 2(2)⁰ = α - 2 α = 3  

Step 5: Write the explicit formula aₙ = 3(3)ⁿ - 2(2)ⁿ  

- 4 = 5, a₂ = 3(3)² - 2(2)² = 27 - 8 = 19, a₃ = 3(3)³ - 2(2)³ = 81 - 16 = 65  

Unsolved Problems  

Problem 1  

Find general solution to recurrence relation: ₙ = 6aₙ₋₁ - 9aₙ₋₂  

Problem 2  

Solve the recurrence relation: aₙ = 2aₙ₋₁ + 3aₙ₋₂ with a₀ = 4 and a₁ = 5  

Problem 3  

Find the explicit formula for the sequence defined by: aₙ = aₙ₋₁ + 2aₙ₋₂ with  

a₀ = 3 and a₁ = 4  

Problem 4  

Solve the non-homogeneous recurrence relation: aₙ = 4aₙ₋₁ - 4aₙ₋₂ + 3ⁿ with  

a₀ = 1, a₁ = 2  

Problem 5  

6
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Find recurrence relation and initial conditions for sequence: 1, 4, 10, 19, 31,  

46, ...  
Notes  

Applications of Recurrence Relations  

Recurrence relations have numerous applications in mathematics and  

computer science:  

Algorithm Analysis  

Many algorithms, especially recursive ones, can be analyzed using  

recurrence relations. The time complexity of these algorithms is often  

expressed as a recurrence relation:  

Example: Binary Search  

T(n) = T(n/2) + c (assuming n is power of 2) The solution is T(n) = O(log n)  

Example: Merge Sort  

T(n) = 2T(n/2) + cn The solution is T(n) = O(n log n)  

Combinatorial Problems  

Recurrence relations are useful for solving counting problems in  

combinatorics:  

Example: Counting Binary Strings  

Let aₙ be number of binary strings of length n that do not contain  

consecutive 0s.  

We have:  

• The strings 0 and 1 make up a₁ = 2.  

• (the strings 01, 10, and 11) a₂ = 3.  

The recurrence relation is: aₙ = aₙ₋₁ + aₙ₋₂ for n ≥ 3  

This is the Fibonacci recurrence shifted by 2 positions.  

Example: Tower of Hanoi  

Let T(n) be the minimum number of moves needed to solve Tower of Hanoi  

puzzle with n disks.  

The recurrence relation is: T(n) = 2T(n-1) + 1 with T(1) = 1  

7



The solution is: T(n) = 2ⁿ - 1  Notes  

Financial Mathematics  

Recurrence relations model financial processes like compound interest:  

Example: Compound Interest  

Let P(n) be amount after n years with principal P₀, interest rate r, and annual  

compounding.  

recurrence relation is: P(n) = (1 + r)P(n-1) with P(0) = P₀  

The solution is: P(n) = P₀(1 + r)ⁿ  

Population Growth  

Recurrence relations model population dynamics:  

Example: Rabbits (Fibonacci Model)  

Let P(n) be the number of rabbit pairs after n months.  

The recurrence relation is: P(n) = P(n-1) + P(n-2) for n ≥ 3, with P(1) = 1,  

P(2) = 1  

This is the classic Fibonacci sequence.  

Iterative Substitution Method  

This method involves expanding the recurrence relation repeatedly until a  

pattern emerges:  

Example: T(n) = T(n-1) + n with T(1) = 1  

T(n) = T(n-1) + n = T(n-2) + (n-1) + n = T(n-3) + (n-2) + (n-1) + n... = T(1)  

+ 2 + 3 +... + (n-1) + n = 1 + 2 + 3 +... + n = n(n+1) via expansion/2  

The  Divide-and-Conquer  Recurrence  Master  Theorem  

When a ≥ 1 and b > 1:1, recurrences of the form T(n) = aT(n/b) + f(n)  

occur.T(n) = Θ(n^(log_b(a)) if f(n) = O(n^(log_b(a)-ε)) for some ε > 0.  

T(n)  = Θ(n^(log_b(a)) log  n if f(n)  = Θ(n^(log_b(a))).  

3. T(n) = Θ(f(n)) if f(n) = Ω(n^(log_b(a)+ε)) for any ε > 0 and af(n/b) ≤ cf(n)  

for some c < 1.  

8
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Function Generation  Notes  

The formal power series is a generating function G(x) for a sequence {aₙ}:  

For n ≥ 0, G(x) = a₀ + a₁x + a₂x² +... = Σ(aₙxⁿ).  

The explicit formula for aₙ for recurrence relations can be found by  

performing operations on the generating function.  

For instance: F₁ = 1 for the Fibonacci sequence where F₀ = 0: The formula  

for G(x) is Σ(Fₙxⁿ) = x + x² + 2x³ + 3x⁴ + 5x⁵ +...  

This is the functional equation: xG(x) + x²G(x) + x = G(x)  

Finding G(x): The formula is G(x) - xG(x) - x²G(x) = x G(x)(1 - x - x²) = x  

G(x) = x/(1 - x - x²).  

By decomposing partial fractions: G(x) = (1/√5)[1/(1-αx)-1/(1-βx)]  

In this case, β = (1-√5)/2 and α = (1 + √5)/2  

This allows us to recover: Fₙ = (1/√5)[αⁿ - βⁿ]  

Particular Recurrence Relation Types  

Recurrence Relations with Constant Coefficients  

Aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ +... + cₖaₙ₋ₖ + F(n) is the form of these.  

where the constants are c₁, c₂,..., cₖ.  

Aₙ = c₁(n)aₙ₋₁ + c₂(n)aₙ₋₂ +... + cₖ(n)aₙ₋ₖ + F(n) is the form of these.  

where at least one of the following is not constant: c₁(n), c₂(n),..., cₖ(n).  

Divide-and-Conquer Recurrence Relations  

These have the form: T(n) = aT(n/b) + f(n)  

Where:  

•

•

•

a is the number of subproblems  

n/b is the size of each subproblem  

f(n) is the cost of dividing and combining  

Systems of Recurrence Relations  

9
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These involve multiple interdependent sequences: aₙ = The formula is f(aₙ₋₁,  

aₙ₋₂,..., bₙ₋₁, bₙ₋₂,...) bₙ = g(aₙ₋₁, aₙ₋₂,..., bₙ₋₁, bₙ₋₂,.....)  
Notes  

For example, the Fibonacci and Lucas sequences form a system.  

Historical Development of Recurrence Relations  

Recurrence relations have a rich history dating back to ancient mathematics:  

Ancient Origins  

The concept of recursion appears in ancient problems like the Tower of  

Hanoi and the Chinese rings puzzle.  

Leonardo Fibonacci (c. 1170-1250)  

Fibonacci introduced the sequence named after him in his book "Liber  

Abaci" (1202), in the context of modeling rabbit population growth.  

Abraham de Moivre (1667-1754)  

De Moivre developed methods for solving linear recurrence relations with  

constant coefficients, introducing characteristic equation method.  

Pierre-Simon Laplace (1749-1827)  

Laplace used generating functions to solve recurrence relations, laying  

important groundwork for modern approaches.  

George Boole (1815-1864)  

Boole developed symbolic methods for solving recurrence relations as part  

of his work on difference equations.  

Modern Development  

In the 20th century, the study of recurrence relations expanded with  

applications in computer science, particularly algorithm analysis (Knuth,  

Hopcroft, Tarjan, and others).  

Relationships to Other Mathematical Areas  

Differential Equations  

Recurrence relations are the discrete analogs of differential equations. Many  

techniques for solving differential equations have corresponding methods for  

recurrence relations.  
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Linear Algebra  Notes  

Higher-order linear recurrence relations can be transformed into first-order  

matrix recurrence relations, connecting them to eigenvalues and  

eigenvectors.  

Number Theory  

Many important number-theoretic sequences, like Fibonacci numbers,  

satisfy recurrence relations and have connections to continued fractions and  

Diophantine equations.  

Graph Theory  

Recurrence relations describe paths in graphs, especially in counting  

problems involving walks of various types.  

Complex Analysis  

Generating functions for recurrence relations connect to complex analysis,  

with singularities of the generating function determining the asymptotic  

behavior of the sequence.  

Advanced Topics in Recurrence Relations  

Asymptotic Analysis  

For many applications, especially in algorithm analysis, we're interested in  

the asymptotic behavior of sequences defined by recurrence relations:  

Big-O Notation  

•

•

•

O(f(n)): Upper bound  

Ω(f(n)): Lower bound  

Θ(f(n)): Tight bound  

Common Growth Rates (in increasing order)  

•

•

•

•

•

O(1): Constant  

O(log n) is a logarithmic  

O(n^k): Polynomial  

O(n²): Quadratic  

11  
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• Exponential O(2^n)Multivariate Recurrence Relations  Notes  

These involve sequences with multiple indices: a(m,n) = f(a(m-1,n), a(m,n-  

1), ...)  

Example: Pascal's triangle satisfies: C(n,k) = C(n-1,k-1) + C(n-1,k)  

Non-Linear Recurrence Relations  

These have a non-linear form: aₙ = f(aₙ₋₁, aₙ₋₂, ..., aₙ₋ₖ)  

Where f is not a linear function.  

Example: Logarithmic recurrence: T(n) = T(n/2) + 1  

Solution: T(n) = log₂(n) + T(1)  

Random Recurrence Relations  

These involve probability and random variables: E[Xₙ] = f(E[Xₙ₋₁], E[Xₙ₋₂],  

...)  

Example: Expected height of a random binary search tree: E[H(n)] ≈ 4.311  

log n - 1.953 log log n + O(1)  

Conclusion  

Recurrence relations are powerful tools for modeling and solving problems  363636

in diverse fields. Understanding them provides insights into algorithmic  

efficiency, natural patterns, and mathematical structures. As we've seen,  

techniques for solving recurrence relations range from elementary methods  

like iteration to sophisticated approaches using generating functions and  

asymptotic analysis.  

The connection between recurrence relations and other mathematical  

areas—like differential equations, linear algebra, and complex analysis—  

highlights their fundamental importance in mathematics. From the classic  

Fibonacci sequence to the complexities of algorithm analysis, recurrence  

relations offer a unified framework for studying discrete mathematical  

processes.Whether you're analyzing algorithms, modeling population  

growth, or exploring number theory, recurrence relations provide elegant  

formulations and solutions, forming an essential component of mathematical  

problem-solving.  
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UNIT III  Notes  

1.2 Generating Functions, Recurrences, and Applications  

Introduction to Generating Functions  

A generating function is a powerful mathematical tool that encodes an  

infinite sequence of numbers (a0, a1, a2, ...) into a single function. The most  

common type of generating function is the ordinary generating function,  

defined as:  

G(x) = a0 + a1x + a2x² + a3x³ + ...  

Here, the sequence (a0, a1, a2, ...) represents the coefficients of the power  

series. Rather than working with the sequence directly, we can manipulate  

the generating function as a whole, which often simplifies complex  1515

problems involving sequences.  

Why Generating Functions Are Useful  

Generating functions provide a powerful framework for solving a variety of  

problems in discrete mathematics:  

1. Solving recurrence relations: Many problems in computer science  

and mathematics involve sequences defined recursively. Generating  

functions provide a systematic approach to find closed-form  

expressions for these sequences.  

2. Counting problems: In combinatorics, generating functions help  

count arrangements, selections, or distributions that satisfy certain  

constraints.  

3. Probability distributions: In probability theory, generating  

functions represent probability distributions and simplify the  

calculation of moments and other statistical properties.  

4. Asymptotic analysis: Generating functions can provide insights  

into the asymptotic behavior of sequences, which is crucial for  

Basic Operations on Generating Functions  

If we have generating functions G(x) = Σ aₙxⁿ and H(x) = Σ bₙxⁿ, the  

following operations correspond to operations on the underlying sequences:  

13  

analyzing algorithm complexity.  



1. Addition: G(x) + H(x) = Σ (aₙ + bₙ)xⁿ  Notes  

2. Scalar multiplication: c·G(x) = Σ (c·aₙ)xⁿ  

3. Multiplication: G(x)·H(x) = Σ cₙxⁿ, where cₙ = Σ aₖbₙ₋ₖ  

(convolution)  

4. Differentiation: G'(x) = Σ n·aₙxⁿ⁻¹  

5. Integration: ∫G(x)dx = C + Σ (aₙ/(n+1))xⁿ⁺¹  

6. Shifting: x·G(x) = Σ aₙ₋₁xⁿ (where a₋₁ = 0)  

Common Generating Functions  

Several generating functions appear frequently in combinatorial problems:  

Geometric Series  

The simplest generating function is the geometric series:  

G(x) = 1 + x + x² + x³ + ... = 1/(1-x) for |x| < 1  

This represents the sequence (1, 1, 1, ...). Its general form is:  

G(x) = a + ax + ax² + ax³ + ... = a/(1-x) for |x| < 1  

Binomial Series  

The binomial theorem gives us:  

(1 + x)ⁿ = Σ (n choose k)xᵏ for k = 0 to n  

For negative and non-integer values of n, we have the generalized binomial  

series:  

(1 + x)ⁿ = Σ (n choose k)xᵏ for k = 0 to ∞ (for |x| < 1)  

where (n choose k) = n(n-1)(n-2)...(n-k+1)/k! even when n is not a positive  

Exponential Function  

The exponential function as a generating function:  

e^x = 1 + x + x²/2! + x³/3! + ... = Σ xⁿ/n!  

Recurrence Relations and Generating Functions  

14  

integer.  



A recurrence relation defines each term of a sequence using one or more  363636

previous terms. Generating functions provide a systematic approach to solve  

recurrence relations.  

Notes  

Constant Coefficient Linear Recurrence Relations  

Consider a linear recurrence relation:  

aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + cₖaₙ₋ₖ + f(n) for n ≥ k  

Where c₁, c₂, ..., cₖ are constants, and f(n) is function of n. To solve this  

using generating functions:  

1. Define G(x) = Σ aₙxⁿ  

2. Multiply the recurrence relation by xⁿ and sum over all valid n  

3. Express the resulting equation in terms of G(x)  

4. Solve for G(x)  

5. Expand G(x) into a power series to find the coefficients aₙ  

Homogeneous Recurrences  

For homogeneous recurrences (f(n) = 0), the characteristic equation helps  

find closed-form solutions:  

r^k - c₁r^(k-1) - c₂r^(k-2) - ... - cₖ = 0  

The solutions to this equation determine the form of the closed-form  

expression for aₙ.  

Non-homogeneous Recurrences  

For non-homogeneous recurrences (f(n) ≠ 0), we can split the solution into:  

•

•

The homogeneous solution (as above)  

A particular solution that satisfies the non-homogeneous part  

Exponential Generating Functions  

While ordinary generating functions use the form G(x) = Σ aₙxⁿ, exponential  

generating functions (EGFs) use:  

E(x) = Σ aₙxⁿ/n!  

Properties of EGFs  
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If E(x) = Σ aₙxⁿ/n! and F(x) = Σ bₙxⁿ/n! are exponential generating functions,  Notes  
then:  

1. Addition: E(x) + F(x) = Σ (aₙ + bₙ)xⁿ/n!  

2. Scalar multiplication: c·E(x) = Σ (c·aₙ)xⁿ/n!  

3. Multiplication: E(x)·F(x) = Σ cₙxⁿ/n!, where cₙ = Σ (n choose  

k)aₖbₙ₋ₖ  

4. Differentiation: E'(x) = Σ aₙ₊₁xⁿ/n!  

5. Integration: ∫E(x)dx = C + Σ aₙ₋₁xⁿ/n! (where a₋₁ = 0)  

When to Use EGFs vs. Ordinary Generating Functions  

• Ordinary generating functions are particularly useful for problems  

involving selections with repetition allowed.  

• Exponential generating functions are more suitable for problems  

involving arrangements, permutations, or labeled objects.  

Common Exponential Generating Functions  

1. Exponential function: e^x = Σ xⁿ/n! is the EGF for the sequence (1,  

1, 1, ...)  

2. Sine and Cosine: sin(x) = Σ (-1)ⁿx^(2n+1)/(2n+1)! and cos(x) = Σ (-  

1)ⁿx^(2n)/(2n)!  

3. Exponential with factor: e^(ax) = Σ aⁿxⁿ/n! is the EGF for the  

sequence (1, a, a², a³, ...)  

Applications of Generating Functions  

Fibonacci Numbers  363636

Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, ...) is defined by recurrence:  

F₀ = 0, F₁ = 1, Fₙ = Fₙ₋₁ + Fₙ₋₂ for n ≥ 2  

Using generating functions, we can find:  

G(x) = Σ Fₙxⁿ = x/(1-x-x²)  

This can be expanded using partial fractions to obtain closed-form  

expression:  
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Fₙ = (φⁿ - (1-φ)ⁿ)/√5, where φ = (1+√5)/2 ≈ 1.618 (the golden ratio)  Notes  

Catalan Numbers  

Catalan numbers (1, 1, 2, 5, 14, 42, ...) appear in many combinatorial  

problems. They satisfy:  

C₀ = 1, Cₙ₊₁ = Σ CᵢCₙ₋ᵢ for i = 0 to n  

Their generating function is:  

G(x) = (1-√(1-4x))/(2x)  

And the closed form is:  

Cₙ = (1/(n+1))(2n choose n)  

Binomial Coefficients  

The binomial coefficients (n choose k) have generating function:  

(1+x)ⁿ = Σ (n choose k)xᵏ for k = 0 to n  

This leads to numerous identities and combinatorial interpretations.  

Advanced Techniques  

Lagrange Inversion Formula  

For implicitly defined generating functions, the Lagrange inversion formula  

provides a way to extract coefficients.  

Singularity Analysis  

Analyzing the singularities of a generating function can provide asymptotic  

estimates of the coefficients.  

Multivariate Generating Functions  

For sequences that depend on multiple indices, multivariate generating  

functions can be used:  

G(x,y) = Σ aᵢ,ⱼxⁱyʲ  

Solved Problems  
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Problem: Find number of moves required to solve Tower of Hanoi  Notes  
puzzle with n disks.  

Recurrence relation is: T₁ = 1 Tₙ = 2Tₙ₋₁ + 1 for n ≥ 2  

Solution:  

Let G(x) = Σ Tₙxⁿ be the generating function.  

Multiplying recurrence by xⁿ and Adding up for n ≥ 2: For n ≥ 2, Σ Tₙxⁿ  

= Σ 2Tₙ₋₁xⁿ  + Σ xⁿ  

This provides us with: 2x G(x) + x²/(1-x) = G(x) - T₁x  

Changing T₁ = 1 to: G(x) - x = 2x G(x) + x²/(1-x)  

Finding G(x): G(x) - 2x x + x²/(1-x) = G(x) x + x²/(1-x) = G(x)(1 - 2x)  

x(1-x + x)/(1-x) = G(x)(1 - 2x) x/(1-x) = G(x)(1 - 2x) x/((1-x)(1-2x)) =  

G(x)  

Making use of partial fractions G(x) = x/(1-x) (1-x) - (1/2) = - x/(1-2x)  

1/(1-x/2)  

Expanding into power series: G(x) = x(1 + x + x² + ...) - (1/2)(x/2 +  

(x/2)² + (x/2)³ + ...) = x + x² + x³ + ... - (1/2)(x/2 + x²/4 + x³/8 + ...) = Σ  

(xⁿ - xⁿ/2ⁿ⁺¹)  

Therefore: Tₙ = 1 - 1/2ⁿ⁺¹ = (2ⁿ⁺¹ - 1)/2ⁿ⁺¹ = 2ⁿ - 1  

The number of moves required to solve the Tower of Hanoi puzzle with  

n disks is 2ⁿ - 1.  

Solved Problem 2: Fibonacci Sequence Using Exponential Generating  1515

Function  

Problem: Derive an expression for Fibonacci numbers using an exponential  

generating function.  

Solution:  

Fibonacci sequence is defined by: F₀ = 0, F₁ = 1, Fₙ = Fₙ₋₁ + Fₙ₋₂ for n ≥ 2  

Let E(x) = Σ Fₙxⁿ/n! be the exponential generating function.  

Multiplying the recurrence by xⁿ/n! & summing for n ≥ 2: Σ Fₙxⁿ/n! = Σ  

Fₙ₋₁xⁿ/n! + Σ Fₙ₋₂xⁿ/n! for n ≥ 2  
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This gives us: E(x) - F₀ - F₁x = x·E(x) + x²·E(x)  Notes  

Substituting F₀ = 0 and F₁ = 1: E(x) - x = x·E(x) + x²·E(x)  

Solving for E(x): E(x) - x·E(x) - x²·E(x) = x E(x)(1 - x - x²) = x E(x) = x/(1 -  

x - x²)  

Let's find roots of denominator: 1 - x - x² = 0 x = (-1 ± √5)/2  

Let α = (1 + √5)/2 and β = (1 - √5)/2  

Using partial fractions: E(x) = x/((x-α)(x-β)) = A/(x-α) + B/(x-β)  

Solving for A and B: A = x/(x-β)|x=α = α/(α-β) = α/√5 B = x/(x-α)|x=β =  

β/(β-α) = -β/√5  

Thus: E(x) = (α/√5)/(x-α) - (β/√5)/(x-β) = (1/√5)(α/(x-α) - β/(x-β))  

Each term can be expanded as a power series: 1/(x-α) = -1/α · 1/(1-x/α) = -  

(1/α) · (1 + x/α + (x/α)² + ...) = -(1/α) · Σ (x/α)ⁿ = -Σ xⁿ/αⁿ⁺¹  

Similarly: 1/(x-β) = -Σ xⁿ/βⁿ⁺¹  

Therefore: E(x) = (1/√5)(-α · Σ xⁿ/αⁿ⁺¹ + β · Σ xⁿ/βⁿ⁺¹) = (1/√5)(Σ -xⁿ/αⁿ + Σ  

xⁿ/βⁿ) = (1/√5)Σ xⁿ(1/βⁿ - 1/αⁿ)  

Comparing with the original definition of E(x): Fₙ/n! = (1/√5)(1/βⁿ - 1/αⁿ)  

Thus: Fₙ = (n!/√5)(1/βⁿ - 1/αⁿ)  

This isn't the simplest form. For the standard Fibonacci closed form, the  

ordinary generating function is more elegant, giving: Fₙ = (αⁿ - βⁿ)/√5 =  

(((1+√5)/2)ⁿ - ((1-√5)/2)ⁿ)/√5  

Solved Problem 3: Generating Function for Derangements  

Problem: Find number of derangements of n elements using generating  

functions.  

Derangement is a permutation where no element appears in its original  

position.  

Solution:  

Let Dₙ be number of derangements of n elements.  

For n = 0, there is 1 way to arrange 0 elements (empty arrangement), so D₀ =  

1. For n = 1, there is no way to derange 1 element, so D₁ = 0.  
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For n ≥ 2, we can derive recurrence relation: Dₙ = (n-1)(Dₙ₋₁ + Dₙ₋₂)  Notes  

Let's solve this using exponential generating function: D(x) = Σ Dₙxⁿ/n!  

From the recurrence, multiplying by xⁿ/n! & summing for n ≥ 2: Σ Dₙxⁿ/n! =  

Σ (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n!  

The left side is D(x) - D₀ - D₁x/1! = D(x) - 1  

For the right side, we need to manipulate the terms: (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! =  

(n-1)Dₙ₋₁xⁿ/n! + (n-1)Dₙ₋₂xⁿ/n! = Dₙ₋₁xⁿ/(n-1)! · (n-1)/n + Dₙ₋₂xⁿ/(n-2)! · (n-  

1)/(n(n-1)) = Dₙ₋₁xⁿ⁻¹·x/(n-1)! · (n-1)/n + Dₙ₋₂xⁿ⁻²·x²/(n-2)! · 1/n =  

Dₙ₋₁xⁿ⁻¹·x/(n-1)! · (1-1/n) + Dₙ₋₂xⁿ⁻²·x²/(n-2)! · 1/n  

Summing over n ≥ 2: Σ (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! = x·D'(x) - x·D(x) + x²·D(x)  

Therefore: D(x) - 1 = x·D'(x) - x·D(x) + x²·D(x) D(x) - 1 = x·D'(x) + D(x)(x²  

- x)  

Rearranging: x·D'(x) = D(x)(1 - x² + x) - 1 x·D'(x) = D(x)(1 - x + x²) - 1  

This is a differential equation. The solution is: D(x) = e^(-x)/(1-x)  

Expanding e^(-x) as a power series: D(x) = (1 - x + x²/2! - x³/3! + ...)/(1-x) =  

(1 - x + x²/2! - x³/3! + ...)(1 + x + x² + x³ + ...)  

Extracting the coefficient of xⁿ/n!, we get: Dₙ = n!·Σ(-1)ᵏ/k! for k = 0 to n =  

n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)ⁿ/n!) = n!·Σ(-1)ᵏ/k! for k = 0 to n  

This is the closed form for number of derangements of n elements.  

For large n, approaches n! /e, which means approximately 1/e ≈ 36.8% of all  

permutations are derangements.  

8. Unsolved Problems  

Unsolved Problem 1  

Find the generating function for sequence defined by the recurrence relation:  

a₀ = 1, a₁ = 3, ₙ = 4aₙ₋₁ - 4aₙ₋₂ for n ≥ 2  

Use generating function to find a closed-form expression for ₙ.  

Unsolved Problem 2  

sequence is defined by the recurrence relation: b₀ = 1, b₁ = 2, b₂ = 3, bₙ =  

2bₙ₋₁ - bₙ₋₂ + bₙ₋₃ for n ≥ 3  
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Find the exponential generating function for this sequence and derive  444444
Notes  

closed-form expression for bₙ.  

Unsolved Problem 3  191919191919

Use generating functions to solve the recurrence relation: c₀ = 1, c₁ = 4, cₙ =  

6cₙ₋₁ - 9cₙ₋₂ for n ≥ 2  

What is the asymptotic growth rate of cₙ as n approaches infinity?  

Unsolved Problem 4  

Find the ordinary generating function for the number of ways to make  444444

change for n cents using coins of denominations 1, 5, 10, and 25 cents,  

Unsolved Problem 5  

A sequence (dₙ) satisfies the recurrence relation: d₀ = 0, d₁ = 1, dₙ = dₙ₋₁ +  

dₙ₋₂ + n-1 for n ≥ 2  

Find generating function for this sequence and use it to derive closed-form  191919191919

expression for dₙ.  

1.2 Applications of Recurrence Relations and Generating Functions  

Recurrence relations are equations that define a sequence based on previous  

terms in the sequence. They provide a powerful way to represent and solve  

problems in mathematics, computer science, and various real-world  

applications. When we face a problem where each state depends on previous  

states, recurrence relations offer an elegant mathematical framework to  

model and solve such dependencies.  

recurrence relation generally takes form:  

f(a_{n-1}, a_{n-2},..., a_{n-k}) = a_n  

Where the value of the nth term depends on k previous terms. For example,  

Fibonacci sequence can be expressed using the recurrence relation:  

F_n = F_{n-1} + F_{n-2}, with F_0 = 0, F_1 = 1  

Recurrence relations alone can be challenging to solve for large values. This  

is where generating functions come into play, providing a systematic  

approach to solve complex recurrence relations.  
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Generating Functions: A Powerful Tool  Notes  

A generating function is a formal power series whose coefficients give a  191919191919

sequence of numbers. For a sequence {a , a , a , ...}, the ordinary  0 1 2

generating function is defined as:  

G(x) = a + a x + a x^2 + a x^3 + ... = Σ(n≥0) a x^n  0 1 2 3 n

Generating functions transform recurrence problems from the realm of  

sequences to the realm of functions, where we can leverage algebraic  

techniques to find closed-form expressions.  

Common Types of Generating Functions  

1. Ordinary Generating Functions (OGF)Σ(n≥0) a x^n = G(x)  n

2. Exponential Generating Functions (EGFG(x) is equal to Σ(n≥0)  

a (x^n/n!).  n 

3. Dirichlet Generating Functions:Σ(n≥1) a /n^s = G(s)  n

Solving Recurrence Relations with Generating Functions  

The general approach involves:  

1. Convert the recurrence relation to a functional equation using  

generating functions  

2. Solve the functional equation to find the generating function  

3. Extract coefficient formula from the generating function  

Common Recurrence Relations and Their Solutions  

Arithmetic Sequences  

With a = a, the recurrence is a = a + d. (n-1)d + a = an is theclosed  1 n {n-1} n 

form.  

Geometric Sequences  

With a = a, the recurrence is a = r•a . Form closed: a = a•r^(n-1)  1 n {n-1} n 

Linear Homogeneous Recurrence Relations with Constant Coefficients  

For a recurrence of the form: a = c ·a + c ·a + ... +c ·an 1 {n-1} 2 {n-2} k {n-k}  
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The solution involves finding the roots of the characteristic equation: r^k -  

c ·r^(k-1) - c ·r^(k-2) - ... - c = 0  1 2 k 

Notes  

Applications in Various Fields  

Computer Algorithms  

1. Analysis of Recursive Algorithms  

Many algorithms use recursion, which naturally leads to recurrence  

relations. For example, the time complexity of the binary search algorithm  

can be expressed as:  

T(n) = T(n/2) + c  

This recurrence relation can be solved to find that T(n) = O(log n).  

2. Divide and Conquer Algorithms  

Algorithms like Merge Sort have time complexities expressed as:  

T(n) = 2T(n/2) + O(n)  

Using the Master Theorem (which is derived from recurrence relations), we  

find T(n) = O(n log n).  

Combinatorial Problems  

1. Counting Problem Structures  

The number of ways to arrange objects, select committees, or distribute  191919191919

items often lead to recurrence relations.  

For example, the number of ways to tile a 2×n rectangle with 2×1 dominoes  

follows the Fibonacci recurrence:  

T(n) = T(n-1) + T(n-2)  

2. Catalan Numbers  

Catalan numbers appear in numerous counting problems and follow the  

recurrence:  

C = Σ(i=0 to n-1) C ·C , with C = 1  n i {n-1-i} 0 

The generating function for Catalan numbers is:  

C(x) = (1 - √(1 - 4x))/(2x)  
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Financial Mathematics  Notes  

1. Compound Interest  

If P represents the principal after n periods with interest rate r, we have:  n 

P = P (1 + r) = P (1 + r)^n  n {n-1} 0

2. Mortgage Payments  

periods, the recurring payment A satisfies:  

P = A·[1 - (1 + r)^(-n)]/r  

Population Dynamics  

1. The Fibonacci Model for Rabbit Population  

The classic Fibonacci sequence originally modeled rabbit population  

growth.  

2. Logistic Growth Model  

For a population with carrying capacity K and growth rate r:  

P = P + r·P ·(1 - P /K)  n {n-1} {n-1} {n-1}

Physics and Engineering  

1. Harmonic Oscillators  

The position of a mass on a spring can be modeled by recurrence relations.  

2. Signal Processing  

Digital filters often use recurrence relations to process signals.  

Solved Problems  

Problem 1: Fibonacci Sequence Using Generating Functions  

Problem: Find a closed-form expression for the Fibonacci sequence F_n  

defined by F = 0, F = 1, and F = F + F for n ≥ 2.  0 1 n {n-1} {n-2} 

Solution:  

Step 1: Define the generating function F(x) = Σ(n≥0) F x^n  n
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Step 2: Multiply the recurrence relation by x^n and sum for n ≥ 2: Σ(n≥2)  Notes  
F x^n = Σ(n≥2) F x^n + Σ(n≥2) F x^n  n {n-1} {n-2} 

Step 3: Rewrite in terms of F(x): F(x) - F - F x = x(F(x) - F ) +  0 1 0

x^2·F(x)  

Step 4: Substitute F = 0, F = 1: F(x) - x = x·F(x) + x^2·F(x)  0 1 

Step 5: Solve for F(x): F(x) - x = F(x)(x + x^2) F(x) - F(x)(x + x^2) = x  

F(x)(1 - x - x^2) = x F(x) = x/(1 - x - x^2)  

Step 6: Using partial fraction decomposition or the binomial theorem, we  

can show that: F(x) = (1/√5)·[1/(1 - αx) - 1/(1 - βx)]  

Where α = (1 + √5)/2 and β = (1 - √5)/2.  

Step 7: Expanding as a power series gives: F(x) = (1/√5)·[Σ(n≥0) α^n x^n -  

Σ(n≥0) β^n x^n]  

Step 8: Therefore, the closed-form expression for the nth Fibonacci number  

is: F = (1/√5)·[α^n - β^n] = (1/√5)·[(1 + √5)^n/2^n - (1 - √5)^n/2^n]This is  n 

known as Binet's formula.  

Problem: Find the minimum number of moves required to solve the Tower  

of Hanoi puzzle with n disks.  

Solution:  

Step 1: Let T be the minimum number of moves needed for n disks.  n 

Step 2: For n = 1, we only need one move, so T = 1.  1 

Step 3: For n ≥ 2, we need to:  444444

•

•

•

Move n-1 disks from source to auxiliary (T moves)  {n-1} 

Move the largest disk from source to destination (1 move)  

Move n-1 disks from auxiliary to destination (T moves)  {n-1} 

Step 4: This gives us the recurrence relation: T = 2·T + 1, with Tn {n-1} 1  

= 1  

Step 5: Define the generating function G(x) = Σ(n≥1) T x^n  n
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Step 6: Multiply the recurrence by x^n and sum for n ≥ 2: Σ(n≥2) T x^n =  n

2·Σ(n≥2) T x^n + Σ(n≥2) x^n  {n-1} 

Notes  

Step 7: Rewrite in terms of G(x): G(x) - T x = 2x·G(x) + x^2/(1-x)  1

Step 8: Substitute T = 1: G(x) - x = 2x·G(x) + x^2/(1-x)  1 

Step 9: Solve for G(x): G(x) - 2x·G(x) = x + x^2/(1-x) G(x)(1 - 2x) = x +  

x^2/(1-x) G(x) = [x + x^2/(1-x)]/(1 - 2x) G(x) = [x(1-x) + x^2]/(1-x)(1-2x)  

G(x) = x/(1-x)(1-2x)  

Step 10: Using partial fraction decomposition: G(x) = 1/(1-2x) - 1/(1-x)  

Step 11: Expand as power series: G(x) = Σ(n≥0) (2^n)x^n - Σ(n≥0) x^n =  

Σ(n≥1) (2^n - 1)x^n  

Step 12: Therefore, Tn = 2^n - 1.  

So, the minimum number of moves required to solve the Tower of Hanoi  

puzzle with n disks is 2^n - 1.  

Problem 3: Catalan Numbers  

Problem: The Catalan numbers Cn satisfy the recurrence relation C = 1  0 

and C = Σ(i=0 to n-1) C ·C for n ≥ 1. Find a closed-form  n i {n-1-i} 

expression for C .  n

Solution:  

Step 1: Define the generating function C(x) = Σ(n≥0) C x^n  n

Step 2: Multiply the recurrence by x^n and sum for n ≥ 1: Σ(n≥1) C x^n =Σ  n

(n≥1) Σ(i=0 to n-1) C ·C x^n  i {n-1-i} 

Step 3: The right side is the coefficient of x^n in [C(x)]^2, except for the  

constant term. Thus: C(x) - C = x·[C(x)]^2  0 

Step 4: Substitute C = 1: C(x) - 1 = x·[C(x)]^2  0 

Step 5: Rearrange to get a quadratic equation: x·[C(x)]^2 - C(x) + 1 = 0  

Step 6: Solve for C(x) using the quadratic formula: C(x) = [1 ± √(1 - 4x)]/2x  

Step 7: Since C(0) = C = 1, we must choose the solution: C(x) = [1 - √(1 -  0 

4x)]/2x  
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Step 8: Using the binomial theorem to expand √(1 - 4x): √(1 - 4x) = Σ(k≥0)  Notes  
(1/2 choose k)(-4x)^k  

Step 9: After algebraic manipulation, we get: C(x) = Σ(n≥0) (1/(n+1))(2n  

choose n)x^n  

Step 10: Therefore, the closed-form expression for the nth Catalan number  

is: Cn = (1/(n+1))(2n choose n) = (2n)!/((n+1)!·n!)  

This formula confirms that the Catalan numbers appear in many counting  

problems, such as the number of valid parenthesizations of n+1 factors, the  

number of triangulations of a convex polygon with n+2 sides, and many  

others.  

Problem 4: Derangements  

Problem: A derangement is a permutation where no element appears in its  191919191919

original position. Let D be the number of derangements of n elements.  n 

Find a recurrence relation and generating function for D .  444444
n

Solution:  

Step 1: For n = 1, there are no derangements, so D = 0. For n = 2, there is  1 

one derangement: (2,1), so D = 1.  2 

Step 2: For n ≥ 3, consider element 1. It can be placed in any of the n-1  

positions 2, 3, ..., n. If 1 goes to position i, we have two cases:  

•

•

Element i goes to position 1 (forming a 2-cycle). The remaining n-2  

elements must be deranged, giving D possibilities.  {n-2} 

Element i does not go to position 1. This is equivalent to deranging  

n-1 elements (excluding position 1), giving D{n-1} possibilities.  

Step 3: This gives us the recurrence relation: D = (n-1)(D + D ),  n {n-1} {n-2}

with D = 0, D = 1  1 2 

Step 4: This can be simplified to: D = n·D + (-1)^n  n {n-1} 

Step 5: Define the exponential generating function D(x) = Σ(n≥0) Dn  

(x^n/n!)  

Step 6: Multiply the recurrence by x^n/n! and sum: Σ(n≥2) D (x^n/n!) =Σ  n 

(n≥2) n·D (x^n/n!) + Σ(n≥2) (-1)^n (x^n/n!)  {n-1} 
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Step 7: Simplify: D(x) - D - D x = x·D'(x) + e^(-x) - 1 - x  0 1

Step 8: Substitute D = 1, D = 0: D(x) - 1 = x·D'(x) + e^(-x) - 1 - x  0 1 

Step 9: Rearrange: D(x) - x·D'(x) = e^(-x)  

Notes  

Step 10: This is a first-order linear differential equation. The solution is:  

D(x) = e^(-x)/(1-x)  

Step 11: Expanding e^(-x) and 1/(1-x) as series: D(x) = [Σ(k≥0) (-1)^k  

(x^k/k!)] · [Σ(m≥0) x^m]  

Step 12: The coefficient of x^n/n! in D(x) gives us: D = n! · Σ(k=0 to n) (-  n 

1)^k / k!  

Step 13: Therefore: D = n! · Σ(k=0 to n) (-1)^k / k! = n! · (1 - 1 + 1/2! -  n 

1/3! + ... + (-1)^n/n!)  

Step 14: As n approaches infinity, this sum approaches e^(-1). Thus, for  

large n: D ≈ n!/e (rounded to the nearest integer)This is an example of  n 

the "nearest integer function" and shows that theprobability of a random  

permutation being a derangement approaches 1/e asn increases.  

Problem 5: Recurrence Relation for Binary Strings  

Problem: Let a_n be the number of binary strings of length n that do not  

contain "11" as a substring. Find a recurrence relation and closed-form  

expression for a .  n

Solution:  

Step 1: For n = 1, the possible strings are "0" and "1", so a_1 = 2. For n = 2,  

the possible strings are "00", "01", and "10" (excluding "11"), so a_2 = 3.  

Step 2: For n ≥ 3, consider the last two characters of a valid string:  

• If the string ends with "00", removing these gives a valid string of  

length n-2, so there are a such strings.  {n-2} 

• If the string ends with "01", removing these gives a valid string of  

length n-2, so there are a such strings.  {n-2} 

• If the string ends with "10", removing these gives a valid string of  

length n-2, so there are a such strings.  {n-2} 
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• The string cannot end with "11" by definition.  Notes  

Step 3: This gives us the recurrence relation: a = a + a , with a = 2,  n {n-1} {n-2} 1 

a = 3  2 

Step 4: Define the generating function A(x) = Σ(n≥0) a x^n, with a = 1.  n 0 

Step 5: Multiply the recurrence by x^n and sum for n ≥ 3: Σ(n≥3) a x^n =Σ  n

(n≥3) a x^n + Σ(n≥3) a x^n  {n-1} {n-2} 

Step 6: Rewrite in terms of A(x): A(x) - a - a x - a x^2 = x(A(x) - a -a x) +  0 1 2 0 1

x^2A(x)  

Step 7: Substitute a = 1, a = 2, a = 3: A(x) - 1 - 2x - 3x^2 = x(A(x) - 1- 2x)  0 1 2 

+ x^2A(x)  

Step 8: Solve for A(x): A(x) - 1 - 2x - 3x^2 = xA(x) - x - 2x^2 + x^2A(x)  

A(x) - xA(x) - x^2A(x) = 1 + 2x + 3x^2 - x - 2x^2 A(x)(1 - x - x^2) = 1 + x  

+ x^2 A(x) = (1 + x + x^2)/(1 - x - x^2)  

Step 9: The denominator 1 - x - x^2 is the same as in the Fibonacci  

generating function. Using partial fraction decomposition: A(x) = (1 + x +  

x^2)/[(1 - αx)(1 - βx)]  

Where α = (1 + √5)/2 and β = (1 - √5)/2.  

Step 10: After further algebraic manipulation, we get: a = [(α^(n+2) -  n 

β^(n+2))/(α - β)] - [(α^n - β^n)/(α - β)]  

Step 11: This can be simplified to: a = F + F Where F is the nth  n {n+2} n n 

Fibonacci number.Therefore, the number of binary strings of length n  

without consecutive 1'sis given by a = F + F , which can be  n {n+2} n

computed using Binet'sformula for Fibonacci numbers.  

Unsolved Problems  

Problem 1: Tribonacci Sequence  

The Tribonacci sequence is defined by T = 0, T = 1, T = 1, and T = T0 1 2 n {n-1}  

+ T + T for n ≥ 3.  {n-2} {n-3} 

Find a closed-form expression for Tn using generating functions.  
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Problem 2: Coin Change Problem  Notes  

Let Cn be the number of ways to make change for n cents using coins of  191919191919

denominations 1, 5, 10, and 25 cents. Find a recurrence relation and  444444

generating function for c_n.  

Problem 3: Binomial Coefficients  

Using generating functions, prove the identity:  

Σ(k=0 to n) (n choose k)^2 = (2n choose n)  

Problem 4: Partition Numbers  

Let p(n) be the number of ways to write n as a sum of positive integers  

(where order doesn't matter). Find a recurrence relation and generating  444444

function for p(n).  

Problem 5: Random Walks  

Consider a random walk on the integer number line, starting at position 0. At  

each step, you move one unit left or right with equal probability. Let p be  n 

the probability of being back at position 0 after 2n steps. Find a recurrence  

relation and generating function for p .  n

Advanced Applications  

Matrix Methods for Recurrence Relations  

For a linear recurrence relation of order k:  

a = c ·a + c ·a + ... + c ·an 1 {n-1} 2 {n-2} k {n-k}  

We can express it in matrix form:  

[a , a , ..., a ]^T = A · [a , a , ..., a ]^T  n {n-1} {n-k+1} {n-1} {n-2} {n-k}

Where A is the companion matrix:  

A = [c c ... c c ; 1 0 ... 0 0; 0 1 ... 0 0; . . ... . .; 0 0 ... 1 0]  1 2 {k-1} k

Then, a can be computed using matrix exponentiation:  n 

[a , a , ..., a ]^T = A^(n-k+1) · [a , a , ...,  n {n-1} {n-k+1} {k-1} {k-2}

a ]^T  0

Asymptotic Analysis  
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For large n, we often care about the asymptotic behavior of sequences. If a  

sequence a satisfies a linear recurrence relation with constant coefficients,  n 

then:  

Notes  

a ~ C·r^n  n 

Where r is the dominant root of the characteristic equation (the root with the  

largest absolute value), and C is a constant that depends on the initial  45

conditions.  

This asymptotic behavior is crucial in algorithm analysis, as it determines  

the efficiency of recursive algorithms.  

Recurrence Relations in Number Theory  

Number theory is rich with sequences defined by recurrence relations. The  

study of these sequences reveals deep connections between different areas of  

mathematics.  

For instance, the number of partitions p(n) mentioned earlier satisfies Euler's  

pentagonal number theorem:  

p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - ...  

Where the differences 1, 2, 5, 7, 12, 15, ... follow the pattern of generalized  

pentagonal numbers.  

Nonlinear Recurrence Relations  

Not all recurrence relations are linear. For example, the logistic map:  

x = r·x ·(1 - x )  {n+1} n n

Is a nonlinear recurrence relation that exhibits complex behavior, including  

Techniques for solving nonlinear recurrence relations often involve:  

•

•

•

•

Linearization through substitution  

Asymptotic analysis  

Numerical methods  

Specialized techniques for particular forms  

1.3. Linear Homogeneous Recurrence Relations  
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Linear homogeneous recurrence relations (LHRRs) expressed as a(n) =  

c₁a(n-1) + c₂a(n-2) + ... + cₖa(n-k), where the coefficients cᵢ are constants,  

serve as robust mathematical instruments for modeling systems in which  

each state is linearly dependent on a predetermined number of preceding  

states. Their practical applications encompass various domains, illustrating  

how these sophisticated mathematical constructs tackle intricate real-world  

problems.  

Notes  

In financial markets, trading algorithms utilize LHRRs to identify market  

patterns and produce signals. The Moving Average Convergence Divergence  

(MACD) is a widely utilized technical indicator that calculates the  

difference between exponential moving averages at varying time intervals,  

hence employing a linear recurrence relation. The exponential moving  

average adheres to the recurrence relation EMA(n) = α×Price(n) + (1-  

α)×EMA(n-1), with α representing the smoothing factor. Quantitative  

analysts at hedge funds build upon this foundation by devising intricate  

trading techniques that utilize various recurrence relations to detect market  

inefficiencies and produce alpha. Algorithmic trading systems analyze price  

relationships using mathematical structures to make millisecond decisions,  

which collectively represent over 70% of trading volume on major  

exchanges, illustrating how mathematical recursion directly influences  

capital  allocation  in  global  economies.  

Structural engineers utilize LHRRs to assess the dynamic response of  

structures to seismic activity and wind forces. The displacement of each  

floor in a multi-story building can be represented as a system of  3737

interconnected linear recurrence relations, with each level's movement  

influenced by the forces conveyed from neighboring floors. By solving these  

systems, engineers determine natural frequencies and mode shapes that  

influence design decisions about structural reinforcement and damping  

systems. This application preserves lives by facilitating the development of  

robust structures in seismic regions. The recurrence model captures how  

vibrations propagate through connected structural elements, allowing  

engineers to predict and mitigate potentially catastrophic resonance effects  

before construction begins.  

In digital audio processing, linear predictive coding (LPC) employs LHRRs  

to compress speech signals for efficient transmission. LPC represents the  

human vocal tract as a time-varying filter defined by a linear recurrence  
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relation, wherein each audio sample is forecasted as a linear combination of  

preceding samples: s(n) = Σ(aᵢ×s(n-i)) for i from 1 to p, with p denoting the  

prediction order. This technology reduces the data rate necessary for voice  

transmission by more than 75%, enabling clear cellular conversations even  

in bandwidth-constrained areas. Modern voice assistants like Siri and Alexa  

use refined versions of these algorithms to process speech inputs,  

demonstrating how recurrence relations make intuitive human-computer  

interaction possible.Industrial process control systems frequently utilize  

proportional-integral-derivative (PID) controllers, which can be represented  

as linear recurrence relations. The control signal u(n) is determined by the  

equation u(n) = u(n-1) + Kₚ(e(n) - e(n-1)) + Kᵢe(n) + Kd(e(n) - 2e(n-1) + e(n-  

2)), where e(n) denotes the error at time step n, and Kₚ, Kᵢ, and Kd signify  

the proportional, integral, and derivative gains, respectively. This recurrence  

relation enables precise temperature regulation in pharmaceutical  

manufacturing, consistent product quality in food processing, and efficient  

energy usage in climate control systems. The mathematical framework  

allows controllers to anticipate system behavior and compensate for  

disturbances, maintaining stable operations in complex industrial  

environments.  

Notes  

Population genetics research employs LHRRs to model the propagation of  

genetic traits through generations. The Wright-Fisher model, fundamental to  

understanding genetic drift, uses a linear recurrence relation to describe how  

allele frequencies change in populations of fixed size. The probability  

distribution of allele counts in generation n+1 is linearly dependent on the  

distribution in generation n, adhering to recurrence relations that account for  

selection pressures and mutation rates. Researchers employ these models to  

comprehend the dissemination of advantageous mutations among  

populations, thereby guiding conservation tactics for endangered species and  

selective breeding initiatives in agriculture. By resolving these recurrence  

links, geneticists can ascertain the minimal sustainable population size  

required to sustain genetic variety, thereby directly influencing wildlife  

management practices.In computer graphics, subdivision algorithms for  

curve and surface generation utilize LHRRs to produce smooth shapes from  

coarse control meshes. The Chaikin method, which builds quadratic B-spline  

curves, follows the recurrence relation where each new point is a linear  

combination of two neighboring points from the previous iteration: pᵢ^(k+1)  
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= 3/4×pᵢ^(k) + 1/4×pᵢ₊₁^(k) and pᵢ₊₁/₂^(k+1) = 1/4×pᵢ^(k) + 3/4×pᵢ₊₁^(k). This  

mathematical method enables the construction of realistic 3D models in  

films and video games, smooth font rendering in digital typography, and  

exact tool path generation for computer-aided manufacturing. The recursive  

structure enables designers to utilize basic control shapes while  

automatically producing the smooth curves essential for visually appealing  

and aerodynamically efficient designs.  

Notes  

Quantum physics incorporates LHRRs in computational models for time-  

evolution of quantum systems. The discrete-time Schrödinger equation, used  

in quantum simulations, can be represented as a linear recurrence relation  

ψ(n+1) = (I - iH)ψ(n), where ψ represents the quantum state vector, H is the  

Hamiltonian matrix, and I is the identity matrix. This formulation facilitates  

the simulation of quantum systems for materials science research,  

pharmaceutical discovery, and the advancement of quantum computer  

methods. By solving these recurrence relations efficiently, researchers can  

predict material properties without expensive physical experiments,  

accelerating the development of new technologies from superconductors to  

pharmaceutical compounds.In communications engineering, convolutional  

codes for error correction implement LHRRs to generate redundant bits that  

protect data against transmission errors. Each output bit is determined as a  

linear mixture of the current input bit and multiple preceding input bits,  

adhering to a recurrence relation specified by the code's generator  

polynomials. These codes enable reliable communication over noisy  

channels in satellite transmissions, deep space communications, and cellular  

networks. The mathematical framework facilitates fast encoding and  

decoding algorithms that attain near-Shannon-limit performance, optimizing  

data throughput while ensuring dependability in demanding communication  

contexts.Machine learning algorithms frequently incorporate LHRRs in their  

architecture. Linear autoregressive models predict time series data by  

expressing each value as a linear combination of previous values: y(t) =  3737

φ₁y(t-1) + φ₂y(t-2) + ... + φₚy(t-p) + ε(t), where φᵢ are the model parameters  

and ε(t) is white noise. These models project electricity demand for power  

grid administration, estimate seasonal product sales for inventory  

management, and predict financial market fluctuations for risk assessment.  

The mathematical framework facilitates efficient parameter estimation by  
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proven approaches such as least squares, rendering these models effective  

instruments for business planning and resource allocation.  
Notes  

Digital filters in signal processing implement LHRRs to remove noise,  

extract features, or modify frequency components of signals. Infinite  

impulse response (IIR) filters calculate each output sample y(n) as a linear  

combination of previous outputs and inputs: y(n) = Σ(bᵢ×x(n-i)) - Σ(aⱼ×y(n-  

j)) for i from 0 to M and j from 1 to N. These filters provide noise  

cancellation in hearing aids, equalization in audio production, and signal  

conditioning in medical devices that monitor vital signs. By selecting  

appropriate coefficients in the recurrence relation, engineers can create  

filters with precise frequency responses that enhance desirable signal  

components while attenuating interference. Economic forecasting models  

employ vector autoregression (VAR), a multivariate extension of linear  

recurrence connections where each variable depends on lagged values of  

itself and all other variables in the system. Central banks use these models to  43

predict how policy changes will affect inflation, unemployment, and  

economic growth, informing decisions that impact millions of lives. The  

mathematical structure allows economists to quantify correlations between  

economic indicators and simulate alternative policy scenarios, giving data-  

driven direction for monetary and fiscal policy decisions. The varied  

applications of linear homogeneous recurrence relations illustrate their  

adaptability as modeling instruments across several fields. Financial  

algorithms that allocate capital and engineering systems that guarantee  

structural safety utilize mathematical frameworks to comprehend and  

regulate complex systems with memory. By articulating dynamic linkages  

via recurrence relations, practitioners acquire analytical insights that  

immediately inform practical solutions for real-world situations.  

1.4. Non-Homogeneous Recurrence Relations  

Non-homogeneous recurrence relations are defined by the equation a(n) =  

c₁a(n-1) + c₂a(n-2) + ... + cₖa(n-k) + f(n), where f(n) is a non-zero function,  

offers robust mathematical frameworks for modeling systems influenced by  

external inputs or pressures. Unlike their homogenous counterparts, these  

connections feature driving words that represent external influences, making  

them particularly appropriate for practical applications where systems  

respond to changing conditions or external stimuli. In epidemiological  

modeling, non-homogeneous recurrence relations elucidate the dynamics of  
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disease transmission under diverse intervention tactics. The standard SIR  

(Susceptible-Infected-Recovered) model becomes non-homogeneous when  

incorporating vaccination campaigns or seasonal variations in transmission  

rates. The revised equation I(t+1) = (1+r)I(t) - rI(t-1) + v(t), where I(t)  

denotes the number of infected individuals at time t, r signifies the  

reproduction rate, and v(t) represents the time-dependent vaccination  

function, enables public health officials to model the effects of vaccination  

schedules on disease progression. Throughout the COVID-19 pandemic,  

these models informed decisions regarding lockdown timing and vaccine  

distribution strategies, illustrating the direct impact of mathematical  

recursion on public health policy. By solving these non-homogeneous  

recurrence relations, epidemiologists projected infection peaks and  

healthcare system capacity requirements, helping hospitals prepare proper  

staffing and equipment levels to save lives. Environmental engineers utilize  

non-homogeneous recurrence relations to model pollution concentrations in  

water bodies affected by fluctuating discharge rates. The concentration C(t)  

in a reservoir may be expressed as C(t) = αC(t-1) + βQ(t), where α denotes  

natural degradation and Q(t) signifies the pollutant inflow function. This  

framework enables water quality managers to establish discharge limits for  

industrial facilities and predict how proposed development projects might  

affect ecosystem health. Engineers build treatment systems with adequate  

capability to manage seasonal fluctuations in pollutant loads, safeguarding  

aquatic habitats while facilitating sustainable economic development. The  

mathematical technique enables for optimizing treatment infrastructure  

investments, combining environmental protection with financial restrictions.  

Notes  

In renewable energy management, battery storage systems are characterized  

by non-homogeneous recurrence relations, where the state of charge is  

α representing the self-discharge rate, η indicating charging efficiency, P(t)  

signifying time-varying power generation from renewable sources, and L(t)  

reflecting load demand. This framework enables grid operators to enhance  

battery dispatch algorithms, optimizing renewable energy use while ensuring  

system stability. Energy businesses use these models to estimate ideal  

battery sizing for solar and wind installations, balancing capital costs against  

performance benefits. The recurrence relation captures how varying weather  

conditions affect renewable generation patterns, enabling reliable integration  
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of intermittent resources into power grids. Pharmacokinetic models employ  

non-homogeneous recurrence relations to describe drug concentration in  

different body compartments following variable dosing schedules. The  

concentration, k denotes the elimination rate constant, D(t) signifies the  

dosing function, and V indicates the volume of distribution, allows  

physicians to formulate individualized prescription regimens for patients  

experiencing fluctuating clinical circumstances. This mathematical  

framework supports precision medicine approaches for cancer  

chemotherapy, antibiotic treatments, and pain management. By resolving  

these relationships, clinical decision support systems propose dosage  

modifications that sustain therapeutic medication concentrations while  

Notes  

reducing  adverse  effects,  so  enhancing  patient  outcomes.  

In financial planning, retirement account balances under variable  

contribution strategies adhere to non-homogeneous recurrence relations B(t)  

= (1+r)B(t-1) + C(t), where B(t) denotes the balance at time t, r signifies the  

return rate, and C(t) represents the time-dependent contribution function.  

Financial advisors employ these models to construct lifecycle investment  

strategies that modify contribution rates according to career phases and  

market dynamics. The mathematical approach facilitates the stress testing of  

retirement plans against diverse market situations, pinpointing  

vulnerabilities and suggesting modifications prior to the onset of financial  

distress. By resolving these relationships, robo-advisors offer automated  

counsel that assists individuals in preparing for retirement amid  

unpredictable future market returns. Inventory management systems  

implement non-homogeneous recurrence relations to optimize stock levels  

under seasonal demand patterns. The inventory level I(t) follows I(t) = I(t-1)  

+ Q(t) - D(t), where Q(t) is the ordering function and D(t) is the forecasted  

demand function. This framework enables retailers to implement just-in-  

time ordering strategies that minimize holding costs while avoiding  

stockouts during demand peaks. The mathematical methodology enhances  

efficient supply chain operations for products characterized by brief shelf  

lives or elevated holding costs, thereby augmenting profitability and  

minimizing waste. By resolving these equations with suitable constraints,  

inventory management algorithms reconcile the conflicting goals of cost  

reduction, service level requirements, and warehouse capacity restrictions.  

Project management tools employ non-homogeneous recurrence relations to  
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represent resource allocation amidst fluctuating priorities. The resource  

availability function R(t) = R(t-1) - A(t-1) + F(t), where A(t-1) represents  

previously allocated resources and F(t) is the function of newly freed  

resources, helps project managers optimize team assignments across  

multiple concurrent projects. This mathematical framework supports agile  

development approaches where requirements and priorities fluctuate during  

the project lifecycle. By solving these equations with proper constraints,  

project scheduling algorithms discover crucial pathways and resource  

bottlenecks, enabling proactive interventions to maintain projects on  

schedule despite changing conditions.  

Notes  

Adaptive filtering methods utilize non-homogeneous recurrence relations to  

process data exhibiting time-varying features. The filter coefficients are  

defined by the equation w(t) = w(t-1) + μe(t)x(t), where w(t) denotes the  

coefficient vector, μ signifies the adaptation rate, e(t) represents the error  

signal, and x(t) indicates the input signal vector. This framework enables  

noise canceling headphones to adjust to diverse settings, radar systems to  

follow moving targets, and communication systems to compensate for  

changing channel circumstances. The mathematical approach allows filters  

to continually optimize their performance as signal characteristics evolve,  

providing robust operation in dynamic environments. Digital signal  

processors employ adaptive algorithms to enhance signals and eliminate  

interference in real-time applications, ranging from medical monitoring to  

autonomous car sensing. In irrigation control systems, soil moisture levels  

follow non-homogeneous recurrence relations M(t) = αM(t-1) - ET(t) + I(t)  

+ R(t), where M(t) represents moisture content, α is the retention factor,  

ET(t) is evapotranspiration, I(t) is irrigation input, and R(t) is rainfall. This  

framework enables precision agriculture systems to optimize water usage  

based on weather forecasts and crop requirements. The mathematical  

technique supports sustainable farming practices that optimize production  

while decreasing water consumption, particularly crucial in water-stressed  

countries. By solving these relations with appropriate constraints, smart  

irrigation controllers determine optimal watering schedules that maintain  

plant health while avoiding runoff and deep percolation losses.  

Machine learning algorithms for online learning implement non-  

homogeneous recurrence relations to update model parameters as new data  

arrives. The stochastic gradient descent update rule is expressed as θ(t) = θ(t-  
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1) - η∇L(θ(t-1), x(t)), where θ(t) denotes the parameter vector, η signifies the  

learning rate, ∇L indicates the gradient of the loss function, and x(t)  

represents the input data point at time t. This framework enables  

recommendation systems to adapt to changing user preferences, fraud  

detection systems to identify emerging attack patterns, and natural language  

processing models to incorporate new vocabulary. The mathematical  

approach allows models to continuously improve their performance without  

requiring complete retraining, supporting efficient deployment in dynamic  

environments. By successfully resolving these relationships at scale,  

machine learning systems deliver tailored experiences that adjust to  

individual behaviors and preferences.  

Notes  

Traffic management systems utilize non-homogeneous recurrence relations  

to represent vehicle flow under diverse settings. The vehicle density ρ(x,t)  

on a road segment is governed by the equation ρ(x,t+1) = ρ(x,t) - [f(ρ(x,t)) -  

f(ρ(x-Δx,t))] + S(x,t), where f(ρ) denotes the flow-density relationship and  

S(x,t) signifies sources and sinks from entrance and departure ramps. This  

framework enables intelligent transportation systems to optimize signal  

timing, ramp metering, and variable speed limits based on current  

conditions. The mathematical framework facilitates congestion management  

strategies that diminish travel durations and emissions in urban  

environments. Traffic control centers utilize real-time solutions to these  

relations, employing adaptive algorithms that react to incidents, special  

events, and weather conditions, thereby enhancing mobility in intricate  

transportation networks.  

The diverse applications of non-homogeneous recurrence relations  

demonstrate their value for modeling real-world systems with external  

inputs or time-varying parameters. From public health interventions to  

adaptive machine learning algorithms, these mathematical structures provide  

frameworks for understanding and controlling complex systems that respond  

to changing conditions. By expressing dynamic relationships through non-  

homogeneous recurrence relations, practitioners gain analytical tools that  

translate directly into practical solutions for evolving challenges across  

numerous fields  

Multiple-Choice Questions (MCQs)  

1. What is a recurrence relation?  

a) A sequence with a fixed value  
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b) A formula that defines each term of a sequence using previous  

terms  
Notes  

c) A function that generates random numbers  

d) A method for solving equations  

2. Which of the following is an example of a linear homogeneous  

recurrence relation?  

a) an=2an−1+3  

b) an=3an−1−2  

c) an=an−1+n  

d) an=n2+2  

3. Fibonacci sequence is defined by which recurrence relation?  

a) Fn=2Fn−1+1  

b) Fn=Fn−1+Fn−2  

c) Fn=Fn−1−Fn−2  

d) Fn=nFn−1  

4. Exponential generating functions differ from ordinary  

generating functions because:  

a) They include exponential terms  

b) They are only used for Fibonacci numbers  

c) They generate non-recursive sequences  

d) They are used for solving algebraic equations  

5. A recurrence relation is said to be non-homogeneous if it:  

a) Has constant coefficients  

b) Contains a non-zero function term  

c) Has a solution in exponential form  

d) Does not have an explicit formula  

6. The characteristic equation of recurrence relation  

an−3an−1+2an−2=0 an - 3a{n-1}+ 2a{n-2} = 0 an−3an−1  

+2an−2=0 is:  

a) x2−3x+2=0  

b) x2+3x−2=0  

c) x2−x+3=0  

d) x2+2x−3=0  
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7. Which of the following sequences follows the recurrence relation  30
Notes  

an=an−1+2?  

a) 1,3,5,7,9,...  

b) 2,4,8,16,32,...  

c) 1,1,2,3,5,...  

d) 1,2,4,8,16,...  

8. A closed-form solution of a recurrence relation means:  

a) A solution without summation signs  

b) A solution with at least one recurrence term  

c) A solution using limits  

d) A solution that is always infinite  

9. The recurrence relation an=2an−1+5is an example of:  

a) Homogeneous recurrence relation  

b) Non-homogeneous recurrence relation  

c) Generating function  

d) Fibonacci sequence  

Short Answer Questions  

1. Define recurrence relation with an example.  

2. What is the difference between homogeneous and non-  

homogeneous recurrence relations?  

3. Give an example of a number sequence and its recurrence relation.  

4. What is the significance of generating functions in solving  

recurrence relations?  

5. Define exponential generating functions and their applications.  

6. Write the recurrence relation for Fibonacci sequence.  

7. What is a characteristic equation, and how is it used in solving  

recurrence relations?  

8. How do you find the closed-form solution of a recurrence relation?  

9. Give an example of a recurrence relation that is non-homogeneous.  

10. Explain the role of generating functions in combinatorial counting  

problems.  
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Long Answer Questions  Notes  

1. Explain in detail the different types of recurrence relations with  

examples.  

2. Describe how to solve linear homogeneous recurrence relations  

using the characteristic equation method.  

3. What are generating functions? Explain their role in recurrence  

relations with examples.  

4. Compare and contrast ordinary generating functions and exponential  

generating functions.  

5. Solve the recurrence relation an=2an−1+3with a0=1.  

6. Explain the Fibonacci sequence and derive its closed-form formula.  

7. Discuss the applications of recurrence relations in computer science  

and real-life problems.  

8. Define and explain the use of the Karnaugh method in Boolean  

algebra.  
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MODULE II  Notes  

UNIT IV  

STATEMENTS, SYMBOLIC REPRESENTATION, AND LATTICES  

Objectives  

• To understand the concept of statements and their symbolic  212121

representation.  

•

•

•

•

•

To learn about tautologies, quantifiers, and predicates.  

To explore propositional logic and its applications.  

To study lattices as partially ordered sets and their properties.  

To analyze lattices as algebraic systems.  

To examine different types of lattices, such as complete,  

complemented, and distributive lattices.  

2.1 Introduction to Statements and Symbolic Representation  

In mathematical logic, a statement (or proposition) is declarative sentence  

that is either true or false, but not both. Understanding statements is  

fundamental to logical reasoning and forms the foundation of propositional  1010

logic.  

Types of Statements  

1. Simple statements: Basic declarations that cannot be broken down  

further. Example: "The sun rises in the east."  

2. Compound statements: Formed by combining simple statements  

using logical connectives. Example: "It is raining and I am carrying  

an umbrella."  

Symbolic Representation  

To work efficiently with statements, we use symbols to represent both the  

statements themselves and the logical operations that connect them.  

Statement Variables  

• p, q, r, s, ... typically represent simple statements  

Logical Connectives  
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1. Negation (NOT): ~p or ¬p Meaning: "It is not the case that p"  Notes  
Example: If p: "It is raining", then ~p: "It is not raining"  

2. Conjunction (AND): p ∧ q Meaning: "Both p and q" Example: If p:  

"It is cold" & q: "It is windy", then p ∧ q: "It is cold and windy"  

3. Disjunction (OR): p ∨ q Meaning: "Either p or q or both" Example:  

If p: "I will study math" and q: "I will study physics", then p ∨ q: "I  

will study math or physics (or both)"  

4. Conditional (IF-THEN): p → q Meaning: "If p, then q" Example:  

If p: "It rains" and q: "The ground gets wet", then p → q: "If it rains,  

then the ground gets wet"  

5. Biconditional (IF AND ONLY IF): p ↔ q Meaning: "p if and only  

if q" Example: If p: "The triangle has three equal sides" and q: "The  

triangle is equilateral", then p ↔ q: "The triangle has three equal  

sides if and only if it is equilateral"  

Truth Tables  

Truth tables display all possible truth values for compound statements based  

on the truth values of their components.  

Truth Table for Negation (~p)  

p ~p  1010

T F  

F T  

Truth Table for Conjunction (p ∧ q)  

p q p ∧ q  

T T T  

T F F  

F T F  

F F F  

Truth Table for Disjunction (p ∨ q)  
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Notes  p q p ∨ q  

T T T  

T F T  

F T T  

F F F  

Truth Table for Conditional (p → q)  

p q p → q  

T T T  

T F F  

F T T  

F F T  

Truth Table for Biconditional (p ↔ q)  

p q p ↔ q  

T T T  

T F F  

F T F  

F F T  

Order of Operations  

When evaluating complex logical expressions, we follow a standard order of  

operations:  

1. Parentheses  

2. Negation (~)  

3. Conjunction (∧)  

4. Disjunction (∨)  
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5. Conditional (→)  Notes  

6. Biconditional (↔)  

Examples of Statement Symbolization  

1. "If it is raining, then I will take an umbrella, and I will wear a  

raincoat." Let p: "It is raining" Let q: "I will take an umbrella" Let r:  

"I will wear a raincoat" Symbolic form: p → (q ∧ r)  

2. "I will go to the party if and only if my friend goes or my work is  

finished." Let p: "I will go to the party" Let q: "My friend goes to  

the party" Let r: "My work is finished" Symbolic form: p ↔ (q ∨ r)  

3. "It is not true that both the sun is shining and it is raining." Let p:  

"The sun is shining" Let q: "It is raining" Symbolic form: ~(p ∧ q)  

2.2 Tautologies and Contradictions  

In propositional logic, certain compound statements have special properties  

based on their truth values across all possible combinations of their  

component statements.  

Tautologies  

tautology is a compound statement that is always true, regardless of truth  

values of its component statements.  

Examples of Tautologies:  

1. Law of Excluded Middle: p ∨ ~p "A statement is either true or  

false"  

Truth Table:  

p ~p p ∨ ~p  

T F T  

F T T  

2. Law of Non-Contradiction: ~(p ∧ ~p) "A statement cannot be both  

true and false"  

Truth Table:  
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Notes  p ~p p ∧ ~p ~(p ∧ ~p)  

T F F  

F T F  

T

T

3. Double Negation: p ↔ ~~p "A statement is equivalent to its double  

negation"  

4. Modus Ponens: (p ∧ (p → q)) → q "If p is true and p implies q,  

then q is true"  

5. Contrapositive: (p → q) ↔ (~q → ~p) "A conditional statement is  

equivalent to its contrapositive"  

Contradictions  

A contradiction is compound statement that is always false, regardless of  

the truth values of its component statements.  

Examples of Contradictions:  

1. p ∧ ~p "A statement is both true and false"  

Truth Table:  

p ~p p ∧ ~p  1010

T F F  

F T F  

2. (p ↔ q) ∧ (p ↔ ~q) "p is equivalent to both q and not-q"  

3. (p → q) ∧ (p ∧ ~q) "If p then q, and p is true but q is false"  

Logical Equivalence  

Two compound statements are logically equivalent if they have the same  212121

truth value for all possible combinations of their component statements.  

Notation: p ≡ q  

Important Logical Equivalences:  

1. De Morgan's Laws:  

o ~(p ∧ q) ≡ (~p ∨ ~q)  
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o ~(p ∨ q) ≡ (~p ∧ ~q)  Notes  

2. Distributive Laws:  

o

o

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)  

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)  

3. Conditional Equivalences:  

o

o

(p → q) ≡ (~p ∨ q)  

~(p → q) ≡ (p ∧ ~q)  

4. Biconditional Equivalences:  

o

o

(p ↔ q) ≡ ((p → q) ∧ (q → p))  

(p ↔ q) ≡ ((p ∧ q) ∨ (~p ∧ ~q))  

Applications of Tautologies and Contradictions  

1. Logical Arguments: Tautologies form the basis of valid logical  

arguments.  

verify correctness.  

3. Proof by Contradiction: Mathematical proofs often use  

contradictions to establish truths.  

4. Consistency Checking: Identifying contradictions helps detect  

inconsistencies in logical systems.  
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UNIT V  Notes  

2.3 Quantifiers and Predicates  

While propositional logic deals with complete statements, predicate logic  

extends this by considering the internal structure of statements, including  

variables, predicates, and quantifiers.  

Predicates  

A predicate is a statement containing variables and becomes a proposition  

when specific values are assigned to those variables.  

Example: P(x): "x is a prime number"  

•

•

P(2) is true (2 is prime)  

P(4) is false (4 is not prime)  

Quantifiers  

Quantifiers indicate the scope of a predicate over a domain.  

Universal Quantifier (∀)  

universal quantifier "∀" means "for all" or "for every."  

Example: ∀x P(x) Meaning: "For all values of x, P(x) is true"  

Example statement: ∀x (x²≥ 0) Meaning: "For all real numbers x, x² is  

greater than or equal to 0"  

Existential Quantifier (∃)  

The existential quantifier "∃" means "there exists" or "for some."  

Example: ∃x P(x) Meaning: "There exists at least one value of x for which  

P(x) is true"  

Example statement: ∃x (x² = 9) Meaning: "There exists a real number x such  

that x² equals 9"  

Negating Quantified Statements  

The negation of quantified statements follows specific rules:  
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1. Negation of Universal Statement: ~(∀x P(x)) ≡∃x ~P(x) "It is not  

the case that P(x) is true for all x" is equivalent to "There exists an x  212121

for which P(x) is false"  

Notes  

2. Negation of Existential Statement: ~(∃x P(x)) ≡∀x ~P(x) "It is not  

the case that there exists an x for which P(x) is true" is equivalent to  212121212121

"For all x, P(x) is false"  

Multiple Quantifiers  

Statements can contain multiple quantifiers, and the order matters.  

Example: ∀x ∃y R(x, y) Meaning: "For every x, there exists a y such that  

R(x, y) is true"  

Example: ∃y ∀x R(x, y) Meaning: "There exists a y such that for all x, R(x,  

y) is true"  

These statements are not equivalent. The first says that every x has its own y  

that makes R(x, y) true, while the second says there's a single y that works  

for all x.  

Bounded Quantifiers  

Quantifiers can be restricted to specific domains.  

Notation:  

•

•

∀x ∈ S, P(x) - "For all x in set S, P(x) is true"  

∃x ∈ S, P(x) - "There exists an x in set S such that P(x) is true"  

Example: ∀x ∈ℕ, (x²≥ x) Meaning: "For all natural numbers, the square of  

the number is greater than or equal to the number itself"  

Predicates with Multiple Variables  

Predicates can involve multiple variables.  

Example: L(x, y): "x loves y"  

•

•

•

L(John, Mary) - "John loves Mary"  

∀x ∃y L(x, y) - "Everyone loves someone"  

∃y ∀x L(x, y) - "There is someone who is loved by everyone"  
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2.4 Propositional Logic and Validity  Notes  

Propositional logic provides a formal system for determining the validity of  3333

arguments based on the logical structure of statements.  

Logical Arguments  

A logical argument consists of premises and a conclusion. The argument is  

valid if conclusion necessarily follows from premises.  

Structure:  

1. Premise 1  

2. Premise 2  

3. ...  

4. Premise n  

5. Therefore, Conclusion  

Validity vs. Truth  

• Validity: An argument is valid if truth of all premises guarantees the  

truth of the conclusion.  

• Soundness: An argument is sound if it is valid and all its premises  

are actually true.  

An argument can be valid even if its premises or conclusion are false.  

Construct a truth table for the statement: (Premise 1 ∧ Premise 2 ∧ ... ∧  

Premise n) → Conclusion If this compound statement is a tautology, the  3232

argument is valid.  

Method 2: Proof by Contradiction  

Assume all premises are true but conclusion is false. If this leads to  

contradiction, the argument is valid.  

Common Valid Argument Forms  
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1. Modus Ponens:  Notes  

o

o

o

Premise 1: p → q  

Premise 2: p  

Conclusion: q  

2. Modus Tollens:  

o

o

o

Premise 1: p → q  

Premise 2: ~q  

Conclusion: ~p  

3. Hypothetical Syllogism:  

o

o

o

Premise 1: p → q  

Premise 2: q → r  

Conclusion: p → r  

4. Disjunctive Syllogism:  

o

o

o

Premise 1: p ∨ q  

Premise 2: ~p  

Conclusion: q  

5. Addition:  

o

o

Premise: p  

Conclusion: p ∨ q  

6. Simplification:  

o

o

Premise: p ∧ q  

Conclusion: p  

7. Conjunction:  

o

o

o

Premise 1: p  

Premise 2: q  

Conclusion: p ∧ q  
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Common Fallacies (Invalid Arguments)  Notes  

1. Affirming the Consequent:  

o

o

o

Premise 1: p → q  

Premise 2: q  

(Invalid) Conclusion: p  

2. Denying the Antecedent:  

o

o

o

Premise 1: p → q  

Premise 2: ~p  

(Invalid) Conclusion: ~q  

Direct and Indirect Proofs  

1. Direct Proof: Starts with premises and uses valid argument forms to  

derive the conclusion.  

2. Proof by Contradiction (Indirect): Assumes premises are true and  

conclusion is false, then derives a contradiction.  

3. Proof by Contraposition: To prove p → q, instead prove ~q → ~p.  

Formal Proof Systems  

Formal proof systems provide rigorous frameworks for constructing valid  

arguments. Common systems include:  

1. Natural Deduction: Uses introduction and elimination rules for  

each logical connective.  

2. Axiomatic Systems: Starts with axioms and derives theorems using  

inference rules.  

3. Sequent Calculus: Manipulates sequents (expressions of the form Γ  

⊢Δ) using inference rules.  

Solved Problems  

Problem 1: Statement Symbolization and Truth Table  3333

Problem: Symbolize the statement "If it is not raining, then I will go to the  

park or I will visit the museum" and construct its truth table.  
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Solution:  Notes  

Let's define our variables:  

•

•

•

p: "It is raining"  

q: "I will go to the park"  

r: "I will visit the museum"  

The statement "If it is not raining, then I will go to the park or I will visit the  

museum" can be symbolized as: ~p → (q ∨ r)  

Now, let's construct the truth table:  

First, list all possible combinations of truth values for p, q, and r:  

p q r ~p q ∨ r ~p → (q ∨ r)  

T T T F T  

T T F F T  

T F T F T  

T F F F F  

F T T T T  

F T F T T  

F F T T T  

F F F T F  

T

T

T

T

T

T

T

F

statement is false only when ~p is true (meaning p is false) and (q ∨ r) is  

false (meaning both q and r are false). In all other cases, statement is true.  

Problem 2: Determining Tautology, Contradiction, or Neither  

Problem: Determine whether the statement (p → q) ↔ (~q → ~p) is a  

Solution: Let's construct a truth table for the statement (p → q) ↔ (~q →  

~p):  
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p q p → q ~q ~p ~q → ~p (p → q) ↔ (~q → ~p)  Notes  

T T T  

T F F  

F T T  

F F T  

F F T  

T F F  

F T T  

T T T  

T

T

T

T

Step-by-step analysis:  

1. For (p → q): This is false only when p is true & q is false;  

otherwise, it's true.  

2. For (~q → ~p): This is false only when ~q is true (q is false) and ~p  

is false (p is true); otherwise, it's true.  

3. For the biconditional (p → q) ↔ (~q → ~p): This is true when both  

expressions have the same truth value.  

As we can see, for all possible truth value combinations of p and q, the  

statement (p → q) ↔ (~q → ~p) is always true. Therefore, this statement is a  

This makes sense because this statement represents the contrapositive  

property: a conditional statement is logically equivalent to its contrapositive.  

Problem 3: Quantifier Negation  

Problem: Negate the following quantified statements and simplify: a) ∀x  

∈ℝ, x²> 0 b) ∃x ∈ℕ, x² = x  

Solution:  

a) Statement: ∀x ∈ℝ, x²> 0 Negation: ~(∀x ∈ℝ, x²> 0)  

Using the quantifier negation rule: ~(∀x P(x)) ≡∃x ~P(x)  

Simplified negation: ∃x ∈ℝ, ~(x²> 0) ≡∃x ∈ℝ, x²≤ 0  

In plain language: "There exists a real number whose square is less than or  

equal to 0."  

This negation is true because x = 0 makes x² = 0, which satisfies x² ≤ 0.  

b) Statement: ∃x ∈ℕ, x² = x Negation: ~(∃x ∈ℕ, x² = x)  
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Using the quantifier negation rule: ~(∃x P(x)) ≡∀x ~P(x)  

Simplified negation: ∀x ∈ℕ, ~(x² = x) ≡∀x ∈ℕ, x²≠ x  

Notes  

In plain language: "For all natural numbers, the square of the number is not  

equal to the number itself."  

This negation is false because there are natural numbers for which x² = x.  

Specifically, x = 0 and x = 1 satisfy this equation.  

Problem: Determine whether the following argument is valid:  3232

1. If I study, then I will pass the exam.  

2. If I pass the exam, then I will graduate.  

3. I did not graduate.  

Solution:  

Let's define our variables:  

•

•

•

p: "I study"  

q: "I pass the exam"  

r: "I graduate"  

The premises of the argument can be symbolized as:  

1. p → q  

2. q → r  

3. ~r  

The conclusion is: ~p  

To test the validity, we'll use the method of deductive reasoning:  

From premises 1 and 2, using the hypothetical syllogism rule, we can derive:  

p → r (If I study, then I will graduate)  

Now, using premise 3 (~r) and the derived statement (p → r), we can apply  

modus tollens: If p → r and ~r, then ~p.  
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Problem 4: Testing Argument Validity  

4. Therefore, I did not study.  



Therefore, the conclusion ~p (I did not study) logically follows from the  

premises, making this argument valid.  
Notes  

Alternatively, we could construct truth table for (((p → q) ∧ (q → r) ∧ ~r)  

Problem 5: Logical Equivalence Using De Morgan's Laws  

Problem: Use De Morgan's laws and other logical equivalences to simplify  

the expression ~(~p ∨ (q ∧ ~r)).  

Solution:  

Starting with the expression: ~(~p ∨ (q ∧ ~r))  

Step 1: Apply De Morgan's law to the outer negation: ~(~p ∨ (q ∧ ~r)) ≡ ~~p  

∧ ~(q ∧ ~r)  

Step 2: Simplify the double negation: ~~p ∧~(q ∧ ~r) ≡ p ∧ ~(q ∧ ~r)  

Step 3: Apply De Morgan's law to ~(q ∧ ~r): p ∧ ~(q ∧ ~r) ≡ p ∧ (~q ∨ ~~r)  

Step 4: Simplify remaining double negation: p ∧ (~q ∨ ~~r) ≡ p ∧ (~q ∨ r)  

Therefore, ~(~p ∨ (q ∧ ~r)) ≡ p ∧ (~q ∨ r)  

We can verify this equivalence using a truth table if needed.  

Unsolved Problems  

Problem 1  

Determine whether the compound statement (p → q) ∧ (q → r) → (p → r) is  

a tautology, and explain your reasoning.  

Problem 2  

Symbolize the following statement using propositional logic: "Neither rain  

nor snow will prevent the mail delivery, but fog will delay it unless there is a  

full moon."  

Problem 3  

Translate the following into logical notation using predicates and quantifiers:  

a) "Every mathematician has solved at least one problem that no other  

mathematician has solved." b) "Some books are referenced by all scholars in  

the field."  
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→ ~p) and verify that it's a tautology, confirming the argument's validity.  



Problem 4  Notes  

Determine the validity of the following argument:  3333

1. If the economy improves, then unemployment will decrease.  

2. If government spending increases, then the economy will improve.  

3. Unemployment has not decreased.  

4. Therefore, government spending has not increased.  

Problem 5  

Prove or disprove the logical equivalence of following statements: a) p → (q  

→ r) b) (p ∧ q) → r  
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UNIT VI  

2.5 Lattices as Partially Ordered Sets  

Notes  

A partially ordered set, often known as a poset, is a set that has a transitive,  

reflexive, and antisymmetric binary connection. A pair (P, ≤) is formally a  

partially ordered set, where P is a set and ≤ is a binary relation on P that  

satisfies:  

The relation ≤ is called a partial order. The term "partial" indicates that not  

every pair of elements needs to be comparable. If a ≤ b or b ≤ a for every a,  

Definitions Related to Partially Ordered Sets  

•

•

•

•

•

•

Comparable elements: Two elements a, b ∈ P are comparable if a ≤  

b or b ≤ a.  

Incomparable elements: Two elements a, b ∈ P are incomparable if  

neither a ≤ b nor b ≤ a holds. We denote this as a ∥ b.  

Minimal element: An element a ∈ P is minimal if there is no  

element b ∈ P such that b < a.  

Maximal element: An element a ∈ P is maximal if there is no  

element b ∈ P such that a < b.  

Least element (or minimum): An element a ∈ P is the least element  

Greatest element (or maximum): An element a ∈ P is the greatest  

Upper and Lower Bounds  

For a subset S of a partially ordered set P:  

•

•

An element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S.  

An element x ∈ P is a lower bound of S if x ≤ s for all s ∈ S.  
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1. Reflexivity: For all a ∈ P, a ≤ a  

2. Antisymmetry: For all a, b ∈ P, if a ≤ b and b ≤ a, then a = b  

3. Transitivity: For all a, b, c ∈ P, if a ≤ b and b ≤ c, then a ≤ c  

b ∈ P, then the order is called a total order or linear order.  

if a ≤ b for all b ∈ P.  

element if b ≤ a for all b ∈ P.  



•

•

The least upper bound (lub) or supremum (sup) of S, if it exists, is  

an upper bound of S that is less than or equal to every other upper  42 3333

bound of S.  

Notes  

The greatest lower bound (glb) or infimum (inf) of S, if it exists, is a  

lower bound of S that is greater than or equal to every other lower  

bound of S.  

Definition of a Lattice  

A lattice is a partially ordered set (L, ≤) where every pair of elements has  

both a supremum and an infimum. That is, for any a, b ∈ L:  

1. The supremum a ∨ b (also called the join) exists in L  

2. The infimum a ∧ b (also called the meet) exists in L  

A lattice can be represented graphically using a Hasse diagram, where:  

•

•

Elements of the set are represented as nodes  

If a < b and there is no c such that a < c < b, then there's an edge  

going up from a to b  

• Higher elements in the diagram represent greater elements in the  

partial order  
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UNIT VII  Notes  

Types of Lattices Based on Order Properties  

1. Complete Lattice: partially ordered set L is a complete lattice if  11111111

every subset of L (including the empty set) has both a supremum &  

an infimum in L.  

2. Bounded Lattice: A lattice L is bounded if it has a greatest element  

(denoted 1 or ⊤) and a least element (denoted 0 or ⊥).  

3. Distributive Lattice: A lattice L is distributive if for all a, b, c ∈ L:  28282828

o

o

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  

4. Modular Lattice: A lattice L is modular if for all a, b, c ∈ L with a ≤  

c:  

o a ∨ (b ∧ c) = (a ∨ b) ∧ c  11111111

5. Complemented Lattice: If there is an element b ∈ L such that a ∨ b  

= 1 and a ∧ b = 0, then a bounded lattice L is complemented. The  

term "complement of a" refers to the element b.  

6. Boolean Lattice: A lattice that is both distributive and  

complemented.  

Sublattices and Homomorphisms  

• sublattice of a lattice L is subset S of L such that for any a, b ∈ S,  

both a ∨ b and a ∧ b (calculated in L) also belong to S.  

• A function f: L → M between lattices L and M is a lattice  

homomorphism if it preserves joins and meets:  

o

o

f(a ∨ b) = f(a) ∨ f(b)  

f(a ∧ b) = f(a) ∧ f(b)  

2.6 Properties of Lattices  

Basic Laws of Lattices  

For any elements a, b, c in lattice L, following properties hold:  
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1. Idempotent Laws:  Notes  

o

o

a ∨ a = a  11111111

a ∧ a = a  

2. Commutative Laws:  

o

o

a ∨ b = b ∨ a  

a ∧ b = b ∧ a  

3. Associative Laws:  

o

o

(a ∨ b) ∨ c = a ∨ (b ∨ c)  

(a ∧ b) ∧ c = a ∧ (b ∧ c)  

4. Absorption Laws:  

o

o

a ∨ (a ∧ b) = a  

a ∧ (a ∨ b) = a  

5. Ordering Property:  

o

o

a ≤ b if and only if a ∨ b = b  

a ≤ b if and only if a ∧ b = a  

Duality Principle  

The Duality Principle in lattice theory states that if a statement is true for all  

lattices, then the dual statement obtained by replacing ∨ with ∧, ∧ with ∨, ≤  

with ≥, and reversing the order of operations, is also true for all lattices.  

Properties of Special Types of Lattices  

Distributive Lattices  

lattice L is distributive if and only if it satisfies the distributive laws:  

•

•

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  

Important properties of distributive lattices:  

1. In a distributive lattice, if an element has complement, then the  

complement is unique.  
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2. lattice is distributive if and only if it does not contain a sublattice  

isomorphic to either of these two five-element non-distributive  

lattices:  

Notes  

o

o

The pentagon lattice (N5)  

The diamond lattice (M3)  

3. Birkhoff's Representation Theorem: Every finite distributive  

lattice is isomorphic to the lattice of all downsets of its poset of join-  

irreducible elements.  

Modular Lattices  

A lattice L is modular if and only if for all a, b, c ∈ L with a ≤ c:  28282828

• a ∨ (b ∧ c) = (a ∨ b) ∧ c  

Important properties of modular lattices:  

2. A lattice is modular if and only if it does not contain a sublattice  11111111

isomorphic to the pentagon lattice (N5).  

3. Modular lattices satisfy the Jordan-Dedekind chain condition: all  

maximal chains between the same endpoints have the same length.  

Complete Lattices  

Properties of complete lattices:  

1. In a complete lattice, every subset has both a supremum and an  

infimum.  

2. Every finite lattice is complete.  

3. A complete lattice is automatically bounded, having a greatest  

element (supremum of the entire set) and a least element (infimum  

of the entire set).  

on a complete lattice has a fixed point.  

Boolean Lattices  

Properties of Boolean lattices:  
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1. Every distributive lattice is modular, but not conversely.  

4. Knaster-Tarski Fixed Point Theorem: Every monotone function  



1. In Boolean lattice, every element has a unique complement.  

2. For any elements a & b in a Boolean lattice:  

Notes  

o

o

If a ∧ b = 0 and a ∨ b = 1, then b is the complement of a.  

The complement of a is often denoted as a' or ¬a.  

3. In a Boolean lattice, the following identities hold:  

o

o

o

(a')' = a (double negation)  

a ∨ a' = 1 and a ∧ a' = 0 (complement laws)  4949

(a ∧ b)' = a' ∨ b' and (a ∨ b)' = a' ∧ b' (De Morgan's laws)  

4. Every finite Boolean lattice is isomorphic to the power set of a finite  11111111

set under the subset relation.  

Other Important Properties  

1. Isomorphism: Two lattices L and M are isomorphic if there exists a  

bijective function f: L → M such that for all a, b ∈ L:  28282828

o

o

a ≤ b if and only if f(a) ≤ f(b)  

or equivalently, f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧  

f(b)  

2. Chain: A chain in a lattice is a subset in which any two elements are  11111111

comparable.  

3. Antichain: An antichain in lattice is a subset in which no two  

distinct elements are comparable.  

4. Height: The height of a finite lattice is the length of the longest  

chain in the lattice.  

5. Width: The width of lattice is size of the largest antichain in lattice.  

6. Dilworth's Theorem: In a finite lattice, the width equals the  

minimum number of chains needed to cover all elements.  

2.7 Lattices as Algebraic Systems  

Algebraic Definition of a Lattice  
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While we previously defined lattices in terms of partial orders, lattices can  

alternatively be defined as algebraic structures with two binary operations,  

join (∨) & meet (∧), satisfying certain axioms.Formally, a lattice is an  11111111

algebraic structure (L, ∨, ∧) where L is a set, and ∨ and ∧ are binary  

operations on L satisfying following axioms for all b, c ∈ L:  

Notes  

1. Idempotent Laws:  

o

o

a ∨ a = a  

a ∧ a = a  

2. Commutative Laws:  

o

o

a ∨ b = b ∨ a  

a ∧ b = b ∧ a  

3. Associative Laws:  

o

o

(a ∨ b) ∨ c = a ∨ (b ∨ c)  

(a ∧ b) ∧ c = a ∧ (b ∧ c)  

4. Absorption Laws:  

o

o

a ∨ (a ∧ b) = a  

a ∧ (a ∨ b) = a  

Equivalence of the Two Definitions  

The order-theoretic and algebraic definitions of lattices are equivalent.  

Given a lattice defined algebraically, we can define partial order ≤ by:  

•

•

a ≤ b if and only if a ∧ b = a  

or equivalently, a ≤ b if and only if a ∨ b = b  

Conversely, given a lattice defined as a partially ordered set, we can define  

the join and meet operations as:  

•

•

a ∨ b is the least upper bound of {a, b}  

a ∧ b is the greatest lower bound of {a, b}  

Algebraic Properties of Special Lattices  
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Distributive Lattices  Notes  

In algebraic terms, a lattice (L, ∨, ∧) is distributive if and only if:  

•

•

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L  28282828

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L  

Bounded Lattices  

A bounded lattice is an algebraic structure (L, ∨, ∧, 0, 1) where:  

•

•

•

(L, ∨, ∧) is a lattice  

0 is the identity element for ∨: a ∨ 0 = a for all a ∈ L  4949

1 is the identity element for ∧: a ∧ 1 = a for all a ∈ L  

Complemented Lattices  

In a bounded lattice (L, ∨, ∧, 0, 1), an element b is a complement of a if:  

•

•

a ∨ b = 1  

a ∧ b = 0  11111111

A bounded lattice is complemented if every element has at least one  

complement.  

Boolean Algebras  

Boolean algebra is an algebraic structure (B, ∨, ∧, ', 0, 1) where:  

•

•

(B, ∨, ∧, 0, 1) is a bounded distributive lattice  

' is a unary operation (the complement) such that:  

o

o

a ∨ a' = 1  

a ∧ a' = 0  

Lattice Morphisms  

From an algebraic perspective, a homomorphism between lattices (L, ∨L,  

∧L) and (M, ∨M, ∧M) is a function f: L → M that preserves the operations:  

•

•

f(a ∨L b) = f(a) ∨M f(b)  

f(a ∧L b) = f(a) ∧M f(b)  

66  



Congruence Relations and Quotient Lattices  Notes  

A congruence relation on a lattice L is an equivalence relation ≡ that is  

compatible with the lattice operations:  

•

•

If a ≡ b and c ≡ d, then a ∨ c ≡ b ∨ d  

If a ≡ b and c ≡ d, then a ∧ c ≡ b ∧ d  

For a congruence relation ≡ on a lattice L, the quotient lattice L/≡ is the  

lattice whose elements are the equivalence classes [a] of elements a ∈ L,  

with operations:  

•

•

[a] ∨ [b] = [a ∨ b]  

[a] ∧ [b] = [a ∧ b]  

Filters & Ideals  

Filters  

A filter in a lattice L is a non-empty subset F of L such that:  

1. If a, b ∈ F, then a ∧ b ∈ F  

2. If a ∈ F and a ≤ b, then b ∈ F  

A filter is proper if it is not equal to the entire lattice. A maximal proper filter  

In a Boolean lattice, every ultrafilter is prime: if a ∨ b ∈ F, then either a ∈ F  

Ideals  

An ideal in a lattice L is a non-empty subset I of L such that:  

1. If a, b ∈ I, then a ∨ b ∈ I  

2. If a ∈ I and b ≤ a, then b ∈ I  

An ideal is proper if it is not equal to the entire lattice. A maximal proper  

ideal is called a prime ideal.  

In a Boolean lattice, the complement of a filter is an ideal, and vice versa.  

Birkhoff's Representation Theorems  

Representation of Distributive Lattices  
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is called an ultrafilter.  

or b ∈ F.  



Birkhoff's Representation Theorem for Finite Distributive Lattices:  

Every finite distributive lattice is isomorphic to the lattice of downsets of its  

poset of join-irreducible elements.  

Notes  

Representation of Boolean Algebras  

Stone's Representation Theorem: Every Boolean algebra is isomorphic to  

a subalgebra of a power set Boolean algebra.  

Solved Problems  

Problem: Consider the lattice L = {a, b, c, d, e} with the following Hasse  

diagram:  

•

•

•

e is at the top  

b and c are below e  

a and d are at the bottom, with a below b and d below c  

Is this lattice distributive?  

Solution:  

Step 1: Identify the elements & their relationships. The partial order is:  

•

•

•

•

a ≤ b ≤ e  

d ≤ c ≤ e  

a and d are incomparable  

b and c are incomparable  

Step 2: Construct the meet and join tables.  

Meet (∧) table:  

a b c d e  

a a a a a a  

b a b a a b  

c a a c d c  
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Problem 1: Testing if a Lattice is Distributive  



a b c d e  

d a a d d d  

e a b c d e  

Join (∨) table:  

a b c d e  

Notes  

a a b c e e  

b b b e e e  

c c e c c e  

d e e c d e  

e e e e e e  

Step 3: Test the distributive law a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for specific  

elements.  

Let's check with a, b, and c:  

•

•

a ∧ (b ∨ c) = a ∧ e = a  

(a ∧ b) ∨ (a ∧ c) = a ∨ a = a  

They're equal, but we need to check more cases.  

Step 4: Check with different elements.  

Let's try b, c, and d:  

•

•

b ∧ (c ∨ d) = b ∧ c = a  

(b ∧ c) ∨ (b ∧ d) = a ∨ a = a  

Still equal. Let's try one more case.  

Step 5: Check with b, d, and e:  

•

•

b ∧ (d ∨ e) = b ∧ e = b  

(b ∧ d) ∨ (b ∧ e) = a ∨ b = b  
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All checked cases satisfy the distributive law. We could complete the  

verification by checking all possible combinations, but based on the  

structure (it's the lattice N5), we know it's not distributive.  

Notes  

Actually, let's verify this with a critical test:  

•

•

c ∧ (a ∨ d) = c ∧ e = c  

(c ∧ a) ∨ (c ∧ d) = a ∨ d = e  

These are not equal (c ≠ e), so the lattice is not distributive.  

Problem 2: Finding Complements in a Boolean Lattice  

Problem: Consider the power set lattice P({1, 2, 3}) ordered by inclusion.  

Find the complements of: a) {1, 2} b) {3} c) ∅ d) {1, 2, 3}  

Solution:  

In a power set lattice P(S), the complement of a subset A is S-A.  

a) The complement of {1, 2} is {1, 2, 3} - {1, 2} = {3}  

b) The complement of {3} is {1, 2, 3} - {3} = {1, 2}  

c) The complement of ∅ is {1, 2, 3} - ∅ = {1, 2, 3}  

d) The complement of {1, 2, 3} is {1, 2, 3} - {1, 2, 3} = ∅  

•

•

A ∪ A' = {1, 2, 3} (the top element)  

A ∩ A' = ∅ (the bottom element)  

Let's verify for {1, 2} and {3}:  

•

•

{1, 2} ∪ {3} = {1, 2, 3}  

{1, 2} ∩ {3} = ∅  

Problem 3: Constructing a Lattice Homomorphism  

Problem: Let L be the lattice of all divisors of 12 ordered by divisibility, and  

M be the lattice of all divisors of 20 ordered by divisibility. Construct a  

lattice homomorphism from L to M.  

Solution:  
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Verification: For each pair of complements (A, A'), we should have:  



Step 1: Identify the elements of both lattices.  2222222
Notes  

•

•

L = {1, 2, 3, 4, 6, 12} (divisors of 12)  

M = {1, 2, 4, 5, 10, 20} (divisors of 20)  

Step 2: Understand the lattice operations in both.  

•

•

In L, join (∨) of a & b is lcm(a, b), and meet (∧) is gcd(a, b).  

In M, join (∨) of a & b is lcm(a, b), and meet (∧) is gcd(a, b).  

Step 3: Define a homomorphism f: L → M that preserves joins and meets.  

Let's define f as follows:  

•

•

•

•

•

•

f(1) = 1  

f(2) = 2  

f(3) = 5  

f(4) = 4  

f(6) = 10  

f(12) = 20  

Example verification:  

•

•

f(2 ∧ 6) = f(gcd(2, 6)) = f(2) = 2  

f(2) ∧ f(6) = gcd(2, 10) = 2  

f(3 ∧ 4) = f(gcd(3, 4)) = f(1) = 1  

f(3) ∧ f(4) = gcd(5, 4) = 1  

•

•

Example verification:  

•

•

•

f(2 ∨ 3) = f(lcm(2, 3)) = f(6) = 10  

f(2) ∨ f(3) = lcm(2, 5) = 10  

f(4 ∨ 6) = f(lcm(4, 6)) = f(12) = 20  
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Step 5: Verify that f preserves joins (least common multiples).  

Step 4: Verify that f preserves meets (greatest common divisors).  



• f(4) ∨ f(6) = lcm(4, 10) = 20  Notes  

Therefore, f is a valid lattice homomorphism from L to M.  

Problem 4: Determining if a Poset is a Lattice  

Problem: Consider the poset P = {a, b, c, d, e} with the following relations:  

•

•

•

a ≤ c, a ≤ d  

b ≤ c, b ≤ d  

c ≤ e, d ≤ e  

Is P lattice?  

Solution:  

•

•

•

e is at the top  

c and d are below e  

a and b are at the bottom, both below c and d  

Step 2: Check if every pair of elements has least upper bound (join).  

For each pair of elements, let's find their join:  

• a ∨ b: Upper bounds are c, d, e. least upper bounds are c and d.  1616

Since there are two, not unique, this fails the lattice condition.  

•

•

•

•

•

•

•

•

•

a ∨ c: Upper bounds are c, e. The least upper bound is c.  

a ∨ d: Upper bounds are d, e. The least upper bound is d.  

a ∨ e: Upper bound is e. The least upper bound is e.  

b ∨ c: Upper bounds are c, e. The least upper bound is c.  

b ∨ d: Upper bounds are d, e. The least upper bound is d.  

b ∨ e: Upper bound is e. The least upper bound is e.  

c ∨ d: Upper bound is e. The least upper bound is e.  

c ∨ e: Upper bound is e. The least upper bound is e.  

d ∨ e: Upper bound is e. The least upper bound is e.  
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Step 1: Draw the Hasse diagram of the poset P.  



Since the pair {a, b} doesn't have a unique least upper bound, P is not a  

lattice.  
Notes  

Step 3: (Optional) Let's also check if every pair has a greatest lower bound  

(meet).  

For the pair {c, d}:  

• Lower bounds are a and b. Neither is greater than the other, so there  

is no unique greatest lower bound.  

This confirms that P is not a lattice.  

Problem: Consider the lattice L = {0, a, b, c, 1} with following Hasse  

diagram:  

•

•

•

1 is at the top  

a, b, c are in the middle, all below 1  

0 is at the bottom, below a, b, and c  

Is this lattice modular?  

Solution:  

Step 1: Identify the elements and their relationships. The partial order is:  

•

•

•

•

0 ≤ a ≤ 1  

0 ≤ b ≤ 1  

0 ≤ c ≤ 1  

a, b, and c are incomparable  

Step 2: Recall the modularity condition. A lattice is modular if for all x, y, z  2222222

with x ≤ z:  

• x ∨ (y ∧ z) = (x ∨ y) ∧ z  

Step 3: Test the modular identity with specific elements.  

Let's check with x = 0, y = a, z = b:  

• x ≤ z: 0 ≤ b (satisfied)  
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Problem 5: Testing for Modularity  



•

•

x ∨ (y ∧ z) = 0 ∨ (a ∧ b) = 0 ∨ 0 = 0  

(x ∨ y) ∧ z = (0 ∨ a) ∧ b = a ∧ b = 0  

Notes  

These are equal. Let's try another case.  

Step 4: Check with x = a, y = b, z = 1:  

•

•

•

x ≤ z: a ≤ 1 (satisfied)  

x ∨ (y ∧ z) = a ∨ (b ∧ 1) = a ∨ b = 1  

(x ∨ y) ∧ z = (a ∨ b) ∧ 1 = 1 ∧ 1 = 1  

These are equal as well.  

Step 5: Check one more case with x = a, y = c, z = 1:  

•

•

•

x ≤ z: a ≤ 1 (satisfied)  

x ∨ (y ∧ z) = a ∨ (c ∧ 1) = a ∨ c = 1  

(x ∨ y) ∧ z = (a ∨ c) ∧ 1 = 1 ∧ 1 = 1  

All cases satisfy the modularity condition. (In reality, we would check all  

possible cases, but this is sufficient for demonstration.)  2222222

Unsolved Problems  

Problem 1  

Prove that a lattice L is distributive if and only if for all a, b, c ∈ L, if a ∧ c =  

b ∧ c and a ∨ c = b ∨ c, then a = b.  

Problem 2  

Let L be a finite lattice. Prove that L is distributive if & only if the number  

of join-irreducible elements equals the number of meet-irreducible elements.  

Problem 3  

For a finite lattice L, define the function f from L to the power set of its join-  

irreducible elements as follows: f(x) = {∈ L | a is join-irreducible and a ≤ x}.  

Show that if L is distributive, then f is a lattice embedding.  

Problem 4  

74  

Therefore, this lattice is modular.  



Let B be Boolean algebra and a, b, c ∈ B. Prove that (a ∧ b') ∨ (a' ∧ c) ∨ (b ∧  

c') = (a ∨ b ∨ c) ∧ (a ∨ b' ∨ c') ∧ (a' ∨ b ∨ c') ∧ (a' ∨ b' ∨ c).  
Notes  

Problem 5  

Let L be a lattice where for all a, b, c ∈ L, a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c).  

Prove that L is distributive.  

Important Formulas and Identities in Lattice Theory  

Basic Operations and Properties  

1. Join and Meet Definition from Order:  

o

o

a ∨ b = least upper bound of {a, b}  

a ∧ b = greatest lower bound of {a, b}  

2. Order Definition from Operations:  

o

o

a ≤ b if and only if a ∧ b = a  2222

a ≤ b if and only if a ∨ b = b  

3. Basic Identities (All Lattices):  

o a ∨ a = a  

o a ∧ a = a  

o a ∨ b = b ∨ a  

a ∧ b = b ∧ a  

(a ∨ b) ∨ c = a ∨ (b ∨ c)  

(a ∧ b) ∧ c = a ∧  

o

o

o

2.8 Sub-lattices  

1.1 Definition and Basic Properties  

A sub-lattice is a subset of a lattice that forms a lattice in its own right under  2222222

the same operations. More formally, if (L, ∧, ∨) is a lattice and M is a non-  

empty subset of L, then M is a sub-lattice of L if:  

1. For all a, b ∈ M, a ∧ b ∈ M (closed under meet)  

2. For all a, b ∈ M, a ∨ b ∈ M (closed under join)  
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This means that a sub-lattice must contain the results of both operations  2222

when performed on its elements.  
Notes  

1.2 Examples of Sub-lattices  

Example 1: Consider the lattice (P(S), ⊆) of all subsets of a set S ordered by  

inclusion. If T is subset of S, then P(T) is a sub-lattice of P(S).  

Example 2: In the lattice of divisors of 60 ordered by divisibility, the set {1,  

3, 5, 15} forms a sub-lattice.  

1.3 Properties of Sub-lattices  

• Every interval [a,b] = {x ∈ L | a ≤ x ≤ b} in a lattice L is a sub-  

lattice.  

•

•

The intersection of sub-lattices is again a sub-lattice (or empty).  

If L is a bounded lattice with bounds 0 and 1, a sub-lattice need not  

contain 0 and 1.  

2. Direct Products of Lattices  

2.1 Definition  

Given lattices L₁, L₂, ..., Lₙ, their direct product L₁ × L₂ × ... × Lₙ is a lattice  

whose elements are ordered n-tuples (a₁, a₂, ..., aₙ) where aᵢ ∈ Lᵢ for i = 1, 2,  

..., n.  

operations in the direct product are defined component-wise:  

•

•

(a₁, a₂, ..., aₙ) ∧ (b₁, b₂, ..., bₙ) = (a₁∧ b₁, a₂∧ b₂, ..., aₙ∧ bₙ)  

(a₁, a₂, ..., aₙ) ∨ (b₁, b₂, ..., bₙ) = (a₁∨ b₁, a₂∨ b₂, ..., aₙ∨ bₙ)  

The ordering relation in the direct product is also defined component-wise:  

(a₁, a₂, ..., aₙ) ≤ (b₁, b₂, ..., bₙ) if and only if a₁ ≤ b₁, a₂ ≤ b₂, ..., aₙ ≤ bₙ  •

2.2 Properties of Direct Products  

1. If each Lᵢ is bounded with bounds 0ᵢ and 1ᵢ, then the direct product is  

bounded with 0 = (0₁, 0₂, ..., 0ₙ) and 1 = (1₁, 1₂, ..., 1ₙ).  

2. The direct product preserves many lattice properties:  

o If all Lᵢ are distributive, then their direct product is  

distributive.  
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o

o

If all Lᵢ are modular, then their direct product is modular.  Notes  

If all Lᵢ are complemented, then their direct product is  

complemented.  

2.3 Example of Direct Product  

Consider two chains: C₂ = {0, 1} and C₃ = {0, 1, 2}. Their direct product C₂  

× C₃ consists of ordered pairs: C₂ × C₃ = {(0,0), (0,1), (0,2), (1,0), (1,1),  

(1,2)}  

The Hasse diagram of this direct product forms a grid-like structure with the  2222222

ordering: (a,b) ≤ (c,d) if and only if a ≤ c and b ≤ d.  

3. Lattice Homomorphisms  

3.1 Definition  

A homomorphism between lattices is a function that preserves the lattice  

operations. Formally, if L and M are lattices, a function φ: L → M is a lattice  

homomorphism if for all a, b ∈ L:  

1. φ(a ∧ b) = φ(a) ∧φ(b)  

2. φ(a ∨ b) = φ(a) ∨φ(b)  

3.2 Types of Lattice Homomorphisms  

1. Isomorphism: A bijective homomorphism. Two lattices L & M are  

isomorphic (L ≅ M) if there exists a bijective function φ: L → M  

such that φ and φ⁻¹ are homomorphisms.  

2. Embedding: An injective homomorphism, which means that a  

lattice L can be embedded in M if there exists an injective  2222222

homomorphism from L to M.  

3. Epimorphism: A surjective homomorphism, where the image of the  

homomorphism is the entire codomain.  

3.3 Properties of Lattice Homomorphisms  

1. The composition of lattice homomorphisms is  

homomorphism.  

a lattice  

2. For a homomorphism φ: L → M:  

77  



o

o

If L has a greatest element 1, then φ(1) is greatest element  

of φ(L).  
Notes  

If L has a least element 0, then φ(0) is the least element of  

φ(L).  

3. Homomorphic images of sublattices are sublattices.  

3.4 Kernel of a Lattice Homomorphism  

The kernel of a lattice homomorphism φ: L → M is set of all pairs (a,b) such  

that φ(a) = φ(b). kernel forms a congruence relation on L, which is an  

equivalence relation that respects the lattice operations.  

4. Special Lattices  

4.1 Complete Lattices  

Definition  

A lattice L is complete if every subset S of L (including the empty set) has  

both a supremum (least upper bound) & an infimum (greatest lower bound)  

in L.  

Formally:  

• For any S ⊆ L, there exists ⋁S ∈ L such that:  

1. s ≤ ⋁S for all s ∈ S  

2. If s ≤ x for all s ∈ S, then ⋁S ≤ x  

For any S ⊆ L, there exists ⋀S ∈ L such that:  

1. ⋀S ≤ s for all s ∈ S  

•

2. If x ≤ s for all s ∈ S, then x ≤⋀S  

Properties of Complete Lattices  

1. Every complete lattice has a greatest element (⋁L) and a least  

element (⋀L).  

2. If a lattice is finite, it is automatically complete.  

3. The power set of any set, ordered by inclusion, is a complete lattice.  
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4. The set of all subspaces of a vector space, ordered by inclusion,  

forms a complete lattice.  
Notes  

Completeness in Infinite Lattices  

For infinite lattices, completeness is a stronger condition than having just  

binary operations. For example, the open interval (0,1) with the usual  

ordering is a lattice but not a complete lattice because the set (0,1) itself has  

no supremum within (0,1).  

4.2 Complemented Lattices  

Definition  

Let L be a bounded lattice with bounds 0 and 1. An element b ∈ L is a  1616

complement of a ∈ L if:  

1. a ∧ b = 0  

2. a ∨ b = 1  

A lattice is complemented if every element has at least one complement.  

Properties of Complemented Lattices  

1. In general, an element may have multiple complements.  

3. If L is a complemented distributive lattice, then each element has  

exactly one complement.  

4. The power set of any set, ordered by inclusion, is a complemented  

lattice, where the complement of a subset A is its set-theoretic  

complement Aᶜ.  

4.3 Distributive Lattices  

Definition  

lattice L is distributive if for all a, b, c ∈ L:  2222222

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (∧ distributes over ∨)  

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (∨ distributes over ∧)  

In fact, either condition implies the other, so it's sufficient to verify just one.  
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Characterizations of Distributive Lattices  Notes  

1. A lattice is distributive if & only if it does not contain a sublattice  

isomorphic to M₃ (the diamond lattice) or N₅ (the pentagon lattice).  

2. A lattice is distributive if & only if for all a, b, c ∈ L: a ∧ b = a ∧ c  

and a ∨ b = a ∨ c imply b = c.  

Examples of Distributive Lattices  

1. Any chain (totally ordered set) is a distributive lattice.  

2. The power set of any set, ordered by inclusion, is a distributive  

lattice.  

forms a distributive lattice.  

4.4 Boolean Lattices  

A Boolean lattice is a complemented distributive lattice. They have many  

important properties:  

1. In a Boolean lattice, every element has exactly one complement.  

2. Boolean lattices satisfy additional identities such as:  

o

o

o

o

a ∧ a' = 0 and a ∨ a' = 1 (complement laws)  

(a')' = a (involution law)  

a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a (absorption laws)  

(a ∧ b)' = a' ∨ b' and (a ∨ b)' = a' ∧ b' (De Morgan's laws)  

3. The power set of a finite set is isomorphic to any finite Boolean lattice.  

4. Every element of a finite Boolean lattice can be uniquely described as a  

join of atoms, makingthe atoms a basis.  

5. Solved Problems  

Problem 1: Proving a Subset is a Sub-lattice  

Determine whether the subset M = {1, 2, 5, 10} is a sub-lattice of L.  

Solution: To determine if M is a sub-lattice, we need to check if it's closed  

under both meet and join operations.  
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In the divisibility lattice:  Notes  

•

•

meet (∧) of two elements is their greatest common divisor (GCD).  

join (∨) of two elements is their least common multiple (LCM).  

Let's check the closure under these operations for all pairs in M = {1, 2,  

5,  

10}:  

1. GCD(1, 2) = 1 ∈ M, LCM(1, 2) = 2 ∈ M  

2. GCD(1, 5) = 1 ∈ M, LCM(1, 5) = 5 ∈ M  

3. GCD(1, 10) = 1 ∈ M, LCM(1, 10) = 10 ∈ M  

4. GCD(2, 5) = 1 ∈ M, LCM(2, 5) = 10 ∈ M  

5. GCD(2, 10) = 2 ∈ M, LCM(2, 10) = 10 ∈ M  

6. GCD(5, 10) = 5 ∈ M, LCM(5, 10) = 10 ∈ M  

Since all meets and joins of elements in M are also in M, the set M is  

closed  

under both operations. Therefore, M is a sub-lattice of L.  

Problem 2: Direct Product Construction  

Problem: Consider the chains C₂ = {0, 1} and C₃ = {0, 1, 2} with the  

usual  

ordering. Construct the Hasse diagram of their direct product C₂ × C₃  

and  

verify the meet and join of two specific elements.  

Solution: The direct product C₂ × C₃ has elements: C₂ × C₃ = {(0,0),  

(0,1),(0,2), (1,0), (1,1), (1,2)}The ordering is defined by: (a,b) ≤ (c,d) if &  

only if a ≤ c and b ≤ d.Hasse diagram looks like:  

(1,2)  

/

(1,1) (0,2)  

/ /

(1,0) (0,1)  

\ /
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(0,0)  Notes  

Let's verify the meet and join of (0,2) and (1,0):  

Meet: (0,2) ∧ (1,0) = (min(0,1), min(2,0)) = (0,0) Join: (0,2) ∨ (1,0) =  

(max(0,1), max(2,0)) = (1,2)  

We can check these results in the Hasse diagram:  

• The greatest element below both (0,2) and (1,0) is (0,0), which is  

their meet.  

• The smallest element above both (0,2) and (1,0) is (1,2), which is  

their join.  

This confirms our calculations of the meet and join in the direct product.  

Problem 3: Verifying a Lattice Homomorphism  

Problem: Let L = {0, a, b, 1} be a lattice with the ordering 0 < a, b < 1, and  

M = {0, c, 1} be a lattice with the ordering 0 < c < 1. Define a function φ: L  

homomorphism.  

Solution: To verify that φ is a lattice homomorphism, we need to check if it  

preserves meets and joins:  

1. φ(x ∧ y) = φ(x) ∧φ(y) for all x, y ∈ L  

2. φ(x ∨ y) = φ(x) ∨φ(y) for all x, y ∈ L  

Let's check all possible pairs:  

For meets (∧):  

•

•

•

•

•

•

•

φ(0 ∧ 0) = φ(0) = 0 = 0 ∧ 0 = φ(0) ∧φ(0)  

φ(0 ∧ a) = φ(0) = 0 = 0 ∧ c = φ(0) ∧φ(a)  

φ(0 ∧ b) = φ(0) = 0 = 0 ∧ c = φ(0) ∧φ(b)  

φ(0 ∧ 1) = φ(0) = 0 = 0 ∧ 1 = φ(0) ∧φ(1)  

φ(a ∧ a) = φ(a) = c = c ∧ c = φ(a) ∧φ(a)  

φ(a ∧ b) = φ(0) = 0 = c ∧ c = φ(a) ∧φ(b)  

φ(a ∧ 1) = φ(a) = c = c ∧ 1 = φ(a) ∧φ(1)  
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•

•

•

φ(b ∧ b) = φ(b) = c = c ∧ c = φ(b) ∧φ(b)  

φ(b ∧ 1) = φ(b) = c = c ∧ 1 = φ(b) ∧φ(1)  

φ(1 ∧ 1) = φ(1) = 1 = 1 ∧ 1 = φ(1) ∧φ(1)  

Notes  

For joins (∨):  

φ(0 ∨ 0) = φ(0) = 0 = 0 ∨ 0 = φ(0) ∨φ(0)  •

•

•

•

•

•

•

•

•

•

φ(0 ∨ a) = φ(a) = c = 0 ∨ c = φ(0) ∨φ(a)  

φ(0 ∨ b) = φ(b) = c = 0 ∨ c = φ(0) ∨φ(b)  

φ(0 ∨ 1) = φ(1) = 1 = 0 ∨ 1 = φ(0) ∨φ(1)  

φ(a ∨ a) = φ(a) = c = c ∨ c = φ(a) ∨φ(a)  

φ(a ∨ b) = φ(1) = 1 = c ∨ c = φ(a) ∨φ(b)  

φ(a ∨ 1) = φ(1) = 1 = c ∨ 1 = φ(a) ∨φ(1)  

φ(b ∨ b) = φ(b) = c = c ∨ c = φ(b) ∨φ(b)  

φ(b ∨ 1) = φ(1) = 1 = c ∨ 1 = φ(b) ∨φ(1)  

φ(1 ∨ 1) = φ(1) = 1 = 1 ∨ 1 = φ(1) ∨φ(1)  

There's a discrepancy in one case: φ(a ∨ b) = φ(1) = 1 but φ(a) ∨φ(b) = c ∨ c  

= c.  

Therefore, φ is not a lattice homomorphism because it does not preserve  

joins for all pairs of elements.  

To correct the function and make it a homomorphism, we would need to  

redefine φ so that φ(a ∨ b) = φ(a) ∨φ(b), which would require φ(1) = c.  

Problem 4: Determining if a Lattice is Complete  

Problem: Determine whether the set of all positive rational numbers Q⁺ with  

the usual ordering is a complete lattice.  

Solution: For a lattice to be complete, every subset must have both a  

supremum (least upper bound) & an infimum (greatest lower bound) within  

the lattice.  

Let's check if Q⁺ with the usual ordering is complete:  
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Consider the subset S = {r ∈ Q⁺ | r²< 2}.  Notes  

All elements in S are less than √2, so √2 would be an upper bound for S. The  40

supremum of S would be √2, as any rational number less than √2 would not  

be an upper bound for S.  

However, √2 is irrational, so √2 ∉ Q⁺. This means that the set S does not  

have a supremum in Q⁺.  

Therefore, Q⁺ with the usual ordering is not a complete lattice, as there  

exists a subset (namely S) that does not have a supremum in Q⁺.  

Problem 5: Complemented Lattice Verification  

Determine whether L is complemented lattice and find all complements of 6.  

Solution: The divisors of 30 are: 1, 2, 3, 5, 6, 10, 15, and 30.  

In the divisibility lattice:  

•

•

•

meet (∧) of two elements is their greatest common divisor (GCD).  

join (∨) of two elements is their least common multiple (LCM).  

The bounds are 1 (bottom) and 30 (top).  

For L to be complemented, every element must have at least one  

complement.  

Let's check if 6 has a complement: For an element a to be a complement of  

6, we need:  

1. GCD(6, a) = 1  

2. LCM(6, a) = 30  

Since 6 = 2 × 3, any potential complement must not be divisible by 2 or 3.  

Let's check the candidates:  

•

•

GCD(6, 5) = 1  

LCM(6, 5) = 30  

So 5 is a complement of 6.  

Let's also check 10:  
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•

And 15:  

•

GCD(6, 10) = 2 ≠ 1  

GCD(6, 15) = 3 ≠ 1  

Notes  

Therefore, the only complement of 6 in this lattice is 5.  

To determine if L is complemented, we would need to check if every  

element has at least one complement. Let's check a few more elements:  

For 2:  

• We need GCD(2, a) = 1 and LCM(2, a) = 30  

•

For 3:  

•

LCM(2, 15) = 30 and GCD(2, 15) = 1, so 15 is a complement of 2.  

LCM(3, 10) = 30 and GCD(3, 10) = 1, so 10 is a complement of 3.  

LCM(5, 6) = 30 and GCD(5, 6) = 1, so 6 is a complement of 5.  

For 5:  

•

Continuing this process, we would find that There is at least one  

complement for each element in L.  

, so L is indeed a complemented lattice.  

6. Unsolved Problems  

Problem 1  

Let (L, ≤) be a lattice and S ⊆ L. Prove that if S is a sublattice of L, then for  

any a, b ∈ S, the interval [a,b] = {x ∈ L | a ≤ x ≤ b} ∩ S is a sublattice of S.  

Problem 2  

Assume distributive lattices L₁ and L₂. Establish that L₁ × L₂, their direct  

product, is likewise a distributive lattice.  

Problem 3  

Let L be complemented lattice. Prove that if L is distributive, then each  

element has exactly one complement.  

Problem 4  
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Let φ: L → M be a lattice homomorphism. Define the relation θ on L by: a θ  

b if and only if φ(a) = φ(b). Prove that θ is congruence relation on L,  242424

meaning it is an equivalence relation that respects the lattice operations.  

Notes  

Problem 5  

Let L be finite lattice in which every element is join of atoms (an atom is an  35

element that covers 0). Prove that if L is distributive, then it is isomorphic to  

the lattice of all subsets of its set of atoms.  

7. Relationships Between Lattice Types  

Understanding the relationships between different types of lattices can  

provide clearer picture of lattice theory. Here are some important  

connections:  

7.1 Subset Relationships  

The following inclusions hold among lattice classes:  

•

•

•

Boolean Lattices ⊂ Complemented Distributive Lattices  

Distributive Lattices ⊂ Modular Lattices ⊂ All Lattices  

Complete Lattices are not a subset of any other special class, as  

completeness is about the existence of meets and joins for arbitrary  

subsets  

7.2 Distributivity and Complementation  

•

•

•

In a distributive lattice with bounds, complements are unique when  

they exist.  

A distributive lattice with bounds where every element has  

complement is a Boolean lattice.  

The converse holds: every Boolean lattice is distributive  

complemented lattice.  

7.3 Complete Lattices and Fixed Point Theorems  

Complete lattices play crucial role in fixed point theorems such as the  

Knaster-Tarski theorem, which states that any order-preserving function on a  4747

complete lattice has a fixed point. This has important applications in  

computer science, particularly in semantics and program verification.  
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8. Applications of Lattice Theory  Notes  

Lattice theory has wide-ranging applications across mathematics and  

computer science:  

8.1 Order Theory and Universal Algebra  

Lattices serve as fundamental structures in order theory and universal  

algebra, providing a framework for studying ordered sets with additional  

algebraic structure.  

8.2 Logic and Set Theory  

•

•

•

Boolean lattices correspond to Boolean algebras, which model  

propositional logic.  

The power set of any set, ordered by inclusion, forms a Boolean  

lattice.  

Complete lattices are used in modeling quantifiers in predicate logic.  

8.3 Computer Science Applications  

•

•

•

Lattices are used in program analysis to represent data flow and type  

information.  

They form the theoretical foundation for abstract interpretation, a  

technique for static program analysis.  

Domain theory, which uses complete lattices, provides semantics for  

programming languages.  

8.4 Cryptography and Security  

Lattice-based cryptography is an active research area that uses the  

computational hardness of certain lattice problems to construct secure  

cryptographic primitives.  

9. Historical Development of Lattice Theory  

Lattice theory emerged in the late 19th and early 20th centuries, with  

significant contributions from:  

9.1 Early Developments  
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•

•

Richard Dedekind introduced the concept of a lattice in the 1890s,  

originally calling them "Dualgruppen" (dual groups).  
Notes  

Ernst Schröder studied lattices as part of his work on the algebra of  

logic.  

9.2 Modern Lattice Theory  

• Garrett Birkhoff's work in the 1930s and 1940s established lattice  

theory as a distinct mathematical discipline.  

• His book "Lattice Theory" (1940) became the standard reference  

and helped popularize the field.  

9.3 Recent Developments  

• The connections between lattice theory and universal algebra,  

category theory, and theoretical computer science have become  242424

increasingly important in recent decades.  

• Lattice theory continues to find new applications in diverse areas  

Multiple-Choice Questions (MCQs)  

1. A statement in logic is:  

a) A sentence that is always true  

b) A sentence that is either true or false  

c) A question or command  

d) A mathematical equation  

2. Which of the following is a tautology?  

a) p∨¬p  

b) p∧¬p  

c) p→q  

d) p∨q  

3. A predicate in logic is:  

a) A logical variable  

b) A function that returns a true/false value  

c) A constant statement  

d) A contradiction  
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4. The universal quantifier ∀xP(x) means:  

a) There exists at least one x for which P(x) is true  4747

b) P(x) is true for all x in the domain  

c) P(x) is always false  

Notes  

d) P(x) holds for some values but not all  

5. A lattice is a partially ordered set in which:  242424

a) Every two elements have unique least upper bound & greatest  

lower bound  

b) Every subset has a maximum element  

c) Every subset has a minimum element  

d) Every element has an inverse  

6. Which of the following is an example of a distributive lattice?  

a) The power set of set with union & intersection  

b) set of real numbers with addition and multiplication  

c) A set with arbitrary binary operations  

d) A graph with directed edges  

7. The operation of meet (greatest lower bound) in a lattice is  

denoted by:  

a) ∨  

b) ∧  

c) ⊕  

d) ⊗  

8. Which of the following is an example of complemented lattice?  

a) Boolean algebra  

b) A set with no upper bound  

c) A group with addition  

d) A system with only one element  

9. If every subset of a lattice has supremum and infimum, it is  

called a:  

a) Complemented lattice  

b) Distributive lattice  

c) Complete lattice  

d) Bounded lattice  
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10. A homomorphism between two lattices preserves:  

a) Only the meet operation  
Notes  

b) Only the join operation  

c) Both meet and join operations  

d) None of the operations  

Short Answer Questions  

1. Define a tautology with an example.  

2. What is a propositional logic statement?  

3. Explain the difference between universal and existential quantifiers.  

4. What is a predicate in logic? Give an example.  

5. Define a lattice and give an example.  

6. What are the two main operations in a lattice?  

7. Differentiate between a complemented and distributive lattice.  

8. What is the role of homomorphism in lattice theory?  

9. Explain the significance of propositional logic in computing.  

Long Answer Questions  

1. Explain the concept of tautologies and contradictions with  

examples.  

2. Describe quantifiers and predicates in logic, giving real-world  

applications.  

3. Discuss propositional logic, its laws, and its significance in  

mathematics.  

4. Explain in detail the concept of lattices as partially ordered sets with  

examples.  

5. What are the properties of lattices? Explain with proper  

mathematical definitions.  

6. Compare and contrast sub-lattices, direct products, and  
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10. Give an example of a real-world application of lattice theory.  

homomorphism in lattice theory.  



7. Describe the different types of special lattices with examples.  Notes  

8. How does Boolean algebra relate to complemented lattices? Explain  

with examples.  

9. Describe the applications of lattice theory in computer science and  

10. Explain the structure and importance of distributive lattices in  

mathematics.  
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MODULE III  

UNIT VIII  

Notes  

BOOLEAN ALGEBRA AND ITS APPLICATIONS  

Objectives  

•

• To study various Boolean identities and their significance in logic  

circuits.  

•

•

To analyze switching algebra and its application in digital logic.  

To explore subalgebras, direct products, and homomorphism in  

Boolean algebra.  

•

•

•

•

To examine joint-irreducible elements, atoms, and minterms.  

To learn about different Boolean forms and their equivalence.  

To simplify Boolean functions using canonical forms.  888

To apply Boolean algebra in switching circuits using AND, OR, and  

NOT gates.  

• To minimize Boolean expressions using the Karnaugh Map (K-map)  

method.  

3.1 Introduction to Boolean Algebra  

Boolean algebra is a mathematical system named after George Boole, a  

19th-century mathematician who first defined an algebraic system of logic  

in the mid-1800s. Unlike traditional algebra that deals with numerical  

values, Boolean algebra deals with the truth values "true" and "false," which  

are often represented as 1 and 0, respectively.Boolean algebra forms the  

foundation of digital circuit design and computer science. It provides a  

mathematical framework for analyzing and designing digital systems where  

components can exist in one of two states: on or off, true or false, 1 or 0.  

Basic Elements of Boolean Algebra  

1. Variables: In Boolean algebra, variables can only take one of two  

values: 0 (false) or 1 (true). These variables are commonly denoted  

by uppercase letters such as A, B, C, etc.  
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To understand Boolean algebra as an extension of lattice theory.  



2. Constants: There are only two constants in Boolean algebra: 0 and  Notes  
1.  

3. Basic Operations: The three fundamental operations in Boolean  

algebra are:  

o AND (conjunction): denoted by "·" or simply by writing  

variables next to each other (e.g., AB)  

o

o

OR (disjunction): denoted by "+"  

NOT (negation): denoted by an overbar (e.g., Ā) or by a  

prime symbol (e.g., A')  

Truth Tables  

truth table lists all possible combinations of input values and their  888

corresponding output values for a Boolean function. For example:  

For two variables A and B:  

AND Operation (A·B)  

Copy  

A | B | A·B  

--|---|----  

0 | 0 | 0  

0 | 1 | 0  

1 | 0 | 0  

1 | 1 | 1  

OR Operation (A+B)  

Copy  

A | B | A+B  

--|---|----  

0 | 0 | 0  

0 | 1 | 1  
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1 | 0 | 1  Notes  

1 | 1 | 1  

NOT Operation (A')  

Copy  

A | A'  

--|---  

0 | 1  

1 | 0  

Boolean Functions  

A Boolean function is an expression formed by Boolean variables, constants  

(0 and 1), and Boolean operators (AND, OR, NOT). A Boolean function  

takes Boolean inputs and produces a Boolean output.  

Example: F = A·B + C'  

For this function, we need to know the values of A, B, and C to determine  

output. If A=1, B=1, & C=0, then: F = 1·1 + 0' = 1 + 1 = 1  

The Two-Valued Nature of Boolean Algebra  

The fundamental characteristic of Boolean algebra is that each variable can  2929

have only one of two possible values. This binary property makes Boolean  

algebra especially useful for:  

1. Digital circuit design  

2. Computer programming  

3. Logic design  

4. Database queries  

5. Set theory operations  

3.2 Boolean Identities and Laws  

Boolean algebra follows a set of fundamental laws and identities that help  

simplify Boolean expressions. These laws are essential for analysis and  888

design of digital circuits.  
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Basic Boolean Laws  Notes  

1. Idempotent Laws:  

o

o

A + A = A  

A · A = A  

2. Commutative Laws:  

o

o

A + B = B + A  

A · B = B · A  

3. Associative Laws:  

o

o

A + (B + C) = (A + B) + C  

A · (B · C) = (A · B) · C  

4. Distributive Laws:  

o

o

A · (B + C) = (A · B) + (A · C)  

A + (B · C) = (A + B) · (A + C)  

5. Identity Laws:  

o

o

A + 0 = A  

A · 1 = A  

6. Complement Laws:  

o

o

A + A' = 1  

A · A' = 0  

7. Null Laws:  

o

o

A + 1 = 1  

A · 0 = 0  

8. Absorption Laws:  

o

o

A + (A · B) = A  

A · (A + B) = A  

9. De Morgan's Laws:  
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o

o

(A + B)' = A' · B'  

(A · B)' = A' + B'  

Notes  

Duality Principle  

In Boolean algebra, a dual of an expression can be obtained by:  

1. Changing every OR (+) operation to an AND (·) operation and vice  

versa  

2. Changing every 0 to 1 and vice versa  

3. Keeping the variables the same  

For example, the dual of A + 0 = A is A · 1 = A.  

The duality principle states that if a Boolean identity is true, then its dual is  

also true.  

Using Boolean Laws for Simplification  

These laws can be used to simplify Boolean expressions, which is crucial for  

designing efficient digital circuits.  

Example: Simplify the expression A · B + A · B'.  

Using the distributive law: A · B + A · B' = A · (B + B') Using complement  

law: B + B' = 1 Therefore: A · (B + B') = A · 1 = A  

So the simplified expression is just A.  
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UNIT IX  Notes  

3.3 The Switching Algebra  

Switching algebra is a specialized form of Boolean algebra that directly  

relates to analysis & design of switching circuits. It provides a mathematical  

foundation for understanding how switches operate in digital systems.  

Basic Concepts of Switching Algebra  

1. Switch States: In switching algebra, a switch can be in one of two  

states:  

o

o

Open (0): No current flows  

Closed (1): Current flows  

2. Series Connection: When switches are connected in series, both  

must be closed for current to flow. This corresponds to the AND  2929

operation.  

o If switch A is represented by variable A and switch B by  

variable B, then the series connection is represented by A ·  

B.  

3. Parallel Connection: When switches are connected in parallel, at  

least one must be closed for current to flow. This corresponds to the  

OR operation.  

o If switch A is represented by variable A and switch B by  

variable B, then the parallel connection is represented by A  

+ B.  

4. Relationship with Boolean Algebra: Switching algebra follows the  

same laws and principles as Boolean algebra, making it a perfect  

match for analyzing switching circuits.  

Applications in Circuit Design  

1. Simple Switch Circuits:  

o

o

A single switch can be represented by a variable A.  

When the switch is closed, A = 1; when open, A = 0.  

2. Complementary Switch:  
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o

o

The complement of a switch A is denoted by A'.  

If A is closed, A' is open, and vice versa.  

Notes  

3. Relay Circuits:  

o

o

Relays can be analyzed using switching algebra.  

The state of a relay coil determines whether its contacts are  

open or closed.  

4. Transistor Circuits:  

o

o

Transistors can act as electronic switches.  

Switching algebra can model the behavior of transistor-  

based circuits.  

Huntington's Postulates for Switching Algebra  

Edward Huntington formalized switching algebra with the following  

postulates:  

1. Closure: For any variables A & B in the algebra, A + B and A · B  

are also in the algebra.  

2. Identity Elements: There exist two elements, 0 and 1, such that:  

o

o

A + 0 = A  

A · 1 = A  

3. Commutativity: For any variables A & B:  

o

o

A + B = B + A  

A · B = B · A  

4. Distributivity: For any variables A, B, & C:  

o

o

A · (B + C) = (A · B) + (A · C)  

A + (B · C) = (A + B) · (A + C)  

5. Complementation: For every variable, there exists a complement A'  

such that:  

o A + A' = 1  
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o A · A' = 0  Notes  

These postulates form the foundation of switching algebra and ensure its  

consistency and applicability to switching circuits.  

3.4 Examples of Boolean Algebra Applications  

Boolean algebra has numerous applications in various fields, particularly in  

digital electronics and computer science. Here are some key applications:  

1. Digital Circuit Design  

Boolean algebra is fundamental to designing and analyzing digital circuits:  

Combinational Logic Circuits  

Combinational logic circuits produce outputs based solely on the current  

input values. Examples include:  

• Multiplexers (MUX): Select one of several input signals and  

forward it to a single output line.  

• Demultiplexers (DEMUX): Take a single input and direct it to one  

of several outputs.  

•

•

•

Encoders: Convert multiple input signals into a coded output.  

Decoders: Convert a coded input into multiple outputs.  

Adders: Perform binary addition.  

Sequential Logic Circuits  

Sequential circuits produce outputs based on both current and previous input  

values. They include:  

•

•

•

Flip-flops: Basic memory elements that store one bit of information.  

Registers: Store multiple bits of information.  

Counters: Count the number of occurrences of an event.  

2. Computer Architecture  

Boolean algebra is essential for designing the architecture of computers:  

• Arithmetic Logic Units (ALU): Perform arithmetic and logical  

operations.  
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•

•

Control Units: Generate control signals for the operation of the  Notes  

Memory Systems: Store and retrieve data.  

3. Programming and Software Development  

Boolean logic is used extensively in programming:  

•

•

•

Conditional Statements: If-else statements rely on Boolean  

conditions.  

Logical Operators: AND, OR, NOT operations are used in  

programming languages.  

Loop Conditions: While and for loops continue execution based on  

Boolean conditions.  

4. Database Systems  

Boolean algebra is used in database queries:  

•

•

SQL Queries: Use Boolean operators to filter data.  

Search Operations: Employ Boolean logic to refine search results.  

5. Artificial Intelligence and Machine Learning  

Boolean logic is used in:  

• Decision Trees: Models that make decisions based on Boolean  

conditions.  

•

•

Rule-Based Systems: Systems that use if-then rules.  

Neural Network Activation Functions: Some activation functions  

like the step function are essentially Boolean.  

6. Electronic Security Systems  

Boolean algebra is used in designing:  

• Password Verification Systems: Compare input with stored  

passwords.  

• Access Control Systems: Determine whether to grant access based  

on multiple conditions.  
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• Encryption Algorithms: Many encryption techniques use Boolean  Notes  
operations.  

Solved and Unsolved Problems in Boolean Algebra  

Solved Problems  

Problem 1: Simplify the Boolean expression A·B + A·C + B·C  

Solution: Step 1: Apply distributive law to factor out common terms. A·B +  

A·C + B·C = A·B + A·C + B·C = A·(B + C) + B·C  

Step 2: Use the absorption law: X + X·Y = X Let X = A·(B + C) and Y =  

B·C/(B + C) A·(B + C) + B·C = A·(B + C) + (B + C)·(B·C)/(B + C) = A·(B  

+ C) + (B + C)·[B·C/(B + C)] = A·(B + C) + B·C  

Step 3: Try a different approach using a key identity. The expression A·B +  

A·C + B·C is a well-known form that simplifies to (A + B)·(A + C)·(B + C).  

But we can verify this:  

(A + B)·(A + C)·(B + C) = (A + B)·[A·(B + C) + C·(B + C)] = (A + B)·[A·B  

+ A·C + B·C + C·C] = (A + B)·[A·B + A·C + B·C + C]  

Let's try yet another approach: A·B + A·C + B·C = A·B + A·C + B·C = A·(B  

+ C) + B·C = A·B + A·C + B·C  

Let's verify using a truth table:  

A B C A·B A·C B·C A·B + A·C + (A + B)·(A + C)·(B +  

B·C  C)  

06666

0

0

0

1

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0 0

0 0

0 0

1 1

0 0

1 1

1 1
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1 1 1 1 1 1 1 1Notes  

The truth table shows that A·B + A·C + B·C = (A + B)·(A + C)·(B + C).  

Therefore, simplified expression is (A + B)·(A + C)·(B + C).  

Actually, we can show this is equivalent to a well-known form called the  

"majority function," which outputs 1 when at least two of the three inputs  

are 1.  

The final answer is: A·B + A·C + B·C (which is already in its simplest sum-  

of-products form).  

Problem 2: Verify De Morgan's Laws using a truth table  1414

Solution: De Morgan's Laws state that:  

1. (A + B)' = A' · B'  

2. (A · B)' = A' + B'  

Let's verify the first law using a truth table:  

A B A + B (A + B)' A' B' A' · B'  

06666

0

1

1

0

1

0

1

0

1

1

1

1

0

0

0

1

1

0

0

1

0

1

0

1

0

0

0

As we can see, (A + B)' = A' · B' for all possible values of A and B.  

Now, let's verify the second law:  

A B A · B (A · B)' A' B' A' + B'  

0

0

1

1

0

1

0

1

0

0

0

1

1

1

1

0

1

1

0

0

1

0

1

0

1

1

1

0

Again, we see that (A · B)' = A' + B' for all possible values of A and B.  1414

Therefore, both De Morgan's Laws are verified.  
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Problem 3: Design a circuit that implements Boolean function F = A·B +  

C·(A + B)  
Notes  

Solution: First, let's simplify the expression:  

F = A·B + C·(A + B) = A·B + C·A + C·B = A·B + A·C + B·C  

This is our final simplified expression. Now, we can design a circuit for F =  

A·B + A·C + B·C:  

1. Create an & gate for A·B  

2. Create an AND gate for A·C  

3. Create an AND gate for B·C  

4. Connect the outputs of these three AND gates to a 3-input OR gate  

The resulting circuit will have three inputs (A, B, and C) and one output (F).  

output will be 1 if at least two of the three inputs are 1.  

Alternatively, we noticed in Problem 1 that A·B + A·C + B·C is the majority  

function for three variables, so the circuit can also be designed to output 1  

when at least two of the three inputs are 1.  

Problem 4: Simplify the Boolean expression (A + B')·(A' + B)·(A + B)  

using Boolean algebra  

Solution: Let's simplify step by step:  

Step 1: Simplify (A + B)·(A + B'). (A + B)·(A + B') = A + B·B' = A + 0 = A  

Wait, that's not right. Let's correct it: (A + B)·(A + B') = A·A + A·B' + B·A +  

B·B' = A + A·B' + A·B + 0 = A + A·(B' + B) = A + A·1 = A + A = A  

Step 2: Now simplify the original expression. (A + B')·(A' + B)·(A + B) = (A  

+ B')·(A' + B)·A (from Step 1) = A·(A' + B) = A·A' + A·B = 0 + A·B = A·B  

Therefore, (A + B')·(A' + B)·(A + B) = A·B.  

Actually, let's double-check this solution because I made an error in Step 1.  

(A + B')·(A' + B)·(A + B)  

First, let's examine (A + B) more carefully. This is simply A + B.  

Now, let's look at the product (A + B')·(A' + B):  

103  



(A + B')·(A' + B) = A·A' + A·B + B'·A' + B'·B = 0 + A·B + A'·B' + 0 = A·B  

+ A'·B'  
Notes  

So the original expression becomes: (A·B + A'·B')·(A + B)  

Let's expand this: (A·B + A'·B')·(A + B) = A·B·A + A·B·B + A'·B'·A +  

A'·B'·B = A·B + A·B + 0 + 0 = A·B  

Therefore, (A + B')·(A' + B)·(A + B) = A·B.  

Problem 5: Implement a full-adder circuit using Boolean algebra  

Solution: full-adder is circuit that adds three bits: A, B, & a carry-in (Cin). It  

produces a sum (S) & a carry-out (Cout).  

Boolean expressions for S and Cout are: S = A ⊕ B ⊕ Cin (where ⊕  

represents XOR) Cout = (A·B) + (Cin·(A ⊕ B))  

Step 1: Implement the expression for S. A ⊕ B can be written as (A·B' +  

A'·B). So, S = (A·B' + A'·B) ⊕ Cin = (A·B' + A'·B)·Cin' + (A·B' +  

A'·B)'·Cin  

Step 2: Implement the expression for Cout. Cout = (A·B) + (Cin·(A ⊕ B)) =  

(A·B) + (Cin·(A·B' + A'·B))  

To implement this circuit:  

1. Create an XOR gate for A ⊕ B  

2. Connect the output of this XOR gate and Cin to another XOR gate  

to get S  

3. Create an AND gate for A·B  

4. Create an AND gate that takes the output of the first XOR gate and  

Cin  

5. Connect the outputs of the two AND gates to an OR gate to get Cout  

The resulting circuit will have three inputs (A, B, and Cin) and two outputs  

(S and Cout).  

Unsolved Problems  

Problem 1: Simplify the is a Boolean expression.(A•B•C') + (A•B'•C) +  

(A'•B•C) + (A'•B'•C')  
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Hint: This expression represents a function with specific behavior related to  

the number of variables that are 1.  
Notes  

Problem 2: Prove that the expression (A·B) + (B·C) + (C·A) is equal to  

(A + B)·(B + C)·(C + A) if and only if A = B = C  

Hint: Consider different cases where the variables take different values.  

Problem 3: Design a circuit using only NAND gates to implement  6666

Boolean function F = (A·B) + (C·D)  

Hint: Remember that NAND gates are universal gates, meaning any Boolean  

function can be implemented using only NAND gates.  

Problem 4: Simplify Boolean expression ((A + B)·C) + ((A + C)·B) using  

Boolean algebra  

Hint: Try distributing terms and looking for common factors.  

Problem 5: Implement a binary-to-Gray code converter using Boolean  

algebra  

Hint: For an n-bit binary number, the Gray code can be obtained by XORing  

Boolean Algebra: From Subalgebras to Minimization of Boolean  

Functions  

3.5 Subalgebras, Direct Products, and Homomorphism  

Subalgebras  

A subalgebra of a Boolean algebra B is subset of B that is closed under the  

operations of meet (∧), join (∨), and complement (¬), and contains the  

bounds 0 and 1.  

Definition: Let (B, ∧, ∨, ¬, 0, 1) be a Boolean algebra. A subset S of B is a  

subalgebra if:  

1. 0 ∈ S and 1 ∈ S  

2. For all a, b ∈ S: a ∧ b ∈ S  

3. For all a, b ∈ S: a ∨ b ∈ S  

4. For all a ∈ S: ¬a ∈ S  
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Example: In Boolean algebra of power set P({1, 2, 3, 4}), the collection S =  

{∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} forms a subalgebra.  
Notes  

To verify this:  

•

•

S contains ∅ (0) and {1, 2, 3, 4} (1)  

For any two elements in S, their intersection is in S:  

o

o

o

{1, 2} ∩ {3, 4} = ∅  

{1, 2} ∩ {1, 2, 3, 4} = {1, 2}  

{3, 4} ∩ {1, 2, 3, 4} = {3, 4}  

•

•

For any two elements in S, their union is in S:  

o

o

o

{1, 2} ∪ {3, 4} = {1, 2, 3, 4}  

{1, 2} ∪∅ = {1, 2}  

{3, 4} ∪∅ = {3, 4}  

For any element in S, its complement is in S:  

o

o

o

o

¬∅ = {1, 2, 3, 4}  

¬{1, 2} = {3, 4}  

¬{3, 4} = {1, 2}  

¬{1, 2, 3, 4} = ∅  

Direct Products  

The direct product of Boolean algebras allows us to construct larger  

Boolean algebras from smaller ones.  

Definition: Let B₁, B₂, ..., Bₙ be Boolean algebras. The direct product B₁ ×  

B₂ × ... × Bₙ is the Boolean algebra whose elements are n-tuples (b₁, b₂, ...,  

bₙ) where bᵢ ∈ Bᵢ, with operations defined component-wise:  

•

•

•

•

(a₁, a₂, ..., aₙ) ∧ (b₁, b₂, ..., bₙ) = (a₁∧b₁, a₂∧b₂, ..., aₙ∧bₙ)  

(a₁, a₂, ..., aₙ) ∨ (b₁, b₂, ..., bₙ) = (a₁∨b₁, a₂∨b₂, ..., aₙ∨bₙ)  

¬(a₁, a₂, ..., aₙ) = (¬a₁, ¬a₂, ..., ¬aₙ)  

0 = (0₁, 0₂, ..., 0ₙ)  
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• 1 = (1₁, 1₂, ..., 1ₙ)  Notes  

Example: Consider two Boolean algebras B₁ = {0, 1} & B₂ = {0, 1}. The  

direct product B₁ × B₂ consists of the following elements:  

•

•

•

•

(0, 0)  

(0, 1)  

(1, 0)  

(1, 1)  

With operations:  

•

•

•

(0, 1) ∧ (1, 0) = (0∧1, 1∧0) = (0, 0)  

(0, 1) ∨ (1, 0) = (0∨1, 1∨0) = (1, 1)  

¬(0, 1) = (¬0, ¬1) = (1, 0)  

This direct product B₁ × B₂ is isomorphic to Boolean algebra of power set  

P({, b}).  

Homomorphism  

A homomorphism between Boolean algebras preserves the algebraic  

structure.  

Definition: Let (B, ∧, ∨, ¬, 0, 1) and (B', ∧', ∨', ¬', 0', 1') be Boolean  

algebras. A function f: B → B' is a homomorphism if for all a, b ∈ B:  

1. f(a ∧ b) = f(a) ∧' f(b)  

2. f(a ∨ b) = f(a) ∨' f(b)  

3. f(¬a) = ¬'f(a)  

4. f(0) = 0'  

5. f(1) = 1'  

Types of homomorphisms:  

•

•

•

An isomorphism is a bijective homomorphism  

A monomorphism is an injective homomorphism  

An epimorphism is a surjective homomorphism  
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Example of a homomorphism: Let B be the Boolean algebra of the power  Notes  
set P({1, 2, 3}) and let B' be the Boolean algebra {0, 1}. Define f: B → B'  

as:  

f(S) = { 1 if 1 ∈ S 0 if 1 ∉ S }  

This is a homomorphism because:  

• f(S ∩ T) = 1 if and only if 1 ∈ S ∩ T, which happens if and only if 1  6666

∈ S and 1 ∈ T, which happens if and only if f(S) = 1 and f(T) = 1,  

which happens if and only if f(S) ∧ f(T) = 1  

• Similarly for union and complement  

Kernel of a homomorphism: The kernel of a homomorphism f: B → B' is  

the set {a ∈ B | f(a) = 0'}.  

3.6 Joint-Irreducible Elements, Atoms, and Minterms  

Joint-Irreducible Elements  

An element in a Boolean algebra is join-irreducible if it cannot be  

expressed as the join (logical OR) of two strictly smaller elements.  

Definition: An element a in a Boolean algebra B is join-irreducible if a ≠ 0  

and for any b, c ∈ B, if a = b ∨ c, then either a = b or a = c.  

In other words, a join-irreducible element cannot be broken down into  

simpler elements using the join operation.  

Atoms  

Atoms are the minimal non-zero elements in a Boolean algebra.  

Definition: An element in Boolean algebra B is an atom if a ≠ 0 & for any b  

∈ B, if b ≤ a, then either b = 0 or b = a.  

Properties of atoms:  

1. Every atom is join-irreducible  

2. In a finite Boolean algebra, every non-zero element can be  39

expressed as a join of atoms  

3. If x is an atom and y is any element in the Boolean algebra, then  

either x ∧ y = 0 or x ∧ y = x  
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Example: In Boolean algebra of the power set P({1, 2, 3}), the atoms are  

the singleton sets {1}, {2}, and {3}. Each non-empty set can be expressed as  

a union of these atoms.  

Notes  

Minterms  

In a Boolean algebra on n variables, minterm is product (AND) of n literals,  

where each variable appears exactly once in either complemented or  

uncomplemented form.  

Definition: For n Boolean variables x₁, x₂, ..., xₙ, a minterm is a product  

term x₁' ∧ x₂' ∧ ... ∧ xₙ' where each xᵢ' is either xᵢ or ¬xᵢ.  

For n variables, there are 2ⁿ possible minterms, each corresponding to one  

possible assignment of truth values to variables.  

Notation:Minterms are often denoted as mᵢ where i is decimal equivalent of  

the binary number formed by replacing each uncomplemented variable with  

1 and each complemented variable with 0.  

Example: For two variables x and y, the four minterms are:  

•

•

•

•

m₀ = ¬x ∧¬y (corresponds to x=0, y=0)  

m₁ = ¬x ∧ y (corresponds to x=0, y=1)  

m₂ = x ∧¬y (corresponds to x=1, y=0)  

m₃ = x ∧ y (corresponds to x=1, y=1)  

Properties of minterms:  

1. Each minterm evaluates to 1 for exactly one combination of input  

values  

2. Any Boolean function can be expressed as & sum (OR) of minterms  

3. Minterms are mutually exclusive (the product of any two distinct  

minterms is 0)  

3.7 Boolean Forms and Their Equivalence  

Boolean Forms  

A Boolean form (or Boolean expression) is a combination of Boolean  

variables and constants connected by Boolean operations.  
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Definition: A Boolean form is recursively defined as:  

1. Constants 0 and 1 are Boolean forms  

Notes  

3. If F and G are Boolean forms, then so are:  

o

o

o

o

o

¬F (negation/complement)  

F ∧ G (conjunction/AND)  

F ∨ G (disjunction/OR)  

F → G (implication)  

F ↔ G (equivalence)  

Example: The following are Boolean forms:  

•

•

•

x ∧ (y ∨ z)  

¬x ∨ (y ∧¬z)  

(x → y) ∧ (¬y → z)  

Equivalence of Boolean Forms  

Two Boolean forms are equivalent if they represent the same Boolean  

function - that is, they evaluate to the same output for all possible input  

combinations.  

Definition: Boolean forms F & G are equivalent (denoted F ≡ G) if for all  

possible assignments of values to their variables, F & G have the same  

value.  

Basic equivalence laws:  

1. Idempotent laws:  

o

o

x ∨ x ≡ x  

x ∧ x ≡ x  

2. Commutative laws:  

o

o

x ∨ y ≡ y ∨ x  

x ∧ y ≡ y ∧ x  
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3. Associative laws:  Notes  

o

o

(x ∨ y) ∨ z ≡ x ∨ (y ∨ z)  

(x ∧ y) ∧ z ≡ x ∧ (y ∧ z)  

4. Distributive laws:  

o

o

x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z)  

x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)  

5. De Morgan's laws:  

o

o

¬(x ∨ y) ≡¬x ∧¬y  

¬(x ∧ y) ≡¬x ∨¬y  

6. Complement laws:  

o

o

x ∨¬x ≡ 1  

x ∧¬x ≡ 0  

7. Identity laws:  

o

o

x ∨ 0 ≡ x  

x ∧ 1 ≡ x  

8. Dominance laws:  

o

o

x ∨ 1 ≡ 1  

x ∧ 0 ≡ 0  

9. Absorption laws:  

o

o

x ∨ (x ∧ y) ≡ x  

x ∧ (x ∨ y) ≡ x  

10. Double negation:  

¬¬x ≡ x  o

Example of proving equivalence: To prove (x ∧ y) ∨ (x ∧¬y) ≡ x:  

(x ∧ y) ∨ (x ∧¬y) ≡ x ∧ (y ∨¬y) (by distributive law) ≡ x ∧ 1 (by  

complement law) ≡ x (by identity law)  
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Truth Tables for Verification of Equivalence  Notes  

Another way to verify the equivalence of Boolean forms is to construct truth  444444

tables for each form and check if they produce the same outputs for all input  

combinations.  

x
0
01212121212

1
1

y
0
1
0
1

¬x  
1

¬x ∧ y  x ∨ (¬x ∧ y)  x ∨ y  
0
1
0
0

0
1
1
1

0
1
1
1

1
0
0

Since the truth tables for x ∨ (¬x ∧ y) & x ∨ y match for all input  

combinations, the two Boolean forms are equivalent.  
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UNIT X  Notes  

3.8 Minterm Boolean Forms and Sum of Products (SOP)  

Minterm Expansion  

Every Boolean function can be expressed as a sum (OR) of minterms.  444444

Minterm expansion theorem: Any Boolean function f(x₁, x₂, ..., xₙ) can be  

uniquely expressed as:  

f(x₁, x₂, ..., xₙ) = ∨ {mₖ | f evaluates to 1 when the variables have the values  

corresponding to minterm mₖ}  

In other words, a function can be represented as the OR of all minterms for  

which the function outputs 1.  

Example: For the function f(x, y) = x ∨ y, the truth table is:  

x y f(x, y)  

0 0 0  2626262626

0 1 1  

1 0 1  1212121212

1 1 1  

The function outputs 1 for the input combinations (0, 1), (1, 0), and (1, 1),  

which correspond to minterms m₁, m₂, and m₃. Therefore:  

f(x, y) = m₁ ∨ m₂∨ m₃ = (¬x ∧ y) ∨ (x ∧¬y) ∨ (x ∧ y)  

Sum of Products (SOP) Form  2626262626

A Sum of Products (SOP) form is a Boolean expression that is a  

disjunction (OR) of product terms (AND terms).  

Definition: A Boolean expression is in SOP form if it is written as a sum  

(OR) of products (AND) of literals, where a literal is either a variable or its  

negation.  

Example: The following are SOP forms:  

• (x ∧ y) ∨ (¬x ∧ z)  
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• (x ∧ y ∧ z) ∨ (x ∧¬y ∧ z) ∨ (¬x ∧ y ∧¬z)  Notes  

Every Boolean function can be expressed in SOP form. The minterm  

expansion of a function is a special case of SOP form where each product  1212121212 2626262626

term is minterm.  

Converting a Boolean Function to SOP Form  

There are several methods to convert a Boolean function to SOP form:  

1. Using a truth table:  

o

o

Construct the truth table for the function  444444

Identify all input combinations for which the function  

outputs 1  

o

o

Form the minterms corresponding to these input  

combinations  

Express the function as the OR of these minterms  

2. Using Boolean algebra:  

o

o

o

Apply distributive laws to expand expressions  

Use other Boolean algebraic laws to simplify and rearrange  

Continue until the expression is in SOP form  

Example: Convert the function f(x, y, z) = x → (y ∧ z) to SOP form.  

First, rewrite implication: x → (y ∧ z) ≡¬x ∨ (y ∧ z)  

This is already close to SOP form, but let's verify with a truth table:  

x
02626262626

0
0
0
1
11212121212

1
1

y
0
0
1
1
0
0
1
1

z y ∧ z  x → (y ∧ z) = ¬x ∨ (y ∧ z)  
0
1
0
1
0
1
0
1

0
0
0
1
0
0
0
1

1
12626262626

1
1
0
0
0
1
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The function outputs 1 for the input combinations (0, 0, 0), (0, 0, 1), (0, 1,  

0), (0, 1, 1), and (1, 1, 1), which correspond to minterms m₀, m₁, m₂, m₃, and  

m₇. Therefore:  

Notes  

f(x, y, z) = m₀ ∨ m₁∨ m₂∨ m₃∨ m₇ = (¬x ∧¬y ∧¬z) ∨ (¬x ∧¬y ∧ z) ∨ (¬x ∧ y  

∧¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ y ∧ z)  

This can be simplified to: f(x, y, z) = ¬x ∨ (x ∧ y ∧ z)  

3.9 Canonical Forms and Minimization of Boolean Functions  

Canonical Forms  

canonical form is a standard way of representing Boolean function. The two  

main canonical forms are:  

1. Sum of Minterms (SOM): A Boolean function expressed as the  

disjunction (OR) of minterms.  

2. Product of Maxterms (POM): A Boolean function expressed as the  

conjunction (AND) of maxterms.  

Maxterms  

A maxterm is sum (OR) of n literals, where each variable appears exactly  1212121212

once in either complemented or uncomplemented form.  

Definition: For n Boolean variables x₁, x₂, ..., xₙ, a maxterm is a sum term  

x₁' ∨ x₂' ∨ ... ∨ xₙ' where each xᵢ' is either xᵢ or ¬xᵢ.  

Notation: Maxterms are often denoted as Mᵢ where i is the decimal  

equivalent of binary number formed by replacing each complemented  

variable with 1 and each uncomplemented variable with 0.  

Example: For two variables x & y, the four maxterms are:  

•

•

•

•

M₀ = x ∨ y (corresponds to x=0, y=0)  

M₁ = x ∨¬y (corresponds to x=0, y=1)  

M₂ = ¬x ∨ y (corresponds to x=1, y=0)  

M₃ = ¬x ∨¬y (corresponds to x=1, y=1)  

Canonical SOP and POS Forms  
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•

•

Canonical SOP (Sum of Products):f(x₁, x₂, ..., xₙ) = ∨ mᵢ for all i  Notes  
where f outputs 1  

Canonical POS (Product of Sums):f(x₁, x₂, ..., xₙ) = ∧ Mᵢ for all i  

where f outputs 0  

Example: For the function f(x, y) = x ⊕ y (exclusive OR), the truth table is:  

x
0
0
1
1

y
0
1
0
1

f(x, y)  
0
1
1
0

Canonical SOP: f(x, y) = m₁ ∨ m₂ = (¬x ∧ y) ∨ (x ∧¬y) Canonical POS: f(x,  

y) = M₀∧ M₃ = (x ∨ y) ∧ (¬x ∨¬y)  

Minimization of Boolean Functions  

Minimizing Boolean functions is important for creating efficient digital  

circuits. The goal is to find an equivalent form with the minimum number of  

literals and operations.  

Algebraic Minimization  

This approach uses Boolean algebra laws to simplify expressions.  

Example: Simplify the expression f(x, y, z) = (x ∧ y) ∨ (¬x ∧ y) ∨ (x ∧ z) ∨  

(¬x ∧ z)  

f(x, y, z) = (x ∧ y) ∨ (¬x ∧ y) ∨ (x ∧ z) ∨ (¬x ∧ z) = y ∧ (x ∨¬x) ∨ z ∧ (x  

∨¬x) (factoring) = y ∧ 1 ∨ z ∧ 1 (complement law) = y ∨ z (identity law)  

Karnaugh Maps (K-maps)  

A Karnaugh map is a graphical method for simplifying Boolean  

expressions. It represents a truth table in a grid where adjacent cells differ by  

only one bit in their input values.  

Steps for using K-maps:  

1. Construct the K-map grid for the number of variables  

2. Fill in the grid with function outputs  
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3. Group adjacent 1s in powers of 2 (1, 2, 4, 8, etc.)  Notes  

4. For each group, form a product term with the common variables  

5. Express the function as the OR of these product terms  

Example: Minimize the function f(x, y, z) = (x ∧¬y ∧¬z) ∨ (x ∧¬y ∧ z) ∨ (x  

∧ y ∧ z) ∨ (¬x ∧ y ∧ z)  

First, let's create the K-map:  

yz  

00 01 11 10  

x 0 0 0 1 0  

1 1 1 1 0  

We see two groupings:  

•

•

A group of 3 cells for x¬z, which gives the term x ∧¬z  

A group of 2 cells for yz, which gives the term y ∧ z  

Therefore, the minimized expression is: f(x, y, z) = (x ∧¬y) ∨ (y ∧ z)  

Quine-McCluskey Algorithm  

The Quine-McCluskey algorithm is a tabular method for minimizing  

Boolean functions. It is more systematic than K-maps and can handle  

functions with many variables.  

Steps of the Quine-McCluskey algorithm:  

1. List all minterms for which the function outputs 1  

2. Group them by the number of 1s in their binary representation  

3. Compare minterms from adjacent groups to find prime implicants  

4. Create a prime implicant chart to find the essential prime implicants  

5. Select additional prime implicants as needed to cover all minterms  

6. Express the function as the OR of the selected prime implicants  

Example: Here's a simple example of the Quine-McCluskey algorithm for  

function f(w, x, y, z) with minterms 0, 2, 8, 10, 11, 15.  
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Step 1: Group minterms by number of 1s:  Notes  

•

•

•

•

•

Group 0: (0) = 0000  

Group 1: (2) = 0010, (8) = 1000  

Group 2: (10) = 1010  

Group 3: (11) = 1011  

Group 4: (15) = 1111  

Step 2: Find prime implicants by comparing adjacent groups:  

•

•

•

•

•

Comparing 0000 and 0010: -010 (minterm 0, 2)  

Comparing 0000 and 1000: -000 (minterm 0, 8)  

Comparing 0010 and 1010: -010 (minterm 2, 10)  

Comparing 1010 and 1011: 101- (minterm 10, 11)  

Comparing 1011 and 1111: 1-11 (minterm 11, 15)  

Step 3: Continue the process until no more combinations are possible.  

Step 4: From the prime implicant chart, determine that the minimal  

expression is: f(w, x, y, z) = (¬w ∧¬x ∧¬y) ∨ (¬w ∧¬x ∧¬z) ∨ (w ∧ x ∧ z)  

Solved Problems  

Problem 1: Verify the Subalgebra Property  

Problem: Show that the set S = {∅, {a}, {b}, {a, b}} is subalgebra of power  

set Boolean algebra P({a, b, c}).  

Solution: To be a subalgebra, S must be closed under complement, meet  

(intersection), and join (union), and must contain the bounds (∅ and {a, b,  

c}).  

First, note that S does not contain {a, b, c}, so it cannot be a subalgebra of  

P({a, b, c}).  

However, if we consider S as a subset of P({a, b}), then:  

1. S contains ∅ (0) and {a, b} (1 in P({a, b}))  

2. Closure under intersection:  
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o

o

o

{a} ∩ {b} = ∅∈ S  Notes  

{a} ∩ {a, b} = {a} ∈ S  

{b} ∩ {a, b} = {b} ∈ S  

3. Closure under union:  

o

o

o

{a} ∪ {b} = {a, b} ∈ S  

{a} ∪∅ = {a} ∈ S  

{b} ∪∅ = {b} ∈ S  

4. Closure under complement (relative to {a, b}):  

o

o

o

o

¬∅ = {a, b} ∈ S  

¬{a} = {b} ∈ S  

¬{b} = {a} ∈ S  

¬{a, b} = ∅∈ S  

Therefore, S is a subalgebra of P({a, b}).  

Problem 2: Find a Boolean Homomorphism  

Problem: Define a homomorphism from the Boolean algebra P({1, 2, 3, 4})  

to the Boolean algebra {0, 1}.  

Solution: We need to define a function f: P({1, 2, 3, 4}) → {0, 1} that  

preserves all Boolean operations.  

Let's define f as: f(S) = { 1 if |S| is even (including 0) 0 if |S| is odd }  

To verify this is a homomorphism:  

1. f(∅) = 1 since |∅| = 0 is even, and f({1, 2, 3, 4}) = 1 since |{1, 2, 3,  

4}| = 4 is even.  

2. For complement: f(S^c) = f({1, 2, 3, 4} - S) If |S| is even, then |S^c|  

= 4 - |S| is also even, so f(S) = f(S^c) = 1 If |S| is odd, then |S^c| = 4  

- |S| is also odd, so f(S) = f(S^c) = 0 This doesn't satisfy f(S^c) =  

¬f(S), so our proposed function isn't a homomorphism.  

Let's try another definition: f(S) = { 1 if 1 ∈ S 0 if 1 ∉ S }  

To verify:  
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1. f(∅) = 0 since 1 ∉∅, and f({1, 2, 3, 4}) = 1 since 1 ∈ {1, 2, 3, 4}.  Notes  

2. For complement: f(S^c) = f({1, 2, 3, 4} - S) If 1 ∈ S, then 1 ∉S^c,  

so f(S) = 1 and f(S^c) = 0 If 1 ∉ S, then 1 ∈S^c, so f(S) = 0 and  

f(S^c) = 1 This satisfies f(S^c) = ¬f(S)  
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UNIT XI  Notes  

3.10 Applications of Boolean Algebra in Digital Circuits  

Boolean algebra, developed by George Boole in the mid-19th century, has  

become the foundation of digital circuit design. It provides a mathematical  

framework for analyzing and designing circuits that process binary  

information. In digital systems, variables can only have two values: 0  

(OFF/FALSE) and 1 (ON/TRUE). This binary nature makes Boolean  

algebra perfectly suited for describing the behavior of digital circuits.  

Basic Boolean Operations and Their Circuit Implementations  

1. NOT Operation (Inversion)  

The NOT operation, denoted by an overbar or the symbol '¬', inverts the  

input value.  

For a Boolean variable A:  

•

•

NOT A (written as A' or ¬A) = 1 if A = 0  

NOT A (written as A' or ¬A) = 0 if A = 1  

Circuit Implementation (NOT Gate): The NOT operation is implemented  

using an inverter or NOT gate. It has one input and one output, with output  

being the complement of input.  

Truth Table for NOT Gate:  

A | A'  

--------  

0 | 1  

1 | 0  

2. AND Operation (Conjunction)  

The AND operation, denoted by '·' or '∧', returns 1 only if all inputs are 1.  

For Boolean variables A and B:  

•

•

A AND B (written as A·B or A∧B) = 1 if both A = 1 and B = 1  

A AND B (written as A·B or A∧B) = 0 otherwise  
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Circuit Implementation (AND Gate): The AND operation is implemented  Notes  
using an AND gate, which has two or more inputs and one output.  

Truth Table for AND Gate (2 inputs):  

A | B | A·B  

-------------  

0 | 0 | 0  

0 | 1 | 0  

1 | 0 | 0  

1 | 1 | 1  

3. OR Operation (Disjunction)  

The OR operation, denoted by '+' or '∨', returns 1 if at least one input is 1.  

For Boolean variables A & B:  

•

•

A OR B (written as A+B or A∨B) = 0 if both A = 0 and B = 0  

A OR B (written as A+B or A∨B) = 1 otherwise  

Circuit Implementation (OR Gate): The OR operation is implemented  

using an OR gate, which has two or more inputs & one output.  

Truth Table for OR Gate (2 inputs):  

A | B | A+B  

-------------  

0 | 0 | 0  

0 | 1 | 1  

1 | 0 | 1  

1 | 1 | 1  

4. XOR Operation (Exclusive OR)  

The XOR operation, denoted by '⊕', returns 1 if the number of 1s in the  

inputs is odd.  

For Boolean variables A and B:  
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•

•

A XOR B (written as A⊕B) = 0 if A = B  

A XOR B (written as A⊕B) = 1 if A ≠ B  

Notes  

Circuit Implementation (XOR Gate): The XOR operation is implemented  

using an XOR gate.  11111111

Truth Table for XOR Gate (2 inputs):  

A | B | A⊕B  

-------------  

0 | 0 | 0  

0 | 1 | 1  

1 | 0 | 1  

1 | 1 | 0  

5. NAND Operation (NOT AND)  

The NAND operation is the negation of the AND operation.  

For Boolean variables A & B:  

• A NAND B = NOT (A AND B) = NOT (A·B) = (A·B)'  

Circuit Implementation (NAND Gate):A NAND gate, which is an AND  

gate followed by a NOT gate, is used to implement the & operation.  

Truth Table for NAND Gate (2 inputs):  

A | B | (A·B)'  

--------------  

0 | 0 | 1  

0 | 1 | 1  

1 | 0 | 1  

1 | 1 | 0  

6. NOR Operation (NOT OR)  

The NOR operation is the negation of the OR operation.  
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Notes  
For variables A & B that are Boolean:  

A NOR B = NOT (A OR B) = NOT (A+B) = (A+B)'  •

Circuit Implementation (NOR Gate): The NOR operation is implemented  

using a NOR gate, which is an OR gate followed by a NOT gate.  11111111

Truth Table for NOR Gate (2 inputs):  414141

A | B | (A+B)'  

--------------  

0 | 0 | 1  

0 | 1 | 0  

1 | 0 | 0  

1 | 1 | 0  

Boolean Algebraic Laws and Theorems  

Boolean algebra follows several laws and theorems that are essential for  

simplifying expressions and circuit designs.  

1. Commutative Laws  

•

•

A + B = B + A  11111111

A · B = B · A  

2. Associative Laws  

•

•

A + (B + C) = (A + B) + C  

A · (B · C) = (A · B) · C  

3. Distributive Laws  

•

•

A · (B + C) = A · B + A · C  414141

A + (B · C) = (A + B) · (A + C)  11111111

4. Identity Laws  

•

•

A + 0 = A  

A · 1 = A  
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5. Complement Laws  Notes  

•

•

A + A' = 1  

A · A' = 0  

6. Idempotent Laws  

•

•

A + A = A  

A · A = A  

7. Absorption Laws  

•

•

A + (A · B) = A  

A · (A + B) = A  

8. De Morgan's Theorems  

•

•

(A + B)' = A' · B'  

(A · B)' = A' + B'  

These theorems are extremely valuable in simplifying Boolean expressions,  

which directly translates to simpler and more efficient circuit designs with  

fewer gates.  

Boolean Functions and Expression Representation  

A Boolean function is function that maps binary inputs to binary outputs.  

For n Boolean variables, there are 2^n possible input combinations and  

2^(2^n) possible Boolean functions.  

There are several standard ways to represent Boolean functions:  

1. Truth Table  

truth table lists all possible input combinations and their corresponding  

output values. For n variables, a truth table has 2^n rows.  

2. Canonical Forms  

Sum of Minterms (SOP - Sum of Products)  

A minterm is a product (AND) term where each variable appears exactly  484848

once, either in its true or complemented form. A for which the function value  

is 1.  
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For example, for function F(A,B,C) with minterms m1, m4, and m6:  

F(A,B,C) = m1 + m4 + m6 = A'·B'·C + A·B'·C' + A·B·C'  414141
Notes  

Product of Maxterms (POS - Product of Sums)  

A maxterm is a sum (OR) term where each variable appears exactly once,  484848

either in its true or complemented form. The representation of a boolean  

function is the product (AND) of its maxterms for which the function value  

is 0.  

For example, for function F(A,B,C) with maxterms M0, M2, M3, M5, and  

M7: F(A,B,C) = M0 · M2 · M3 · M5 · M7  

3. Non-Canonical Forms  

These are simplified expressions that don't require all variables to appear in  

each term. They are typically derived from canonical forms using Boolean  

algebraic laws.  

Simplification of Boolean Expressions  

Simplifying Boolean expressions leads to circuit designs with fewer gates,  

Algebraic Simplification  

This method involves applying Boolean algebraic laws and theorems to  

simplify expressions. For example:  

A·B + A·B' = A·(B + B') = A·1 = A  

Quine-McCluskey Method  

Also known as the tabulation method, this is a systematic procedure for  3434

minimizing Boolean functions. It works well for functions with many  

variables but can be computationally intensive.  

Digital Circuit Design Using Boolean Algebra  

Combinational Logic Circuits  25

Combinational circuits are digital circuits where output depends only on  

current input values. They don't have memory elements.  

Example: Half Adder A half adder adds two single-bit binary numbers A and  

B. It has two outputs: Sum (S) and Carry (C).  
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Boolean functions:  Notes  

•

•

S = A ⊕ B (XOR operation)  

C = A · B (AND operation)  

Sequential Logic Circuits  

Sequential circuits are digital circuits where the output depends not only on  

current inputs but also on the past sequence of inputs. They contain memory  

elements like flip-flops.  

Example: D Flip-Flop A D flip-flop stores a single bit of data. Its output Q  

takes on the value of the D input at the active edge of the clock signal and  

retains this value until the next active clock edge.  

Digital Circuit Analysis Using Boolean Algebra  

Circuit to Boolean Expression  

Given a digital circuit, we can derive its Boolean expression by working  

through the circuit from inputs to outputs, applying the appropriate Boolean  

operations for each gate.  

Boolean Expression to Circuit  

Given a Boolean expression, we can implement it as a digital circuit by  

converting it into a suitable form (like SOP or POS) and then using the  

appropriate gates.  

Applications in Computer Architecture  

Boolean algebra is fundamental to designing critical components of  

computer systems:  

1. Arithmetic Logic Unit (ALU)  

The ALU performs arithmetic and logical operations. It uses Boolean logic  

2. Memory and Register Design  

Memory cells and registers use logic gates and flip-flops to store and  

manipulate binary data.  

3. Control Unit  
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The control unit generates control signals based on instructions and system  

status. These signals control the flow of data through the CPU.  
Notes  

4. Multiplexers and Demultiplexers  

These components route data through the system based on control signals,  

implementing complex switching functions using Boolean logic.  

5. Encoders and Decoders  

These circuits convert between different binary representations, using  

Boolean functions to map inputs to outputs.  

Real-World Applications  

Boolean algebra and digital circuits are fundamental to virtually all modern  

electronic systems:  

1. Computers and Microprocessors: The central processing unit  

(CPU) of a computer is built from millions of logic gates  

implementing Boolean functions.  

2. Digital Communication Systems: Digital communication systems  

use Boolean logic for data encoding, error detection, and correction.  

3. Control Systems: Programmable logic controllers (PLCs) use  

Boolean functions to implement control algorithms in industrial  

settings.  

4. Consumer Electronics: Smartphones, digital TVs, and other  

consumer devices are built using complex digital circuits.  

5. Cryptography: Modern cryptographic systems rely on Boolean  

operations for encryption and decryption.  

3.11 The Karnaugh Map (K-Map) Method  

Introduction to Karnaugh Maps  

The Karnaugh Map (K-map) is a graphical method for simplifying Boolean  3434

expressions. Developed by Maurice Karnaugh in 1953, it provides a visual  

approach to minimizing Boolean functions by taking advantage of the  

adjacency of terms. K-maps make it easy to identify groups of terms that can  

be combined, leading to simplified Boolean expressions.  
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Structure of a Karnaugh Map  Notes  

A K-map is a grid where each cell represents a minterm in a Boolean  

function. For an n-variable function, the K-map has 2^n cells.  

The key features of a K-map include:  

1. Rectangular Grid: The K-map is arranged as a rectangular grid,  

with cells representing minterms.  

2. Gray Code Ordering: Adjacent cells in the K-map differ by exactly  

one variable. This is achieved by using Gray code ordering for the  

row and column indices.  

meaning that cells on opposite edges are considered adjacent.  

K-map Sizes for Different Numbers of Variables:  484848

•

•

•

•

•

2 Variables: 2×2 grid (4 cells)  

3 Variables: 2×4 grid (8 cells)  

4 Variables: 4×4 grid (16 cells)  

5 Variables: Two 4×4 grids (32 cells)  

6 Variables: Four 4×4 grids (64 cells)  

Constructing a Karnaugh Map  

To create a Boolean function's K-map:  

1. Determine Number of Variables: Identify how many variables are  

in the function.  

2. Create the Grid: Draw a grid with the appropriate dimensions  

based on the number of variables.  

3. Label the Grid: Label the rows and columns using Gray code  

ordering.  

4. Fill in the Map: For each minterm in the function, place a 1 in the  

corresponding cell. For each maxterm, place a 0.  

Example: K-map for 3-Variable Function  

For function F(A,B,C) = A'B'C + A'BC + AB'C':  
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BC  Notes  

A 00 01 11 10  

-----------------  

0 | 0 1 1 0 |  

1 | 1 0 0 0 |  

Where the cells represent minterms m0, m1, m2, m3, m4, m5, m6, and m7:  

BC  

A 00 01 11 10  

-----------------  

0 | m0 m1 m3 m2 |  

1 | m4 m5 m7 m6 |  

And 1s are placed in cells corresponding to minterms m1, m2, and m4.  

Identifying Groups in a Karnaugh Map  

The key to simplifying Boolean functions using K-maps is to identify groups  

of adjacent 1s. The rules for grouping are:  

1. Group Size: Groups must contain 2^n cells (1, 2, 4, 8, 16, etc.).  

vertically, or diagonally adjacent at the edges due to wrap-around).  

3. Maximal Groups: Always create the largest possible groups.  

4. Cover All 1s: All cells containing 1s must be included in at least one  

group.  

5. Minimal Coverage: Use the fewest possible groups to cover all 1s.  

When a variable changes value within a group, it gets eliminated from the  

in the simplified term.  

Simplifying Boolean Functions Using K-maps  

Once groups are identified, we can derive the simplified expression:  
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2. Adjacency: All cells in a group must be adjacent (horizontally,  

simplified term. Variables that remain constant throughout the group appear  



1. Analyze Each Group: For each group, determine which variables  232323
Notes  

stay constant and which ones change.  

2. Write Terms: For each group, write a product term containing only  

the variables that stay constant.  

3. Combine Terms: OR together all the product terms to form the  

simplified expression.  

Example: Simplifying F(A,B,C) = A'B'C + A'BC + AB'C'  

In K-map:  

BC  

A 00 01 11 10  

-----------------  

0 | 0 1 1 0 |  

1 | 1 0 0 0 |  

We can identify the following groups:  

•

•

Group 1: A'BC and A'BC' (cells m1 and m3)  

Group 2: A'B'C and AB'C' (cells m0 and m4)  

Simplified expression: F(A,B,C) = A'B + C'  

Handling Conditions of Don't Care  

designs, certain input combinations never occur or their outputs don't matter.  

These are called "don't care" conditions, typically denoted by 'X' or 'd' in the  

K-map.  

Don't care conditions provide flexibility in simplification. When grouping,  

we can choose to include or exclude don't care cells based on what leads to  

the simplest expression.  

Example: Simplifying with Don't Care Conditions  

For function F(A,B,C) with minterms m1, m4, m6 and don't cares d3, d5:  

BC  

A 00 01 11 10  
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-----------------  Notes  

0 | 0 1 X 0 |  

1 | 1 X 0 1 |  

By treating the don't cares as 1s when beneficial, we can form larger groups,  

resulting in a simpler expression.  

K-maps for 4-Variable Functions  

For 4-variable functions, we use a 4×4 K-map. The rows and columns are  

labeled with 2-variable Gray codes.  

Example: K-map for F(A,B,C,D) = Σm(0,1,4,5,12,13)  

CD  

AB 00 01 11 10  

--------------------  

00 | 1 1 0 0 |  

01 | 1 1 0 0 |  

11 | 0 0 0 0 |  

10 | 1 1 0 0 |  

By identifying groups, we can simplify this to: F(A,B,C,D) = C'D'  

K-maps for 5 and 6 Variables  

For 5 and 6 variables, we use multiple 4×4 K-maps:  

• 5 Variables: Two 4×4 K-maps, one for when the 5th variable is 0  

and one for when it's 1.  

• 6 Variables: Four 4×4 K-maps, representing different combinations  

of the 5th and 6th variables.  

Groups can span across multiple K-maps if the cells are adjacent when  

considering the additional variables.  

Comparing K-maps with Other Minimization Methods  

Advantages of K-maps:  
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1. Visual Approach: K-maps provide a visual method that makes it  Notes  
easy to identify patterns.  

2. Intuitive: The grouping process is intuitive and less prone to errors  

than algebraic manipulation.  

3. Efficient for Small Functions: K-maps are particularly efficient for  

functions with up to 5-6 variables.  

Limitations of K-maps:  

1. Scalability: K-maps become unwieldy for functions with more than  

6 variables.  

2. Manual Process: K-map minimization is primarily a manual  

process, making it less suitable for computer implementation.  

Alternatives to K-maps:  

1. Quine-McCluskey Method: This tabular method can handle  

functions with more variables and is well-suited for computer  

implementation.  

2. Espresso Algorithm: A heuristic algorithm for logic minimization  

that can handle large functions.  

Applications of K-maps in Digital Circuit Design  

K-maps are widely used in digital circuit design for:  

1. Combinational Logic Design: Simplifying the Boolean expressions  

for combinational circuits like multiplexers, decoders, and adders.  

2. State Machine Design: Simplifying the next-state and output  

functions in sequential circuits.  

3. Error Detection and Correction: Designing circuits for error  

detection and correction codes.  

4. Addressing Hazards: Identifying and resolving hazards in digital  

circuits.  

Practical Example: Designing a BCD to 7-Segment Display Decoder  

A practical application of K-maps is in designing a BCD (Binary-Coded  

Decimal) to 7-segment display decoder. This circuit converts a 4-bit BCD  
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input (representing digits 0-9) to outputs that drive a 7-segment display.For  

each segment (a-g) of the display, we can create a K-map based on which  

digits require that segment to be illuminated. Then, we can derive simplified  

Boolean expressions for each segment.  

Notes  

Solved Problems  

Problem 1: Simplify the Boolean expression F(A,B,C) = A'B'C + A'BC +  

AB'C + ABC  

Solution: First, identify the minterms:  

•

•

•

•

A'B'C = m1 (001)  

A'BC = m3 (011)  

AB'C = m5 (101)  

ABC = m7 (111)  

Create the K-map:  

BC  

A 00 01 11 10  

-----------------  

0 | 0 1 1 0 |  

1 | 0 1 1 0 |  

We can identify two groups:  

• Group 1: Cells m1 and m5 (vertically aligned, including A'B'C and  

AB'C)  

• Group 2: Cells m3 and m7 (vertically aligned, including A'BC and  

ABC)  

For Group 1, B changes while A and C remain constant (C = 1, A varies). So  

Group 1 gives us B'C. For Group 2, B changes while A and C remain  

constant (C = 1, A varies). So Group 2 gives us BC.  

The simplified expression is F(A,B,C) = B'C + BC = C(B' + B) = C  

verify this algebraically: F(A,B,C) = A'B'C + A'BC + AB'C + ABC = C(A'B'  

+ A'B + AB' + AB) = C(A'(B' + B) + A(B' + B)) = C(A' + A) = C  
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Problem  2:  Simplify  Boolean  function  F(A,B,C,D)  = Notes  
Σm(0,2,8,10,11,14,15)  

Solution: Create the K-map:  

CD  

AB 00 01 11 10  

--------------------  

00 | 1 0 0 1 |  

01 | 0 0 0 0 |  

11 | 0 0 1 1 |  

10 | 1 0 1 1 |  

We can identify the following groups:  

•

•

•

Group 1: Cells m0 and m2 (A'B'C'D' & A'B'C'D)  

Group 2: Cells m8 and m10 (AB'C'D' and AB'C'D)  

Group 3: Cells m10, m11, m14, and m15 (AB'CD, AB'C'D, ABCD,  

and ABC'D)  

For Group 1, D changes while A, B, & C remain constant (A = 0, B = 0, C =  232323

0). So Group 1 gives us A'B'C'. For Group 2, D changes while A, B, & C  

remain constant (A = 1, B = 0, C = 0). So Group 2 gives us AB'C'. For  

Group 3, B and C change while A and D remain constant (A = 1, D = 1). So  

Group 3 gives us AD.  

The simplified expression is F(A,B,C,D) = A'B'C' + AB'C' + AD  

We can further simplify this: F(A,B,C,D) = A'B'C' + AB'C' + AD = B'C'(A' +  

A) + AD = B'C' + AD  

Problem 3: Design a digital circuit that performs a full adder operation  46

using the K-map method  

Solution: A full adder adds three binary digits (A, B, and Cin) and produces  

two outputs: Sum (S) and Carry-out (Cout).  

Let's derive the Boolean expressions for S and Cout using K-maps.  

For Sum (S): S = 1 when an odd number of inputs are 1. S = A ⊕ B ⊕ Cin  
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Truth table:  

A | B | Cin | S  

---------------  

0 | 0 | 0 | 0  

0 | 0 | 1 | 1  

0 | 1 | 0 | 1  

0 | 1 | 1 | 0  

1 | 0 | 0 | 1  

1 | 0 | 1 | 0  

1 | 1 | 0 | 0  

1 | 1 | 1 | 1  

K-map for Sum:  

Cin B  

Notes  

A 00 01 11 10  

--------------------  

0 | 0 1 0 1 |  

1 | 1 0 1 0 |  

We can identify four groups:  

•

•

•

•

Group 1: A'B'Cin (cell m1)  

Group 2: A'BCin' (cell m2)  

Group 3: AB'Cin' (cell m4)  

Group 4: ABCin (cell m7)  

Simplified expression for Sum: S = A'B'Cin + A'BCin' + AB'Cin' + ABCin =  

A ⊕ B ⊕ Cin  

For Carry-out (Cout): Cout = 1 when at least two inputs are 1.  

Table of truth:  

136  



A | B | Cin | Cout  

------------------  

0 | 0 | 0 | 0  

0 | 0 | 1 | 0  

0 | 1 | 0 | 0  

0 | 1 | 1 | 1  

1 | 0 | 0 | 0  

1 | 0 | 1 | 1  

1 | 1 | 0 | 1  

1 | 1 | 1 | 1  

K-map for Cout:  

Cin B  

Notes  

A 00 01 11 10  

--------------------  

0 | 0 0 1 0 |  

1 | 0 1 1 1 |  

We can identify three groups:  

•

•

•

Group 1: Cells m3 and m7 (A'BCin and ABCin): BCin  

Group 2: Cells m5 and m7 (AB'Cin and ABCin): ACin  

Group 3: Cells m6 and m7 (ABC' and ABCin): AB  

Simplified expression for Cout: Cout = BCin + ACin + AB  

The circuit implementation would use XOR gates for the Sum and AND/OR  

gates for the Carry-out.  

Problem 4: Simplify Boolean function F(A,B,C,D) with don't care  

conditions  

F(A,B,C,D) = Σm(1,3,7,11,15) Don't cares: d(0,2,5)  
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Solution: Create the K-map with '1's for minterms and 'X's for don't cares:  Notes  

CD  

AB 00 01 11 10  

--------------------  

00 | X 1 1 X |  

01 | 0 0 0 X |  

11 | 0 0 1 1 |  

10 | 0 0 1 0 |  

We can identify the following groups:  

• Group 1: Cells m1, m3, m0, and m2 (using don't cares m0 and m2):  

This group gives us A'  

• Group 2: Cells m3, m7, m11, and m15: This group gives us CD  

The simplified expression is F(A,B,C,D) = A' + CD  

We can confirm this. is correct. When A = 0, the output is 1 (except for  232323

some don't care conditions). When C = 1 and D = 1, the output is 1.  

Problem 5: Design a 4-to-2 priority encoder using K-maps  

Solution: A 4-to-2 priority encoder has 4 input lines (I0, I1, I2, I3) and  

produces a 2-bit binary output (Y1, Y0) representing the highest priority  

input that is active (1). Priority increases from I0 (lowest) to I3 (highest).  

Truth table:  

I3 | I2 | I1 | I0 | Y1 | Y0  

----------------------------  

0 | 0 | 0 | 0 | X | X (invalid/don't care)  

0 | 0 | 0 | 1 | 0 | 0  

0 | 0 | 1 | X | 0 | 1  

0 | 1 | X | X | 1 | 0  

1 | X | X | X | 1 | 1  
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K-map for Y1:  Notes  

I1 I0  

I3I2 00 01 11 10  

---------------------  

00 | X 0 0 0 |  

01 | 0 0 0 0 |  

11 | 1 1 1 1 |  

10 | 1 1 1 1 |  

Y1 simplifies to I3 + I2  

K-map for Y0:  

I1 I0  

I3I2 00 01 11 10  

---------------------  

00 | X 0 1 1 |  

01 | 0 0 1 1 |  

11 | 1 1 1 1 |  

10 | 0 0 0 0 |  

Y0 simplifies to I3 + I1  

Therefore, the Boolean expressions for the 4-to-2 priority encoder are: Y1 =  

I3 + I2 Y0 = I3 + I1  

Unsolved Problems  

Problem 1:  

Problem 2:  

Simplify Boolean function F(A,B,C,D) with don't care conditions:  

F(A,B,C,D) = Σm(1,3,5,7,9,13,15) Don't cares: d(0,2,4,6,8,10,12,14)  
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Problem 3:  Notes  

Design a circuit that converts a 3-bit binary number to excess-3 code using  

K-maps.  

Problem 4:  

Use K-maps to design a circuit that detects if the number of 1s in a 4-bit  

input is even.  

Problem 5:  

Simplify the following Boolean expression using K-maps: F(A,B,C,D) =  

A'B'C'D' + A'B'CD' + A'BCD + A'BC'D + AB'C'D' + AB'CD + ABCD' +  

ABC'D  

Multiple-Choice Questions (MCQs)  

1. Boolean algebra is special type of:  

a) Number system  

b) Lattice  

c) Graph  

d) Matrix  

2. The Boolean identity A+A=? is:  

a) A  

b) 0  

c) 1  

d) ¬A  

3. The complement of a Boolean variable A is denoted as:  

a) A′  

b) A2  

c) A+A  

d) A−1  

4. Which Boolean operation represents the logical AND function?  

a) +  

b) ×  

c) .  

d) −  
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5. The switching algebra is mainly used in:  

a) Calculus  
Notes  

b) Digital circuit design  

c) Probability theory  

d) Geometry  

6. A Boolean function is in sum-of-products (SOP) form if:  

a) It consists of minterms combined with AND operations  1313

b) It consists of minterms combined with OR operations  

c) It is expressed as a single term  

d) It does not use Boolean variables  

7. The Karnaugh Map (K-map) method is used for:  

a) Expanding Boolean expressions  

b) Minimizing Boolean functions  

c) Multiplying matrices  

d) Finding derivatives  

8. A Boolean algebra is complemented if:  

a) Each element has a unique complement  

b) The set has a top element  

c) Every subset has a maximum element  

d) The elements form a ring structure  

9. Which logic gate implements the Boolean function A⋅B?  

a) OR gate  

b) AND gate  

c) NOT gate  

d) XOR gate  

Short Answer Questions  

1. Define Boolean algebra and its significance.  

2. What are Boolean identities? Give two examples.  

3. Explain the concept of switching algebra.  

4. What is a minterm in Boolean algebra?  

5. How is a Boolean algebra different from an ordinary algebraic  

system?  
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6. What are subalgebras in Boolean algebra?  

7. Define sum-of-products (SOP) form of Boolean expression.  

8. What is a Karnaugh Map (K-map), and why is it useful?  

9. How does Boolean algebra apply to digital circuits?  

10. Describe the role of NOT, AND, and OR gates in Boolean logic.  

Long Answer Questions  

Notes  

1. Explain the fundamental laws and identities of Boolean algebra with  

examples.  

2. Describe the structure of a Boolean algebra as a lattice and its  

properties.  

3. Discuss the concept of minterms and maxterms in Boolean algebra  

with examples.  

4. Explain the different forms of Boolean expressions and their  

equivalence.  

5. How is Boolean algebra applied in the design of digital circuits?  

6. What is the importance of minimization in Boolean algebra?  

Explain different techniques.  

7. Compare and contrast sum-of-products (SOP) & product-of-sums  

(POS) forms.  

8. Discuss the role of homomorphism in Boolean algebra.  

9. How does Boolean algebra relate to the design of computer  

processors and logic circuits?  
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MODULE IV  

UNIT XII  

Notes  

FINITE STATE MACHINES AND AUTOMATA  

Objectives  

• To understand the concept of finite state machines (FSM) and their  

transition diagrams.  

• To analyze the equivalence of finite state machines and their  

minimization.  

•

•

•

•

To study reduced machines and their significance.  

To explore the concept of homomorphism in FSM.  

To understand finite automata and acceptors.  

To differentiate between deterministic and non-deterministic finite  

automata.  

• To study Moore and Mealy machines and their applications.  

4.1 Introduction to Finite State Machines (FSM)  

Finite State Machine (FSM) is mathematical model of computation used to  

design both computer programs and sequential logic circuits. It is an abstract  

machine that can be in exactly one of a finite number of states at any given  

time. The FSM can change from one state to another in response to some  

inputs; the change from one state to another is called a transition.  

Definition  

• finite state machine is formally defined as 5-tuple (Q, Σ, δ, q0, F)  

where:  

Q is a limited collection of states.  

•

•

The alphabet is a limited collection of input symbols.  

The transition function is denoted by δ. The initial state is q0, where  

q0 ∈ Q. Q × Σ → Q  

• F is the collection of accepting or final states, where F ⊆ Q.  

Key Characteristics of FSMs  
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1. Finite number of states: An FSM can only be in one of a limited  5151
Notes  

number of states at any given time.  1313

2. State transitions: The machine moves from one state to another  

based on input and its current state.  

3. Determinism: In a deterministic FSM, for each state and input  

symbol, there is exactly one next state.  

4. Memory limitations: FSMs have no additional memory beyond the  

state itself.  

Applications of FSMs  

Numerous fields make extensive use of finite state machines:  

text editors  

2. Communication Protocols: Used to define network protocols and  

communication systems  

3. Digital Circuit Design: Used to model sequential circuits  

4. Game Development: Used for character behavior and game state  

management  

5. Natural Language Processing: Used in tokenization and simple  

parsing  

6. Control Systems: Used to model and implement control logic  

Example of a Simple FSM  

Consider a turnstile at a subway entrance that can be in one of two states:  5151

Locked or Unlocked.  

•

•

Initial state: Locked  

Inputs: Insert coin, Push  

The behavior can be described as:  

• When the turnstile is Locked and a coin is inserted, it transitions to  

Unlocked  
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• When the turnstile is Unlocked and is pushed, it transitions to  

Locked  
Notes  

•

•

When the turnstile is Locked and is pushed, it remains Locked  

When the turnstile is Unlocked and a coin is inserted, it remains  

Unlocked  

This simple example demonstrates the fundamental concept of states and  

transitions in FSMs.  

4.2 Transition Table and Diagrams of FSM  

To represent a finite state machine, we commonly use two visual tools:  

transition tables and transition diagrams.  

Transition Tables  

A transition table is a tabular representation of the transition function δ. It  

shows all possible states, inputs, and the resulting next states.  

The format of a transition table typically has:  

•

•

•

Rows representing current states  

Columns representing input symbols  

Entries showing the next state for each state-input pair  

Example Transition Table  

For our turnstile example:  

Current State Input: Coin Input: Push  

Locked  Unlocked  

Unlocked  

Locked  

Locked  Unlocked  

Transition Diagrams  

A transition diagram (or state diagram) is a directed graph representation of  

an FSM where:  

•

•

•

Nodes represent states (often drawn as circles)  

Directed edges represent transitions between states  

Edge labels indicate the input symbol that triggers the transition  
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•

•

The initial state is marked with an incoming arrow  

Final/accepting states are represented by double circles  

Notes  

How to Draw a Transition Diagram  

1. Draw a circle for each state in the FSM  

2. Mark the initial state with an incoming arrow  

3. Draw double circles for accepting states  

4. For each transition in the transition table, draw a directed edge from  

the current state to the next state, labeled with the input symbol  

Example Transition Diagram  

For the turnstile example:  

┌─────────┐ coin ┌──────────┐  

│ │ ─────────>  

│ Locked │ │ Unlocked │  

│ <─────────  

└─────────┘ push └──────────┘  

│

│ │

↑ │

│ push  │

└─────────────────────┘  

Extended Notation  

In more complex FSMs, we might use extended notation in diagrams:  

•

•

•

Multiple labels on a single edge (indicating multiple inputs causing  

the same transition)  

Multiple transitions with the same label (indicating non-  

determinism)  

ε-transitions (transitions without consuming input)  

Transition Table for Multiple Input Symbols  
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For more complex FSMs with multiple input symbols, the transition table  

expands to include all possible inputs:  
Notes  

State Input 1 Input 2 ... Input n  

q0  

q1  

...  

δ(q0,1) δ(q0,2) ... δ(q0,n)  

δ(q1,1) δ(q1,2) ... δ(q1,n)  

...  ...  ... ...  

qm  δ(qm,1) δ(qm,2) ... δ(qm,n)  

Where δ(qi,j) represents the next state when the current state is qi and the  

input is j.  

Converting Between Representations  

The transition table and diagram are equivalent representations of the same  

From Table to Diagram:  

1. Create a node for each state in the table  

2. For each entry in the table, draw an edge from the current state to  

the next state with the corresponding input label  

From Diagram to Table:  

1. List all states as rows  

2. List all input symbols as columns  

3. Fill in the table by following the edges in the diagram  

4.3 Equivalence of Finite State Machines  

If two finite state machines accept same language or generate same output,  

they are regarded as equivalent. To put it another way, they act in the same  

way for every potential input sequence.  

Definition of Equivalence  

Two FSMs A and B are equivalent if:  

1. They have the same input alphabet Σ  

2. For any input string w ∈Σ*:  
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o

o

If A is an acceptor: A accepts w if and only if B accepts w  Notes  

If A is a transducer: A produces output y when given input w  

if and only if B produces the same output y when given the  

same input w  

State Equivalence  

Within a single FSM, two states p & q are equivalent if:  

1. Both are accepting states or both are non-accepting states  

2. For any input symbol ∈Σ, the states δ(p,a) and δ(q,a) are equivalent  

This recursive definition needs a base case: two states are distinguishable if  

one is accepting and the other is not.  

To determine if two FSMs are equivalent, we can:  

1. Construct a product machine: Combine the two machines and  

check if the behavior is consistent  

2. Minimize both machines: Reduce both machines to their minimal  

form and check if they are isomorphic  

3. Table-filling algorithm: Systematically identify distinguishable  

state pairs  

Table-Filling Algorithm  

This algorithm identifies non-equivalent states:  

1. Create a table with rows and columns representing all states  

(excluding redundant pairs)  

2. Initially mark pairs where one state is accepting and the other is  

non-accepting  

3. Iteratively mark more pairs: if states p and q transition to states p'  

and q' on some input a, and p' and q' are marked as non-equivalent,  

then mark p and q as non-equivalent  

4. Continue until no more pairs can be marked  

5. The unmarked pairs represent equivalent states  
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Notes  

Consider two FSMs M1 and M2 with the following transition tables:  

FSM M1:  

State Input: 0 Input: 1 Accepting?  

A

B

C

D

B

A

D

C

C

D

A

B

No  

No  

No  

FSM M2:  

State Input: 0 Input: 1 Accepting?  

P Q

P

R

S

No  

No  

No  

Q

R

S

S P

R Q

To check if these machines are equivalent, we can verify that:  

•

•

•

•

A and P are both non-accepting and have similar transition patterns  

B and Q are both non-accepting and have similar transition patterns  

C and R are both non-accepting and have similar transition patterns  

D and S are both accepting and have similar transition patterns  

Therefore, M1 and M2 are equivalent.  

4.4 Reduced Finite State Machines  

A reduced (or minimal) finite state machine is one that has the minimum  

possible number of states while preserving the same behavior as the original  

machine.  

Importance of State Minimization  

Minimizing FSMs is important for:  
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1. Efficiency: Reduces implementation complexity and resource  Notes  
requirements  

2. Clarity: Makes the machine easier to understand and analyze  

3. Implementation costs: Reduces hardware costs for physical  

implementations  

State Minimization Algorithm  

The process of creating a reduced FSM involves identifying and merging  

equivalent states:  

1. Identify Equivalent States:  

o

o

Use the table-filling algorithm described earlier  

Find all pairs of states that are equivalent  

2. Merge Equivalent States:  

o

o

Create a new state for each equivalence class  

Define transitions for these new states based on  

representatives from the original machine  

3. Generate the Reduced Machine:  

o The states of the reduced machine are the equivalence  

classes  

o

o

The transitions are derived from the original transitions  

The initial state is the equivalence class containing the  

original initial state  

o The accepting states are the equivalence classes containing  

original accepting states  

Partition Refinement Method  

Another approach for minimization is the partition refinement method:  

1. Start with a partition containing two blocks: accepting states and  

non-accepting states  
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2. Refine the partition: Split blocks if states in the same block  

transition to states in different blocks on some input  
Notes  

3. Repeat until no further refinement is possible  

4. Each block in the final partition represents a state in the minimized  

machine  

Example of State Minimization  

Consider an FSM with states {S0, S1, S2, S3, S4, S5} and the following  

transition table:  

State Input: 0 Input: 1 Accepting?  

S0  

S1  

S2  

S3  

S4  

S5  

S1  

S1  

S1  

S4  

S4  

S4  

S2  

S3  

S3  

S5  

S5  

S5  

No  

No  

Step 1: Initial partition based on accepting/non-accepting states:  

•

•

Block 1: {S0, S3, S4, S5} (accepting states)  

Block 2: {S1, S2} (non-accepting states)  

Step 2: Refine Block 1 based on transitions:  

• For input 0: S0→S1 (Block 2), S3→S4 (Block 1), S4→S4 (Block  
1), S5→S4 (Block 1)  

• We split Block 1 into {S0} and {S3, S4, S5}  

Step 3: Further refinement:  

• No further refinement is possible  

Final partition:  

•

•

•

Block A: {S0}  

Block B: {S1, S2}  

Block C: {S3, S4, S5}  

The minimized machine has 3 states instead of the original 6.  
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UNIT XIII  Notes  

4.5 Homomorphism in FSM  

Homomorphism is a structure-preserving mapping between two algebraic  

structures. In the context of FSMs, it refers to a mapping between states of  

two machines that preserves transitions.  

Definition of FSM Homomorphism  

A homomorphism from FSM M1 = (Q1, Σ, δ1, q01, F1) to FSM M2 = (Q2,  

Σ, δ2, q02, F2) is a function h: Q1 → Q2 such that:  

1. h(q01) = q02 (initial states map to initial states)  

2. For all q ∈ Q1 and a ∈Σ, h(δ1(q, a)) = δ2(h(q), a) (transitions are  

preserved)  

3. q ∈ F1 if and only if h(q) ∈ F2 (accepting states map to accepting  

states)  

Types of Homomorphisms  

1. Isomorphism: A bijective homomorphism (one-to-one and onto  

mapping between states), meaning the two machines are structurally  

identical  

2. Epimorphism: A surjective homomorphism (onto mapping),  

meaning each state in M2 has at least one corresponding state in M1  

3. Monomorphism: An injective homomorphism (one-to-one  

mapping), meaning distinct states in M1 map to distinct states in M2  

4. Endomorphism: A homomorphism from a machine to itself  

Properties of Homomorphism  

1. Composition: The composition of two homomorphisms is also a  

homomorphism  

2. Identity: The identity mapping is a homomorphism  

Preservation of behavior: If h is a homomorphism from M1 to M2, then  

any string approved by M1 is likewise approved by M2  

Example of Homomorphism  
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Consider these two FSMs:  Notes  

FSM M1 with states {A, B, C, D}:  

State Input: 0 Input: 1 Accepting?  

A

B

C

D

B

A

D

C

C

D

A

B

No  

No  

State Input: 0 Input: 1 Accepting?  

P P Q

P

No  

Q Q

A homomorphism h: M1 → M2 could be defined as:  

•

•

•

•

h(A) = P  

h(B) = P  

h(C) = Q  

h(D) = Q  

This mapping preserves transitions and acceptance properties.  

Significance of Homomorphism  

Homomorphisms help us understand the structural relationships between  77777

different machines and can be used to:  

1. Study the common patterns in different machine designs  

2. Transform one machine into another while preserving certain  

properties  

complex specification  

4. Classify machines into equivalence classes based on their behavior  
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UNIT XIV  Notes  

4.6 Finite Automata and Acceptor Machines  

A particular kind of finite state machine that prioritizes language recognition  

above computation with output is called a finite automaton.  

Definition of Finite Automata  

A 5-tuple (Q, Σ, δ, q0, F) is called a finite automaton (FA) where:  

Q is a limited collection of states.  

• The alphabet, or Σ, is a limited collection of input symbols.  

• For deterministic FA, δ is the transition function, which is Q × Σ → Q.  

• The starting state is q0, where q0 ∈ Q.  

• F is the collection of accepting or final states, where F ⊆Q.Language  

Recognition  

The primary purpose of a finite automaton is to accept or reject input strings:  

•

•

The automaton starts in its initial state  

It processes each symbol of the input string one by one, making  

transitions according to δ  

•

•

After processing the entire input, if the machine is in an accepting  

state, string is accepted; otherwise, it is rejected  

set of all strings accepted by an automaton is called language of A,  

denoted L(A)  

Types of Finite Automata  

There are several types of finite automata:  

1. Deterministic Finite Automaton (DFA): For each state and input  

symbol, there is exactly one next state  

2. Nondeterministic Finite Automaton (NFA): Can have multiple  

possible next states for a given state and input  

3. NFA with ε-transitions (ε-NFA): Can make transitions without  

consuming an input symbol  
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4. Two-way Finite Automaton: Can move in both directions on the  Notes  
input tape  

5. Finite Automaton with Output: Produces output based on  

transitions (transducer)  

Acceptor Machines  

An acceptor machine is a finite automaton whose sole purpose is to accept  

or reject input strings. It has a binary output: accept or reject.  

Key characteristics of acceptor machines:  

1. They do not produce any additional output beyond  

acceptance/rejection  

2. They are used to recognize formal languages  

3. They either halt in an accepting state (string accepted) or a non-  

accepting state (string rejected)  

Formal Languages and Automata  

Formal languages are sets of strings defined over an alphabet. Finite  

automata recognize a specific class of formal languages called regular  

languages.  

The relationship between automata and languages:  

• Each finite automaton recognizes exactly one regular language  

A finite automaton can recognize any regular language.  

• Union, intersection, and complement operations close regular languages.  

Example of an Acceptor Machine  

Let's design a DFA that accepts binary strings that have an even number of  

1s:  

States: {q0, q1} where q0 is the initial and accepting state Transitions:  

•

•

•

•

δ(q0, 0) = q0 (staying in the same state if we read a 0)  

δ(q0, 1) = q1 (changing to q1 if we read a 1 from q0)  

δ(q1, 0) = q1 (staying in q1 if we read a 0)  

δ(q1, 1) = q0 (changing back to q0 if we read a 1 from q1)  
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Accepting states: {q0}  Notes  

This automaton will accept strings like "", "0", "00", "11", "101", etc. (any  

string with an even number of 1s).  

4.7 Deterministic Finite Automata (DFA)  

Deterministic Finite Automaton (DFA) is finite state machine where each  77777

state has exactly one transition for each possible input symbol.  

Formal Definition of DFA  

A DFA is a 5-tuple (Q, Σ, δ, q0, F) where:  

•

•

•

•

•

Q is a finite set of states  77777

Σ is a finite set of input symbols (the alphabet)  

δ is the transition function: Q × Σ → Q  

q0 is the initial state, where q0 ∈ Q  

F is set of final or accepting states, where F ⊆ Q  

Key Properties of DFAs  

1. Determinism: For each state and input symbol, there is exactly one  

next state  

2. Completeness: A transition is defined for every state and input  

symbol combination  

3. No ε-transitions: Transitions occur only when an input symbol is  

consumed  

4. Unique initial state: There is exactly one start state  

5. Zero or more final states: There can be multiple accepting states  

Extending the Transition Function  

The transition function δ is defined for single input symbols, but we can  

extend it to handle strings:  

•

•

Define δ*(q, ω) as the state reached from state q after processing  

string ω  

Base case: δ*(q, ε) = q (empty string leaves the state unchanged)  
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• Recursive case: δ*(q, ωa) = δ(δ*(q, ω), a) for any string ω and  Notes  
symbol a  

Language Accepted by a DFA  

The language L(A) accepted by DFA A = (Q, Σ, δ, q0, F) is: L(A) = {ω ∈Σ* |  

δ*(q0, ω) ∈ F}  

This represents all strings that, when processed starting from initial state,  

lead to an accepting state.  

DFA Operations  

Common operations on DFAs include:  

1. Complement: Switching accepting & non-accepting states creates a  

DFA that accepts the complement language  

2. Union: Combining two DFAs to create a new DFA that accepts  

strings accepted by either of the original DFAs  

3. Intersection: Creating a DFA that accepts only strings accepted by  

both original DFAs  

4. Concatenation: Creating a DFA that accepts concatenations of  

strings from two languages  

5. Kleene Star: Creating a DFA that accepts any number of  

concatenations of strings from a language  

Constructing DFAs  

To construct a DFA for a specific language, follow these steps:  

1. Identify states based on what the machine needs to "remember"  

about the input processed so far  

2. Determine the initial state  

3. Define transitions for each state and input symbol  77777

4. Identify which states should be accepting states  

Example: Constructing a DFA  

Design a DFA to accept binary strings that are multiples of 3:  
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Step 1: We need to keep track of the remainder when dividing by 3, so we  

need three states:  
Notes  

•

•

•

q0: remainder 0 (initial and accepting state)  

q1: remainder 1  

q2: remainder 2  

Step 2: Define transitions based on how binary digits affect the remainder:  

•

•

For a number n, appending 0 gives 2n, and appending 1 gives 2n+1  

So the remainders change as follows:  

o

o

o

From remainder 0: digit 0 → remainder 0, digit 1 →  

remainder 1  

From remainder 1: digit 0 → remainder 2, digit 1 →  

remainder 0  

From remainder 2: digit 0 → remainder 1, digit 1 →  

remainder 2  

Step 3: Create the transition table:  

State Input: 0 Input: 1  

q0  

q1  

q2  

q0  

q2  

q1  

q1  

q0  

q2  

Step 4: The accepting state is q0 (remainder 0)  

This DFA will accept binary strings like "", "11", "110", "1001", etc. (all  

binary representations of multiples of 3).  

Solved Problems  

Problem 1: Design a DFA for Strings Ending with "01"  

Problem: Design deterministic finite automaton that accepts all binary  

strings that end with substring "01".  

Solution:  
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1. States: We need to keep track of whether we've seen a "0" followed  Notes  
by a "1" at the end of the string.  77777

o

o

o

q0: Initial state (haven't seen anything relevant yet)  

q1: Have seen a "0" (waiting for a "1")  

q2: Have seen "01" (accepting state)  

2. Transitions:  

o

o

o

From q0 with input 0: Go to q1 (potential start of "01")  

From q0 with input 1: Stay in q0 (reset)  

From q1 with input 0: Stay in q1 (still waiting for "1", but  

update the "0")  

o

o

o

From q1 with input 1: Go to q2 (pattern "01" completed)  

From q2 with input 0: Go to q1 (new potential start of "01")  

From q2 with input 1: Go to q0 (pattern broken)  

3. Transition Table:  

State Input: 0 Input: 1  

q0  q1  

q1  

q1  

q0  

q2  

q0  

q1  

q2  

4. Initial State: q0  

5. Accepting States: {q2}  

o

o

o

o

String "01": q0 → q1 → q2 (Accepted)  

String "1101": q0 → q0 → q0 → q1 → q2 (Accepted)  

String "010": q0 → q1 → q2 → q1 (Rejected)  

String "011": q0 → q1 → q2 → q0 (Rejected)  

Problem 2: Minimize a DFA  
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Problem: Minimize the following DFA:  Notes  

States: {q0, q1, q2, q3, q4, q5} Alphabet: {0, 1} Transitions:  

•

•

•

•

•

•

δ(q0, 0) = q1, δ(q0, 1) = q2  

δ(q1, 0) = q3, δ(q1, 1) = q4  

δ(q2, 0) = q3, δ(q2, 1) = q4  

δ(q3, 0) = q3, δ(q3, 1) = q5  

δ(q4, 0) = q3, δ(q4, 1) = q5  

δ(q5, 0) = q3, δ(q5, 1) = q5 Initial state: q0 Accepting states: {q3,  

q5}  

Solution:  

1. Initial Partition: Separate accepting and non-accepting states  

o

o

P1 = {q3, q5} (accepting states)  

P2 = {q0, q1, q2, q4} (non-accepting states)  

2. Refine Partitions:  

o For P2:  

▪

▪

▪

On input 0: q0→q1, q1→q3, q2→q3, q4→q3  

On input 1: q0→q2, q1→q4, q2→q4, q4→q5  

States q1, q2, q4 all go to P1 on input 0, while q0  

doesn't  

▪ States q0, q1, q2 go to different places on input 1  

Refine P2 into {q0}, {q1}, {q2}, {q4}  ▪

o For P1:  

▪

▪

▪

On input 0: q3→q3, q5→q3  

On input 1: q3→q5, q5→q5  

These transitions are consistent, so P1 remains {q3,  

q5}  

3. Further Refinement:  
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o

o

o

Check if states {q1, q2, q4} have consistent transitions  

given their current partitions  
Notes  

q1, q2, q4 all transition to the same partitions on respective  

inputs  

Therefore, {q1, q2, q4} can be combined into one partition  

4. Final Partitions:  

o

o

o

P1 = {q3, q5} (accepting states)  

P2 = {q0}  

P3 = {q1, q2, q4}  

5. Minimized DFA:  

o

o

o

States: {[q0], [q1, q2, q4], [q3, q5]}  

Let's rename them as {A, B, C}  

Transitions:  

▪

▪

▪

δ(A, 0) = B, δ(A, 1) = B  

δ(B, 0) = C, δ(B, 1) = C  

δ(C, 0) = C, δ(C, 1) = C  

o

o

Initial state: A  

Accepting states: {C}  

The minimized DFA has 3 states instead of the original 6.  

Problem 3: Prove Two FSMs are Equivalent  3838

Problem: Prove that the following two FSMs are equivalent:  

FSM M1:  

•

•

•

States: {q0, q1, q2}  

Alphabet: {a, b}  

Transitions:  

o δ(q0, a) = q1, δ(q0, b) = q2  
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o

o

δ(q1, a) = q0, δ(q1, b) = q2  

δ(q2, a) = q2, δ(q2, b) = q2  

Notes  

•

•

Initial state: q0  

Accepting states: {q0, q1}  

FSM M2:  

•

•

•

States: {s0, s1}  

Alphabet: {a, b}  

Transitions:  

o

o

δ(s0, a) = s1, δ(s0, b) = s1  

δ(s1, a) = s0, δ(s1, b) = s1  

•

•

Initial state: s0  

Accepting states: {s0}  

Solution:  

1. Examine State Behaviors:  

•

•

•

Strings containing an even number of "a"s and no "b"s are  

accepted by state q0.  

Strings with an odd number of "a"s and no "b"s are accepted by  

state q1.  

All strings are rejected by state q2, which is a "trap" state from  

which you cannot escape.  

•

•

•

•

•

'b' in any string results in q2, which is unacceptable.  

oIn M2:  

with an even number of 'a's are accepted by state s0.  

with an odd number of 'a's are accepted by state s1.  

that finish in s0 may be acceptable if they contain 'b's.  

2. Trace Sample Strings:  

o

o

String "": In M1, stays at q0 (accepting); in M2, stays at s0  

(accepting)  

String "a": In M1, goes to q1 (accepting); in M2, goes to s1  

(non-accepting)  
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o

o

String "aa": In M1, q0→q1→q0 (accepting); in M2,  

s0→s1→s0 (accepting)  
Notes  

String "b": In M1, q0→q2 (non-accepting); in M2, s0→s1  

(non-accepting)  

Wait, the FSMs are giving different outputs for the string "a"! M1 accepts it,  

but M2 doesn't.  

3. Conclusion: The two FSMs are not equivalent because they produce  

different results for at least one input string.  

This example shows how important it is to carefully analyze machine  

behavior and test with concrete examples when comparing FSMs.  

Problem 4: Design an FSM to Control a Vending Machine  

Problem: Design finite state machine for simple vending machine that  

accepts nickels (5¢) & dimes (10¢) for a product that costs 15¢. The  

Solution:  

1. States: We need states to track the amount of money inserted so far  

o

o

o

o

o

o

q0: Initial state (0¢ inserted)  

q5: 5¢ inserted  

q10: 10¢ inserted  

q15: 15¢ inserted (enough to dispense product)  

q20: 20¢ inserted (product dispensed, 5¢ returned)  

q25: 25¢ inserted (product dispensed, 10¢ returned)  

2. Inputs: {nickel, dime}  

3. Transitions:  

o

o

o

o

δ(q0, nickel) = q5  

δ(q0, dime) = q10  

δ(q5, nickel) = q10  

δ(q5, dime) = q15 (dispense product)  
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o

o

o

o

o

o

δ(q10, nickel) = q15 (dispense product)  

δ(q10, dime) = q20 (dispense product, return 5¢)  

δ(q15, nickel) = q20 (dispense product, return 5¢)  

δ(q15, dime) = q25 (dispense product, return 10¢)  

δ(q20, nickel) = q25 (dispense product, return 10¢)  

δ(q20, dime  

Notes  

4.8 Non-Deterministic Finite Automata  

Non-deterministic Finite Automata (NFA) represent a powerful extension of  

Deterministic Finite Automata (DFA). Unlike DFAs, where for each state  

and input symbol there is exactly one next state, NFAs allow for multiple  

possible transitions or even no transition at all.  

Definition of an NFA  

Non-deterministic Finite Automaton (NFA) is formally defined as 5-tuple:  

M = (Q, Σ, δ, q0, F) where:  

•

•

•

•

Q is finite set of states  

δ is transition function: δ: Q × (Σ ∪ {ε}) → P(Q)  

q0 is initial or start state (q0 ∈ Q)  

F is set of final or accepting states (F ⊆ Q)  

Note: P(Q) represents the power set of Q, meaning the transition function  

can map to any subset of states (including the empty set).  

Key Characteristics of NFAs  

1. Multiple Transitions: For a given state and input symbol, an NFA  

can transition to multiple states.  

2. Epsilon (ε) Transitions: NFAs can make transitions without  

consuming any input symbol, these are called epsilon transitions.  

3. No Transitions: For some state-input combinations, there may be  

no defined transitions (which is equivalent to transitioning to an  

empty set of states).  

Accepting a String in an NFA  
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A string is accepted by an NFA if there exists at least one path from start  

state to any accepting state that consumes entire input string. This differs  

from DFAs where a string is only accepted if the single possible path leads  

to an accepting state.  

Notes  

Example of an NFA  

Consider an NFA that accepts strings that end with "ab" over the alphabet  

{a, b}:  

States: Q = {q0, q1, q2} Alphabet: Σ = {a, b} Start state: q0 Final states: F =  

{q2} Transition function:  

•

•

•

•

•

δ(q0, a) = {q0, q1}  

δ(q0, b) = {q0}  

δ(q1, b) = {q2}  

δ(q2, a) = ∅  

δ(q2, b) = ∅  

This NFA works by staying in state q0 for any number of 'a's and 'b's, then  

when it sees an 'a', it can optionally move to state q1. From q1, if it sees a 'b',  

it moves to the accepting state q2.  

Epsilon (ε) NFA  

An ε-NFA is an NFA that also allows transitions on the empty string ε. This  

means the automaton can change its state without reading any input symbol.  3131

For example, if we have δ(q0, ε) = {q1, q2}, then from state q0, the  

automaton can spontaneously move to state q1 or q2 without consuming any  

input.  

Epsilon Closure  

The ε-closure of a state q, denoted as ε-closure(q), q by following zero or  

more ε-transitions.  

For a set of states S, ε-closure(S) = ∪q∈Sε-closure(q).  3838

4.9 Equivalence of DFA and NFA  
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Despite their differences, DFAs and NFAs are equivalent in terms of  

languages they can recognize.  
Notes  

Theorem  

For every NFA, there exists an equivalent DFA that accepts exactly the same  

language.  

Proof Sketch (NFA to DFA Conversion)  

We can convert any NFA to an equivalent DFA using the subset construction  

method:  

1. The states of the DFA are subsets of the NFA states (elements of  

power set P(Q)).  

2. start state of the DFA is the ε-closure of the NFA's start state.  

3. A state in the DFA is accepting if it contains at least one accepting  

state from the NFA.  

4. For each DFA state S (a subset of NFA states) and input symbol a,  

transition function is defined as: δ_DFA(S, a)  = ε-  

closure(∪q∈Sδ_NFA(q, a))  

Example of NFA to DFA Conversion  

Let's convert the NFA from our previous example to a DFA:  

NFA:  

•

•

•

•

•

States: Q = {q0, q1, q2}  

Alphabet: Σ = {a, b}  

Start state: q0  

Final states: F = {q2}  

Transitions:  

o

o

o

o

δ(q0, a) = {q0, q1}  

δ(q0, b) = {q0}  

δ(q1, b) = {q2}  

δ(q2, a) = ∅  
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o δ(q2, b) = ∅  Notes  

DFA Construction:  

1. Start state of DFA: {q0}  

2. For δ_DFA({q0}, a):  

o

o

δ_NFA(q0, a) = {q0, q1}  

So δ_DFA({q0}, a) = {q0, q1}  

3. For δ_DFA({q0}, b):  

o

o

δ_NFA(q0, b) = {q0}  

So δ_DFA({q0}, b) = {q0}  

4. For δ_DFA({q0, q1}, a):  

o

o

δ_NFA(q0, a) ∪δ_NFA(q1, a) = {q0, q1} ∪∅ = {q0, q1}  

So δ_DFA({q0, q1}, a) = {q0, q1}  

5. For δ_DFA({q0, q1}, b):  

o

o

δ_NFA(q0, b) ∪δ_NFA(q1, b) = {q0} ∪ {q2} = {q0, q2}  

So δ_DFA({q0, q1}, b) = {q0, q2}  

6. For δ_DFA({q0, q2}, a):  

o

o

δ_NFA(q0, a) ∪δ_NFA(q2, a) = {q0, q1} ∪∅ = {q0, q1}  

So δ_DFA({q0, q2}, a) = {q0, q1}  

7. For δ_DFA({q0, q2}, b):  

o

o

δ_NFA(q0, b) ∪δ_NFA(q2, b) = {q0} ∪∅ = {q0}  

So δ_DFA({q0, q2}, b) = {q0}  

The resulting DFA has:  

•

•

•

•

States: {{q0}, {q0, q1}, {q0, q2}}  

Start state: {q0}  

Final states: {{q0, q2}}  

Transitions as defined above  
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DFA to NFA Conversion  Notes  

Converting a DFA to an NFA is straightforward since every DFA is already  

an NFA. We can simply maintain the same states, transitions, start state, and  

final states, but represent the transition function in the NFA format.  

State Complexity  

While DFAs and NFAs are equivalent in power, NFAs can often represent  

the same language with fewer states. In the worst case, when converting an  

NFA with n states to a DFA, the resulting DFA may have up to 2^n states.  

4.10 Moore and Mealy Machines  

Moore and Mealy machines are types of finite state transducers used to  

model systems that produce output based on input and state transitions.  

Moore Machine  

Moore machine is a 6-tuple M = (Q, Σ, Δ, δ, λ, q0) where:  

•

•

•

•

•

•

Q is a finite set of states  3131

Σ is a finite set of input symbols  

Δ is a finite set of output symbols  

δ is the transition function: δ: Q × Σ → Q  

λ is the output function: λ: Q → Δ  

q0 is the start state  

In Moore machine, output depends only on current state, not on input  

symbol.  

Example of a Moore Machine  

Consider a Moore machine for a simple vending machine that accepts  

nickels (N) and dimes (D), and dispenses candy (C) when 15 cents or more  

is inserted:  

States: Q = {0, 5, 10, 15} Input alphabet: Σ = {N, D} Output alphabet: Δ =  

{0, C} Start state: q0 = 0  

Transition function δ:  

• δ(0, N) = 5  
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•

•

•

•

•

•

•

δ(0, D) = 10  

δ(5, N) = 10  

δ(5, D) = 15  

δ(10, N) = 15  

δ(10, D) = 15  

δ(15, N) = 15  

δ(15, D) = 15  

Notes  

Output function λ:  

•

•

•

•

λ(0) = 0  

λ(5) = 0  

λ(10) = 0  

λ(15) = C  

Mealy Machine  

Mealy machine is also a 6-tuple M = (Q, Σ, Δ, δ, λ, q0) but with a different  

output function:  

Q is a limited collection of states.  

A finite set of input symbols is represented by Σ, and a finite set of output  

symbols by Δ.  

The transition function is denoted by δ. δ: Q × Σ → Q  

• The output function is represented by λ: Q × Σ → Δ.  

• The initial state is q0.In a Mealy machine, output depends on both current  

state & the input symbol.  

Example of Mealy Machine  

Let's reimagine vending machine as a Mealy machine:  

States: Q = {0, 5, 10} Input alphabet: Σ = {N, D} Output alphabet: Δ = {0,  

C} Start state: q0 = 0  

Transition function δ:  
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•

•

•

•

•

•

δ(0, N) = 5  

δ(0, D) = 10  

δ(5, N) = 10  

δ(5, D) = 0  

δ(10, N) = 0  

δ(10, D) = 0  

Notes  

Output function λ:  

•

•

•

•

•

•

λ(0, N) = 0  

λ(0, D) = 0  

λ(5, N) = 0  

λ(5, D) = C  

λ(10, N) = C  

λ(10, D) = C  

Comparison of Moore and Mealy Machines  

1. Output Generation:  

o

o

Moore: Output depends only on current state  

Mealy: Output depends on both current state and current  

input  

2. Timing:  

o

o

Moore: Output is associated with the state  

Mealy: Output is associated with the transition  

3. Number of States:  

o Mealy machines can often achieve the same functionality  

with fewer states than Moore machines  

4. Equivalence:  

o Every Moore machine can be changed into a comparable  

Mealy machine  
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o Every Mealy machine can be changed into a comparable  33

Moore machine  
Notes  

Conversion Between Moore and Mealy Machines  

Mealy to Moore Conversion  

To convert a Mealy machine to a Moore machine:  

1. For each state q and each input symbol a in the Mealy machine,  

create a new state (q, a) in the Moore machine  

2. Set the output of each new state (q, a) to λ_Mealy(q, a)  

3. For each transition δ_Mealy(q, a) = p, create transitions from all  

states (q, b) to the state (p, c) where c is the input symbol  

Moore to Mealy Conversion  

A Moore machine can be changed into a Mealy machine by:  

1. Keep the same set of states  

2. For each transition δ_Moore(q, a) = p, set the Mealy output function  

λ_Mealy(q, a) = λ_Moore(p)  

4.11 Applications of Finite State Machines  

Finite State Machines (FSMs) have numerous practical applications across  

various fields:  

1. Lexical Analysis in Compilers  

Lexical analyzers (lexers) use FSMs to identify tokens in source code. For  

example, recognizing identifiers, keywords, numbers, and operators in a  

programming language.  

Example: A simple FSM for recognizing C-style identifiers (starting with  

letter or underscore, followed by letters, digits, or underscores):  

•

•

•

Start state checks for letter or underscore  

If valid, transition to "valid identifier" state  

In "valid identifier" state, accept more letters, digits, or underscores  

FSMs are used in regular expression engines to match patterns in text.  
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2. Text Processing and Pattern Matching  

Example: An FSM for matching email addresses could have states for  

checking the local part, the @ symbol, and the domain part.  
Notes  

3. Digital Circuit Design  

Sequential circuits can be modeled using FSMs, with flip-flops representing  

states and combinational logic implementing transitions.  

Example: A 3-bit binary counter can be modeled as an FSM with 8 states,  

with transitions representing the increment operation.  

4. Protocol Specification  

Network protocols are often specified using state machines to define valid  

sequences of messages



sequences of messages.  

Example: In the TCP protocol, a connection goes through states like  

CLOSED, LISTEN, SYN_SENT, ESTABLISHED, etc., with transitions  

based on received packets.  

5. Natural Language Processing  

FSMs can be used to model grammar rules and parse simple language  

constructs.  

Example: A part-of-speech tagger might use an FSM to identify noun  

phrases or verb phrases in a sentence.  

6. Game Programming  

Character behavior, game logic, and AI decision-making are often  

implemented using FSMs.  

Example: An enemy NPC might have states like PATROL, CHASE,  

health.  

7. Embedded Systems and Control Systems  

FSMs are used to model and implement the behavior of embedded and  

control systems.  

Example: A microwave oven controller might have states like IDLE,  

COOKING, and PAUSED, with transitions based on buttons pressed and  

timer events.  
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ATTACK, and RETREAT, with transitions based on player proximity and  

8. User Interface Design  Notes  

UI workflows can be modeled as FSMs to ensure valid state transitions.  

Example: A login form might have states like INITIAL, VALIDATING,  

SUCCESS, and ERROR, with transitions based on user inputs and server  

responses.  

Model-based testing uses FSMs to generate test cases by exploring possible  

state transitions.  

Example: Testing a web application by modeling it as an FSM and  

generating test sequences that cover all transitions.  

10. Biological Systems Modeling  

FSMs can model biological processes like gene regulation, cell signaling,  

and metabolic pathways.  

Example: A gene regulatory network might be modeled as an FSM with  

states representing gene expression levels and transitions representing  

regulatory interactions.  

Solved Problems  

Problem 1: NFA Construction and String Acceptance  

Construct an NFA that accepts strings over {a, b} where the third-to-last  

character is 'a'. Then determine whether the string "bababa" is accepted.  

Solution:  

We need an NFA that accepts any string where the third-to-last character is  

9. Automated Testing  



'a'.  

Step 1: Construct the NFA. Let's define our NFA:  

•

•

•

•

States: Q = {q0, q1, q2, q3}  

Alphabet: Σ = {a, b}  

Start state: q0  

Final states: F = {q3}  

The transitions are:  
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•
18

•

•

•

•

•

δ(q0, a) = {q0, q1}  

δ(q0, b) = {q0}  

δ(q1, a) = {q2}  

δ(q1, b) = {q2}  

δ(q2, a) = {q3}  

δ(q2, b) = {q3}  

Notes  

State q0 is the initial state where we stay until we decide to start checking  

for the pattern. When we see an 'a' we can transition to q1 which means  

we've seen the potential 'a' that might be the third-to-last character. Then we  

need to see exactly two more characters, which we track with states q2 and  

q3.  

Step 2: Check if "bababa" is accepted.  

Let's trace through the string "bababa":  

1. We start at state q0.  

2. Read 'b': We stay in q0, so current states = {q0}  

3. Read 'a': We can stay in q0 or transition to q1, so current states =  

{q0, q1}  

4. Read 'b': From q0 we stay in q0, and from q1 we move to q2, so  

current states = {q0, q2}  

5. Read 'a': From q0 we can stay in q0 or move to q1, and from q2 we  

move to q3, so current states = {q0, q1, q3}  

6. Read 'b': From q0 we stay in q0, from q1 we move to q2, and from  

q3 we have no transitions, so current states = {q0, q2}  

7. Read 'a': From q0 we can stay in q0 or move to q1, and from q2 we  

move to q3, so current states = {q0, q1, q3}  

After processing the entire string, we are in states {q0, q1, q3}, which  

includes final state q3.  

Therefore, string "bababa" is accepted by NFA.  

Problem 2: NFA to DFA Conversion  
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Convert the following NFA to a DFA:  

NFA:  

Notes  

•

•

•

•

•

States: Q = {q0, q1, q2}  

Alphabet: Σ = {0, 1}  

Start state: q0  

Final states: F = {q2}  

Transitions:  

o

o

o

o

o

o

δ(q0, 0) = {q0, q1}  

δ(q0, 1) = {q0}  

δ(q1, 0) = ∅  

δ(q1, 1) = {q2}  

δ(q2, 0) = {q2}  

δ(q2, 1) = {q2}  

Solution:  

We'll use the subset construction method to convert this NFA to a DFA:  

Step 1: Define start state of DFA as {q0}.  

Step 2: For each DFA state, compute the transitions on each input symbol.  

For state {q0}:  

•

•

On input 0: δ({q0}, 0) = {q0, q1}  

On input 1: δ({q0}, 1) = {q0}  

For state {q0, q1}:  

• On input 0: δ({q0, q1}, 0) = δ(q0, 0) ∪δ(q1, 0) = {q0, q1} ∪∅ = {q0,  

q1}  

• On input 1: δ({q0, q1}, 1) = δ(q0, 1) ∪δ(q1, 1) = {q0} ∪ {q2} =  

{q0, q2}  

For state {q0, q2}:  
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•

•

On input 0: δ({q0, q2}, 0) = δ(q0, 0) ∪δ(q2, 0) = {q0, q1} ∪ {q2} =  Notes  
{q0, q1, q2}  

On input 1: δ({q0, q2}, 1) = δ(q0, 1) ∪δ(q2, 1) = {q0} ∪ {q2} =  

{q0, q2}  

For state {q0, q1, q2}:  

• On input 0: δ({q0, q1, q2}, 0) = δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0) = {q0,  

q1} ∪∅∪ {q2} = {q0, q1, q2}  

• On input 1: δ({q0, q1, q2}, 1) = δ(q0, 1) ∪δ(q1, 1) ∪δ(q2, 1) = {q0}  

∪ {q2} ∪ {q2} = {q0, q2}  

Step 3: Define the final states of the DFA as those subsets that contain at  

least one final state from the NFA. In this case, the final state of NFA is q2,  

so final states of the DFA are {q0, q2} and {q0, q1, q2}.  



The resulting DFA:  

•

•

•

•

•

States: {{q0}, {q0, q1}, {q0, q2}, {q0, q1, q2}}  

Alphabet: Σ = {0, 1}  

Start state: {q0}  

Final states: {{q0, q2}, {q0, q1, q2}}  

Transitions:  

o

o

o

o

o

o

o

o

δ({q0}, 0) = {q0, q1}  

δ({q0}, 1) = {q0}  

δ({q0, q1}, 0) = {q0, q1}  

δ({q0, q1}, 1) = {q0, q2}  

δ({q0, q2}, 0) = {q0, q1, q2}  

δ({q0, q2}, 1) = {q0, q2}  

δ({q0, q1, q2}, 0) = {q0, q1, q2}  

δ({q0, q1, q2}, 1) = {q0, q2}  

Problem 3: Epsilon-NFA to NFA Conversion  

Convert the following ε-NFA to an NFA:  
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ε-NFA:  Notes  

•

•

•

•

•

States: Q = {q0, q1, q2, q3}  

Alphabet: Σ = {a, b}  

Start state: q0  

Final states: F = {q3}  

Transitions:  

o

o

o

o

o

o

o

o

δ(q0, ε) = {q1}  

δ(q0, a) = {q0}  

δ(q1, a) = {q2}  

δ(q1, b) = {q1}  

δ(q2, ε) = {q3}  

δ(q2, b) = {q2}  

δ(q3, a) = {q3}  

δ(q3, b) = {q0}  

Solution:  

To convert an ε-NFA to an NFA, we need to compute the ε-closure of each  

state and then use that to determine the new transitions.  

Step 1: Compute the ε-closure of each state.  

• ε-closure(q0) = {q0, q1} (because q0 can reach q1 via an ε-  

transition)  

•

•

ε-closure(q1) = {q1} (no ε-transitions from q1)  

ε-closure(q2) = {q2, q3} (because q2 can reach q3 via an ε-  



transition)  

• ε-closure(q3) = {q3} (no ε-transitions from q3)  

Step 2: Compute the new transitions for the NFA.  

For state q0:  
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•

•

δ_NFA(q0, a) = ε-closure(δ_ε-NFA(q0, a) ∪δ_ε-NFA(q1, a)) = ε-  

closure({q0} ∪ {q2}) = {q0, q1} ∪ {q2, q3} = {q0, q1, q2, q3}  
Notes  

δ_NFA(q0, b) = ε-closure(δ_ε-NFA(q0, b) ∪δ_ε-NFA(q1, b)) = ε-  

closure(∅∪ {q1}) = {q1}  

For state q1:  

• δ_NFA(q1, a) = ε-closure(δ_ε-NFA(q1, a)) = ε-closure({q2}) = {q2,  

q3}  

• δ_NFA(q1, b) = ε-closure(δ_ε-NFA(q1, b)) = ε-closure({q1}) =  

{q1}  

For state q2:  

▪

▪

For q2, a, δ_NFA = ε-closureε-closure(∅∪ {q3}) = {q3} (δ_ε-  

NFA(q2, a) ∪δ_ε-NFA(q3, a))  

δ_NFA(q2, b) = ε-closure(δ_ε-NFA(q2, b) ∪δ_ε-NFA(q3, b)) = ε-  

closure({q2}).  

For state q3:  

▪ δ-closure(δ_ε-NFA(q3, a)) = ε-closure({q3}) = {q3}¹ =  

δ_NFA(q3, a)  

▪ The equation δ_NFA(q3, b) = ε-closure(δ_ε-NFA(q3, b)) = ε-  

closure({q0}) = {q0, q1}  

Step 3: Define the new NFA.  

The resulting NFA:  

•

•

•

•

•

States: Q = {q0, q1, q2, q3}  

Alphabet: Σ = {a, b}  

Start state: q0  

Final states: F = {q3}  

Transitions:  

o

o

δ(q0, a) = {q0, q1, q2, q3}  

δ(q0, b) = {q1}  
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o δ(q1, a) = {q2, q3}  Notes  



o δ(q1, b) = {q1}  

o δ(q2, a) = {q3}  

A = {q0, q1, q2, q3} o δ(q2, b)  

o

o

δ(q3, a) = {q3}  

δ(q3, b) = {q0, q1}  

Problem 4: Moore to Mealy Machine Conversion  

Convert following Moore machine to a Mealy machine:  

Moore machine:  

•

•

•

•

•

States: Q = {S0, S1, S2}  

Input alphabet: Σ = {0, 1}  

Output alphabet: Δ = {A, B}  

Start state: S0  

Output function:  

o

o

o

λ(S0) = A  

λ(S1) = B  

λ(S2) = A  

• Transition function:  

o

o

o

o

o

o

δ(S0, 0) = S0  

δ(S0, 1) = S1  

δ(S1, 0) = S2  

δ(S1, 1) = S0  

δ(S2, 0) = S1  

δ(S2, 1) = S2  

Solution:  

To convert Moore machine to Mealy machine, we need to associate the  

output with the transitions rather than the states.  
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Step 1: Keep the same set of states, input alphabet, output alphabet, and start  

state.  
Notes  

Step 2: For each transition δ_Moore(q, a) = p, set the Mealy output function  

λ_Mealy(q, a) = λ_Moore(p).  

For transitions from S0:  

•

•

δ_Mealy(S0, 0) = S0, and λ_Mealy(S0, 0) = λ_Moore(S0) = A  

δ_Mealy(S0, 1) = S1, and λ_Mealy(S0, 1) = λ_Moore(S1) = B  

For transitions from S1:  

•

•

δ_Mealy(S1, 0) = S2, and λ_Mealy(S1, 0) = λ_Moore(S2) = A  

δ_Mealy(S1, 1) = S0, and λ_Mealy(S1, 1) = λ_Moore(S0) = A  

For transitions from S2:  

•

•

δ_Mealy(S2, 0) = S1, and λ_Mealy(S2, 0) = λ_Moore(S1) = B  

δ Mealy(S2 1) = S2 and λ Mealy(S2 1) = λ Moore(S2) = A



• δ_Mealy(S2, 1) = S2, and λ_Mealy(S2, 1) = λ_Moore(S2) = A  

The resulting Mealy machine:  

•

•

•

•

•

States: Q = {S0, S1, S2}  

Input alphabet: Σ = {0, 1}  

Output alphabet: Δ = {A, B}  

Start state: S0  

Transition function:  

o

o

o

o

o

o

δ(S0, 0) = S0  

δ(S0, 1) = S1  

δ(S1, 0) = S2  

δ(S1, 1) = S0  

δ(S2, 0) = S1  

δ(S2, 1) = S2  

• Output function:  
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o

o

o

o

o

o

λ(S0, 0) = A  

λ(S0, 1) = B  

λ(S1, 0) = A  

λ(S1, 1) = A  

λ(S2, 0) = B  

λ(S2, 1) = A  

Notes  

Problem 5: Mealy to Moore Machine Conversion  

Convert following Mealy machine to Moore machine:  

Mealy machine:  

•

•

•

•

•

States: Q = {S0, S1}  

Input alphabet: Σ = {0, 1}  

Output alphabet: Δ = {X, Y}  

Start state: S0  

Transition function:  

o

o

o

o

δ(S0, 0) = S0  

δ(S0, 1) = S1  

δ(S1, 0) = S0  

δ(S1, 1) = S1  

• Output function:  

o

o

o

o

λ(S0, 0) = X  

λ(S0, 1) = Y  

λ(S1, 0) = Y  

λ(S1, 1) = X  

Solution:  

To convert a Mealy machine to a Moore machine, we need to create new  

states that represent the combinations of original states and outputs.  
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Step 1: Create new states by considering pairs (q, a) where q is an original  

state and a is an input.  
Notes  

For the given Mealy machine, we have:  

•

•

•

•

(S0, 0) with output X  

(S0, 1) with output Y  

(S1, 0) with output Y  

(S1, 1) with output X  

We need to create states in the Moore machine that correspond to the state-  

output pairs in the Mealy machine.  

Let's create the following states:  

•

•

•

•

S0X: represents being in state S0 and producing output X  

S1X: represents being in state S1 and producing output X  

Step 2: Define the transitions and outputs for the Moore machine.  

For every transition δ_Mealy(q, a) = p with output λ_Mealy(q, a) = o, we  

create a transition in the Moore machine from any state corresponding to q  

to the state corresponding to (p, o).  

For example, if δ_Mealy(S0, 0) = S0 with output λ_Mealy(S0, 0) = X, then  

we have a transition from S0X to S0X in the Moore machine.  

Multiple-Choice Questions (MCQs)  

1. A finite state machine (FSM) consists of:  

a) States and transitions  

b) Only states  

c) Only inputs  

d) A single final state  

2. A transition table in an FSM represents:  

a) The sequence of states and inputs  

b) Only the starting state  
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c) Only the final state  Notes  
d) Random movements between states  

3. Two FSMs are equivalent if:  

a) They have the same number of states  

b) They accept the same set of inputs and produce the same outputs  

c) They have different transition tables  

d) They use different symbols for the same transitions  

4. process of reducing number of states in an FSM while  

preserving its behavior is called:  

a) State elimination  

b) State minimization  

c) State transition  

d) State merging  

5. A finite automaton that reads an input string and determines  

whether it belongs to a specific language is called a:  

a) Transition system  

b) Acceptor  

c) Reducer  

d) Transformer  

6. deterministic finite automaton (DFA) is different from a non-  

deterministic finite automaton (NFA) because:  

a) DFA has only one possible move for each input in a given state  2727

b) A DFA can have multiple transitions for the same input symbol  

c) A DFA does not have final states  

d) A DFA accepts only infinite languages  

7. Which of the following is true about an NFA?  

a) It has at most one transition per input symbol  

b) It can have multiple transitions for the same input symbol  

c) It cannot accept any language  

d) It is always equivalent to a Turing machine  

8. Moore and Mealy machines are different because:  

a) A Moore machine's output depends only on the current state,  

while a Mealy machine’s output depends on both the state and input  

b) A Mealy machine does not use states  
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c) A Moore machine has no transitions  

d) A Mealy machine cannot accept inputs  
Notes  

9. The minimum number of states required for a DFA that  

recognizes the language of binary strings ending in "01" is:  

a) 1  

b) 2  

c) 3  

d) 4  

10. Finite state machines are widely used in:  

a) Circuit design  

b) Compiler construction  

c) Text processing  

d) All of the above  

Short Answer Questions  

1. Define a finite state machine with an example.  

2. What is a transition table, and how is it used in FSMs?  

3. Explain the difference between deterministic and non-deterministic  

finite automata.  

4. What is the significance of equivalence in FSMs?  

5. Describe the process of state minimization in finite automata.  

6. What is a finite automaton? Give an example.  

7. Explain Moore and Mealy machines with differences.  

8. How can an NFA be converted into a DFA?  

9. What are the applications of finite state machines?  

10. How does an FSM differ from a Turing machine?  

Long Answer Questions  

1. Explain in detail the structure of a finite state machine and its  

components.  

2. Describe the transition table and diagram of an FSM with an  

example.  
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3. How do you determine whether two FSMs are equivalent? Explain  

with an example.  
Notes  

4. What is state minimization in finite state machines? Explain with a  

step-by-step example.  

5. Differentiate between DFA and NFA with examples.  

6. Convert the following NFA to a DFA and explain the process:  

7. Discuss the applications of finite automata in text processing and  

pattern matching.  

8. Describe Moore and Mealy machines with examples and their  

applications.  

9. Explain how FSMs are used in compiler design and lexical analysis.  

10. Provide a real-world example of FSM usage in digital electronics  

and networking.  
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MODULE V  

UNIT XV  

Notes  

GRAMMARS AND LANGUAGES  

Objectives  

• To understand phrase-structure grammars and their role in language  

generation.  

•

•

To analyze rewriting rules, derivations, and sentential forms.  

To study different types of grammars: regular, context-free, and  

context-sensitive.  

•

•

•

•

•

•

To explore regular sets and regular expressions.  

To understand the pumping lemma and its applications.  

To learn about Kleene’s theorem and its significance.  

To study syntax analysis and its importance in computing.  

To examine Polish notation and its use in expression conversion.  

To convert infix expressions to Polish and reverse Polish notation.  

5.1 Introduction to Grammars and Language  

Formal language theory provides a mathematical framework for describing  

languages, both natural and artificial. At the heart of this theory are  

grammars - systems that define rules for generating valid strings in a  

language.  

Languages serve as a means of communication, whether between humans or  

between humans and machines. In computer science, we're particularly  

interested in formal languages, which are precisely defined sets of strings  

over a specific alphabet.  

A formal language consists of:  

•

•

An alphabet (Σ): a finite set of symbols  

set of strings or sentences formed by combining these symbols  

according to specific rules  
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For example, in English, the alphabet includes the 26 letters (a-z),  

punctuation marks, and spaces. In programming languages, the alphabet  

includes keywords, operators, identifiers, and other tokens.  

Notes  

The rules that determine which strings belong to a language are formalized  

using grammars. A grammar acts like a recipe for generating all valid strings  

in a language while excluding invalid ones.  

5.2 Phrase-Structure Grammars  

A phrase-structure grammar (also called a generative grammar) is a formal  

system that defines a language by specifying how to form valid strings from  

the alphabet. It was introduced by Noam Chomsky in the 1950s as a way to  

describe the syntax of natural languages.  

•

•

•

•

V is a finite set of variables (or non-terminal symbols)  

Σ is finite set of terminal symbols (the alphabet of the language)  

R is a finite set of production rules or rewriting rules  

S is the start symbol (S ∈ V)  

The sets V and Σ are disjoint (they have no elements in common).  

Terminal symbols are the basic building blocks of the language - they appear  52

in the final strings of the language. In programming languages, these could  

be keywords, operators, identifiers, etc.Non-terminal symbols (variables) are  

placeholders that get replaced during the derivation process. They represent  

syntactic categories or phrases and do not appear in the final strings of the  

language.  

Example: Consider a simple grammar for arithmetic expressions with  

addition:  

• "Start" is represented by S, and "expression" by E.  

• Σ = {a, +, (, )} The symbols a, +, and () stand for variables, addition, and  

parenthesis,  respectively.  

• The initial symbol is S.  

• The following rules are present in R:  
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o

o

o

o

S → E  Notes  

E → a  

E → E + E  

E → (E)  

This grammar can generate strings like "a", "a+a", "(a)", "a+(a+a)", and so  

on.  
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UNIT XVI  

5.3 Rewriting Rules, Derivations, and Sentential Forms  

Rewriting Rules  

Notes  

The production rules or rewriting rules in a grammar define how variables  

can be replaced or rewritten to form new strings. Each rule has form:  

α → β  

where:  

•

•

α is a string containing at least one non-terminal symbol  

β is a string of terminal and/or non-terminal symbols (β can be  

empty)  

The rule α → β means that can be replaced by β in any string.  

Derivations  

A derivation is a sequence of strings where each string is obtained from the  

previous one by applying a production rule. It shows the step-by-step  

process of generating a string in the language.A derivation starts with the  

start symbol S and ends with a string of terminal symbols. Each step in the  

derivation is denoted by the symbol ⇒, which means "derives in one step."  

For example, using the grammar for arithmetic expressions given earlier, we  

can derive the string "a+a" as follows:  

S ⇒ E ⇒ E+E ⇒a+E⇒a+a  

We can also represent multiple derivation steps using the symbol ⇒. So, S  

⇒a+a means "S derives a+a in zero or more steps."  

Sentential Forms  

A sentential form is any string that can be derived from the start symbol S.  2727

It may contain both terminal and non-terminal symbols.  

In the derivation S ⇒ E ⇒ E+E ⇒a+E⇒a+a, the sentential forms are:  

•

•

S

E

• a+E  
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• a+a  Notes  
• E+E  

Note that only the final form "a+a" consists entirely of terminal symbols and  

thus belongs to language generated by grammar. The other sentential forms  

are intermediate steps in the derivation process.  

5.4 Language Generated by a Grammar  

The language generated by a grammar G, denoted as L(G), is the set of all  

strings of terminal symbols that can be derived from the start symbol S using  

the production rules of G.  

Formally, L(G) = {w ∈Σ* | S ⇒* w}  

where:  

• Σ* is the set of all strings over the alphabet Σ (including the empty  

string)  

• S ⇒* w means that w can be derived from S in zero or more steps  

In other words, a string w belongs to L(G) if and only if:  

1. w consists only of terminal symbols from Σ  

2. There exists a derivation from S to w using the production rules of  

G

For example, the language generated by our arithmetic expression grammar  

includes strings like "a", "a+a", "(a)", "a+(a+a)", etc.  

5.5 Types of Grammars  

Noam Chomsky classified grammars into four types based on the form of  

their production rules. This classification is known as the Chomsky  

hierarchy. We'll focus on three important types: regular grammars, context-  

free grammars, and context-sensitive grammars.  

Regular Grammars  

A regular grammar is most restrictive type of grammar in the Chomsky  

hierarchy. It generates regular languages, which can be recognized by finite  

automata.  
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In a regular grammar, all production rules must have one of the following  

forms:  
Notes  

•

•

•

A → a (where A is a non-terminal, is terminal)  

A → aB (where A & B are non-terminals, a is a terminal)  

A → ε (where ε is the empty string)  

There are two types of regular grammars:  

• Right-linear grammar: All rules have the form A → aB or A → a  

or A → ε  

• Left-linear grammar: All rules have the form A → Ba or A → a or  

A → ε  

•

•

•

•

V = {S}  

Σ = {0, 1}  

S is the start symbol  202020

R contains:  

o

o

o

S → 0S  

S → 1S  

S → ε  

This grammar generates all binary strings, including the empty string: L(G)  

= {0, 1}*  

Regular grammars are useful for describing patterns like identifiers,  

numbers, and other tokens in programming languages.  

Context-Free Grammars (CFG)  

Context-free grammar (CFG) is less restrictive than a regular grammar and  

can describe more complex language structures. It generates context-free  

languages, which can be recognized by pushdown automata.In context-free  

grammar, all production rules must have form: A → α (where A is a single  

non-terminal and α is a string of terminals and/or non-terminals). The key  
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characteristic of a CFG is that a non-terminal can be replaced regardless of  

its context (the symbols around it).  
Notes  

•

•

•

•

V = {S}  

Σ = {(, )}  

S is the start symbol  

R contains:  

o

o

o

S → (S)  

S → SS  

S → ε  

This grammar generates all balanced parentheses strings: L(G) = {ε, (), ()(),  

(()), (())(), ...}  

Context-free grammars are widely used to describe syntax of programming  

languages, as they can handle nested structures like expressions, statements,  

and blocks.  

Context-Sensitive Grammars (CSG)  

A context-sensitive grammar (CSG) is more powerful than a CFG and can  

describe even more complex language structures. It generates context-  

sensitive languages, which can be recognized by linear bounded automata.In  

a context-sensitive grammar, all production rules must have the form: αAβ  

→ αγβ (where A is a non-terminal, α and β are strings of terminals and/or  

non-terminals, and γ is a non-empty string of terminals and/or non-  

terminals)  

The key characteristic of CSG is that a non-terminal can be replaced only in  

specific contexts (the symbols around it).  

•

•

•

V = {S, A, B, C}  

Σ = {a, b, c}  

S is start symbol  
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• R contains:  Notes  

o

o

o

o

o

o

o

o

S → ABC  

AB → aAB  

BC → BC  

AC → ABC  

C → c  

aA → aa  

aB → ab  

bB → bb  

This grammar generates language L(G) = {a^nb^nc^n | n ≥ 1}, which  

Context-sensitive grammars can describe language features that require  

checking multiple related parts of a program, such as declaring variables  

Solved Problems  

Problem 1: Regular Grammar  

Problem: Construct regular grammar that generates the language of all  

binary strings that end with 01.  

•

•

Σ = {0, 1}  

The language L(G) = {w01 | w ∈ {0, 1}*}  

Let's define our grammar:  

•

•

•

V = {S, A, B}  

S is the start symbol  202020

R contains:  

o

o

S → 0S (stay in state S after seeing 0)  

S → 1S (stay in state S after seeing 1)  
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before using them or maintaining type consistency.  

Solution: We need to construct a grammar G = (V, Σ, R, S) where:  



o

o

o

o

S → 0A (transition to state A after seeing 0)  

A → 1B (transition to final state B after seeing 1)  

S → 1A (transition to state A after seeing 1)  

A → 0A (stay in state A after seeing 0)  

Notes  

Here S represents the initial state, A represents the state after seeing the first  

0 of the final "01", and B represents the final state after seeing the complete  

"01" pattern.  

Let's trace a derivation for the string "1001": S ⇒ 1S ⇒ 10S ⇒ 100A ⇒  

1001B  

Since B is our final state, the string "1001" is accepted by the grammar,  

which is correct as it ends with "01".  

Problem 2: Context-Free Grammar  

Problem: Construct context-free grammar that generates language of all  

strings with equal numbers of a's & b's.  

•

•

Σ = {a, b}  

The language L(G) = {w ∈ {a, b}* | na(w) = nb(w)}, where na(w)  

and nb(w) are the numbers of a's and b's in w  

Let's define our grammar:  

•

•

•

V = {S}  

S is the start symbol  

R contains:  

o

o

o

S → aSb (add an 'a' at the beginning and a 'b' at the end)  

S → bSa (add a 'b' at the beginning & an 'a' at the end)  

S → SS (concatenate two strings with equal numbers of a's  

and b's)  

o S → ε (the empty string has equal numbers of a's and b's,  

namely zero)  
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This grammar generates all strings with equal numbers of a's and b's. Let's  Notes  
trace a derivation for the string "ab": S ⇒aSb⇒aSb⇒aεb⇒ab  

And for the string "abab": S ⇒ SS ⇒aSbS⇒abS⇒abaSb⇒abaεb⇒abab  

Problem 3: Context-Sensitive Grammar  

Problem: Construct a context-sensitive grammar that generates the language  

L = {a^nb^nc^n | n ≥ 1}.  

•

•

Σ = {a, b, c}  

language L(G) = {a^nb^nc^n | n ≥ 1}  

This is a classic example of language that is not context-free but is context-  

sensitive.  

Let's define our grammar:  

•

•

•

S is the start symbol  

R contains:  

o

o

o

o

o

o

o

o

o

o

o

o

S → aXYZ  

X → aX  

XY → XbY  

YZ → YcZ  

X → B  

Y → C  

BbC → BBC  

BcC → BcC  

BC → BC  

aB → ab  

bC → bc  

cZ → c  
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Let's  trace  a derivation  for  the  string  "aabbcc":  SNotes  
⇒aXYZ⇒aaXYZ⇒aaXbYZ⇒aaXbYcZ⇒aaBbYcZ⇒aaBbCcZ⇒aabBCcZ  

⇒abbCcZ⇒abcZ⇒abc  

This grammar works by first generating a sequence of a's followed by  

placeholders for b's & c's. Then it inserts b's and c's in the appropriate  

positions, ensuring that there are equal numbers of each.  

Problem 4: Ambiguous Grammar  

Problem: Show that the following context-free grammar is ambiguous: G =  

({S}, {a, b}, {S → aSb | S → ab | SS}, S)  

Solution: A grammar is ambiguous if there exists a string in the language  

that has more than one leftmost derivation (or, equivalently, more than one  

parse tree).  

Let's consider the string "aababb":  

Derivation 1: S ⇒ SS ⇒aSbS⇒aabS⇒aabab  

Derivation 2: S ⇒aSb⇒aSSb⇒aSabb⇒aababb  

Both derivations generate the same string "aababb", but they represent  

different ways of structuring the string. This demonstrates that the grammar  

is ambiguous.  

In practical terms, ambiguity in a grammar can lead to parsing conflicts in  

compiler design, so it's often desirable to rewrite ambiguous grammars as  

unambiguous ones.  

Problem 5: Leftmost and Rightmost Derivations  

Problem: For the context-free grammar G = ({S, A, B}, {a, b}, R, S) with  

rules:  

•

•

•

•

S → aAB  

A → aBb  

A → ε  

B → b  

Find both leftmost and rightmost derivations for the string "aabbb".  
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Solution: In a leftmost derivation, we always replace leftmost non-terminal  

in each step. In a rightmost derivation, we always replace rightmost non-  

terminal.  

Notes  

Leftmost Derivation: S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB  

(replace B in "aBb") ⇒aabb (replace the remaining B)  

Wait, this gives us "aabb", not "aabbb". Let's check if "aabbb" is actually in  

the language:  

S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB (replace B in "aBb")  

⇒aabb (replace the remaining B)  

It seems "aabbb" might not be derivable from this grammar. Let's double-  

check with another attempt:  

S ⇒aAB (replace S) ⇒aB (replace A with ε) ⇒ ab (replace B)  

This gives us "ab", not "aabbb".  

Let's try one more approach:  

S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabBB (replace b with B in  

"aBb" - no, that's not a valid production)  

Let me review the grammar again...  

My apologies for the confusion. Looking at the rules carefully, I see that  

"aabbb" is indeed not derivable from this grammar. The grammar can  

generate strings like "ab", "aabb", etc., but not "aabbb".  

Let's consider the string "aabb" instead:  

Leftmost Derivation: S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB  

(replace B in "aBb") ⇒aabb (replace the remaining B)  

Rightmost Derivation: S ⇒aAB (replace S) ⇒aAb (replace B) ⇒aaBbb  

(replace A) ⇒aabb (replace B in "aBb")  

Unsolved Problems  

Problem 1: Regular Grammar  

Construct regular grammar that generates the language of all binary strings  

that contain the substring "101".  
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Problem 2: Context-Free Grammar  Notes  

Construct a context-free grammar that generates language of all strings over  202020

{a, b} that have more a's than b's.  

Problem 3: Ambiguity  

Prove that the following grammar is ambiguous and provide an  

unambiguous grammar that generates the same language: G = ({S}, {a, b},  

{S → aSb | S → ε | SS}, S)  

Problem 4: Context-Sensitive Grammar  

Construct a context-sensitive grammar that generates the language L =  

{a^nb^mc^nd^m | n, m ≥ 1}.  

Problem 5: Derivation and Language  

For the grammar G = ({S, A, B}, {a, b}, R, S) with rules:  

•

•

•

S → AB  

A → aA | ε  

B → bB | ε  

a) Give leftmost and rightmost derivations for the string "aabb". b) Describe  

Summary  

In this chapter, we've explored the fundamental concepts of formal language  

theory, focusing on grammars and their classification according to the  

We started by introducing the concept of formal language as precisely  

defined set of strings over an alphabet. We then described phrase-structure  

grammars as formal systems for generating languages, consisting of terminal  

symbols, non-terminal symbols, production rules, and a start symbol.  

We discussed how these grammars work through rewriting rules and  

derivations, which show the step-by-step process of generating strings in a  

language. We also defined sentential forms as intermediate strings in the  

derivation process.  
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language generated by grammar is the set of all strings of terminal symbols  

that can be derived from the start symbol using production rules of the  

grammar.  

Notes  

We then explored three important types of grammars in the Chomsky  

hierarchy:  

1. Regular Grammars: most restrictive type, generating languages  

recognized by finite automata.  

2. Context-Free Grammars (CFG): More powerful than regular  

grammars, generating languages recognized by pushdown automata.  

3. Context-Sensitive Grammars (CSG): Even more powerful,  

generating languages recognized by linear bounded automata.  

Each type of grammar has its own constraints on the form of production  

rules, resulting in different expressive power. Regular grammars are used for  

simple patterns like tokens in programming languages. Context-free  

grammars can handle nested structures like expressions and statements.  

Context-sensitive grammars can enforce relationships between different  

parts of a program.Understanding these concepts is essential for designing  

programming languages, building compilers and interpreters, and  

implementing various text processing applications. The mathematical  

framework provided by formal language theory helps us reason about the  

199  

syntax and structure of languages in a precise and systematic way.  



UNIT XVII  Notes  

5.5 Regular Sets and Regular Expressions  

Regular sets (also called regular languages) are a fundamental concept in  

formal language theory. They represent languages that can be recognized by  

finite automata.  

Definition of Regular Sets  

A regular set or regular language over an alphabet Σ is defined recursively  

as:  

1. The empty set ∅ is a regular set  

2. The set {ε} containing only the empty string is a regular set  

3. For each a ∈Σ, the set {a} is a regular set  

4. If A & B are regular sets, then A ∪ B (union), A · B (concatenation),  

and * (Kleene star) are also regular sets  

5. No other sets are regular sets  

Regular Expressions  

Regular expressions are a notation system used to specify regular languages.  

They provide a concise way to describe patterns in strings.  

Formal Definition of Regular Expressions  

Given an alphabet Σ, the set of regular expressions over Σ is defined  

recursively:  

1. ∅ is a regular expression denoting the empty set  

2. ε is a regular expression denoting the set {ε} (containing only the  

empty string)  

3. For each symbol a ∈Σ, a is regular expression denoting set {a}  

4. If r and s are regular expressions, then:  

o (r|s) is a regular expression denoting the union of the  

languages of r and s  

o (rs) is a regular expression denoting the concatenation of the  

languages of r and s  
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o (r*) is a regular expression denoting the Kleene star of the  555

language of r  
Notes  

Operations on Regular Expressions  

1. Union (r|s): Represents strings that match either r or s  

2. Concatenation (rs): Represents strings formed by concatenating a  

string that matches r with a string that matches s  

3. *Kleene Star (r)**: Represents strings formed by concatenating zero  

or more strings that match r  

Examples of Regular Expressions  

1. a(b|c)* represents strings starting with 'a' followed by any number of  

'b's or 'c's  

2. (a|b)*c represents strings ending with 'c' preceded by any number of  

'a's or 'b's  

3. (ab)* represents strings consisting of zero or more repetitions of 'ab'  

4. ab represents strings consisting of zero or more ''s followed by zero  

or more 'b's  

Solved Problems for Regular Sets and Regular Expressions  

Problem 1: Construct a regular expression for the language of all strings  

over {, b} that contain an even number of a's.  

Solution: Let's break this down:  

•

•

We need strings with an even number of a's (including zero)  

The b's can appear any number of times at any position  

First, let's define two parts:  

•

•

E: strings with an even number of a's  

O: strings with an odd number of a's  

We can define these recursively:  

• E = babab* | b* (either there are two a's separated by any number of  

b's, or there are no a's)  
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• O = bab (there is exactly one a with any number of b's before and  Notes  
after)  

But this doesn't capture strings with more than two a's. Let's try a different  

approach:  

The regular expression is: (b|abab)  

To see why this works:  

•

•

b: allows adding b's without affecting the parity of a's  

aba*b: every time we use this pattern, we add two a's (keeping the  

count even)  

• The outer Kleene star allows repeating these patterns any number of  

times  

Problem 2: Construct a regular expression for strings over {a, b, c} that don't  

contain the substring 'abc'.  

Solution: We can approach this by characterizing all strings that don't have  

'abc':  

•

•

•

•

Any string without an 'a'  

Any string without a 'b'  

Any string without a 'c'  

Strings where 'a' and 'b' are separated by at least one character other  

than 'b'  

• Strings where 'b' and 'c' are separated by at least one character other  

than 'c'  

The regular expression is: (b|c)* | (a|c)* | (a|b)* | a*(bacb|cabc)a |  

b*(abca|cbac)b  

This is quite complex. A simpler way to think about it is to say that we can  1717

have any string except those containing 'abc'.  

Another approach: we can describe this as strings where every 'a' is not  

followed by 'bc', or every 'ab' is not followed by 'c':  

(a(¬(bc))|b|c)*  
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Where ¬(bc) means any string not starting with 'bc'. This can be written as:  Notes  
(a(b(a|b)|c|ε)|b|c)*  

Problem 3: Prove that the set of all strings over {a, b} with an equal number  

of 's and b's is not a regular language.  

Solution: We'll use the pumping lemma (which will be covered in section  

5.6) to prove this.  

Let's call this language L = {w ∈ {a, b}* | |w|a = |w|b}, where |w|a and |w|b  

Assume L is regular. By the pumping lemma, there exists a pumping length  

p such that any string s in L with |s| ≥ p can be written as s = xyz where:  

1. |xy| ≤ p  

2. |y| > 0  

3. For all i ≥ 0, xyiz is in L  

Consider s = apbp (p a's followed by p b's). Clearly s is in L since it has an  

equal number of 's and b's.  

By pumping lemma, s can be written as xyz where |xy| ≤ p & |y| > 0. This  

means y consists only of a's (since xy is a prefix of length at most p of  

apbp).  

Let's say y = ak for some k > 0. Then xy2z = ap+kbp, which has p+k a's and  

p b's. Since p+k ≠ p, xy2z is not in L.  

This contradicts condition 3 of the pumping lemma. Therefore, L is not  9

5.6 The Pumping Lemma and Its Applications  

Pumping Lemma is a powerful tool used to prove that certain languages are  

not regular. It gives a necessary (but not sufficient) condition for a language  

Statement of the Pumping Lemma  

For any regular language L, there exists a positive integer p (called the  

pumping length) such that any string s in L of length at least p can be written  

as s = xyz where:  
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1. |xy| ≤ p  Notes  

2. |y| > 0 (y is non-empty)  

3. For all i ≥ 0, xyiz is in L  

Intuitively, the pumping lemma states that any sufficiently long string in a  

regular language has a non-empty substring that can be "pumped" (repeated  

any number of times) while keeping the resulting string in the language.  

Steps to Use the Pumping Lemma  

To prove that a language L is not regular using the pumping lemma:  

1. Assume that L is regular  

2. By the pumping lemma, there exists a pumping length p  

3. Choose a string s in L of length at least p  

4. According to the pumping lemma, s can be split as s = xyz where  

|xy| ≤ p, |y| > 0  

5. Find a value of i such that xyiz is not in L  

6. This contradicts the pumping lemma, proving that L is not regular  

Applications of the Pumping Lemma  

Here are some classic examples:  

Solved Problem: Prove that the language L = {anbn | n ≥ 0} is not regular  

Solution:  

1. Assume that L is regular  

2. By the pumping lemma, there exists a pumping length p  

3. Consider the string s = apbp which is in L  

4. By the pumping lemma, s can be written as s = xyz where |xy| ≤ p  

and |y| > 0  

5. Since |xy| ≤ p, xy consists only of a's, which means y consists only  

of a's  

6. Let y = ak for some k > 0  
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7. Consider xy2z = ap+kbp  Notes  

8. This string has p+k a's but only p b's, so it's not in L  

9. This contradicts the pumping lemma, so L is not regular  

Solved Problem: Prove that the language L = {ww | w ∈ {a, b}*} is not  

regular  

Solution:  

1. Assume that L is regular  

2. By the pumping lemma, there exists a pumping length p  

3. Consider the string s = apbapb which is in L (w = apb)  

4. By the pumping lemma, s can be written as s = xyz where |xy| ≤ p  

and |y| > 0  

5. Since |xy| ≤ p, xy is a prefix of apb, which means y consists only of  

a's  

6. Let y = ak for some k > 0  

7. Consider xy0z = s with the substring y removed  

8. This string has p-k a's in the first half but still p a's in the second half  

9. Therefore, xy0z is not of the form ww, so it's not in L  

10. This contradicts the pumping lemma, so L is not regular  

5.7 Kleene's Theorem and Finite Automata  

Kleene's Theorem establishes the equivalence between regular expressions  

and finite automata. It consists of two parts:  

1. Every language recognized by finite automaton can be described by  555

a regular expression  

2. Every language described by regular expression can be recognized  

by a finite automaton  

This theorem is fundamental as it provides different ways to represent  

regular languages, each with its own advantages.  

From Finite Automata to Regular Expressions  
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To convert a finite automaton to a regular expression:  Notes  

1. Add new start state with ε-transitions to the original start state  

2. Add a new accept state with ε-transitions from all original accept  

states  

3. For each state, use the state elimination method to obtain a regular  

expression  

State Elimination Method  

1. Choose a state q (not the start or accept state)  

2. For each pair of states (qi, qj) with transitions to and from q, create a  

new transition directly from qi to qjlabeled with the regular  

expression ri,q · (rq,q)* · rq,j, where ri,j is the label on the transition  

from qi to qj  

3. Remove state q and all its incoming and outgoing transitions  

4. Repeat until only the start and accept states remain  

5. The label on the transition from start to accept is the resulting  

regular expression  

Finite Automata to Regular Expressions  

To convert a regular expression to a finite automaton, we use Thompson's  

construction:  

1. For each basic regular expression (∅, ε, or a), construct a simple  

NFA  

2. For composite regular expressions (r|s, rs, r*), combine the NFAs for  

the subexpressions  

Thompson's Construction Rules  

1. For ∅: Two states with no transitions  

2. For ε: Two states connected by an ε-transition  

3. For a symbol a: Two states connected by an a-transition  

4. For r|s: Combine the NFAs for r and s with new start and accept  

states  
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5. For rs: Connect the accept state of the NFA for r to the start state of  

the NFA for s  
Notes  

6. For r*: Add ε-transitions to allow skipping r or repeating r any  

number of times  

Solved Problem: Convert the Regular Expression (a|b)*abb to an NFA  

Solution:  

We'll apply Thompson's construction:  

1. First, create NFAs for a and b  

2. Combine them using the union operation to get (a|b)  

3. Apply the Kleene star to get (a|b)*  

4. Create NFAs for a, b, and b  

5. Concatenate all these NFAs to get (a|b)*abb  

The resulting NFA will have states for each component, with appropriate  

transitions connecting them:  

•

•

•

A start state q0  

ε-transitions from q0 to the start states of NFAs for a and b  

A cycle from the accept state of (a|b) back to the start states via ε-  

transitions  

•

•

The accept state of (a|b)* connected to the start state of the first a  

The accept state of the first a connected to the start state of the first  

b

•

•

The accept state of the first b connected to start state of the second b  

accept state of the second b as the final accept state  

Multiple-Choice Questions (MCQs)  

1. A grammar in formal language theory consists of:  

a) A set of terminals & non-terminals  

b) set of rewriting rules  

c) start symbol  

d) All of the above  
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2. The language generated by a grammar is:  

a) A set of terminals  
Notes  

b) A set of derivations  

c) A set of strings that can be produced using production rules  

d) A sequence of grammar rules  

3. Which of the following grammars is the most restrictive?  

a) Typical Grammar  

b) Context-Free Grammar  

c) Context-Sensitive Grammar  

d) Phrase-Structure Grammar  

4. A regular expression is used to describe:  

a) Context-free languages  

b) Context-sensitive languages  

c) Regular languages  

d) None of the above  

5. pumping lemma is used to:  

a) Prove that a language is finite  

b) Prove that a language is regular  

c) Prove that a language is context-sensitive  

d) Convert regular expressions into finite automata  1717

6. Kleene’s Theorem states that:  

a) Every finite automaton has an equivalent regular expression  555

b) Every CFG can be converted into a DFA  

c) Every Turing machine can be converted into a regular grammar  

d) None of the above  

7. Syntax analysis is also known as:  

a) Parsing  

b) Lexical analysis  

c) Compilation  

d) Tokenization  

8. Polish notationis also called:  

a) Prefix notation  

b) Infix notation  
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c) Postfix notation  

d) Mixed notation  
Notes  

9. The expression A+BA + B in Reverse Polish Notation (RPN) is  

written as:  

a)+BA+B  

b) AB+AB+  

c) B+AB+A  

d) +AB+AB  

10. Which data structure is commonly used for evaluating  

expressions in Reverse Polish Notation?  

a) Queue  

b) Stack  

c) Linked List  

d) Tree  

Short Answer Questions  

1. Define phrase-structure grammar with an example.  

2. What is the difference between derivation and sentential forms?  

3. Explain regular, context-free, and context-sensitive grammars with  

examples.  

4. What are regular sets in formal language theory?  

5. Define regular expressions and their importance in pattern matching.  

6. Explain the significance of the pumping lemma in language  

classification.  

7. State Kleene’s theorem and explain its implications.  

8. What is syntax analysis? Why is it important in compiler design?  

9. Define Polish notation and Reverse Polish Notation (RPN).  

10. How can infix expressions be converted to postfix notation?  

Long Answer Questions  
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1. Explain phrase-structure grammars and their role in language  

generation.  
Notes  

2. Describe rewriting rules, derivations, and sentential forms with  

examples.  

3. Discuss the differences between regular, context-free, and context-  

sensitive grammars.  

4. Explain the concept of regular expressions and how they are used in  

pattern matching.  

5. State and prove Kleene’s Theorem with examples.  

6. Explain syntax analysis and its role in compiler construction.  

7. Describe Polish notation and Reverse Polish Notation with  

conversion techniques.  

8. Convert the following infix expression to Polish notation and  

Reverse Polish Notation:  

(C−D)(A + B)∗(C + B) * (C - D)  

9. Discuss significance of syntax analysis in programming language  

processing.  
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