

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name Prof. (Dr.) A. J. Khan

 Title Discrete Mathematics

 Paper/Submission ID 4161929

 Submitted by plagcheck@matsuniversity.ac.in

 Submission Date 2025-07-30 15:07:34

 Total Pages, Total Words 210, 46368

 Document type e-Book

 Similarity 9 %
1 10 20 30 40 50 60 70 80 90

Sources Type

Journal/
Publicatio
n 4.01% Internet

4.99%

Report Content

Words <
14,

1.68%

Quotes
1.47%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

 Source: Excluded < 14 Words Excluded Journals & publishers Yes

 Excluded Source 0 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

9 52 A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

1 Belief functions on distributive lattices, by Zhou, Chunlai- 2013 1 Publication

2 Belief functions on distributive lattices, by Zhou, Chunlai- 2013 1 Publication

3 www.slideshare.net 1 Internet Data

4 pdfcookie.com 1 Internet Data

5 chiangmainightsafari.com <1 Internet Data

6 qdoc.tips <1 Internet Data

7 fastercapital.com <1 Internet Data

8 www.geeksforgeeks.org <1 Internet Data

9 pdfcookie.com <1 Internet Data

10 www.ijtrd.com <1 Publication

11 iopscience.iop.org <1 Internet Data

12 Thesis submitted to shodhganga - shodhganga.inflibnet.ac.in <1 Publication

13 springeropen.com <1 Internet Data

14 www.readbag.com <1 Internet Data

https://dx.doi.org/10.1016/j.artint.2013.05.003
https://dx.doi.org/10.1016/j.artint.2013.05.003
https://www.slideshare.net/slideshow/discrete-mathematics-lecture-notes/61041300
https://pdfcookie.com/documents/c-vasudev-combinatorics-and-graph-theory-new-age-577p-yv85jm5qxov1
https://chiangmainightsafari.com/cb1sdlc/converting-regular-expression-to-dfa-directly.html
https://qdoc.tips/0math-61-discrete-mathematics-johnsonbaugh-7e-3-pdf-free.html
https://fastercapital.com/content/NFA-vs--DFA--Unraveling-the-Differences-in-Finite-Automaton-Models.html
https://www.geeksforgeeks.org/representation-of-boolean-functions/
https://pdfcookie.com/documents/theory-of-computation-7rv3wedg00ld
http://www.ijtrd.com/papers/IJTRD4181.pdf
https://iopscience.iop.org/book/978-1-6817-4660-9/chapter/bk978-1-6817-4660-9ch1
https://sg.inflibnet.ac.in/bitstream/10603/162371/12/12_chapter%203.pdf
https://jes-eurasipjournals.springeropen.com/articles/10.1186/s13639-017-0078-6
http://www.readbag.com/planetpdf-codecuts-pdfs-aoa

15 index-of.es <1 Publication

16 Thesis submitted to shodhganga - shodhganga.inflibnet.ac.in <1 Publication

17 www.readbag.com <1 Internet Data

18 ON THE STATE COMPLEXITY OF COMBINED OPERATIONS

AND THEIR ESTIMATION, by SALOMAA, KAI YU, S- 2007
 <1 Publication

19 faculty.ksu.edu.sa <1 Publication

20 qdoc.tips <1 Internet Data

21 docplayer.net <1 Internet Data

22 Representing orders on the plane by translating convex figures by Iva-

1988
 <1 Publication

23 www.techtarget.com <1 Internet Data

24 Epistemic privacy, by Evfimievski, Alexan- 2010 <1 Publication

25 artsdocbox.com <1 Internet Data

26 IEEE 2020 IEEE International Symposium on Circuits and Systems

(ISCAS) - Sevil
 <1 Publication

27 picture.iczhiku.com <1 Publication

28 www.doaj.org <1 Publication

29 fenix.tecnico.ulisboa.pt <1 Publication

30 vdocuments.mx <1 Internet Data

31 docplayer.net <1 Internet Data

32 www.virginiawestern.edu <1 Publication

http://index-of.es/Programming/Misc/Concrete%20Mathematics%20-%20A%20Foundation%20for%20Computer%20Science.pdf
http://shodhganga.inflibnet.ac.in/bitstream/10603/225309/6/06_chapter2.pdf
http://www.readbag.com/ma-hw-ac-uk-markl-preprints-lawson
https://dx.doi.org/10.1142/S0129054107004917
https://dx.doi.org/10.1142/S0129054107004917
https://faculty.ksu.edu.sa/sites/default/files/rosen_discrete_mathematics_and_its_applications_7th_edition.pdf
https://qdoc.tips/formal-language-amp-automata-theory-pdf-free.html
https://www.docplayer.net/219591-Predicate-logic-example-all-men-are-mortal-socrates-is-a-man-socrates-is-mortal.html
https://dx.doi.org/10.1007/bf00714475
https://dx.doi.org/10.1007/bf00714475
https://www.techtarget.com/whatis/definition/Karnaugh-map-K-map
https://dx.doi.org/10.1145/1870103.1870105
https://artsdocbox.com/Television/98220028-Unit-iv-sequential-circuit.html
https://dx.doi.org/10.1109/iscas45731.2020.9180673
https://dx.doi.org/10.1109/iscas45731.2020.9180673
https://picture.iczhiku.com/resource/eetop/wHKTPRGyoYlJJnxN.pdf
https://www.mdpi.com/2073-8994/11/4/504/pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/1689244997257005/tese.pdf
https://vdocuments.mx/1-chapter-7-generating-functions-2-summary-generating-functions-recurrences.html
https://docplayer.net/amp/13878372-On-the-un-decidability-of-model-checking-resource-bounded-agents.html
https://www.virginiawestern.edu/library/wp-content/uploads/sites/20/2021/05/LetsGetWritingTextbook.pdf

33 docplayer.net <1 Internet Data

34 A pedagogical approach to database design via Karnaugh maps by

Russomanno-1999
 <1 Publication

35 The inverse semigroup of a sum-ordered semiring by E-1985 <1 Publication

36 courses.lumenlearning.com <1 Internet Data

37 read.nxtbook.com <1 Internet Data

38 Symbolic forwardbackward traversals of large finite state machines by

Gianpier-2000
 <1 Publication

39 Thesis submitted to shodhganga - shodhganga.inflibnet.ac.in <1 Publication

40 moam.info <1 Internet Data

41 pdfcookie.com <1 Internet Data

42 pdfcookie.com <1 Internet Data

43 www.network.bepress.com <1 Publication

44 pdfcookie.com <1 Internet Data

45 beckassets.blob.core.windows.net <1 Publication

46 byjus.com <1 Internet Data

47 en.wikipedia.org <1 Internet Data

48 A Normal Form and the Term-linearity of Affine Spaces over GF(3), by

Cho, Jung R. Kim, - 2006
 <1 Publication

49 digitalcommons.kennesaw.edu <1 Internet Data

50 home.cse.ust.hk <1 Publication

https://www.docplayer.net/21493200-Finite-state-machine-design-and-vhdl-coding-techniques.html
https://dx.doi.org/10.1109/13.804530
https://dx.doi.org/10.1109/13.804530
https://dx.doi.org/10.1007/BF02572645
https://courses.lumenlearning.com/boundless-algebra/chapter/combinatorics
https://read.nxtbook.com/ieee/signal_processing/signal_processing_jul_2023_v2/twenty_five_years_of_evolutio.html
https://dx.doi.org/10.1016/s1383-7621(00)00014-x
https://dx.doi.org/10.1016/s1383-7621(00)00014-x
https://sg.inflibnet.ac.in/bitstream/10603/162371/12/12_chapter%203.pdf
https://moam.info/a-low-power-self-timed-viterbi-decoder-seventh-international-apt_5ba7b326097c47f73e8b467e.html
https://pdfcookie.com/documents/digital-electronics-exercises-with-answers-rv3193red92d
https://pdfcookie.com/documents/problem-books-in-mathematics-antonio-caminha-muniz-neto-an-excursion-through-elementary-mathematics-volume-iii-discrete-mathematics-and-polynomial-algebra-2018-springer-8v4drr6m78vg
https://newprairiepress.org/cgi/viewcontent.cgi?article=1102&context=edconsiderations
https://pdfcookie.com/documents/languageproof-and-logic-wyljx4xpr823
https://beckassets.blob.core.windows.net/product/readingsample/363001/9783540714651_excerpt_001.pdf
https://byjus.com/gate/difference-between-half-adder-and-full-adder/
https://en.wikipedia.org/wiki/Complete_space
https://dx.doi.org/10.1142/S1005386706000629
https://dx.doi.org/10.1142/S1005386706000629
https://digitalcommons.usu.edu/etd/6772
https://home.cse.ust.hk/~dekai/271/notes/L01a/poa.pdf

51 pdfcookie.com <1 Internet Data

52 coek.info <1 Internet Data

https://pdfcookie.com/documents/apbdoc-7rv3oqm9ygvd
https://coek.info/pdf-towards-efficient-typed-lr-parsers-.html

MODULE I

UNIT I

RECURRENCE RELATIONS AND GENERATING FUNCTIONS

Objectives

• To understand the concept of recurrence relations and their

significance in discrete mathematics.

•

•

To analyze different types of number sequences and their properties.

To explore linear homogeneous and non-homogeneous recurrence

relations.

•

•

•

To study generating functions and their applications in solving

recurrence relations.

To differentiate between ordinary and exponential generating

functions.

To apply recurrence relations and generating functions in real-world

mathematical problems.

1.1 Introduction to Recurrence Relations 50

Recurrence relations are equations that define sequences where each term is

defined as function of previous terms. They're fundamental in understanding

iterative processes, algorithms, and many mathematical patterns.

Some Important Number Sequences

Fibonacci Sequence

Fibonacci sequence is defined by recurrence relation: F₀ = 0, F₁ = 1 Fₙ = Fₙ₋₁

+ Fₙ₋₂ for n ≥ 2

first few terms are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

This sequence appears in nature (like the arrangement of leaves on stems

and seeds in a sunflower) and has connections to the golden ratio.

1

Arithmetic Sequence Notes

An arithmetic sequence has a constant difference between consecutive

terms: a₁ = first term aₙ = aₙ₋₁ + d for n ≥ 2 (where d is the common

difference)

The explicit formula is: aₙ = a₁ + (n-1)d

Example: 3, 7, 11, 15, 19, ... (with a₁ = 3 and d = 4)

Geometric Sequence

A geometric sequence has a constant ratio between consecutive terms: a₁ =

first term aₙ = aₙ₋₁ × r for n ≥ 2 (where r is the common ratio)

The explicit formula is: aₙ = a₁ × rⁿ⁻¹

Example: 2, 6, 18, 54, 162, ... (with a₁ = 2 and r = 3)

Triangular Numbers

Triangular numbers count objects arranged in an equilateral triangle1 Tₙ =

Tₙ₋₁ + n T₁ = 1 for n ≥ 2

The precise equation is Tₙ = n(n+1)/2.The sequence is: 1, 3, 6, 10, 15, 21,

28, ...

Catalan Numbers

The Catalan numbers appear in various counting problems: C₀ = 1 Cₙ = Σ(Cᵢ

× Cₙ₋ᵢ₋₁) for i = 0 to n-1, n ≥ 1

The sequence is: 1, 1, 2, 5, 14, 42, 132, 429, ...

2

UNIT II Notes

Linear Homogeneous Relations of Recurrence

linear homogeneous recurrence relation of order k has the form: aₙ = c₁aₙ₋₁ +

c₂aₙ₋₂ + ... + cₖaₙ₋ₖ

Where c₁, c₂, ..., cₖ are constants and cₖ ≠ 0.

First-Order Linear Homogeneous Recurrence Relations

These have form: aₙ = c₁aₙ₋₁

The explicit solution is: aₙ = a₁ × (c₁)ⁿ⁻¹

Example: aₙ = 3aₙ₋₁ with a₁ = 2 Solution: aₙ = 2 × 3ⁿ⁻¹

Second-Order Linear Homogeneous Recurrence Relations

These have form: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂

Characteristic Equation Method

To solve a second-order connection of linear homogeneous recurrence:

1. Create a characteristic formula: r - c₁r - c₂ = 0 2

2.Find the roots r₁ and r₂ of this equation

1. The general solution depends on these roots:

o

o

If r₁ ≠ r₂ (distinct roots): aₙ = α₁r₁ⁿ + α₂r₂ⁿ

If r₁ = r₂ (repeated roots): aₙ = α₁r₁ⁿ + α₂nr₁ⁿ

2. Use initial conditions to find constants α₁ and α₂

Example: For the Fibonacci sequence Fₙ = Fₙ₋₁ + Fₙ₋₂

•

•

•

Characteristic equation: r² - r - 1 = 0

Roots: r₁ = (1 + √5)/2 and r₂ = (1 - √5)/2

General solution: Fₙ = α₁r₁ⁿ + α₂r₂ⁿ

Using F₀ = 0 and F₁ = 1 to find α₁ and α₂: Fₙ = (1/√5)[(1 + √5)/2]ⁿ - (1/√5)[(1

- √5)/2]ⁿ

Higher-Order Linear Homogeneous Recurrence Relations

For a relation of order k: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + cₖaₙ₋ₖ

3

1. Form the characteristic equation: rᵏ - c₁rᵏ⁻¹ - c₂rᵏ⁻² - ... - cₖ = 0 Notes

2. Find all roots of this equation

3. For each distinct root rᵢ with multiplicity mᵢ, the solution includes

terms: α₁rᵢⁿ, α₂nrᵢⁿ, α₃n²rᵢⁿ, ..., αₘᵢn^(mᵢ-1)rᵢⁿ

4. general solution is the sum of all these terms

5. Use initial conditions to find all constants

Non-Homogeneous Recurrence Relations

A non-homogeneous recurrence relation has form: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... +

cₖaₙ₋ₖ + F(n)

Where F(n) is a non-zero function of n.

Method of Undetermined Coefficients

The solution has two parts: aₙ = aₙʰ + aₙᵖ

Where:

•

•

aₙʰ is the general solution to homogeneous relation

aₙᵖ is a particular solution based on F(n)

Common forms of F(n) and their particular solutions:

1. F(n) = pn^s (polynomial):

o Try aₙᵖ = αₛn^s + αₛ₋₁n^(s-1) + ... + α₁n + α₀

2. F(n) = pᵏⁿ (exponential):

o

o

If pᵏ is not a root of the characteristic equation, try aₙᵖ = βpᵏⁿ

If pᵏ is a root with multiplicity m, try aₙᵖ = βn^m × pᵏⁿ

3. F(n) = n^s × pᵏⁿ (combination):

o Combine the approaches above

Method of Variation of Parameters

This method is useful for more complex F(n):

1. Find general solution aₙʰ to homogeneous relation

4

2. Assume a particular solution of the form aₙᵖ with variable Notes
coefficients

3. Substitute into the original relation to find these coefficients

Solved Problems

Problem 1: Solve the recurrence relation aₙ = 5aₙ₋₁ - 6aₙ₋₂ with a₀ = 1, a₁

= 4

Solution: Step 1: Form the characteristic equation r² - 5r + 6 = 0

Step 2: Factor the equation (r - 2)(r - 3) = 0

Step 3: Find the roots r₁ = 2, r₂ = 3

Step 4: Write the general solution Since we have distinct roots, the general

solution is: ₙ = α₁(2)ⁿ + α₂(3)ⁿ

Step 5: Use initial conditions to find α₁ and α₂ For a₀ = 1: 1 = α₁(2)⁰ + α₂(3)⁰

= α₁ + α₂

For a₁ = 4: 4 = α₁(2)¹ + α₂(3)¹ = 2α₁ + 3α₂

From the first equation: α₂ = 1 - α₁ Substituting into the second equation: 4 =

2α₁ + 3(1 - α₁) = 2α₁ + 3 - 3α₁ = 3 - α₁ α₁ = -1

Therefore, α₂ = 1 - (-1) = 2

Step 6: Write the explicit formula aₙ = 2(3)ⁿ - (2)ⁿ = -1(2)ⁿ + 2(3)ⁿ

1 , a₁ = 2(3)¹ - (2)¹ = 6 - 2 = 4 , a₂ = 2(3)² - (2)² = 18 - 4 = 14 a₃ = 2(3)³ -

(2)³ = 54 - 8 = 46

Problem 2: Find general solution of recurrence relation aₙ = 4aₙ₋₁ - 4aₙ₋₂

Solution: Step 1: Form the characteristic equation r² - 4r + 4 = 0

Step 2: Factor the equation (r - 2)² = 0

Step 3: Find the roots r₁ = r₂ = 2 (repeated root with multiplicity 2)

Step 4: Write the general solution Since we have a repeated root, the general

solution is: ₙ = α₁(2)ⁿ + α₂n(2)ⁿ

Step 5: Simplify the solution aₙ = (2)ⁿ(α₁ + α₂n)

5

Step 7: Verify the solution by checking a few terms a₀ = 2(3)⁰ - (2)⁰ = 2 - 1 =

Using initial conditions, we could solve for α₁ and α₂. Without specific initial Notes
conditions, this is the general solution.

Problem 3: Solve non-homogeneous recurrence relation aₙ = 3aₙ₋₁ + 2ⁿ

with a₀ = 1

Solution: Step 1: Solve the homogeneous part aₙ = 3aₙ₋₁ characteristic

equation is r - 3 = 0 root is r = 3 The homogeneous solution is ₙʰ = α(3)ⁿ

Step 2: Find a particular solution Since F(n) = 2ⁿ is exponential and 2 is not

a root of the characteristic equation, we try: aₙᵖ = β(2)ⁿ

Substituting into the original equation: β(2)ⁿ = 3β(2)ⁿ⁻¹ + 2ⁿ β(2)ⁿ = 3β(2)ⁿ/2

+ 2ⁿ β(2)ⁿ - 3β(2)ⁿ/2 = 2ⁿ β(2)ⁿ(1 - 3/2) = 2ⁿ β(-1/2) = 1 β = -2

So, aₙᵖ = -2(2)ⁿ

Step 3: Write the general solution aₙ = aₙʰ + aₙᵖ = α(3)ⁿ - 2(2)ⁿ

Step 4: Use the initial condition a₀ = 1 1 = α(3)⁰ - 2(2)⁰ = α - 2 α = 3

Step 5: Write the explicit formula aₙ = 3(3)ⁿ - 2(2)ⁿ

- 4 = 5, a₂ = 3(3)² - 2(2)² = 27 - 8 = 19, a₃ = 3(3)³ - 2(2)³ = 81 - 16 = 65

Unsolved Problems

Problem 1

Find general solution to recurrence relation: ₙ = 6aₙ₋₁ - 9aₙ₋₂

Problem 2

Solve the recurrence relation: aₙ = 2aₙ₋₁ + 3aₙ₋₂ with a₀ = 4 and a₁ = 5

Problem 3

Find the explicit formula for the sequence defined by: aₙ = aₙ₋₁ + 2aₙ₋₂ with

a₀ = 3 and a₁ = 4

Problem 4

Solve the non-homogeneous recurrence relation: aₙ = 4aₙ₋₁ - 4aₙ₋₂ + 3ⁿ with

a₀ = 1, a₁ = 2

Problem 5

6

Step 6: Verify the solution a₀ = 3(3)⁰ - 2(2)⁰ = 3 - 2 = 1 , a₁ = 3(3)¹ - 2(2)¹ =9

Find recurrence relation and initial conditions for sequence: 1, 4, 10, 19, 31,

46, ...
Notes

Applications of Recurrence Relations

Recurrence relations have numerous applications in mathematics and

computer science:

Algorithm Analysis

Many algorithms, especially recursive ones, can be analyzed using

recurrence relations. The time complexity of these algorithms is often

expressed as a recurrence relation:

Example: Binary Search

T(n) = T(n/2) + c (assuming n is power of 2) The solution is T(n) = O(log n)

Example: Merge Sort

T(n) = 2T(n/2) + cn The solution is T(n) = O(n log n)

Combinatorial Problems

Recurrence relations are useful for solving counting problems in

combinatorics:

Example: Counting Binary Strings

Let aₙ be number of binary strings of length n that do not contain

consecutive 0s.

We have:

• The strings 0 and 1 make up a₁ = 2.

• (the strings 01, 10, and 11) a₂ = 3.

The recurrence relation is: aₙ = aₙ₋₁ + aₙ₋₂ for n ≥ 3

This is the Fibonacci recurrence shifted by 2 positions.

Example: Tower of Hanoi

Let T(n) be the minimum number of moves needed to solve Tower of Hanoi

puzzle with n disks.

The recurrence relation is: T(n) = 2T(n-1) + 1 with T(1) = 1

7

The solution is: T(n) = 2ⁿ - 1 Notes

Financial Mathematics

Recurrence relations model financial processes like compound interest:

Example: Compound Interest

Let P(n) be amount after n years with principal P₀, interest rate r, and annual

compounding.

recurrence relation is: P(n) = (1 + r)P(n-1) with P(0) = P₀

The solution is: P(n) = P₀(1 + r)ⁿ

Population Growth

Recurrence relations model population dynamics:

Example: Rabbits (Fibonacci Model)

Let P(n) be the number of rabbit pairs after n months.

The recurrence relation is: P(n) = P(n-1) + P(n-2) for n ≥ 3, with P(1) = 1,

P(2) = 1

This is the classic Fibonacci sequence.

Iterative Substitution Method

This method involves expanding the recurrence relation repeatedly until a

pattern emerges:

Example: T(n) = T(n-1) + n with T(1) = 1

T(n) = T(n-1) + n = T(n-2) + (n-1) + n = T(n-3) + (n-2) + (n-1) + n... = T(1)

+ 2 + 3 +... + (n-1) + n = 1 + 2 + 3 +... + n = n(n+1) via expansion/2

The Divide-and-Conquer Recurrence Master Theorem

When a ≥ 1 and b > 1:1, recurrences of the form T(n) = aT(n/b) + f(n)

occur.T(n) = Θ(n^(log_b(a)) if f(n) = O(n^(log_b(a)-ε)) for some ε > 0.

T(n) = Θ(n^(log_b(a)) log n if f(n) = Θ(n^(log_b(a))).

3. T(n) = Θ(f(n)) if f(n) = Ω(n^(log_b(a)+ε)) for any ε > 0 and af(n/b) ≤ cf(n)

for some c < 1.

8

Techniques for Solving Recurrence Relations

Function Generation Notes

The formal power series is a generating function G(x) for a sequence {aₙ}:

For n ≥ 0, G(x) = a₀ + a₁x + a₂x² +... = Σ(aₙxⁿ).

The explicit formula for aₙ for recurrence relations can be found by

performing operations on the generating function.

For instance: F₁ = 1 for the Fibonacci sequence where F₀ = 0: The formula

for G(x) is Σ(Fₙxⁿ) = x + x² + 2x³ + 3x⁴ + 5x⁵ +...

This is the functional equation: xG(x) + x²G(x) + x = G(x)

Finding G(x): The formula is G(x) - xG(x) - x²G(x) = x G(x)(1 - x - x²) = x

G(x) = x/(1 - x - x²).

By decomposing partial fractions: G(x) = (1/√5)[1/(1-αx)-1/(1-βx)]

In this case, β = (1-√5)/2 and α = (1 + √5)/2

This allows us to recover: Fₙ = (1/√5)[αⁿ - βⁿ]

Particular Recurrence Relation Types

Recurrence Relations with Constant Coefficients

Aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ +... + cₖaₙ₋ₖ + F(n) is the form of these.

where the constants are c₁, c₂,..., cₖ.

Aₙ = c₁(n)aₙ₋₁ + c₂(n)aₙ₋₂ +... + cₖ(n)aₙ₋ₖ + F(n) is the form of these.

where at least one of the following is not constant: c₁(n), c₂(n),..., cₖ(n).

Divide-and-Conquer Recurrence Relations

These have the form: T(n) = aT(n/b) + f(n)

Where:

•

•

•

a is the number of subproblems

n/b is the size of each subproblem

f(n) is the cost of dividing and combining

Systems of Recurrence Relations

9

Recurrence Relations between Variables and Coefficients

These involve multiple interdependent sequences: aₙ = The formula is f(aₙ₋₁,

aₙ₋₂,..., bₙ₋₁, bₙ₋₂,...) bₙ = g(aₙ₋₁, aₙ₋₂,..., bₙ₋₁, bₙ₋₂,.....)
Notes

For example, the Fibonacci and Lucas sequences form a system.

Historical Development of Recurrence Relations

Recurrence relations have a rich history dating back to ancient mathematics:

Ancient Origins

The concept of recursion appears in ancient problems like the Tower of

Hanoi and the Chinese rings puzzle.

Leonardo Fibonacci (c. 1170-1250)

Fibonacci introduced the sequence named after him in his book "Liber

Abaci" (1202), in the context of modeling rabbit population growth.

Abraham de Moivre (1667-1754)

De Moivre developed methods for solving linear recurrence relations with

constant coefficients, introducing characteristic equation method.

Pierre-Simon Laplace (1749-1827)

Laplace used generating functions to solve recurrence relations, laying

important groundwork for modern approaches.

George Boole (1815-1864)

Boole developed symbolic methods for solving recurrence relations as part

of his work on difference equations.

Modern Development

In the 20th century, the study of recurrence relations expanded with

applications in computer science, particularly algorithm analysis (Knuth,

Hopcroft, Tarjan, and others).

Relationships to Other Mathematical Areas

Differential Equations

Recurrence relations are the discrete analogs of differential equations. Many

techniques for solving differential equations have corresponding methods for

recurrence relations.

10

Linear Algebra Notes

Higher-order linear recurrence relations can be transformed into first-order

matrix recurrence relations, connecting them to eigenvalues and

eigenvectors.

Number Theory

Many important number-theoretic sequences, like Fibonacci numbers,

satisfy recurrence relations and have connections to continued fractions and

Diophantine equations.

Graph Theory

Recurrence relations describe paths in graphs, especially in counting

problems involving walks of various types.

Complex Analysis

Generating functions for recurrence relations connect to complex analysis,

with singularities of the generating function determining the asymptotic

behavior of the sequence.

Advanced Topics in Recurrence Relations

Asymptotic Analysis

For many applications, especially in algorithm analysis, we're interested in

the asymptotic behavior of sequences defined by recurrence relations:

Big-O Notation

•

•

•

O(f(n)): Upper bound

Ω(f(n)): Lower bound

Θ(f(n)): Tight bound

Common Growth Rates (in increasing order)

•

•

•

•

•

O(1): Constant

O(log n) is a logarithmic

O(n^k): Polynomial

O(n²): Quadratic

11

O(n) is linear, and O(n log n) is linear.

• Exponential O(2^n)Multivariate Recurrence Relations Notes

These involve sequences with multiple indices: a(m,n) = f(a(m-1,n), a(m,n-

1), ...)

Example: Pascal's triangle satisfies: C(n,k) = C(n-1,k-1) + C(n-1,k)

Non-Linear Recurrence Relations

These have a non-linear form: aₙ = f(aₙ₋₁, aₙ₋₂, ..., aₙ₋ₖ)

Where f is not a linear function.

Example: Logarithmic recurrence: T(n) = T(n/2) + 1

Solution: T(n) = log₂(n) + T(1)

Random Recurrence Relations

These involve probability and random variables: E[Xₙ] = f(E[Xₙ₋₁], E[Xₙ₋₂],

...)

Example: Expected height of a random binary search tree: E[H(n)] ≈ 4.311

log n - 1.953 log log n + O(1)

Conclusion

Recurrence relations are powerful tools for modeling and solving problems 363636

in diverse fields. Understanding them provides insights into algorithmic

efficiency, natural patterns, and mathematical structures. As we've seen,

techniques for solving recurrence relations range from elementary methods

like iteration to sophisticated approaches using generating functions and

asymptotic analysis.

The connection between recurrence relations and other mathematical

areas—like differential equations, linear algebra, and complex analysis—

highlights their fundamental importance in mathematics. From the classic

Fibonacci sequence to the complexities of algorithm analysis, recurrence

relations offer a unified framework for studying discrete mathematical

processes.Whether you're analyzing algorithms, modeling population

growth, or exploring number theory, recurrence relations provide elegant

formulations and solutions, forming an essential component of mathematical

problem-solving.

12

UNIT III Notes

1.2 Generating Functions, Recurrences, and Applications

Introduction to Generating Functions

A generating function is a powerful mathematical tool that encodes an

infinite sequence of numbers (a0, a1, a2, ...) into a single function. The most

common type of generating function is the ordinary generating function,

defined as:

G(x) = a0 + a1x + a2x² + a3x³ + ...

Here, the sequence (a0, a1, a2, ...) represents the coefficients of the power

series. Rather than working with the sequence directly, we can manipulate

the generating function as a whole, which often simplifies complex 1515

problems involving sequences.

Why Generating Functions Are Useful

Generating functions provide a powerful framework for solving a variety of

problems in discrete mathematics:

1. Solving recurrence relations: Many problems in computer science

and mathematics involve sequences defined recursively. Generating

functions provide a systematic approach to find closed-form

expressions for these sequences.

2. Counting problems: In combinatorics, generating functions help

count arrangements, selections, or distributions that satisfy certain

constraints.

3. Probability distributions: In probability theory, generating

functions represent probability distributions and simplify the

calculation of moments and other statistical properties.

4. Asymptotic analysis: Generating functions can provide insights

into the asymptotic behavior of sequences, which is crucial for

Basic Operations on Generating Functions

If we have generating functions G(x) = Σ aₙxⁿ and H(x) = Σ bₙxⁿ, the

following operations correspond to operations on the underlying sequences:

13

analyzing algorithm complexity.

1. Addition: G(x) + H(x) = Σ (aₙ + bₙ)xⁿ Notes

2. Scalar multiplication: c·G(x) = Σ (c·aₙ)xⁿ

3. Multiplication: G(x)·H(x) = Σ cₙxⁿ, where cₙ = Σ aₖbₙ₋ₖ

(convolution)

4. Differentiation: G'(x) = Σ n·aₙxⁿ⁻¹

5. Integration: ∫G(x)dx = C + Σ (aₙ/(n+1))xⁿ⁺¹

6. Shifting: x·G(x) = Σ aₙ₋₁xⁿ (where a₋₁ = 0)

Common Generating Functions

Several generating functions appear frequently in combinatorial problems:

Geometric Series

The simplest generating function is the geometric series:

G(x) = 1 + x + x² + x³ + ... = 1/(1-x) for |x| < 1

This represents the sequence (1, 1, 1, ...). Its general form is:

G(x) = a + ax + ax² + ax³ + ... = a/(1-x) for |x| < 1

Binomial Series

The binomial theorem gives us:

(1 + x)ⁿ = Σ (n choose k)xᵏ for k = 0 to n

For negative and non-integer values of n, we have the generalized binomial

series:

(1 + x)ⁿ = Σ (n choose k)xᵏ for k = 0 to ∞ (for |x| < 1)

where (n choose k) = n(n-1)(n-2)...(n-k+1)/k! even when n is not a positive

Exponential Function

The exponential function as a generating function:

e^x = 1 + x + x²/2! + x³/3! + ... = Σ xⁿ/n!

Recurrence Relations and Generating Functions

14

integer.

A recurrence relation defines each term of a sequence using one or more 363636

previous terms. Generating functions provide a systematic approach to solve

recurrence relations.

Notes

Constant Coefficient Linear Recurrence Relations

Consider a linear recurrence relation:

aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + cₖaₙ₋ₖ + f(n) for n ≥ k

Where c₁, c₂, ..., cₖ are constants, and f(n) is function of n. To solve this

using generating functions:

1. Define G(x) = Σ aₙxⁿ

2. Multiply the recurrence relation by xⁿ and sum over all valid n

3. Express the resulting equation in terms of G(x)

4. Solve for G(x)

5. Expand G(x) into a power series to find the coefficients aₙ

Homogeneous Recurrences

For homogeneous recurrences (f(n) = 0), the characteristic equation helps

find closed-form solutions:

r^k - c₁r^(k-1) - c₂r^(k-2) - ... - cₖ = 0

The solutions to this equation determine the form of the closed-form

expression for aₙ.

Non-homogeneous Recurrences

For non-homogeneous recurrences (f(n) ≠ 0), we can split the solution into:

•

•

The homogeneous solution (as above)

A particular solution that satisfies the non-homogeneous part

Exponential Generating Functions

While ordinary generating functions use the form G(x) = Σ aₙxⁿ, exponential

generating functions (EGFs) use:

E(x) = Σ aₙxⁿ/n!

Properties of EGFs

15

If E(x) = Σ aₙxⁿ/n! and F(x) = Σ bₙxⁿ/n! are exponential generating functions, Notes
then:

1. Addition: E(x) + F(x) = Σ (aₙ + bₙ)xⁿ/n!

2. Scalar multiplication: c·E(x) = Σ (c·aₙ)xⁿ/n!

3. Multiplication: E(x)·F(x) = Σ cₙxⁿ/n!, where cₙ = Σ (n choose

k)aₖbₙ₋ₖ

4. Differentiation: E'(x) = Σ aₙ₊₁xⁿ/n!

5. Integration: ∫E(x)dx = C + Σ aₙ₋₁xⁿ/n! (where a₋₁ = 0)

When to Use EGFs vs. Ordinary Generating Functions

• Ordinary generating functions are particularly useful for problems

involving selections with repetition allowed.

• Exponential generating functions are more suitable for problems

involving arrangements, permutations, or labeled objects.

Common Exponential Generating Functions

1. Exponential function: e^x = Σ xⁿ/n! is the EGF for the sequence (1,

1, 1, ...)

2. Sine and Cosine: sin(x) = Σ (-1)ⁿx^(2n+1)/(2n+1)! and cos(x) = Σ (-

1)ⁿx^(2n)/(2n)!

3. Exponential with factor: e^(ax) = Σ aⁿxⁿ/n! is the EGF for the

sequence (1, a, a², a³, ...)

Applications of Generating Functions

Fibonacci Numbers 363636

Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, ...) is defined by recurrence:

F₀ = 0, F₁ = 1, Fₙ = Fₙ₋₁ + Fₙ₋₂ for n ≥ 2

Using generating functions, we can find:

G(x) = Σ Fₙxⁿ = x/(1-x-x²)

This can be expanded using partial fractions to obtain closed-form

expression:

16

Fₙ = (φⁿ - (1-φ)ⁿ)/√5, where φ = (1+√5)/2 ≈ 1.618 (the golden ratio) Notes

Catalan Numbers

Catalan numbers (1, 1, 2, 5, 14, 42, ...) appear in many combinatorial

problems. They satisfy:

C₀ = 1, Cₙ₊₁ = Σ CᵢCₙ₋ᵢ for i = 0 to n

Their generating function is:

G(x) = (1-√(1-4x))/(2x)

And the closed form is:

Cₙ = (1/(n+1))(2n choose n)

Binomial Coefficients

The binomial coefficients (n choose k) have generating function:

(1+x)ⁿ = Σ (n choose k)xᵏ for k = 0 to n

This leads to numerous identities and combinatorial interpretations.

Advanced Techniques

Lagrange Inversion Formula

For implicitly defined generating functions, the Lagrange inversion formula

provides a way to extract coefficients.

Singularity Analysis

Analyzing the singularities of a generating function can provide asymptotic

estimates of the coefficients.

Multivariate Generating Functions

For sequences that depend on multiple indices, multivariate generating

functions can be used:

G(x,y) = Σ aᵢ,ⱼxⁱyʲ

Solved Problems

17

Solved Problem 1: Solve Recurrence Relation for Tower of Hanoi

Problem: Find number of moves required to solve Tower of Hanoi Notes
puzzle with n disks.

Recurrence relation is: T₁ = 1 Tₙ = 2Tₙ₋₁ + 1 for n ≥ 2

Solution:

Let G(x) = Σ Tₙxⁿ be the generating function.

Multiplying recurrence by xⁿ and Adding up for n ≥ 2: For n ≥ 2, Σ Tₙxⁿ

= Σ 2Tₙ₋₁xⁿ + Σ xⁿ

This provides us with: 2x G(x) + x²/(1-x) = G(x) - T₁x

Changing T₁ = 1 to: G(x) - x = 2x G(x) + x²/(1-x)

Finding G(x): G(x) - 2x x + x²/(1-x) = G(x) x + x²/(1-x) = G(x)(1 - 2x)

x(1-x + x)/(1-x) = G(x)(1 - 2x) x/(1-x) = G(x)(1 - 2x) x/((1-x)(1-2x)) =

G(x)

Making use of partial fractions G(x) = x/(1-x) (1-x) - (1/2) = - x/(1-2x)

1/(1-x/2)

Expanding into power series: G(x) = x(1 + x + x² + ...) - (1/2)(x/2 +

(x/2)² + (x/2)³ + ...) = x + x² + x³ + ... - (1/2)(x/2 + x²/4 + x³/8 + ...) = Σ

(xⁿ - xⁿ/2ⁿ⁺¹)

Therefore: Tₙ = 1 - 1/2ⁿ⁺¹ = (2ⁿ⁺¹ - 1)/2ⁿ⁺¹ = 2ⁿ - 1

The number of moves required to solve the Tower of Hanoi puzzle with

n disks is 2ⁿ - 1.

Solved Problem 2: Fibonacci Sequence Using Exponential Generating 1515

Function

Problem: Derive an expression for Fibonacci numbers using an exponential

generating function.

Solution:

Fibonacci sequence is defined by: F₀ = 0, F₁ = 1, Fₙ = Fₙ₋₁ + Fₙ₋₂ for n ≥ 2

Let E(x) = Σ Fₙxⁿ/n! be the exponential generating function.

Multiplying the recurrence by xⁿ/n! & summing for n ≥ 2: Σ Fₙxⁿ/n! = Σ

Fₙ₋₁xⁿ/n! + Σ Fₙ₋₂xⁿ/n! for n ≥ 2

18

This gives us: E(x) - F₀ - F₁x = x·E(x) + x²·E(x) Notes

Substituting F₀ = 0 and F₁ = 1: E(x) - x = x·E(x) + x²·E(x)

Solving for E(x): E(x) - x·E(x) - x²·E(x) = x E(x)(1 - x - x²) = x E(x) = x/(1 -

x - x²)

Let's find roots of denominator: 1 - x - x² = 0 x = (-1 ± √5)/2

Let α = (1 + √5)/2 and β = (1 - √5)/2

Using partial fractions: E(x) = x/((x-α)(x-β)) = A/(x-α) + B/(x-β)

Solving for A and B: A = x/(x-β)|x=α = α/(α-β) = α/√5 B = x/(x-α)|x=β =

β/(β-α) = -β/√5

Thus: E(x) = (α/√5)/(x-α) - (β/√5)/(x-β) = (1/√5)(α/(x-α) - β/(x-β))

Each term can be expanded as a power series: 1/(x-α) = -1/α · 1/(1-x/α) = -

(1/α) · (1 + x/α + (x/α)² + ...) = -(1/α) · Σ (x/α)ⁿ = -Σ xⁿ/αⁿ⁺¹

Similarly: 1/(x-β) = -Σ xⁿ/βⁿ⁺¹

Therefore: E(x) = (1/√5)(-α · Σ xⁿ/αⁿ⁺¹ + β · Σ xⁿ/βⁿ⁺¹) = (1/√5)(Σ -xⁿ/αⁿ + Σ

xⁿ/βⁿ) = (1/√5)Σ xⁿ(1/βⁿ - 1/αⁿ)

Comparing with the original definition of E(x): Fₙ/n! = (1/√5)(1/βⁿ - 1/αⁿ)

Thus: Fₙ = (n!/√5)(1/βⁿ - 1/αⁿ)

This isn't the simplest form. For the standard Fibonacci closed form, the

ordinary generating function is more elegant, giving: Fₙ = (αⁿ - βⁿ)/√5 =

(((1+√5)/2)ⁿ - ((1-√5)/2)ⁿ)/√5

Solved Problem 3: Generating Function for Derangements

Problem: Find number of derangements of n elements using generating

functions.

Derangement is a permutation where no element appears in its original

position.

Solution:

Let Dₙ be number of derangements of n elements.

For n = 0, there is 1 way to arrange 0 elements (empty arrangement), so D₀ =

1. For n = 1, there is no way to derange 1 element, so D₁ = 0.

19

For n ≥ 2, we can derive recurrence relation: Dₙ = (n-1)(Dₙ₋₁ + Dₙ₋₂) Notes

Let's solve this using exponential generating function: D(x) = Σ Dₙxⁿ/n!

From the recurrence, multiplying by xⁿ/n! & summing for n ≥ 2: Σ Dₙxⁿ/n! =

Σ (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n!

The left side is D(x) - D₀ - D₁x/1! = D(x) - 1

For the right side, we need to manipulate the terms: (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! =

(n-1)Dₙ₋₁xⁿ/n! + (n-1)Dₙ₋₂xⁿ/n! = Dₙ₋₁xⁿ/(n-1)! · (n-1)/n + Dₙ₋₂xⁿ/(n-2)! · (n-

1)/(n(n-1)) = Dₙ₋₁xⁿ⁻¹·x/(n-1)! · (n-1)/n + Dₙ₋₂xⁿ⁻²·x²/(n-2)! · 1/n =

Dₙ₋₁xⁿ⁻¹·x/(n-1)! · (1-1/n) + Dₙ₋₂xⁿ⁻²·x²/(n-2)! · 1/n

Summing over n ≥ 2: Σ (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! = x·D'(x) - x·D(x) + x²·D(x)

Therefore: D(x) - 1 = x·D'(x) - x·D(x) + x²·D(x) D(x) - 1 = x·D'(x) + D(x)(x²

- x)

Rearranging: x·D'(x) = D(x)(1 - x² + x) - 1 x·D'(x) = D(x)(1 - x + x²) - 1

This is a differential equation. The solution is: D(x) = e^(-x)/(1-x)

Expanding e^(-x) as a power series: D(x) = (1 - x + x²/2! - x³/3! + ...)/(1-x) =

(1 - x + x²/2! - x³/3! + ...)(1 + x + x² + x³ + ...)

Extracting the coefficient of xⁿ/n!, we get: Dₙ = n!·Σ(-1)ᵏ/k! for k = 0 to n =

n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)ⁿ/n!) = n!·Σ(-1)ᵏ/k! for k = 0 to n

This is the closed form for number of derangements of n elements.

For large n, approaches n! /e, which means approximately 1/e ≈ 36.8% of all

permutations are derangements.

8. Unsolved Problems

Unsolved Problem 1

Find the generating function for sequence defined by the recurrence relation:

a₀ = 1, a₁ = 3, ₙ = 4aₙ₋₁ - 4aₙ₋₂ for n ≥ 2

Use generating function to find a closed-form expression for ₙ.

Unsolved Problem 2

sequence is defined by the recurrence relation: b₀ = 1, b₁ = 2, b₂ = 3, bₙ =

2bₙ₋₁ - bₙ₋₂ + bₙ₋₃ for n ≥ 3

20

Find the exponential generating function for this sequence and derive 444444
Notes

closed-form expression for bₙ.

Unsolved Problem 3 191919191919

Use generating functions to solve the recurrence relation: c₀ = 1, c₁ = 4, cₙ =

6cₙ₋₁ - 9cₙ₋₂ for n ≥ 2

What is the asymptotic growth rate of cₙ as n approaches infinity?

Unsolved Problem 4

Find the ordinary generating function for the number of ways to make 444444

change for n cents using coins of denominations 1, 5, 10, and 25 cents,

Unsolved Problem 5

A sequence (dₙ) satisfies the recurrence relation: d₀ = 0, d₁ = 1, dₙ = dₙ₋₁ +

dₙ₋₂ + n-1 for n ≥ 2

Find generating function for this sequence and use it to derive closed-form 191919191919

expression for dₙ.

1.2 Applications of Recurrence Relations and Generating Functions

Recurrence relations are equations that define a sequence based on previous

terms in the sequence. They provide a powerful way to represent and solve

problems in mathematics, computer science, and various real-world

applications. When we face a problem where each state depends on previous

states, recurrence relations offer an elegant mathematical framework to

model and solve such dependencies.

recurrence relation generally takes form:

f(a_{n-1}, a_{n-2},..., a_{n-k}) = a_n

Where the value of the nth term depends on k previous terms. For example,

Fibonacci sequence can be expressed using the recurrence relation:

F_n = F_{n-1} + F_{n-2}, with F_0 = 0, F_1 = 1

Recurrence relations alone can be challenging to solve for large values. This

is where generating functions come into play, providing a systematic

approach to solve complex recurrence relations.

21

where the order of coins doesn't matter.

Generating Functions: A Powerful Tool Notes

A generating function is a formal power series whose coefficients give a 191919191919

sequence of numbers. For a sequence {a , a , a , ...}, the ordinary 0 1 2

generating function is defined as:

G(x) = a + a x + a x^2 + a x^3 + ... = Σ(n≥0) a x^n 0 1 2 3 n

Generating functions transform recurrence problems from the realm of

sequences to the realm of functions, where we can leverage algebraic

techniques to find closed-form expressions.

Common Types of Generating Functions

1. Ordinary Generating Functions (OGF)Σ(n≥0) a x^n = G(x) n

2. Exponential Generating Functions (EGFG(x) is equal to Σ(n≥0)

a (x^n/n!). n

3. Dirichlet Generating Functions:Σ(n≥1) a /n^s = G(s) n

Solving Recurrence Relations with Generating Functions

The general approach involves:

1. Convert the recurrence relation to a functional equation using

generating functions

2. Solve the functional equation to find the generating function

3. Extract coefficient formula from the generating function

Common Recurrence Relations and Their Solutions

Arithmetic Sequences

With a = a, the recurrence is a = a + d. (n-1)d + a = an is theclosed 1 n {n-1} n

form.

Geometric Sequences

With a = a, the recurrence is a = r•a . Form closed: a = a•r^(n-1) 1 n {n-1} n

Linear Homogeneous Recurrence Relations with Constant Coefficients

For a recurrence of the form: a = c ·a + c ·a + ... +c ·an 1 {n-1} 2 {n-2} k {n-k}

22

The solution involves finding the roots of the characteristic equation: r^k -

c ·r^(k-1) - c ·r^(k-2) - ... - c = 0 1 2 k

Notes

Applications in Various Fields

Computer Algorithms

1. Analysis of Recursive Algorithms

Many algorithms use recursion, which naturally leads to recurrence

relations. For example, the time complexity of the binary search algorithm

can be expressed as:

T(n) = T(n/2) + c

This recurrence relation can be solved to find that T(n) = O(log n).

2. Divide and Conquer Algorithms

Algorithms like Merge Sort have time complexities expressed as:

T(n) = 2T(n/2) + O(n)

Using the Master Theorem (which is derived from recurrence relations), we

find T(n) = O(n log n).

Combinatorial Problems

1. Counting Problem Structures

The number of ways to arrange objects, select committees, or distribute 191919191919

items often lead to recurrence relations.

For example, the number of ways to tile a 2×n rectangle with 2×1 dominoes

follows the Fibonacci recurrence:

T(n) = T(n-1) + T(n-2)

2. Catalan Numbers

Catalan numbers appear in numerous counting problems and follow the

recurrence:

C = Σ(i=0 to n-1) C ·C , with C = 1 n i {n-1-i} 0

The generating function for Catalan numbers is:

C(x) = (1 - √(1 - 4x))/(2x)

23

Financial Mathematics Notes

1. Compound Interest

If P represents the principal after n periods with interest rate r, we have: n

P = P (1 + r) = P (1 + r)^n n {n-1} 0

2. Mortgage Payments

periods, the recurring payment A satisfies:

P = A·[1 - (1 + r)^(-n)]/r

Population Dynamics

1. The Fibonacci Model for Rabbit Population

The classic Fibonacci sequence originally modeled rabbit population

growth.

2. Logistic Growth Model

For a population with carrying capacity K and growth rate r:

P = P + r·P ·(1 - P /K) n {n-1} {n-1} {n-1}

Physics and Engineering

1. Harmonic Oscillators

The position of a mass on a spring can be modeled by recurrence relations.

2. Signal Processing

Digital filters often use recurrence relations to process signals.

Solved Problems

Problem 1: Fibonacci Sequence Using Generating Functions

Problem: Find a closed-form expression for the Fibonacci sequence F_n

defined by F = 0, F = 1, and F = F + F for n ≥ 2. 0 1 n {n-1} {n-2}

Solution:

Step 1: Define the generating function F(x) = Σ(n≥0) F x^n n

24

For a mortgage with principal P, interest rate r per period, and n total

Step 2: Multiply the recurrence relation by x^n and sum for n ≥ 2: Σ(n≥2) Notes
F x^n = Σ(n≥2) F x^n + Σ(n≥2) F x^n n {n-1} {n-2}

Step 3: Rewrite in terms of F(x): F(x) - F - F x = x(F(x) - F) + 0 1 0

x^2·F(x)

Step 4: Substitute F = 0, F = 1: F(x) - x = x·F(x) + x^2·F(x) 0 1

Step 5: Solve for F(x): F(x) - x = F(x)(x + x^2) F(x) - F(x)(x + x^2) = x

F(x)(1 - x - x^2) = x F(x) = x/(1 - x - x^2)

Step 6: Using partial fraction decomposition or the binomial theorem, we

can show that: F(x) = (1/√5)·[1/(1 - αx) - 1/(1 - βx)]

Where α = (1 + √5)/2 and β = (1 - √5)/2.

Step 7: Expanding as a power series gives: F(x) = (1/√5)·[Σ(n≥0) α^n x^n -

Σ(n≥0) β^n x^n]

Step 8: Therefore, the closed-form expression for the nth Fibonacci number

is: F = (1/√5)·[α^n - β^n] = (1/√5)·[(1 + √5)^n/2^n - (1 - √5)^n/2^n]This is n

known as Binet's formula.

Problem: Find the minimum number of moves required to solve the Tower

of Hanoi puzzle with n disks.

Solution:

Step 1: Let T be the minimum number of moves needed for n disks. n

Step 2: For n = 1, we only need one move, so T = 1. 1

Step 3: For n ≥ 2, we need to: 444444

•

•

•

Move n-1 disks from source to auxiliary (T moves) {n-1}

Move the largest disk from source to destination (1 move)

Move n-1 disks from auxiliary to destination (T moves) {n-1}

Step 4: This gives us the recurrence relation: T = 2·T + 1, with Tn {n-1} 1

= 1

Step 5: Define the generating function G(x) = Σ(n≥1) T x^n n

25

Problem 2: Tower of Hanoi

Step 6: Multiply the recurrence by x^n and sum for n ≥ 2: Σ(n≥2) T x^n = n

2·Σ(n≥2) T x^n + Σ(n≥2) x^n {n-1}

Notes

Step 7: Rewrite in terms of G(x): G(x) - T x = 2x·G(x) + x^2/(1-x) 1

Step 8: Substitute T = 1: G(x) - x = 2x·G(x) + x^2/(1-x) 1

Step 9: Solve for G(x): G(x) - 2x·G(x) = x + x^2/(1-x) G(x)(1 - 2x) = x +

x^2/(1-x) G(x) = [x + x^2/(1-x)]/(1 - 2x) G(x) = [x(1-x) + x^2]/(1-x)(1-2x)

G(x) = x/(1-x)(1-2x)

Step 10: Using partial fraction decomposition: G(x) = 1/(1-2x) - 1/(1-x)

Step 11: Expand as power series: G(x) = Σ(n≥0) (2^n)x^n - Σ(n≥0) x^n =

Σ(n≥1) (2^n - 1)x^n

Step 12: Therefore, Tn = 2^n - 1.

So, the minimum number of moves required to solve the Tower of Hanoi

puzzle with n disks is 2^n - 1.

Problem 3: Catalan Numbers

Problem: The Catalan numbers Cn satisfy the recurrence relation C = 1 0

and C = Σ(i=0 to n-1) C ·C for n ≥ 1. Find a closed-form n i {n-1-i}

expression for C . n

Solution:

Step 1: Define the generating function C(x) = Σ(n≥0) C x^n n

Step 2: Multiply the recurrence by x^n and sum for n ≥ 1: Σ(n≥1) C x^n =Σ n

(n≥1) Σ(i=0 to n-1) C ·C x^n i {n-1-i}

Step 3: The right side is the coefficient of x^n in [C(x)]^2, except for the

constant term. Thus: C(x) - C = x·[C(x)]^2 0

Step 4: Substitute C = 1: C(x) - 1 = x·[C(x)]^2 0

Step 5: Rearrange to get a quadratic equation: x·[C(x)]^2 - C(x) + 1 = 0

Step 6: Solve for C(x) using the quadratic formula: C(x) = [1 ± √(1 - 4x)]/2x

Step 7: Since C(0) = C = 1, we must choose the solution: C(x) = [1 - √(1 - 0

4x)]/2x

26

Step 8: Using the binomial theorem to expand √(1 - 4x): √(1 - 4x) = Σ(k≥0) Notes
(1/2 choose k)(-4x)^k

Step 9: After algebraic manipulation, we get: C(x) = Σ(n≥0) (1/(n+1))(2n

choose n)x^n

Step 10: Therefore, the closed-form expression for the nth Catalan number

is: Cn = (1/(n+1))(2n choose n) = (2n)!/((n+1)!·n!)

This formula confirms that the Catalan numbers appear in many counting

problems, such as the number of valid parenthesizations of n+1 factors, the

number of triangulations of a convex polygon with n+2 sides, and many

others.

Problem 4: Derangements

Problem: A derangement is a permutation where no element appears in its 191919191919

original position. Let D be the number of derangements of n elements. n

Find a recurrence relation and generating function for D . 444444
n

Solution:

Step 1: For n = 1, there are no derangements, so D = 0. For n = 2, there is 1

one derangement: (2,1), so D = 1. 2

Step 2: For n ≥ 3, consider element 1. It can be placed in any of the n-1

positions 2, 3, ..., n. If 1 goes to position i, we have two cases:

•

•

Element i goes to position 1 (forming a 2-cycle). The remaining n-2

elements must be deranged, giving D possibilities. {n-2}

Element i does not go to position 1. This is equivalent to deranging

n-1 elements (excluding position 1), giving D{n-1} possibilities.

Step 3: This gives us the recurrence relation: D = (n-1)(D + D), n {n-1} {n-2}

with D = 0, D = 1 1 2

Step 4: This can be simplified to: D = n·D + (-1)^n n {n-1}

Step 5: Define the exponential generating function D(x) = Σ(n≥0) Dn

(x^n/n!)

Step 6: Multiply the recurrence by x^n/n! and sum: Σ(n≥2) D (x^n/n!) =Σ n

(n≥2) n·D (x^n/n!) + Σ(n≥2) (-1)^n (x^n/n!) {n-1}

27

Step 7: Simplify: D(x) - D - D x = x·D'(x) + e^(-x) - 1 - x 0 1

Step 8: Substitute D = 1, D = 0: D(x) - 1 = x·D'(x) + e^(-x) - 1 - x 0 1

Step 9: Rearrange: D(x) - x·D'(x) = e^(-x)

Notes

Step 10: This is a first-order linear differential equation. The solution is:

D(x) = e^(-x)/(1-x)

Step 11: Expanding e^(-x) and 1/(1-x) as series: D(x) = [Σ(k≥0) (-1)^k

(x^k/k!)] · [Σ(m≥0) x^m]

Step 12: The coefficient of x^n/n! in D(x) gives us: D = n! · Σ(k=0 to n) (- n

1)^k / k!

Step 13: Therefore: D = n! · Σ(k=0 to n) (-1)^k / k! = n! · (1 - 1 + 1/2! - n

1/3! + ... + (-1)^n/n!)

Step 14: As n approaches infinity, this sum approaches e^(-1). Thus, for

large n: D ≈ n!/e (rounded to the nearest integer)This is an example of n

the "nearest integer function" and shows that theprobability of a random

permutation being a derangement approaches 1/e asn increases.

Problem 5: Recurrence Relation for Binary Strings

Problem: Let a_n be the number of binary strings of length n that do not

contain "11" as a substring. Find a recurrence relation and closed-form

expression for a . n

Solution:

Step 1: For n = 1, the possible strings are "0" and "1", so a_1 = 2. For n = 2,

the possible strings are "00", "01", and "10" (excluding "11"), so a_2 = 3.

Step 2: For n ≥ 3, consider the last two characters of a valid string:

• If the string ends with "00", removing these gives a valid string of

length n-2, so there are a such strings. {n-2}

• If the string ends with "01", removing these gives a valid string of

length n-2, so there are a such strings. {n-2}

• If the string ends with "10", removing these gives a valid string of

length n-2, so there are a such strings. {n-2}

28

• The string cannot end with "11" by definition. Notes

Step 3: This gives us the recurrence relation: a = a + a , with a = 2, n {n-1} {n-2} 1

a = 3 2

Step 4: Define the generating function A(x) = Σ(n≥0) a x^n, with a = 1. n 0

Step 5: Multiply the recurrence by x^n and sum for n ≥ 3: Σ(n≥3) a x^n =Σ n

(n≥3) a x^n + Σ(n≥3) a x^n {n-1} {n-2}

Step 6: Rewrite in terms of A(x): A(x) - a - a x - a x^2 = x(A(x) - a -a x) + 0 1 2 0 1

x^2A(x)

Step 7: Substitute a = 1, a = 2, a = 3: A(x) - 1 - 2x - 3x^2 = x(A(x) - 1- 2x) 0 1 2

+ x^2A(x)

Step 8: Solve for A(x): A(x) - 1 - 2x - 3x^2 = xA(x) - x - 2x^2 + x^2A(x)

A(x) - xA(x) - x^2A(x) = 1 + 2x + 3x^2 - x - 2x^2 A(x)(1 - x - x^2) = 1 + x

+ x^2 A(x) = (1 + x + x^2)/(1 - x - x^2)

Step 9: The denominator 1 - x - x^2 is the same as in the Fibonacci

generating function. Using partial fraction decomposition: A(x) = (1 + x +

x^2)/[(1 - αx)(1 - βx)]

Where α = (1 + √5)/2 and β = (1 - √5)/2.

Step 10: After further algebraic manipulation, we get: a = [(α^(n+2) - n

β^(n+2))/(α - β)] - [(α^n - β^n)/(α - β)]

Step 11: This can be simplified to: a = F + F Where F is the nth n {n+2} n n

Fibonacci number.Therefore, the number of binary strings of length n

without consecutive 1'sis given by a = F + F , which can be n {n+2} n

computed using Binet'sformula for Fibonacci numbers.

Unsolved Problems

Problem 1: Tribonacci Sequence

The Tribonacci sequence is defined by T = 0, T = 1, T = 1, and T = T0 1 2 n {n-1}

+ T + T for n ≥ 3. {n-2} {n-3}

Find a closed-form expression for Tn using generating functions.

29

Problem 2: Coin Change Problem Notes

Let Cn be the number of ways to make change for n cents using coins of 191919191919

denominations 1, 5, 10, and 25 cents. Find a recurrence relation and 444444

generating function for c_n.

Problem 3: Binomial Coefficients

Using generating functions, prove the identity:

Σ(k=0 to n) (n choose k)^2 = (2n choose n)

Problem 4: Partition Numbers

Let p(n) be the number of ways to write n as a sum of positive integers

(where order doesn't matter). Find a recurrence relation and generating 444444

function for p(n).

Problem 5: Random Walks

Consider a random walk on the integer number line, starting at position 0. At

each step, you move one unit left or right with equal probability. Let p be n

the probability of being back at position 0 after 2n steps. Find a recurrence

relation and generating function for p . n

Advanced Applications

Matrix Methods for Recurrence Relations

For a linear recurrence relation of order k:

a = c ·a + c ·a + ... + c ·an 1 {n-1} 2 {n-2} k {n-k}

We can express it in matrix form:

[a , a , ..., a]^T = A · [a , a , ..., a]^T n {n-1} {n-k+1} {n-1} {n-2} {n-k}

Where A is the companion matrix:

A = [c c ... c c ; 1 0 ... 0 0; 0 1 ... 0 0;; 0 0 ... 1 0] 1 2 {k-1} k

Then, a can be computed using matrix exponentiation: n

[a , a , ..., a]^T = A^(n-k+1) · [a , a , ..., n {n-1} {n-k+1} {k-1} {k-2}

a]^T 0

Asymptotic Analysis

30

For large n, we often care about the asymptotic behavior of sequences. If a

sequence a satisfies a linear recurrence relation with constant coefficients, n

then:

Notes

a ~ C·r^n n

Where r is the dominant root of the characteristic equation (the root with the

largest absolute value), and C is a constant that depends on the initial 45

conditions.

This asymptotic behavior is crucial in algorithm analysis, as it determines

the efficiency of recursive algorithms.

Recurrence Relations in Number Theory

Number theory is rich with sequences defined by recurrence relations. The

study of these sequences reveals deep connections between different areas of

mathematics.

For instance, the number of partitions p(n) mentioned earlier satisfies Euler's

pentagonal number theorem:

p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - ...

Where the differences 1, 2, 5, 7, 12, 15, ... follow the pattern of generalized

pentagonal numbers.

Nonlinear Recurrence Relations

Not all recurrence relations are linear. For example, the logistic map:

x = r·x ·(1 - x) {n+1} n n

Is a nonlinear recurrence relation that exhibits complex behavior, including

Techniques for solving nonlinear recurrence relations often involve:

•

•

•

•

Linearization through substitution

Asymptotic analysis

Numerical methods

Specialized techniques for particular forms

1.3. Linear Homogeneous Recurrence Relations

31

chaos for certain values of r.

Linear homogeneous recurrence relations (LHRRs) expressed as a(n) =

c₁a(n-1) + c₂a(n-2) + ... + cₖa(n-k), where the coefficients cᵢ are constants,

serve as robust mathematical instruments for modeling systems in which

each state is linearly dependent on a predetermined number of preceding

states. Their practical applications encompass various domains, illustrating

how these sophisticated mathematical constructs tackle intricate real-world

problems.

Notes

In financial markets, trading algorithms utilize LHRRs to identify market

patterns and produce signals. The Moving Average Convergence Divergence

(MACD) is a widely utilized technical indicator that calculates the

difference between exponential moving averages at varying time intervals,

hence employing a linear recurrence relation. The exponential moving

average adheres to the recurrence relation EMA(n) = α×Price(n) + (1-

α)×EMA(n-1), with α representing the smoothing factor. Quantitative

analysts at hedge funds build upon this foundation by devising intricate

trading techniques that utilize various recurrence relations to detect market

inefficiencies and produce alpha. Algorithmic trading systems analyze price

relationships using mathematical structures to make millisecond decisions,

which collectively represent over 70% of trading volume on major

exchanges, illustrating how mathematical recursion directly influences

capital allocation in global economies.

Structural engineers utilize LHRRs to assess the dynamic response of

structures to seismic activity and wind forces. The displacement of each

floor in a multi-story building can be represented as a system of 3737

interconnected linear recurrence relations, with each level's movement

influenced by the forces conveyed from neighboring floors. By solving these

systems, engineers determine natural frequencies and mode shapes that

influence design decisions about structural reinforcement and damping

systems. This application preserves lives by facilitating the development of

robust structures in seismic regions. The recurrence model captures how

vibrations propagate through connected structural elements, allowing

engineers to predict and mitigate potentially catastrophic resonance effects

before construction begins.

In digital audio processing, linear predictive coding (LPC) employs LHRRs

to compress speech signals for efficient transmission. LPC represents the

human vocal tract as a time-varying filter defined by a linear recurrence

32

relation, wherein each audio sample is forecasted as a linear combination of

preceding samples: s(n) = Σ(aᵢ×s(n-i)) for i from 1 to p, with p denoting the

prediction order. This technology reduces the data rate necessary for voice

transmission by more than 75%, enabling clear cellular conversations even

in bandwidth-constrained areas. Modern voice assistants like Siri and Alexa

use refined versions of these algorithms to process speech inputs,

demonstrating how recurrence relations make intuitive human-computer

interaction possible.Industrial process control systems frequently utilize

proportional-integral-derivative (PID) controllers, which can be represented

as linear recurrence relations. The control signal u(n) is determined by the

equation u(n) = u(n-1) + Kₚ(e(n) - e(n-1)) + Kᵢe(n) + Kd(e(n) - 2e(n-1) + e(n-

2)), where e(n) denotes the error at time step n, and Kₚ, Kᵢ, and Kd signify

the proportional, integral, and derivative gains, respectively. This recurrence

relation enables precise temperature regulation in pharmaceutical

manufacturing, consistent product quality in food processing, and efficient

energy usage in climate control systems. The mathematical framework

allows controllers to anticipate system behavior and compensate for

disturbances, maintaining stable operations in complex industrial

environments.

Notes

Population genetics research employs LHRRs to model the propagation of

genetic traits through generations. The Wright-Fisher model, fundamental to

understanding genetic drift, uses a linear recurrence relation to describe how

allele frequencies change in populations of fixed size. The probability

distribution of allele counts in generation n+1 is linearly dependent on the

distribution in generation n, adhering to recurrence relations that account for

selection pressures and mutation rates. Researchers employ these models to

comprehend the dissemination of advantageous mutations among

populations, thereby guiding conservation tactics for endangered species and

selective breeding initiatives in agriculture. By resolving these recurrence

links, geneticists can ascertain the minimal sustainable population size

required to sustain genetic variety, thereby directly influencing wildlife

management practices.In computer graphics, subdivision algorithms for

curve and surface generation utilize LHRRs to produce smooth shapes from

coarse control meshes. The Chaikin method, which builds quadratic B-spline

curves, follows the recurrence relation where each new point is a linear

combination of two neighboring points from the previous iteration: pᵢ^(k+1)

33

= 3/4×pᵢ^(k) + 1/4×pᵢ₊₁^(k) and pᵢ₊₁/₂^(k+1) = 1/4×pᵢ^(k) + 3/4×pᵢ₊₁^(k). This

mathematical method enables the construction of realistic 3D models in

films and video games, smooth font rendering in digital typography, and

exact tool path generation for computer-aided manufacturing. The recursive

structure enables designers to utilize basic control shapes while

automatically producing the smooth curves essential for visually appealing

and aerodynamically efficient designs.

Notes

Quantum physics incorporates LHRRs in computational models for time-

evolution of quantum systems. The discrete-time Schrödinger equation, used

in quantum simulations, can be represented as a linear recurrence relation

ψ(n+1) = (I - iH)ψ(n), where ψ represents the quantum state vector, H is the

Hamiltonian matrix, and I is the identity matrix. This formulation facilitates

the simulation of quantum systems for materials science research,

pharmaceutical discovery, and the advancement of quantum computer

methods. By solving these recurrence relations efficiently, researchers can

predict material properties without expensive physical experiments,

accelerating the development of new technologies from superconductors to

pharmaceutical compounds.In communications engineering, convolutional

codes for error correction implement LHRRs to generate redundant bits that

protect data against transmission errors. Each output bit is determined as a

linear mixture of the current input bit and multiple preceding input bits,

adhering to a recurrence relation specified by the code's generator

polynomials. These codes enable reliable communication over noisy

channels in satellite transmissions, deep space communications, and cellular

networks. The mathematical framework facilitates fast encoding and

decoding algorithms that attain near-Shannon-limit performance, optimizing

data throughput while ensuring dependability in demanding communication

contexts.Machine learning algorithms frequently incorporate LHRRs in their

architecture. Linear autoregressive models predict time series data by

expressing each value as a linear combination of previous values: y(t) = 3737

φ₁y(t-1) + φ₂y(t-2) + ... + φₚy(t-p) + ε(t), where φᵢ are the model parameters

and ε(t) is white noise. These models project electricity demand for power

grid administration, estimate seasonal product sales for inventory

management, and predict financial market fluctuations for risk assessment.

The mathematical framework facilitates efficient parameter estimation by

34

proven approaches such as least squares, rendering these models effective

instruments for business planning and resource allocation.
Notes

Digital filters in signal processing implement LHRRs to remove noise,

extract features, or modify frequency components of signals. Infinite

impulse response (IIR) filters calculate each output sample y(n) as a linear

combination of previous outputs and inputs: y(n) = Σ(bᵢ×x(n-i)) - Σ(aⱼ×y(n-

j)) for i from 0 to M and j from 1 to N. These filters provide noise

cancellation in hearing aids, equalization in audio production, and signal

conditioning in medical devices that monitor vital signs. By selecting

appropriate coefficients in the recurrence relation, engineers can create

filters with precise frequency responses that enhance desirable signal

components while attenuating interference. Economic forecasting models

employ vector autoregression (VAR), a multivariate extension of linear

recurrence connections where each variable depends on lagged values of

itself and all other variables in the system. Central banks use these models to 43

predict how policy changes will affect inflation, unemployment, and

economic growth, informing decisions that impact millions of lives. The

mathematical structure allows economists to quantify correlations between

economic indicators and simulate alternative policy scenarios, giving data-

driven direction for monetary and fiscal policy decisions. The varied

applications of linear homogeneous recurrence relations illustrate their

adaptability as modeling instruments across several fields. Financial

algorithms that allocate capital and engineering systems that guarantee

structural safety utilize mathematical frameworks to comprehend and

regulate complex systems with memory. By articulating dynamic linkages

via recurrence relations, practitioners acquire analytical insights that

immediately inform practical solutions for real-world situations.

1.4. Non-Homogeneous Recurrence Relations

Non-homogeneous recurrence relations are defined by the equation a(n) =

c₁a(n-1) + c₂a(n-2) + ... + cₖa(n-k) + f(n), where f(n) is a non-zero function,

offers robust mathematical frameworks for modeling systems influenced by

external inputs or pressures. Unlike their homogenous counterparts, these

connections feature driving words that represent external influences, making

them particularly appropriate for practical applications where systems

respond to changing conditions or external stimuli. In epidemiological

modeling, non-homogeneous recurrence relations elucidate the dynamics of

35

disease transmission under diverse intervention tactics. The standard SIR

(Susceptible-Infected-Recovered) model becomes non-homogeneous when

incorporating vaccination campaigns or seasonal variations in transmission

rates. The revised equation I(t+1) = (1+r)I(t) - rI(t-1) + v(t), where I(t)

denotes the number of infected individuals at time t, r signifies the

reproduction rate, and v(t) represents the time-dependent vaccination

function, enables public health officials to model the effects of vaccination

schedules on disease progression. Throughout the COVID-19 pandemic,

these models informed decisions regarding lockdown timing and vaccine

distribution strategies, illustrating the direct impact of mathematical

recursion on public health policy. By solving these non-homogeneous

recurrence relations, epidemiologists projected infection peaks and

healthcare system capacity requirements, helping hospitals prepare proper

staffing and equipment levels to save lives. Environmental engineers utilize

non-homogeneous recurrence relations to model pollution concentrations in

water bodies affected by fluctuating discharge rates. The concentration C(t)

in a reservoir may be expressed as C(t) = αC(t-1) + βQ(t), where α denotes

natural degradation and Q(t) signifies the pollutant inflow function. This

framework enables water quality managers to establish discharge limits for

industrial facilities and predict how proposed development projects might

affect ecosystem health. Engineers build treatment systems with adequate

capability to manage seasonal fluctuations in pollutant loads, safeguarding

aquatic habitats while facilitating sustainable economic development. The

mathematical technique enables for optimizing treatment infrastructure

investments, combining environmental protection with financial restrictions.

Notes

In renewable energy management, battery storage systems are characterized

by non-homogeneous recurrence relations, where the state of charge is

α representing the self-discharge rate, η indicating charging efficiency, P(t)

signifying time-varying power generation from renewable sources, and L(t)

reflecting load demand. This framework enables grid operators to enhance

battery dispatch algorithms, optimizing renewable energy use while ensuring

system stability. Energy businesses use these models to estimate ideal

battery sizing for solar and wind installations, balancing capital costs against

performance benefits. The recurrence relation captures how varying weather

conditions affect renewable generation patterns, enabling reliable integration

36

defined by E(t+1) = αE(t) + η(P(t) - L(t)), with E(t) denoting stored energy,

of intermittent resources into power grids. Pharmacokinetic models employ

non-homogeneous recurrence relations to describe drug concentration in

different body compartments following variable dosing schedules. The

concentration, k denotes the elimination rate constant, D(t) signifies the

dosing function, and V indicates the volume of distribution, allows

physicians to formulate individualized prescription regimens for patients

experiencing fluctuating clinical circumstances. This mathematical

framework supports precision medicine approaches for cancer

chemotherapy, antibiotic treatments, and pain management. By resolving

these relationships, clinical decision support systems propose dosage

modifications that sustain therapeutic medication concentrations while

Notes

reducing adverse effects, so enhancing patient outcomes.

In financial planning, retirement account balances under variable

contribution strategies adhere to non-homogeneous recurrence relations B(t)

= (1+r)B(t-1) + C(t), where B(t) denotes the balance at time t, r signifies the

return rate, and C(t) represents the time-dependent contribution function.

Financial advisors employ these models to construct lifecycle investment

strategies that modify contribution rates according to career phases and

market dynamics. The mathematical approach facilitates the stress testing of

retirement plans against diverse market situations, pinpointing

vulnerabilities and suggesting modifications prior to the onset of financial

distress. By resolving these relationships, robo-advisors offer automated

counsel that assists individuals in preparing for retirement amid

unpredictable future market returns. Inventory management systems

implement non-homogeneous recurrence relations to optimize stock levels

under seasonal demand patterns. The inventory level I(t) follows I(t) = I(t-1)

+ Q(t) - D(t), where Q(t) is the ordering function and D(t) is the forecasted

demand function. This framework enables retailers to implement just-in-

time ordering strategies that minimize holding costs while avoiding

stockouts during demand peaks. The mathematical methodology enhances

efficient supply chain operations for products characterized by brief shelf

lives or elevated holding costs, thereby augmenting profitability and

minimizing waste. By resolving these equations with suitable constraints,

inventory management algorithms reconcile the conflicting goals of cost

reduction, service level requirements, and warehouse capacity restrictions.

Project management tools employ non-homogeneous recurrence relations to

37

equation C(t) = e^(-kt)C(t-1) + D(t)/V, where C(t) represents drug

represent resource allocation amidst fluctuating priorities. The resource

availability function R(t) = R(t-1) - A(t-1) + F(t), where A(t-1) represents

previously allocated resources and F(t) is the function of newly freed

resources, helps project managers optimize team assignments across

multiple concurrent projects. This mathematical framework supports agile

development approaches where requirements and priorities fluctuate during

the project lifecycle. By solving these equations with proper constraints,

project scheduling algorithms discover crucial pathways and resource

bottlenecks, enabling proactive interventions to maintain projects on

schedule despite changing conditions.

Notes

Adaptive filtering methods utilize non-homogeneous recurrence relations to

process data exhibiting time-varying features. The filter coefficients are

defined by the equation w(t) = w(t-1) + μe(t)x(t), where w(t) denotes the

coefficient vector, μ signifies the adaptation rate, e(t) represents the error

signal, and x(t) indicates the input signal vector. This framework enables

noise canceling headphones to adjust to diverse settings, radar systems to

follow moving targets, and communication systems to compensate for

changing channel circumstances. The mathematical approach allows filters

to continually optimize their performance as signal characteristics evolve,

providing robust operation in dynamic environments. Digital signal

processors employ adaptive algorithms to enhance signals and eliminate

interference in real-time applications, ranging from medical monitoring to

autonomous car sensing. In irrigation control systems, soil moisture levels

follow non-homogeneous recurrence relations M(t) = αM(t-1) - ET(t) + I(t)

+ R(t), where M(t) represents moisture content, α is the retention factor,

ET(t) is evapotranspiration, I(t) is irrigation input, and R(t) is rainfall. This

framework enables precision agriculture systems to optimize water usage

based on weather forecasts and crop requirements. The mathematical

technique supports sustainable farming practices that optimize production

while decreasing water consumption, particularly crucial in water-stressed

countries. By solving these relations with appropriate constraints, smart

irrigation controllers determine optimal watering schedules that maintain

plant health while avoiding runoff and deep percolation losses.

Machine learning algorithms for online learning implement non-

homogeneous recurrence relations to update model parameters as new data

arrives. The stochastic gradient descent update rule is expressed as θ(t) = θ(t-

38

1) - η∇L(θ(t-1), x(t)), where θ(t) denotes the parameter vector, η signifies the

learning rate, ∇L indicates the gradient of the loss function, and x(t)

represents the input data point at time t. This framework enables

recommendation systems to adapt to changing user preferences, fraud

detection systems to identify emerging attack patterns, and natural language

processing models to incorporate new vocabulary. The mathematical

approach allows models to continuously improve their performance without

requiring complete retraining, supporting efficient deployment in dynamic

environments. By successfully resolving these relationships at scale,

machine learning systems deliver tailored experiences that adjust to

individual behaviors and preferences.

Notes

Traffic management systems utilize non-homogeneous recurrence relations

to represent vehicle flow under diverse settings. The vehicle density ρ(x,t)

on a road segment is governed by the equation ρ(x,t+1) = ρ(x,t) - [f(ρ(x,t)) -

f(ρ(x-Δx,t))] + S(x,t), where f(ρ) denotes the flow-density relationship and

S(x,t) signifies sources and sinks from entrance and departure ramps. This

framework enables intelligent transportation systems to optimize signal

timing, ramp metering, and variable speed limits based on current

conditions. The mathematical framework facilitates congestion management

strategies that diminish travel durations and emissions in urban

environments. Traffic control centers utilize real-time solutions to these

relations, employing adaptive algorithms that react to incidents, special

events, and weather conditions, thereby enhancing mobility in intricate

transportation networks.

The diverse applications of non-homogeneous recurrence relations

demonstrate their value for modeling real-world systems with external

inputs or time-varying parameters. From public health interventions to

adaptive machine learning algorithms, these mathematical structures provide

frameworks for understanding and controlling complex systems that respond

to changing conditions. By expressing dynamic relationships through non-

homogeneous recurrence relations, practitioners gain analytical tools that

translate directly into practical solutions for evolving challenges across

numerous fields

Multiple-Choice Questions (MCQs)

1. What is a recurrence relation?

a) A sequence with a fixed value

39

b) A formula that defines each term of a sequence using previous

terms
Notes

c) A function that generates random numbers

d) A method for solving equations

2. Which of the following is an example of a linear homogeneous

recurrence relation?

a) an=2an−1+3

b) an=3an−1−2

c) an=an−1+n

d) an=n2+2

3. Fibonacci sequence is defined by which recurrence relation?

a) Fn=2Fn−1+1

b) Fn=Fn−1+Fn−2

c) Fn=Fn−1−Fn−2

d) Fn=nFn−1

4. Exponential generating functions differ from ordinary

generating functions because:

a) They include exponential terms

b) They are only used for Fibonacci numbers

c) They generate non-recursive sequences

d) They are used for solving algebraic equations

5. A recurrence relation is said to be non-homogeneous if it:

a) Has constant coefficients

b) Contains a non-zero function term

c) Has a solution in exponential form

d) Does not have an explicit formula

6. The characteristic equation of recurrence relation

an−3an−1+2an−2=0 an - 3a{n-1}+ 2a{n-2} = 0 an−3an−1

+2an−2=0 is:

a) x2−3x+2=0

b) x2+3x−2=0

c) x2−x+3=0

d) x2+2x−3=0

40

7. Which of the following sequences follows the recurrence relation 30
Notes

an=an−1+2?

a) 1,3,5,7,9,...

b) 2,4,8,16,32,...

c) 1,1,2,3,5,...

d) 1,2,4,8,16,...

8. A closed-form solution of a recurrence relation means:

a) A solution without summation signs

b) A solution with at least one recurrence term

c) A solution using limits

d) A solution that is always infinite

9. The recurrence relation an=2an−1+5is an example of:

a) Homogeneous recurrence relation

b) Non-homogeneous recurrence relation

c) Generating function

d) Fibonacci sequence

Short Answer Questions

1. Define recurrence relation with an example.

2. What is the difference between homogeneous and non-

homogeneous recurrence relations?

3. Give an example of a number sequence and its recurrence relation.

4. What is the significance of generating functions in solving

recurrence relations?

5. Define exponential generating functions and their applications.

6. Write the recurrence relation for Fibonacci sequence.

7. What is a characteristic equation, and how is it used in solving

recurrence relations?

8. How do you find the closed-form solution of a recurrence relation?

9. Give an example of a recurrence relation that is non-homogeneous.

10. Explain the role of generating functions in combinatorial counting

problems.

41

Long Answer Questions Notes

1. Explain in detail the different types of recurrence relations with

examples.

2. Describe how to solve linear homogeneous recurrence relations

using the characteristic equation method.

3. What are generating functions? Explain their role in recurrence

relations with examples.

4. Compare and contrast ordinary generating functions and exponential

generating functions.

5. Solve the recurrence relation an=2an−1+3with a0=1.

6. Explain the Fibonacci sequence and derive its closed-form formula.

7. Discuss the applications of recurrence relations in computer science

and real-life problems.

8. Define and explain the use of the Karnaugh method in Boolean

algebra.

42

MODULE II Notes

UNIT IV

STATEMENTS, SYMBOLIC REPRESENTATION, AND LATTICES

Objectives

• To understand the concept of statements and their symbolic 212121

representation.

•

•

•

•

•

To learn about tautologies, quantifiers, and predicates.

To explore propositional logic and its applications.

To study lattices as partially ordered sets and their properties.

To analyze lattices as algebraic systems.

To examine different types of lattices, such as complete,

complemented, and distributive lattices.

2.1 Introduction to Statements and Symbolic Representation

In mathematical logic, a statement (or proposition) is declarative sentence

that is either true or false, but not both. Understanding statements is

fundamental to logical reasoning and forms the foundation of propositional 1010

logic.

Types of Statements

1. Simple statements: Basic declarations that cannot be broken down

further. Example: "The sun rises in the east."

2. Compound statements: Formed by combining simple statements

using logical connectives. Example: "It is raining and I am carrying

an umbrella."

Symbolic Representation

To work efficiently with statements, we use symbols to represent both the

statements themselves and the logical operations that connect them.

Statement Variables

• p, q, r, s, ... typically represent simple statements

Logical Connectives

43

1. Negation (NOT): ~p or ¬p Meaning: "It is not the case that p" Notes
Example: If p: "It is raining", then ~p: "It is not raining"

2. Conjunction (AND): p ∧ q Meaning: "Both p and q" Example: If p:

"It is cold" & q: "It is windy", then p ∧ q: "It is cold and windy"

3. Disjunction (OR): p ∨ q Meaning: "Either p or q or both" Example:

If p: "I will study math" and q: "I will study physics", then p ∨ q: "I

will study math or physics (or both)"

4. Conditional (IF-THEN): p → q Meaning: "If p, then q" Example:

If p: "It rains" and q: "The ground gets wet", then p → q: "If it rains,

then the ground gets wet"

5. Biconditional (IF AND ONLY IF): p ↔ q Meaning: "p if and only

if q" Example: If p: "The triangle has three equal sides" and q: "The

triangle is equilateral", then p ↔ q: "The triangle has three equal

sides if and only if it is equilateral"

Truth Tables

Truth tables display all possible truth values for compound statements based

on the truth values of their components.

Truth Table for Negation (~p)

p ~p 1010

T F

F T

Truth Table for Conjunction (p ∧ q)

p q p ∧ q

T T T

T F F

F T F

F F F

Truth Table for Disjunction (p ∨ q)

44

Notes p q p ∨ q

T T T

T F T

F T T

F F F

Truth Table for Conditional (p → q)

p q p → q

T T T

T F F

F T T

F F T

Truth Table for Biconditional (p ↔ q)

p q p ↔ q

T T T

T F F

F T F

F F T

Order of Operations

When evaluating complex logical expressions, we follow a standard order of

operations:

1. Parentheses

2. Negation (~)

3. Conjunction (∧)

4. Disjunction (∨)

45

5. Conditional (→) Notes

6. Biconditional (↔)

Examples of Statement Symbolization

1. "If it is raining, then I will take an umbrella, and I will wear a

raincoat." Let p: "It is raining" Let q: "I will take an umbrella" Let r:

"I will wear a raincoat" Symbolic form: p → (q ∧ r)

2. "I will go to the party if and only if my friend goes or my work is

finished." Let p: "I will go to the party" Let q: "My friend goes to

the party" Let r: "My work is finished" Symbolic form: p ↔ (q ∨ r)

3. "It is not true that both the sun is shining and it is raining." Let p:

"The sun is shining" Let q: "It is raining" Symbolic form: ~(p ∧ q)

2.2 Tautologies and Contradictions

In propositional logic, certain compound statements have special properties

based on their truth values across all possible combinations of their

component statements.

Tautologies

tautology is a compound statement that is always true, regardless of truth

values of its component statements.

Examples of Tautologies:

1. Law of Excluded Middle: p ∨ ~p "A statement is either true or

false"

Truth Table:

p ~p p ∨ ~p

T F T

F T T

2. Law of Non-Contradiction: ~(p ∧ ~p) "A statement cannot be both

true and false"

Truth Table:

46

Notes p ~p p ∧ ~p ~(p ∧ ~p)

T F F

F T F

T

T

3. Double Negation: p ↔ ~~p "A statement is equivalent to its double

negation"

4. Modus Ponens: (p ∧ (p → q)) → q "If p is true and p implies q,

then q is true"

5. Contrapositive: (p → q) ↔ (~q → ~p) "A conditional statement is

equivalent to its contrapositive"

Contradictions

A contradiction is compound statement that is always false, regardless of

the truth values of its component statements.

Examples of Contradictions:

1. p ∧ ~p "A statement is both true and false"

Truth Table:

p ~p p ∧ ~p 1010

T F F

F T F

2. (p ↔ q) ∧ (p ↔ ~q) "p is equivalent to both q and not-q"

3. (p → q) ∧ (p ∧ ~q) "If p then q, and p is true but q is false"

Logical Equivalence

Two compound statements are logically equivalent if they have the same 212121

truth value for all possible combinations of their component statements.

Notation: p ≡ q

Important Logical Equivalences:

1. De Morgan's Laws:

o ~(p ∧ q) ≡ (~p ∨ ~q)

47

o ~(p ∨ q) ≡ (~p ∧ ~q) Notes

2. Distributive Laws:

o

o

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

3. Conditional Equivalences:

o

o

(p → q) ≡ (~p ∨ q)

~(p → q) ≡ (p ∧ ~q)

4. Biconditional Equivalences:

o

o

(p ↔ q) ≡ ((p → q) ∧ (q → p))

(p ↔ q) ≡ ((p ∧ q) ∨ (~p ∧ ~q))

Applications of Tautologies and Contradictions

1. Logical Arguments: Tautologies form the basis of valid logical

arguments.

verify correctness.

3. Proof by Contradiction: Mathematical proofs often use

contradictions to establish truths.

4. Consistency Checking: Identifying contradictions helps detect

inconsistencies in logical systems.

48

2. System Verification: In digital circuit design, tautologies help

UNIT V Notes

2.3 Quantifiers and Predicates

While propositional logic deals with complete statements, predicate logic

extends this by considering the internal structure of statements, including

variables, predicates, and quantifiers.

Predicates

A predicate is a statement containing variables and becomes a proposition

when specific values are assigned to those variables.

Example: P(x): "x is a prime number"

•

•

P(2) is true (2 is prime)

P(4) is false (4 is not prime)

Quantifiers

Quantifiers indicate the scope of a predicate over a domain.

Universal Quantifier (∀)

universal quantifier "∀" means "for all" or "for every."

Example: ∀x P(x) Meaning: "For all values of x, P(x) is true"

Example statement: ∀x (x²≥ 0) Meaning: "For all real numbers x, x² is

greater than or equal to 0"

Existential Quantifier (∃)

The existential quantifier "∃" means "there exists" or "for some."

Example: ∃x P(x) Meaning: "There exists at least one value of x for which

P(x) is true"

Example statement: ∃x (x² = 9) Meaning: "There exists a real number x such

that x² equals 9"

Negating Quantified Statements

The negation of quantified statements follows specific rules:

49

1. Negation of Universal Statement: ~(∀x P(x)) ≡∃x ~P(x) "It is not

the case that P(x) is true for all x" is equivalent to "There exists an x 212121

for which P(x) is false"

Notes

2. Negation of Existential Statement: ~(∃x P(x)) ≡∀x ~P(x) "It is not

the case that there exists an x for which P(x) is true" is equivalent to 212121212121

"For all x, P(x) is false"

Multiple Quantifiers

Statements can contain multiple quantifiers, and the order matters.

Example: ∀x ∃y R(x, y) Meaning: "For every x, there exists a y such that

R(x, y) is true"

Example: ∃y ∀x R(x, y) Meaning: "There exists a y such that for all x, R(x,

y) is true"

These statements are not equivalent. The first says that every x has its own y

that makes R(x, y) true, while the second says there's a single y that works

for all x.

Bounded Quantifiers

Quantifiers can be restricted to specific domains.

Notation:

•

•

∀x ∈ S, P(x) - "For all x in set S, P(x) is true"

∃x ∈ S, P(x) - "There exists an x in set S such that P(x) is true"

Example: ∀x ∈ℕ, (x²≥ x) Meaning: "For all natural numbers, the square of

the number is greater than or equal to the number itself"

Predicates with Multiple Variables

Predicates can involve multiple variables.

Example: L(x, y): "x loves y"

•

•

•

L(John, Mary) - "John loves Mary"

∀x ∃y L(x, y) - "Everyone loves someone"

∃y ∀x L(x, y) - "There is someone who is loved by everyone"

50

2.4 Propositional Logic and Validity Notes

Propositional logic provides a formal system for determining the validity of 3333

arguments based on the logical structure of statements.

Logical Arguments

A logical argument consists of premises and a conclusion. The argument is

valid if conclusion necessarily follows from premises.

Structure:

1. Premise 1

2. Premise 2

3. ...

4. Premise n

5. Therefore, Conclusion

Validity vs. Truth

• Validity: An argument is valid if truth of all premises guarantees the

truth of the conclusion.

• Soundness: An argument is sound if it is valid and all its premises

are actually true.

An argument can be valid even if its premises or conclusion are false.

Construct a truth table for the statement: (Premise 1 ∧ Premise 2 ∧ ... ∧

Premise n) → Conclusion If this compound statement is a tautology, the 3232

argument is valid.

Method 2: Proof by Contradiction

Assume all premises are true but conclusion is false. If this leads to

contradiction, the argument is valid.

Common Valid Argument Forms

51

Validity concerns only the logical structure.

Testing Validity

Method 1: Truth Tables

1. Modus Ponens: Notes

o

o

o

Premise 1: p → q

Premise 2: p

Conclusion: q

2. Modus Tollens:

o

o

o

Premise 1: p → q

Premise 2: ~q

Conclusion: ~p

3. Hypothetical Syllogism:

o

o

o

Premise 1: p → q

Premise 2: q → r

Conclusion: p → r

4. Disjunctive Syllogism:

o

o

o

Premise 1: p ∨ q

Premise 2: ~p

Conclusion: q

5. Addition:

o

o

Premise: p

Conclusion: p ∨ q

6. Simplification:

o

o

Premise: p ∧ q

Conclusion: p

7. Conjunction:

o

o

o

Premise 1: p

Premise 2: q

Conclusion: p ∧ q

52

Common Fallacies (Invalid Arguments) Notes

1. Affirming the Consequent:

o

o

o

Premise 1: p → q

Premise 2: q

(Invalid) Conclusion: p

2. Denying the Antecedent:

o

o

o

Premise 1: p → q

Premise 2: ~p

(Invalid) Conclusion: ~q

Direct and Indirect Proofs

1. Direct Proof: Starts with premises and uses valid argument forms to

derive the conclusion.

2. Proof by Contradiction (Indirect): Assumes premises are true and

conclusion is false, then derives a contradiction.

3. Proof by Contraposition: To prove p → q, instead prove ~q → ~p.

Formal Proof Systems

Formal proof systems provide rigorous frameworks for constructing valid

arguments. Common systems include:

1. Natural Deduction: Uses introduction and elimination rules for

each logical connective.

2. Axiomatic Systems: Starts with axioms and derives theorems using

inference rules.

3. Sequent Calculus: Manipulates sequents (expressions of the form Γ

⊢Δ) using inference rules.

Solved Problems

Problem 1: Statement Symbolization and Truth Table 3333

Problem: Symbolize the statement "If it is not raining, then I will go to the

park or I will visit the museum" and construct its truth table.

53

Solution: Notes

Let's define our variables:

•

•

•

p: "It is raining"

q: "I will go to the park"

r: "I will visit the museum"

The statement "If it is not raining, then I will go to the park or I will visit the

museum" can be symbolized as: ~p → (q ∨ r)

Now, let's construct the truth table:

First, list all possible combinations of truth values for p, q, and r:

p q r ~p q ∨ r ~p → (q ∨ r)

T T T F T

T T F F T

T F T F T

T F F F F

F T T T T

F T F T T

F F T T T

F F F T F

T

T

T

T

T

T

T

F

statement is false only when ~p is true (meaning p is false) and (q ∨ r) is

false (meaning both q and r are false). In all other cases, statement is true.

Problem 2: Determining Tautology, Contradiction, or Neither

Problem: Determine whether the statement (p → q) ↔ (~q → ~p) is a

Solution: Let's construct a truth table for the statement (p → q) ↔ (~q →

~p):

54

tautology, contradiction, or neither.

p q p → q ~q ~p ~q → ~p (p → q) ↔ (~q → ~p) Notes

T T T

T F F

F T T

F F T

F F T

T F F

F T T

T T T

T

T

T

T

Step-by-step analysis:

1. For (p → q): This is false only when p is true & q is false;

otherwise, it's true.

2. For (~q → ~p): This is false only when ~q is true (q is false) and ~p

is false (p is true); otherwise, it's true.

3. For the biconditional (p → q) ↔ (~q → ~p): This is true when both

expressions have the same truth value.

As we can see, for all possible truth value combinations of p and q, the

statement (p → q) ↔ (~q → ~p) is always true. Therefore, this statement is a

This makes sense because this statement represents the contrapositive

property: a conditional statement is logically equivalent to its contrapositive.

Problem 3: Quantifier Negation

Problem: Negate the following quantified statements and simplify: a) ∀x

∈ℝ, x²> 0 b) ∃x ∈ℕ, x² = x

Solution:

a) Statement: ∀x ∈ℝ, x²> 0 Negation: ~(∀x ∈ℝ, x²> 0)

Using the quantifier negation rule: ~(∀x P(x)) ≡∃x ~P(x)

Simplified negation: ∃x ∈ℝ, ~(x²> 0) ≡∃x ∈ℝ, x²≤ 0

In plain language: "There exists a real number whose square is less than or

equal to 0."

This negation is true because x = 0 makes x² = 0, which satisfies x² ≤ 0.

b) Statement: ∃x ∈ℕ, x² = x Negation: ~(∃x ∈ℕ, x² = x)

55

tautology.

Using the quantifier negation rule: ~(∃x P(x)) ≡∀x ~P(x)

Simplified negation: ∀x ∈ℕ, ~(x² = x) ≡∀x ∈ℕ, x²≠ x

Notes

In plain language: "For all natural numbers, the square of the number is not

equal to the number itself."

This negation is false because there are natural numbers for which x² = x.

Specifically, x = 0 and x = 1 satisfy this equation.

Problem: Determine whether the following argument is valid: 3232

1. If I study, then I will pass the exam.

2. If I pass the exam, then I will graduate.

3. I did not graduate.

Solution:

Let's define our variables:

•

•

•

p: "I study"

q: "I pass the exam"

r: "I graduate"

The premises of the argument can be symbolized as:

1. p → q

2. q → r

3. ~r

The conclusion is: ~p

To test the validity, we'll use the method of deductive reasoning:

From premises 1 and 2, using the hypothetical syllogism rule, we can derive:

p → r (If I study, then I will graduate)

Now, using premise 3 (~r) and the derived statement (p → r), we can apply

modus tollens: If p → r and ~r, then ~p.

56

Problem 4: Testing Argument Validity

4. Therefore, I did not study.

Therefore, the conclusion ~p (I did not study) logically follows from the

premises, making this argument valid.
Notes

Alternatively, we could construct truth table for (((p → q) ∧ (q → r) ∧ ~r)

Problem 5: Logical Equivalence Using De Morgan's Laws

Problem: Use De Morgan's laws and other logical equivalences to simplify

the expression ~(~p ∨ (q ∧ ~r)).

Solution:

Starting with the expression: ~(~p ∨ (q ∧ ~r))

Step 1: Apply De Morgan's law to the outer negation: ~(~p ∨ (q ∧ ~r)) ≡ ~~p

∧ ~(q ∧ ~r)

Step 2: Simplify the double negation: ~~p ∧~(q ∧ ~r) ≡ p ∧ ~(q ∧ ~r)

Step 3: Apply De Morgan's law to ~(q ∧ ~r): p ∧ ~(q ∧ ~r) ≡ p ∧ (~q ∨ ~~r)

Step 4: Simplify remaining double negation: p ∧ (~q ∨ ~~r) ≡ p ∧ (~q ∨ r)

Therefore, ~(~p ∨ (q ∧ ~r)) ≡ p ∧ (~q ∨ r)

We can verify this equivalence using a truth table if needed.

Unsolved Problems

Problem 1

Determine whether the compound statement (p → q) ∧ (q → r) → (p → r) is

a tautology, and explain your reasoning.

Problem 2

Symbolize the following statement using propositional logic: "Neither rain

nor snow will prevent the mail delivery, but fog will delay it unless there is a

full moon."

Problem 3

Translate the following into logical notation using predicates and quantifiers:

a) "Every mathematician has solved at least one problem that no other

mathematician has solved." b) "Some books are referenced by all scholars in

the field."

57

→ ~p) and verify that it's a tautology, confirming the argument's validity.

Problem 4 Notes

Determine the validity of the following argument: 3333

1. If the economy improves, then unemployment will decrease.

2. If government spending increases, then the economy will improve.

3. Unemployment has not decreased.

4. Therefore, government spending has not increased.

Problem 5

Prove or disprove the logical equivalence of following statements: a) p → (q

→ r) b) (p ∧ q) → r

58

UNIT VI

2.5 Lattices as Partially Ordered Sets

Notes

A partially ordered set, often known as a poset, is a set that has a transitive,

reflexive, and antisymmetric binary connection. A pair (P, ≤) is formally a

partially ordered set, where P is a set and ≤ is a binary relation on P that

satisfies:

The relation ≤ is called a partial order. The term "partial" indicates that not

every pair of elements needs to be comparable. If a ≤ b or b ≤ a for every a,

Definitions Related to Partially Ordered Sets

•

•

•

•

•

•

Comparable elements: Two elements a, b ∈ P are comparable if a ≤

b or b ≤ a.

Incomparable elements: Two elements a, b ∈ P are incomparable if

neither a ≤ b nor b ≤ a holds. We denote this as a ∥ b.

Minimal element: An element a ∈ P is minimal if there is no

element b ∈ P such that b < a.

Maximal element: An element a ∈ P is maximal if there is no

element b ∈ P such that a < b.

Least element (or minimum): An element a ∈ P is the least element

Greatest element (or maximum): An element a ∈ P is the greatest

Upper and Lower Bounds

For a subset S of a partially ordered set P:

•

•

An element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S.

An element x ∈ P is a lower bound of S if x ≤ s for all s ∈ S.

59

1. Reflexivity: For all a ∈ P, a ≤ a

2. Antisymmetry: For all a, b ∈ P, if a ≤ b and b ≤ a, then a = b

3. Transitivity: For all a, b, c ∈ P, if a ≤ b and b ≤ c, then a ≤ c

b ∈ P, then the order is called a total order or linear order.

if a ≤ b for all b ∈ P.

element if b ≤ a for all b ∈ P.

•

•

The least upper bound (lub) or supremum (sup) of S, if it exists, is

an upper bound of S that is less than or equal to every other upper 42 3333

bound of S.

Notes

The greatest lower bound (glb) or infimum (inf) of S, if it exists, is a

lower bound of S that is greater than or equal to every other lower

bound of S.

Definition of a Lattice

A lattice is a partially ordered set (L, ≤) where every pair of elements has

both a supremum and an infimum. That is, for any a, b ∈ L:

1. The supremum a ∨ b (also called the join) exists in L

2. The infimum a ∧ b (also called the meet) exists in L

A lattice can be represented graphically using a Hasse diagram, where:

•

•

Elements of the set are represented as nodes

If a < b and there is no c such that a < c < b, then there's an edge

going up from a to b

• Higher elements in the diagram represent greater elements in the

partial order

60

UNIT VII Notes

Types of Lattices Based on Order Properties

1. Complete Lattice: partially ordered set L is a complete lattice if 11111111

every subset of L (including the empty set) has both a supremum &

an infimum in L.

2. Bounded Lattice: A lattice L is bounded if it has a greatest element

(denoted 1 or ⊤) and a least element (denoted 0 or ⊥).

3. Distributive Lattice: A lattice L is distributive if for all a, b, c ∈ L: 28282828

o

o

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

4. Modular Lattice: A lattice L is modular if for all a, b, c ∈ L with a ≤

c:

o a ∨ (b ∧ c) = (a ∨ b) ∧ c 11111111

5. Complemented Lattice: If there is an element b ∈ L such that a ∨ b

= 1 and a ∧ b = 0, then a bounded lattice L is complemented. The

term "complement of a" refers to the element b.

6. Boolean Lattice: A lattice that is both distributive and

complemented.

Sublattices and Homomorphisms

• sublattice of a lattice L is subset S of L such that for any a, b ∈ S,

both a ∨ b and a ∧ b (calculated in L) also belong to S.

• A function f: L → M between lattices L and M is a lattice

homomorphism if it preserves joins and meets:

o

o

f(a ∨ b) = f(a) ∨ f(b)

f(a ∧ b) = f(a) ∧ f(b)

2.6 Properties of Lattices

Basic Laws of Lattices

For any elements a, b, c in lattice L, following properties hold:

61

1. Idempotent Laws: Notes

o

o

a ∨ a = a 11111111

a ∧ a = a

2. Commutative Laws:

o

o

a ∨ b = b ∨ a

a ∧ b = b ∧ a

3. Associative Laws:

o

o

(a ∨ b) ∨ c = a ∨ (b ∨ c)

(a ∧ b) ∧ c = a ∧ (b ∧ c)

4. Absorption Laws:

o

o

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a

5. Ordering Property:

o

o

a ≤ b if and only if a ∨ b = b

a ≤ b if and only if a ∧ b = a

Duality Principle

The Duality Principle in lattice theory states that if a statement is true for all

lattices, then the dual statement obtained by replacing ∨ with ∧, ∧ with ∨, ≤

with ≥, and reversing the order of operations, is also true for all lattices.

Properties of Special Types of Lattices

Distributive Lattices

lattice L is distributive if and only if it satisfies the distributive laws:

•

•

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Important properties of distributive lattices:

1. In a distributive lattice, if an element has complement, then the

complement is unique.

62

2. lattice is distributive if and only if it does not contain a sublattice

isomorphic to either of these two five-element non-distributive

lattices:

Notes

o

o

The pentagon lattice (N5)

The diamond lattice (M3)

3. Birkhoff's Representation Theorem: Every finite distributive

lattice is isomorphic to the lattice of all downsets of its poset of join-

irreducible elements.

Modular Lattices

A lattice L is modular if and only if for all a, b, c ∈ L with a ≤ c: 28282828

• a ∨ (b ∧ c) = (a ∨ b) ∧ c

Important properties of modular lattices:

2. A lattice is modular if and only if it does not contain a sublattice 11111111

isomorphic to the pentagon lattice (N5).

3. Modular lattices satisfy the Jordan-Dedekind chain condition: all

maximal chains between the same endpoints have the same length.

Complete Lattices

Properties of complete lattices:

1. In a complete lattice, every subset has both a supremum and an

infimum.

2. Every finite lattice is complete.

3. A complete lattice is automatically bounded, having a greatest

element (supremum of the entire set) and a least element (infimum

of the entire set).

on a complete lattice has a fixed point.

Boolean Lattices

Properties of Boolean lattices:

63

1. Every distributive lattice is modular, but not conversely.

4. Knaster-Tarski Fixed Point Theorem: Every monotone function

1. In Boolean lattice, every element has a unique complement.

2. For any elements a & b in a Boolean lattice:

Notes

o

o

If a ∧ b = 0 and a ∨ b = 1, then b is the complement of a.

The complement of a is often denoted as a' or ¬a.

3. In a Boolean lattice, the following identities hold:

o

o

o

(a')' = a (double negation)

a ∨ a' = 1 and a ∧ a' = 0 (complement laws) 4949

(a ∧ b)' = a' ∨ b' and (a ∨ b)' = a' ∧ b' (De Morgan's laws)

4. Every finite Boolean lattice is isomorphic to the power set of a finite 11111111

set under the subset relation.

Other Important Properties

1. Isomorphism: Two lattices L and M are isomorphic if there exists a

bijective function f: L → M such that for all a, b ∈ L: 28282828

o

o

a ≤ b if and only if f(a) ≤ f(b)

or equivalently, f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧

f(b)

2. Chain: A chain in a lattice is a subset in which any two elements are 11111111

comparable.

3. Antichain: An antichain in lattice is a subset in which no two

distinct elements are comparable.

4. Height: The height of a finite lattice is the length of the longest

chain in the lattice.

5. Width: The width of lattice is size of the largest antichain in lattice.

6. Dilworth's Theorem: In a finite lattice, the width equals the

minimum number of chains needed to cover all elements.

2.7 Lattices as Algebraic Systems

Algebraic Definition of a Lattice

64

While we previously defined lattices in terms of partial orders, lattices can

alternatively be defined as algebraic structures with two binary operations,

join (∨) & meet (∧), satisfying certain axioms.Formally, a lattice is an 11111111

algebraic structure (L, ∨, ∧) where L is a set, and ∨ and ∧ are binary

operations on L satisfying following axioms for all b, c ∈ L:

Notes

1. Idempotent Laws:

o

o

a ∨ a = a

a ∧ a = a

2. Commutative Laws:

o

o

a ∨ b = b ∨ a

a ∧ b = b ∧ a

3. Associative Laws:

o

o

(a ∨ b) ∨ c = a ∨ (b ∨ c)

(a ∧ b) ∧ c = a ∧ (b ∧ c)

4. Absorption Laws:

o

o

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a

Equivalence of the Two Definitions

The order-theoretic and algebraic definitions of lattices are equivalent.

Given a lattice defined algebraically, we can define partial order ≤ by:

•

•

a ≤ b if and only if a ∧ b = a

or equivalently, a ≤ b if and only if a ∨ b = b

Conversely, given a lattice defined as a partially ordered set, we can define

the join and meet operations as:

•

•

a ∨ b is the least upper bound of {a, b}

a ∧ b is the greatest lower bound of {a, b}

Algebraic Properties of Special Lattices

65

Distributive Lattices Notes

In algebraic terms, a lattice (L, ∨, ∧) is distributive if and only if:

•

•

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L 28282828

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L

Bounded Lattices

A bounded lattice is an algebraic structure (L, ∨, ∧, 0, 1) where:

•

•

•

(L, ∨, ∧) is a lattice

0 is the identity element for ∨: a ∨ 0 = a for all a ∈ L 4949

1 is the identity element for ∧: a ∧ 1 = a for all a ∈ L

Complemented Lattices

In a bounded lattice (L, ∨, ∧, 0, 1), an element b is a complement of a if:

•

•

a ∨ b = 1

a ∧ b = 0 11111111

A bounded lattice is complemented if every element has at least one

complement.

Boolean Algebras

Boolean algebra is an algebraic structure (B, ∨, ∧, ', 0, 1) where:

•

•

(B, ∨, ∧, 0, 1) is a bounded distributive lattice

' is a unary operation (the complement) such that:

o

o

a ∨ a' = 1

a ∧ a' = 0

Lattice Morphisms

From an algebraic perspective, a homomorphism between lattices (L, ∨L,

∧L) and (M, ∨M, ∧M) is a function f: L → M that preserves the operations:

•

•

f(a ∨L b) = f(a) ∨M f(b)

f(a ∧L b) = f(a) ∧M f(b)

66

Congruence Relations and Quotient Lattices Notes

A congruence relation on a lattice L is an equivalence relation ≡ that is

compatible with the lattice operations:

•

•

If a ≡ b and c ≡ d, then a ∨ c ≡ b ∨ d

If a ≡ b and c ≡ d, then a ∧ c ≡ b ∧ d

For a congruence relation ≡ on a lattice L, the quotient lattice L/≡ is the

lattice whose elements are the equivalence classes [a] of elements a ∈ L,

with operations:

•

•

[a] ∨ [b] = [a ∨ b]

[a] ∧ [b] = [a ∧ b]

Filters & Ideals

Filters

A filter in a lattice L is a non-empty subset F of L such that:

1. If a, b ∈ F, then a ∧ b ∈ F

2. If a ∈ F and a ≤ b, then b ∈ F

A filter is proper if it is not equal to the entire lattice. A maximal proper filter

In a Boolean lattice, every ultrafilter is prime: if a ∨ b ∈ F, then either a ∈ F

Ideals

An ideal in a lattice L is a non-empty subset I of L such that:

1. If a, b ∈ I, then a ∨ b ∈ I

2. If a ∈ I and b ≤ a, then b ∈ I

An ideal is proper if it is not equal to the entire lattice. A maximal proper

ideal is called a prime ideal.

In a Boolean lattice, the complement of a filter is an ideal, and vice versa.

Birkhoff's Representation Theorems

Representation of Distributive Lattices

67

is called an ultrafilter.

or b ∈ F.

Birkhoff's Representation Theorem for Finite Distributive Lattices:

Every finite distributive lattice is isomorphic to the lattice of downsets of its

poset of join-irreducible elements.

Notes

Representation of Boolean Algebras

Stone's Representation Theorem: Every Boolean algebra is isomorphic to

a subalgebra of a power set Boolean algebra.

Solved Problems

Problem: Consider the lattice L = {a, b, c, d, e} with the following Hasse

diagram:

•

•

•

e is at the top

b and c are below e

a and d are at the bottom, with a below b and d below c

Is this lattice distributive?

Solution:

Step 1: Identify the elements & their relationships. The partial order is:

•

•

•

•

a ≤ b ≤ e

d ≤ c ≤ e

a and d are incomparable

b and c are incomparable

Step 2: Construct the meet and join tables.

Meet (∧) table:

a b c d e

a a a a a a

b a b a a b

c a a c d c

68

Problem 1: Testing if a Lattice is Distributive

a b c d e

d a a d d d

e a b c d e

Join (∨) table:

a b c d e

Notes

a a b c e e

b b b e e e

c c e c c e

d e e c d e

e e e e e e

Step 3: Test the distributive law a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for specific

elements.

Let's check with a, b, and c:

•

•

a ∧ (b ∨ c) = a ∧ e = a

(a ∧ b) ∨ (a ∧ c) = a ∨ a = a

They're equal, but we need to check more cases.

Step 4: Check with different elements.

Let's try b, c, and d:

•

•

b ∧ (c ∨ d) = b ∧ c = a

(b ∧ c) ∨ (b ∧ d) = a ∨ a = a

Still equal. Let's try one more case.

Step 5: Check with b, d, and e:

•

•

b ∧ (d ∨ e) = b ∧ e = b

(b ∧ d) ∨ (b ∧ e) = a ∨ b = b

69

All checked cases satisfy the distributive law. We could complete the

verification by checking all possible combinations, but based on the

structure (it's the lattice N5), we know it's not distributive.

Notes

Actually, let's verify this with a critical test:

•

•

c ∧ (a ∨ d) = c ∧ e = c

(c ∧ a) ∨ (c ∧ d) = a ∨ d = e

These are not equal (c ≠ e), so the lattice is not distributive.

Problem 2: Finding Complements in a Boolean Lattice

Problem: Consider the power set lattice P({1, 2, 3}) ordered by inclusion.

Find the complements of: a) {1, 2} b) {3} c) ∅ d) {1, 2, 3}

Solution:

In a power set lattice P(S), the complement of a subset A is S-A.

a) The complement of {1, 2} is {1, 2, 3} - {1, 2} = {3}

b) The complement of {3} is {1, 2, 3} - {3} = {1, 2}

c) The complement of ∅ is {1, 2, 3} - ∅ = {1, 2, 3}

d) The complement of {1, 2, 3} is {1, 2, 3} - {1, 2, 3} = ∅

•

•

A ∪ A' = {1, 2, 3} (the top element)

A ∩ A' = ∅ (the bottom element)

Let's verify for {1, 2} and {3}:

•

•

{1, 2} ∪ {3} = {1, 2, 3}

{1, 2} ∩ {3} = ∅

Problem 3: Constructing a Lattice Homomorphism

Problem: Let L be the lattice of all divisors of 12 ordered by divisibility, and

M be the lattice of all divisors of 20 ordered by divisibility. Construct a

lattice homomorphism from L to M.

Solution:

70

Verification: For each pair of complements (A, A'), we should have:

Step 1: Identify the elements of both lattices. 2222222
Notes

•

•

L = {1, 2, 3, 4, 6, 12} (divisors of 12)

M = {1, 2, 4, 5, 10, 20} (divisors of 20)

Step 2: Understand the lattice operations in both.

•

•

In L, join (∨) of a & b is lcm(a, b), and meet (∧) is gcd(a, b).

In M, join (∨) of a & b is lcm(a, b), and meet (∧) is gcd(a, b).

Step 3: Define a homomorphism f: L → M that preserves joins and meets.

Let's define f as follows:

•

•

•

•

•

•

f(1) = 1

f(2) = 2

f(3) = 5

f(4) = 4

f(6) = 10

f(12) = 20

Example verification:

•

•

f(2 ∧ 6) = f(gcd(2, 6)) = f(2) = 2

f(2) ∧ f(6) = gcd(2, 10) = 2

f(3 ∧ 4) = f(gcd(3, 4)) = f(1) = 1

f(3) ∧ f(4) = gcd(5, 4) = 1

•

•

Example verification:

•

•

•

f(2 ∨ 3) = f(lcm(2, 3)) = f(6) = 10

f(2) ∨ f(3) = lcm(2, 5) = 10

f(4 ∨ 6) = f(lcm(4, 6)) = f(12) = 20

71

Step 5: Verify that f preserves joins (least common multiples).

Step 4: Verify that f preserves meets (greatest common divisors).

• f(4) ∨ f(6) = lcm(4, 10) = 20 Notes

Therefore, f is a valid lattice homomorphism from L to M.

Problem 4: Determining if a Poset is a Lattice

Problem: Consider the poset P = {a, b, c, d, e} with the following relations:

•

•

•

a ≤ c, a ≤ d

b ≤ c, b ≤ d

c ≤ e, d ≤ e

Is P lattice?

Solution:

•

•

•

e is at the top

c and d are below e

a and b are at the bottom, both below c and d

Step 2: Check if every pair of elements has least upper bound (join).

For each pair of elements, let's find their join:

• a ∨ b: Upper bounds are c, d, e. least upper bounds are c and d. 1616

Since there are two, not unique, this fails the lattice condition.

•

•

•

•

•

•

•

•

•

a ∨ c: Upper bounds are c, e. The least upper bound is c.

a ∨ d: Upper bounds are d, e. The least upper bound is d.

a ∨ e: Upper bound is e. The least upper bound is e.

b ∨ c: Upper bounds are c, e. The least upper bound is c.

b ∨ d: Upper bounds are d, e. The least upper bound is d.

b ∨ e: Upper bound is e. The least upper bound is e.

c ∨ d: Upper bound is e. The least upper bound is e.

c ∨ e: Upper bound is e. The least upper bound is e.

d ∨ e: Upper bound is e. The least upper bound is e.

72

Step 1: Draw the Hasse diagram of the poset P.

Since the pair {a, b} doesn't have a unique least upper bound, P is not a

lattice.
Notes

Step 3: (Optional) Let's also check if every pair has a greatest lower bound

(meet).

For the pair {c, d}:

• Lower bounds are a and b. Neither is greater than the other, so there

is no unique greatest lower bound.

This confirms that P is not a lattice.

Problem: Consider the lattice L = {0, a, b, c, 1} with following Hasse

diagram:

•

•

•

1 is at the top

a, b, c are in the middle, all below 1

0 is at the bottom, below a, b, and c

Is this lattice modular?

Solution:

Step 1: Identify the elements and their relationships. The partial order is:

•

•

•

•

0 ≤ a ≤ 1

0 ≤ b ≤ 1

0 ≤ c ≤ 1

a, b, and c are incomparable

Step 2: Recall the modularity condition. A lattice is modular if for all x, y, z 2222222

with x ≤ z:

• x ∨ (y ∧ z) = (x ∨ y) ∧ z

Step 3: Test the modular identity with specific elements.

Let's check with x = 0, y = a, z = b:

• x ≤ z: 0 ≤ b (satisfied)

73

Problem 5: Testing for Modularity

•

•

x ∨ (y ∧ z) = 0 ∨ (a ∧ b) = 0 ∨ 0 = 0

(x ∨ y) ∧ z = (0 ∨ a) ∧ b = a ∧ b = 0

Notes

These are equal. Let's try another case.

Step 4: Check with x = a, y = b, z = 1:

•

•

•

x ≤ z: a ≤ 1 (satisfied)

x ∨ (y ∧ z) = a ∨ (b ∧ 1) = a ∨ b = 1

(x ∨ y) ∧ z = (a ∨ b) ∧ 1 = 1 ∧ 1 = 1

These are equal as well.

Step 5: Check one more case with x = a, y = c, z = 1:

•

•

•

x ≤ z: a ≤ 1 (satisfied)

x ∨ (y ∧ z) = a ∨ (c ∧ 1) = a ∨ c = 1

(x ∨ y) ∧ z = (a ∨ c) ∧ 1 = 1 ∧ 1 = 1

All cases satisfy the modularity condition. (In reality, we would check all

possible cases, but this is sufficient for demonstration.) 2222222

Unsolved Problems

Problem 1

Prove that a lattice L is distributive if and only if for all a, b, c ∈ L, if a ∧ c =

b ∧ c and a ∨ c = b ∨ c, then a = b.

Problem 2

Let L be a finite lattice. Prove that L is distributive if & only if the number

of join-irreducible elements equals the number of meet-irreducible elements.

Problem 3

For a finite lattice L, define the function f from L to the power set of its join-

irreducible elements as follows: f(x) = {∈ L | a is join-irreducible and a ≤ x}.

Show that if L is distributive, then f is a lattice embedding.

Problem 4

74

Therefore, this lattice is modular.

Let B be Boolean algebra and a, b, c ∈ B. Prove that (a ∧ b') ∨ (a' ∧ c) ∨ (b ∧

c') = (a ∨ b ∨ c) ∧ (a ∨ b' ∨ c') ∧ (a' ∨ b ∨ c') ∧ (a' ∨ b' ∨ c).
Notes

Problem 5

Let L be a lattice where for all a, b, c ∈ L, a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c).

Prove that L is distributive.

Important Formulas and Identities in Lattice Theory

Basic Operations and Properties

1. Join and Meet Definition from Order:

o

o

a ∨ b = least upper bound of {a, b}

a ∧ b = greatest lower bound of {a, b}

2. Order Definition from Operations:

o

o

a ≤ b if and only if a ∧ b = a 2222

a ≤ b if and only if a ∨ b = b

3. Basic Identities (All Lattices):

o a ∨ a = a

o a ∧ a = a

o a ∨ b = b ∨ a

a ∧ b = b ∧ a

(a ∨ b) ∨ c = a ∨ (b ∨ c)

(a ∧ b) ∧ c = a ∧

o

o

o

2.8 Sub-lattices

1.1 Definition and Basic Properties

A sub-lattice is a subset of a lattice that forms a lattice in its own right under 2222222

the same operations. More formally, if (L, ∧, ∨) is a lattice and M is a non-

empty subset of L, then M is a sub-lattice of L if:

1. For all a, b ∈ M, a ∧ b ∈ M (closed under meet)

2. For all a, b ∈ M, a ∨ b ∈ M (closed under join)

75

This means that a sub-lattice must contain the results of both operations 2222

when performed on its elements.
Notes

1.2 Examples of Sub-lattices

Example 1: Consider the lattice (P(S), ⊆) of all subsets of a set S ordered by

inclusion. If T is subset of S, then P(T) is a sub-lattice of P(S).

Example 2: In the lattice of divisors of 60 ordered by divisibility, the set {1,

3, 5, 15} forms a sub-lattice.

1.3 Properties of Sub-lattices

• Every interval [a,b] = {x ∈ L | a ≤ x ≤ b} in a lattice L is a sub-

lattice.

•

•

The intersection of sub-lattices is again a sub-lattice (or empty).

If L is a bounded lattice with bounds 0 and 1, a sub-lattice need not

contain 0 and 1.

2. Direct Products of Lattices

2.1 Definition

Given lattices L₁, L₂, ..., Lₙ, their direct product L₁ × L₂ × ... × Lₙ is a lattice

whose elements are ordered n-tuples (a₁, a₂, ..., aₙ) where aᵢ ∈ Lᵢ for i = 1, 2,

..., n.

operations in the direct product are defined component-wise:

•

•

(a₁, a₂, ..., aₙ) ∧ (b₁, b₂, ..., bₙ) = (a₁∧ b₁, a₂∧ b₂, ..., aₙ∧ bₙ)

(a₁, a₂, ..., aₙ) ∨ (b₁, b₂, ..., bₙ) = (a₁∨ b₁, a₂∨ b₂, ..., aₙ∨ bₙ)

The ordering relation in the direct product is also defined component-wise:

(a₁, a₂, ..., aₙ) ≤ (b₁, b₂, ..., bₙ) if and only if a₁ ≤ b₁, a₂ ≤ b₂, ..., aₙ ≤ bₙ •

2.2 Properties of Direct Products

1. If each Lᵢ is bounded with bounds 0ᵢ and 1ᵢ, then the direct product is

bounded with 0 = (0₁, 0₂, ..., 0ₙ) and 1 = (1₁, 1₂, ..., 1ₙ).

2. The direct product preserves many lattice properties:

o If all Lᵢ are distributive, then their direct product is

distributive.

76

o

o

If all Lᵢ are modular, then their direct product is modular. Notes

If all Lᵢ are complemented, then their direct product is

complemented.

2.3 Example of Direct Product

Consider two chains: C₂ = {0, 1} and C₃ = {0, 1, 2}. Their direct product C₂

× C₃ consists of ordered pairs: C₂ × C₃ = {(0,0), (0,1), (0,2), (1,0), (1,1),

(1,2)}

The Hasse diagram of this direct product forms a grid-like structure with the 2222222

ordering: (a,b) ≤ (c,d) if and only if a ≤ c and b ≤ d.

3. Lattice Homomorphisms

3.1 Definition

A homomorphism between lattices is a function that preserves the lattice

operations. Formally, if L and M are lattices, a function φ: L → M is a lattice

homomorphism if for all a, b ∈ L:

1. φ(a ∧ b) = φ(a) ∧φ(b)

2. φ(a ∨ b) = φ(a) ∨φ(b)

3.2 Types of Lattice Homomorphisms

1. Isomorphism: A bijective homomorphism. Two lattices L & M are

isomorphic (L ≅ M) if there exists a bijective function φ: L → M

such that φ and φ⁻¹ are homomorphisms.

2. Embedding: An injective homomorphism, which means that a

lattice L can be embedded in M if there exists an injective 2222222

homomorphism from L to M.

3. Epimorphism: A surjective homomorphism, where the image of the

homomorphism is the entire codomain.

3.3 Properties of Lattice Homomorphisms

1. The composition of lattice homomorphisms is

homomorphism.

a lattice

2. For a homomorphism φ: L → M:

77

o

o

If L has a greatest element 1, then φ(1) is greatest element

of φ(L).
Notes

If L has a least element 0, then φ(0) is the least element of

φ(L).

3. Homomorphic images of sublattices are sublattices.

3.4 Kernel of a Lattice Homomorphism

The kernel of a lattice homomorphism φ: L → M is set of all pairs (a,b) such

that φ(a) = φ(b). kernel forms a congruence relation on L, which is an

equivalence relation that respects the lattice operations.

4. Special Lattices

4.1 Complete Lattices

Definition

A lattice L is complete if every subset S of L (including the empty set) has

both a supremum (least upper bound) & an infimum (greatest lower bound)

in L.

Formally:

• For any S ⊆ L, there exists ⋁S ∈ L such that:

1. s ≤ ⋁S for all s ∈ S

2. If s ≤ x for all s ∈ S, then ⋁S ≤ x

For any S ⊆ L, there exists ⋀S ∈ L such that:

1. ⋀S ≤ s for all s ∈ S

•

2. If x ≤ s for all s ∈ S, then x ≤⋀S

Properties of Complete Lattices

1. Every complete lattice has a greatest element (⋁L) and a least

element (⋀L).

2. If a lattice is finite, it is automatically complete.

3. The power set of any set, ordered by inclusion, is a complete lattice.

78

4. The set of all subspaces of a vector space, ordered by inclusion,

forms a complete lattice.
Notes

Completeness in Infinite Lattices

For infinite lattices, completeness is a stronger condition than having just

binary operations. For example, the open interval (0,1) with the usual

ordering is a lattice but not a complete lattice because the set (0,1) itself has

no supremum within (0,1).

4.2 Complemented Lattices

Definition

Let L be a bounded lattice with bounds 0 and 1. An element b ∈ L is a 1616

complement of a ∈ L if:

1. a ∧ b = 0

2. a ∨ b = 1

A lattice is complemented if every element has at least one complement.

Properties of Complemented Lattices

1. In general, an element may have multiple complements.

3. If L is a complemented distributive lattice, then each element has

exactly one complement.

4. The power set of any set, ordered by inclusion, is a complemented

lattice, where the complement of a subset A is its set-theoretic

complement Aᶜ.

4.3 Distributive Lattices

Definition

lattice L is distributive if for all a, b, c ∈ L: 2222222

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (∧ distributes over ∨)

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (∨ distributes over ∧)

In fact, either condition implies the other, so it's sufficient to verify just one.

79

2. 0 and 1 are complements of each other.

Characterizations of Distributive Lattices Notes

1. A lattice is distributive if & only if it does not contain a sublattice

isomorphic to M₃ (the diamond lattice) or N₅ (the pentagon lattice).

2. A lattice is distributive if & only if for all a, b, c ∈ L: a ∧ b = a ∧ c

and a ∨ b = a ∨ c imply b = c.

Examples of Distributive Lattices

1. Any chain (totally ordered set) is a distributive lattice.

2. The power set of any set, ordered by inclusion, is a distributive

lattice.

forms a distributive lattice.

4.4 Boolean Lattices

A Boolean lattice is a complemented distributive lattice. They have many

important properties:

1. In a Boolean lattice, every element has exactly one complement.

2. Boolean lattices satisfy additional identities such as:

o

o

o

o

a ∧ a' = 0 and a ∨ a' = 1 (complement laws)

(a')' = a (involution law)

a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a (absorption laws)

(a ∧ b)' = a' ∨ b' and (a ∨ b)' = a' ∧ b' (De Morgan's laws)

3. The power set of a finite set is isomorphic to any finite Boolean lattice.

4. Every element of a finite Boolean lattice can be uniquely described as a

join of atoms, makingthe atoms a basis.

5. Solved Problems

Problem 1: Proving a Subset is a Sub-lattice

Determine whether the subset M = {1, 2, 5, 10} is a sub-lattice of L.

Solution: To determine if M is a sub-lattice, we need to check if it's closed

under both meet and join operations.

80

3. The set of all divisors of a natural number, ordered by divisibility,

Problem: Let L be the lattice of all divisors of 30 ordered by divisibility.

In the divisibility lattice: Notes

•

•

meet (∧) of two elements is their greatest common divisor (GCD).

join (∨) of two elements is their least common multiple (LCM).

Let's check the closure under these operations for all pairs in M = {1, 2,

5,

10}:

1. GCD(1, 2) = 1 ∈ M, LCM(1, 2) = 2 ∈ M

2. GCD(1, 5) = 1 ∈ M, LCM(1, 5) = 5 ∈ M

3. GCD(1, 10) = 1 ∈ M, LCM(1, 10) = 10 ∈ M

4. GCD(2, 5) = 1 ∈ M, LCM(2, 5) = 10 ∈ M

5. GCD(2, 10) = 2 ∈ M, LCM(2, 10) = 10 ∈ M

6. GCD(5, 10) = 5 ∈ M, LCM(5, 10) = 10 ∈ M

Since all meets and joins of elements in M are also in M, the set M is

closed

under both operations. Therefore, M is a sub-lattice of L.

Problem 2: Direct Product Construction

Problem: Consider the chains C₂ = {0, 1} and C₃ = {0, 1, 2} with the

usual

ordering. Construct the Hasse diagram of their direct product C₂ × C₃

and

verify the meet and join of two specific elements.

Solution: The direct product C₂ × C₃ has elements: C₂ × C₃ = {(0,0),

(0,1),(0,2), (1,0), (1,1), (1,2)}The ordering is defined by: (a,b) ≤ (c,d) if &

only if a ≤ c and b ≤ d.Hasse diagram looks like:

(1,2)

/

(1,1) (0,2)

/ /

(1,0) (0,1)

\ /

81

(0,0) Notes

Let's verify the meet and join of (0,2) and (1,0):

Meet: (0,2) ∧ (1,0) = (min(0,1), min(2,0)) = (0,0) Join: (0,2) ∨ (1,0) =

(max(0,1), max(2,0)) = (1,2)

We can check these results in the Hasse diagram:

• The greatest element below both (0,2) and (1,0) is (0,0), which is

their meet.

• The smallest element above both (0,2) and (1,0) is (1,2), which is

their join.

This confirms our calculations of the meet and join in the direct product.

Problem 3: Verifying a Lattice Homomorphism

Problem: Let L = {0, a, b, 1} be a lattice with the ordering 0 < a, b < 1, and

M = {0, c, 1} be a lattice with the ordering 0 < c < 1. Define a function φ: L

homomorphism.

Solution: To verify that φ is a lattice homomorphism, we need to check if it

preserves meets and joins:

1. φ(x ∧ y) = φ(x) ∧φ(y) for all x, y ∈ L

2. φ(x ∨ y) = φ(x) ∨φ(y) for all x, y ∈ L

Let's check all possible pairs:

For meets (∧):

•

•

•

•

•

•

•

φ(0 ∧ 0) = φ(0) = 0 = 0 ∧ 0 = φ(0) ∧φ(0)

φ(0 ∧ a) = φ(0) = 0 = 0 ∧ c = φ(0) ∧φ(a)

φ(0 ∧ b) = φ(0) = 0 = 0 ∧ c = φ(0) ∧φ(b)

φ(0 ∧ 1) = φ(0) = 0 = 0 ∧ 1 = φ(0) ∧φ(1)

φ(a ∧ a) = φ(a) = c = c ∧ c = φ(a) ∧φ(a)

φ(a ∧ b) = φ(0) = 0 = c ∧ c = φ(a) ∧φ(b)

φ(a ∧ 1) = φ(a) = c = c ∧ 1 = φ(a) ∧φ(1)

82

→ M by φ(0) = 0, φ(a) = φ(b) = c, and φ(1) = 1. Verify that φ is lattice

•

•

•

φ(b ∧ b) = φ(b) = c = c ∧ c = φ(b) ∧φ(b)

φ(b ∧ 1) = φ(b) = c = c ∧ 1 = φ(b) ∧φ(1)

φ(1 ∧ 1) = φ(1) = 1 = 1 ∧ 1 = φ(1) ∧φ(1)

Notes

For joins (∨):

φ(0 ∨ 0) = φ(0) = 0 = 0 ∨ 0 = φ(0) ∨φ(0) •

•

•

•

•

•

•

•

•

•

φ(0 ∨ a) = φ(a) = c = 0 ∨ c = φ(0) ∨φ(a)

φ(0 ∨ b) = φ(b) = c = 0 ∨ c = φ(0) ∨φ(b)

φ(0 ∨ 1) = φ(1) = 1 = 0 ∨ 1 = φ(0) ∨φ(1)

φ(a ∨ a) = φ(a) = c = c ∨ c = φ(a) ∨φ(a)

φ(a ∨ b) = φ(1) = 1 = c ∨ c = φ(a) ∨φ(b)

φ(a ∨ 1) = φ(1) = 1 = c ∨ 1 = φ(a) ∨φ(1)

φ(b ∨ b) = φ(b) = c = c ∨ c = φ(b) ∨φ(b)

φ(b ∨ 1) = φ(1) = 1 = c ∨ 1 = φ(b) ∨φ(1)

φ(1 ∨ 1) = φ(1) = 1 = 1 ∨ 1 = φ(1) ∨φ(1)

There's a discrepancy in one case: φ(a ∨ b) = φ(1) = 1 but φ(a) ∨φ(b) = c ∨ c

= c.

Therefore, φ is not a lattice homomorphism because it does not preserve

joins for all pairs of elements.

To correct the function and make it a homomorphism, we would need to

redefine φ so that φ(a ∨ b) = φ(a) ∨φ(b), which would require φ(1) = c.

Problem 4: Determining if a Lattice is Complete

Problem: Determine whether the set of all positive rational numbers Q⁺ with

the usual ordering is a complete lattice.

Solution: For a lattice to be complete, every subset must have both a

supremum (least upper bound) & an infimum (greatest lower bound) within

the lattice.

Let's check if Q⁺ with the usual ordering is complete:

83

Consider the subset S = {r ∈ Q⁺ | r²< 2}. Notes

All elements in S are less than √2, so √2 would be an upper bound for S. The 40

supremum of S would be √2, as any rational number less than √2 would not

be an upper bound for S.

However, √2 is irrational, so √2 ∉ Q⁺. This means that the set S does not

have a supremum in Q⁺.

Therefore, Q⁺ with the usual ordering is not a complete lattice, as there

exists a subset (namely S) that does not have a supremum in Q⁺.

Problem 5: Complemented Lattice Verification

Determine whether L is complemented lattice and find all complements of 6.

Solution: The divisors of 30 are: 1, 2, 3, 5, 6, 10, 15, and 30.

In the divisibility lattice:

•

•

•

meet (∧) of two elements is their greatest common divisor (GCD).

join (∨) of two elements is their least common multiple (LCM).

The bounds are 1 (bottom) and 30 (top).

For L to be complemented, every element must have at least one

complement.

Let's check if 6 has a complement: For an element a to be a complement of

6, we need:

1. GCD(6, a) = 1

2. LCM(6, a) = 30

Since 6 = 2 × 3, any potential complement must not be divisible by 2 or 3.

Let's check the candidates:

•

•

GCD(6, 5) = 1

LCM(6, 5) = 30

So 5 is a complement of 6.

Let's also check 10:

84

Problem: Consider the lattice L of all divisors of 30 ordered by divisibility.

•

And 15:

•

GCD(6, 10) = 2 ≠ 1

GCD(6, 15) = 3 ≠ 1

Notes

Therefore, the only complement of 6 in this lattice is 5.

To determine if L is complemented, we would need to check if every

element has at least one complement. Let's check a few more elements:

For 2:

• We need GCD(2, a) = 1 and LCM(2, a) = 30

•

For 3:

•

LCM(2, 15) = 30 and GCD(2, 15) = 1, so 15 is a complement of 2.

LCM(3, 10) = 30 and GCD(3, 10) = 1, so 10 is a complement of 3.

LCM(5, 6) = 30 and GCD(5, 6) = 1, so 6 is a complement of 5.

For 5:

•

Continuing this process, we would find that There is at least one

complement for each element in L.

, so L is indeed a complemented lattice.

6. Unsolved Problems

Problem 1

Let (L, ≤) be a lattice and S ⊆ L. Prove that if S is a sublattice of L, then for

any a, b ∈ S, the interval [a,b] = {x ∈ L | a ≤ x ≤ b} ∩ S is a sublattice of S.

Problem 2

Assume distributive lattices L₁ and L₂. Establish that L₁ × L₂, their direct

product, is likewise a distributive lattice.

Problem 3

Let L be complemented lattice. Prove that if L is distributive, then each

element has exactly one complement.

Problem 4

85

Let φ: L → M be a lattice homomorphism. Define the relation θ on L by: a θ

b if and only if φ(a) = φ(b). Prove that θ is congruence relation on L, 242424

meaning it is an equivalence relation that respects the lattice operations.

Notes

Problem 5

Let L be finite lattice in which every element is join of atoms (an atom is an 35

element that covers 0). Prove that if L is distributive, then it is isomorphic to

the lattice of all subsets of its set of atoms.

7. Relationships Between Lattice Types

Understanding the relationships between different types of lattices can

provide clearer picture of lattice theory. Here are some important

connections:

7.1 Subset Relationships

The following inclusions hold among lattice classes:

•

•

•

Boolean Lattices ⊂ Complemented Distributive Lattices

Distributive Lattices ⊂ Modular Lattices ⊂ All Lattices

Complete Lattices are not a subset of any other special class, as

completeness is about the existence of meets and joins for arbitrary

subsets

7.2 Distributivity and Complementation

•

•

•

In a distributive lattice with bounds, complements are unique when

they exist.

A distributive lattice with bounds where every element has

complement is a Boolean lattice.

The converse holds: every Boolean lattice is distributive

complemented lattice.

7.3 Complete Lattices and Fixed Point Theorems

Complete lattices play crucial role in fixed point theorems such as the

Knaster-Tarski theorem, which states that any order-preserving function on a 4747

complete lattice has a fixed point. This has important applications in

computer science, particularly in semantics and program verification.

86

8. Applications of Lattice Theory Notes

Lattice theory has wide-ranging applications across mathematics and

computer science:

8.1 Order Theory and Universal Algebra

Lattices serve as fundamental structures in order theory and universal

algebra, providing a framework for studying ordered sets with additional

algebraic structure.

8.2 Logic and Set Theory

•

•

•

Boolean lattices correspond to Boolean algebras, which model

propositional logic.

The power set of any set, ordered by inclusion, forms a Boolean

lattice.

Complete lattices are used in modeling quantifiers in predicate logic.

8.3 Computer Science Applications

•

•

•

Lattices are used in program analysis to represent data flow and type

information.

They form the theoretical foundation for abstract interpretation, a

technique for static program analysis.

Domain theory, which uses complete lattices, provides semantics for

programming languages.

8.4 Cryptography and Security

Lattice-based cryptography is an active research area that uses the

computational hardness of certain lattice problems to construct secure

cryptographic primitives.

9. Historical Development of Lattice Theory

Lattice theory emerged in the late 19th and early 20th centuries, with

significant contributions from:

9.1 Early Developments

87

•

•

Richard Dedekind introduced the concept of a lattice in the 1890s,

originally calling them "Dualgruppen" (dual groups).
Notes

Ernst Schröder studied lattices as part of his work on the algebra of

logic.

9.2 Modern Lattice Theory

• Garrett Birkhoff's work in the 1930s and 1940s established lattice

theory as a distinct mathematical discipline.

• His book "Lattice Theory" (1940) became the standard reference

and helped popularize the field.

9.3 Recent Developments

• The connections between lattice theory and universal algebra,

category theory, and theoretical computer science have become 242424

increasingly important in recent decades.

• Lattice theory continues to find new applications in diverse areas

Multiple-Choice Questions (MCQs)

1. A statement in logic is:

a) A sentence that is always true

b) A sentence that is either true or false

c) A question or command

d) A mathematical equation

2. Which of the following is a tautology?

a) p∨¬p

b) p∧¬p

c) p→q

d) p∨q

3. A predicate in logic is:

a) A logical variable

b) A function that returns a true/false value

c) A constant statement

d) A contradiction

88

such as quantum logic, rough set theory, and fuzzy set theory.

4. The universal quantifier ∀xP(x) means:

a) There exists at least one x for which P(x) is true 4747

b) P(x) is true for all x in the domain

c) P(x) is always false

Notes

d) P(x) holds for some values but not all

5. A lattice is a partially ordered set in which: 242424

a) Every two elements have unique least upper bound & greatest

lower bound

b) Every subset has a maximum element

c) Every subset has a minimum element

d) Every element has an inverse

6. Which of the following is an example of a distributive lattice?

a) The power set of set with union & intersection

b) set of real numbers with addition and multiplication

c) A set with arbitrary binary operations

d) A graph with directed edges

7. The operation of meet (greatest lower bound) in a lattice is

denoted by:

a) ∨

b) ∧

c) ⊕

d) ⊗

8. Which of the following is an example of complemented lattice?

a) Boolean algebra

b) A set with no upper bound

c) A group with addition

d) A system with only one element

9. If every subset of a lattice has supremum and infimum, it is

called a:

a) Complemented lattice

b) Distributive lattice

c) Complete lattice

d) Bounded lattice

89

10. A homomorphism between two lattices preserves:

a) Only the meet operation
Notes

b) Only the join operation

c) Both meet and join operations

d) None of the operations

Short Answer Questions

1. Define a tautology with an example.

2. What is a propositional logic statement?

3. Explain the difference between universal and existential quantifiers.

4. What is a predicate in logic? Give an example.

5. Define a lattice and give an example.

6. What are the two main operations in a lattice?

7. Differentiate between a complemented and distributive lattice.

8. What is the role of homomorphism in lattice theory?

9. Explain the significance of propositional logic in computing.

Long Answer Questions

1. Explain the concept of tautologies and contradictions with

examples.

2. Describe quantifiers and predicates in logic, giving real-world

applications.

3. Discuss propositional logic, its laws, and its significance in

mathematics.

4. Explain in detail the concept of lattices as partially ordered sets with

examples.

5. What are the properties of lattices? Explain with proper

mathematical definitions.

6. Compare and contrast sub-lattices, direct products, and

90

10. Give an example of a real-world application of lattice theory.

homomorphism in lattice theory.

7. Describe the different types of special lattices with examples. Notes

8. How does Boolean algebra relate to complemented lattices? Explain

with examples.

9. Describe the applications of lattice theory in computer science and

10. Explain the structure and importance of distributive lattices in

mathematics.

91

cryptography.

MODULE III

UNIT VIII

Notes

BOOLEAN ALGEBRA AND ITS APPLICATIONS

Objectives

•

• To study various Boolean identities and their significance in logic

circuits.

•

•

To analyze switching algebra and its application in digital logic.

To explore subalgebras, direct products, and homomorphism in

Boolean algebra.

•

•

•

•

To examine joint-irreducible elements, atoms, and minterms.

To learn about different Boolean forms and their equivalence.

To simplify Boolean functions using canonical forms. 888

To apply Boolean algebra in switching circuits using AND, OR, and

NOT gates.

• To minimize Boolean expressions using the Karnaugh Map (K-map)

method.

3.1 Introduction to Boolean Algebra

Boolean algebra is a mathematical system named after George Boole, a

19th-century mathematician who first defined an algebraic system of logic

in the mid-1800s. Unlike traditional algebra that deals with numerical

values, Boolean algebra deals with the truth values "true" and "false," which

are often represented as 1 and 0, respectively.Boolean algebra forms the

foundation of digital circuit design and computer science. It provides a

mathematical framework for analyzing and designing digital systems where

components can exist in one of two states: on or off, true or false, 1 or 0.

Basic Elements of Boolean Algebra

1. Variables: In Boolean algebra, variables can only take one of two

values: 0 (false) or 1 (true). These variables are commonly denoted

by uppercase letters such as A, B, C, etc.

92

To understand Boolean algebra as an extension of lattice theory.

2. Constants: There are only two constants in Boolean algebra: 0 and Notes
1.

3. Basic Operations: The three fundamental operations in Boolean

algebra are:

o AND (conjunction): denoted by "·" or simply by writing

variables next to each other (e.g., AB)

o

o

OR (disjunction): denoted by "+"

NOT (negation): denoted by an overbar (e.g., Ā) or by a

prime symbol (e.g., A')

Truth Tables

truth table lists all possible combinations of input values and their 888

corresponding output values for a Boolean function. For example:

For two variables A and B:

AND Operation (A·B)

Copy

A | B | A·B

--|---|----

0 | 0 | 0

0 | 1 | 0

1 | 0 | 0

1 | 1 | 1

OR Operation (A+B)

Copy

A | B | A+B

--|---|----

0 | 0 | 0

0 | 1 | 1

93

1 | 0 | 1 Notes

1 | 1 | 1

NOT Operation (A')

Copy

A | A'

--|---

0 | 1

1 | 0

Boolean Functions

A Boolean function is an expression formed by Boolean variables, constants

(0 and 1), and Boolean operators (AND, OR, NOT). A Boolean function

takes Boolean inputs and produces a Boolean output.

Example: F = A·B + C'

For this function, we need to know the values of A, B, and C to determine

output. If A=1, B=1, & C=0, then: F = 1·1 + 0' = 1 + 1 = 1

The Two-Valued Nature of Boolean Algebra

The fundamental characteristic of Boolean algebra is that each variable can 2929

have only one of two possible values. This binary property makes Boolean

algebra especially useful for:

1. Digital circuit design

2. Computer programming

3. Logic design

4. Database queries

5. Set theory operations

3.2 Boolean Identities and Laws

Boolean algebra follows a set of fundamental laws and identities that help

simplify Boolean expressions. These laws are essential for analysis and 888

design of digital circuits.

94

Basic Boolean Laws Notes

1. Idempotent Laws:

o

o

A + A = A

A · A = A

2. Commutative Laws:

o

o

A + B = B + A

A · B = B · A

3. Associative Laws:

o

o

A + (B + C) = (A + B) + C

A · (B · C) = (A · B) · C

4. Distributive Laws:

o

o

A · (B + C) = (A · B) + (A · C)

A + (B · C) = (A + B) · (A + C)

5. Identity Laws:

o

o

A + 0 = A

A · 1 = A

6. Complement Laws:

o

o

A + A' = 1

A · A' = 0

7. Null Laws:

o

o

A + 1 = 1

A · 0 = 0

8. Absorption Laws:

o

o

A + (A · B) = A

A · (A + B) = A

9. De Morgan's Laws:

95

o

o

(A + B)' = A' · B'

(A · B)' = A' + B'

Notes

Duality Principle

In Boolean algebra, a dual of an expression can be obtained by:

1. Changing every OR (+) operation to an AND (·) operation and vice

versa

2. Changing every 0 to 1 and vice versa

3. Keeping the variables the same

For example, the dual of A + 0 = A is A · 1 = A.

The duality principle states that if a Boolean identity is true, then its dual is

also true.

Using Boolean Laws for Simplification

These laws can be used to simplify Boolean expressions, which is crucial for

designing efficient digital circuits.

Example: Simplify the expression A · B + A · B'.

Using the distributive law: A · B + A · B' = A · (B + B') Using complement

law: B + B' = 1 Therefore: A · (B + B') = A · 1 = A

So the simplified expression is just A.

96

UNIT IX Notes

3.3 The Switching Algebra

Switching algebra is a specialized form of Boolean algebra that directly

relates to analysis & design of switching circuits. It provides a mathematical

foundation for understanding how switches operate in digital systems.

Basic Concepts of Switching Algebra

1. Switch States: In switching algebra, a switch can be in one of two

states:

o

o

Open (0): No current flows

Closed (1): Current flows

2. Series Connection: When switches are connected in series, both

must be closed for current to flow. This corresponds to the AND 2929

operation.

o If switch A is represented by variable A and switch B by

variable B, then the series connection is represented by A ·

B.

3. Parallel Connection: When switches are connected in parallel, at

least one must be closed for current to flow. This corresponds to the

OR operation.

o If switch A is represented by variable A and switch B by

variable B, then the parallel connection is represented by A

+ B.

4. Relationship with Boolean Algebra: Switching algebra follows the

same laws and principles as Boolean algebra, making it a perfect

match for analyzing switching circuits.

Applications in Circuit Design

1. Simple Switch Circuits:

o

o

A single switch can be represented by a variable A.

When the switch is closed, A = 1; when open, A = 0.

2. Complementary Switch:

97

o

o

The complement of a switch A is denoted by A'.

If A is closed, A' is open, and vice versa.

Notes

3. Relay Circuits:

o

o

Relays can be analyzed using switching algebra.

The state of a relay coil determines whether its contacts are

open or closed.

4. Transistor Circuits:

o

o

Transistors can act as electronic switches.

Switching algebra can model the behavior of transistor-

based circuits.

Huntington's Postulates for Switching Algebra

Edward Huntington formalized switching algebra with the following

postulates:

1. Closure: For any variables A & B in the algebra, A + B and A · B

are also in the algebra.

2. Identity Elements: There exist two elements, 0 and 1, such that:

o

o

A + 0 = A

A · 1 = A

3. Commutativity: For any variables A & B:

o

o

A + B = B + A

A · B = B · A

4. Distributivity: For any variables A, B, & C:

o

o

A · (B + C) = (A · B) + (A · C)

A + (B · C) = (A + B) · (A + C)

5. Complementation: For every variable, there exists a complement A'

such that:

o A + A' = 1

98

o A · A' = 0 Notes

These postulates form the foundation of switching algebra and ensure its

consistency and applicability to switching circuits.

3.4 Examples of Boolean Algebra Applications

Boolean algebra has numerous applications in various fields, particularly in

digital electronics and computer science. Here are some key applications:

1. Digital Circuit Design

Boolean algebra is fundamental to designing and analyzing digital circuits:

Combinational Logic Circuits

Combinational logic circuits produce outputs based solely on the current

input values. Examples include:

• Multiplexers (MUX): Select one of several input signals and

forward it to a single output line.

• Demultiplexers (DEMUX): Take a single input and direct it to one

of several outputs.

•

•

•

Encoders: Convert multiple input signals into a coded output.

Decoders: Convert a coded input into multiple outputs.

Adders: Perform binary addition.

Sequential Logic Circuits

Sequential circuits produce outputs based on both current and previous input

values. They include:

•

•

•

Flip-flops: Basic memory elements that store one bit of information.

Registers: Store multiple bits of information.

Counters: Count the number of occurrences of an event.

2. Computer Architecture

Boolean algebra is essential for designing the architecture of computers:

• Arithmetic Logic Units (ALU): Perform arithmetic and logical

operations.

99

•

•

Control Units: Generate control signals for the operation of the Notes

Memory Systems: Store and retrieve data.

3. Programming and Software Development

Boolean logic is used extensively in programming:

•

•

•

Conditional Statements: If-else statements rely on Boolean

conditions.

Logical Operators: AND, OR, NOT operations are used in

programming languages.

Loop Conditions: While and for loops continue execution based on

Boolean conditions.

4. Database Systems

Boolean algebra is used in database queries:

•

•

SQL Queries: Use Boolean operators to filter data.

Search Operations: Employ Boolean logic to refine search results.

5. Artificial Intelligence and Machine Learning

Boolean logic is used in:

• Decision Trees: Models that make decisions based on Boolean

conditions.

•

•

Rule-Based Systems: Systems that use if-then rules.

Neural Network Activation Functions: Some activation functions

like the step function are essentially Boolean.

6. Electronic Security Systems

Boolean algebra is used in designing:

• Password Verification Systems: Compare input with stored

passwords.

• Access Control Systems: Determine whether to grant access based

on multiple conditions.

100

computer.

• Encryption Algorithms: Many encryption techniques use Boolean Notes
operations.

Solved and Unsolved Problems in Boolean Algebra

Solved Problems

Problem 1: Simplify the Boolean expression A·B + A·C + B·C

Solution: Step 1: Apply distributive law to factor out common terms. A·B +

A·C + B·C = A·B + A·C + B·C = A·(B + C) + B·C

Step 2: Use the absorption law: X + X·Y = X Let X = A·(B + C) and Y =

B·C/(B + C) A·(B + C) + B·C = A·(B + C) + (B + C)·(B·C)/(B + C) = A·(B

+ C) + (B + C)·[B·C/(B + C)] = A·(B + C) + B·C

Step 3: Try a different approach using a key identity. The expression A·B +

A·C + B·C is a well-known form that simplifies to (A + B)·(A + C)·(B + C).

But we can verify this:

(A + B)·(A + C)·(B + C) = (A + B)·[A·(B + C) + C·(B + C)] = (A + B)·[A·B

+ A·C + B·C + C·C] = (A + B)·[A·B + A·C + B·C + C]

Let's try yet another approach: A·B + A·C + B·C = A·B + A·C + B·C = A·(B

+ C) + B·C = A·B + A·C + B·C

Let's verify using a truth table:

A B C A·B A·C B·C A·B + A·C + (A + B)·(A + C)·(B +

B·C C)

06666

0

0

0

1

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0 0

0 0

0 0

1 1

0 0

1 1

1 1

101

This doesn't simplify further using absorption directly.

1 1 1 1 1 1 1 1Notes

The truth table shows that A·B + A·C + B·C = (A + B)·(A + C)·(B + C).

Therefore, simplified expression is (A + B)·(A + C)·(B + C).

Actually, we can show this is equivalent to a well-known form called the

"majority function," which outputs 1 when at least two of the three inputs

are 1.

The final answer is: A·B + A·C + B·C (which is already in its simplest sum-

of-products form).

Problem 2: Verify De Morgan's Laws using a truth table 1414

Solution: De Morgan's Laws state that:

1. (A + B)' = A' · B'

2. (A · B)' = A' + B'

Let's verify the first law using a truth table:

A B A + B (A + B)' A' B' A' · B'

06666

0

1

1

0

1

0

1

0

1

1

1

1

0

0

0

1

1

0

0

1

0

1

0

1

0

0

0

As we can see, (A + B)' = A' · B' for all possible values of A and B.

Now, let's verify the second law:

A B A · B (A · B)' A' B' A' + B'

0

0

1

1

0

1

0

1

0

0

0

1

1

1

1

0

1

1

0

0

1

0

1

0

1

1

1

0

Again, we see that (A · B)' = A' + B' for all possible values of A and B. 1414

Therefore, both De Morgan's Laws are verified.

102

Problem 3: Design a circuit that implements Boolean function F = A·B +

C·(A + B)
Notes

Solution: First, let's simplify the expression:

F = A·B + C·(A + B) = A·B + C·A + C·B = A·B + A·C + B·C

This is our final simplified expression. Now, we can design a circuit for F =

A·B + A·C + B·C:

1. Create an & gate for A·B

2. Create an AND gate for A·C

3. Create an AND gate for B·C

4. Connect the outputs of these three AND gates to a 3-input OR gate

The resulting circuit will have three inputs (A, B, and C) and one output (F).

output will be 1 if at least two of the three inputs are 1.

Alternatively, we noticed in Problem 1 that A·B + A·C + B·C is the majority

function for three variables, so the circuit can also be designed to output 1

when at least two of the three inputs are 1.

Problem 4: Simplify the Boolean expression (A + B')·(A' + B)·(A + B)

using Boolean algebra

Solution: Let's simplify step by step:

Step 1: Simplify (A + B)·(A + B'). (A + B)·(A + B') = A + B·B' = A + 0 = A

Wait, that's not right. Let's correct it: (A + B)·(A + B') = A·A + A·B' + B·A +

B·B' = A + A·B' + A·B + 0 = A + A·(B' + B) = A + A·1 = A + A = A

Step 2: Now simplify the original expression. (A + B')·(A' + B)·(A + B) = (A

+ B')·(A' + B)·A (from Step 1) = A·(A' + B) = A·A' + A·B = 0 + A·B = A·B

Therefore, (A + B')·(A' + B)·(A + B) = A·B.

Actually, let's double-check this solution because I made an error in Step 1.

(A + B')·(A' + B)·(A + B)

First, let's examine (A + B) more carefully. This is simply A + B.

Now, let's look at the product (A + B')·(A' + B):

103

(A + B')·(A' + B) = A·A' + A·B + B'·A' + B'·B = 0 + A·B + A'·B' + 0 = A·B

+ A'·B'
Notes

So the original expression becomes: (A·B + A'·B')·(A + B)

Let's expand this: (A·B + A'·B')·(A + B) = A·B·A + A·B·B + A'·B'·A +

A'·B'·B = A·B + A·B + 0 + 0 = A·B

Therefore, (A + B')·(A' + B)·(A + B) = A·B.

Problem 5: Implement a full-adder circuit using Boolean algebra

Solution: full-adder is circuit that adds three bits: A, B, & a carry-in (Cin). It

produces a sum (S) & a carry-out (Cout).

Boolean expressions for S and Cout are: S = A ⊕ B ⊕ Cin (where ⊕

represents XOR) Cout = (A·B) + (Cin·(A ⊕ B))

Step 1: Implement the expression for S. A ⊕ B can be written as (A·B' +

A'·B). So, S = (A·B' + A'·B) ⊕ Cin = (A·B' + A'·B)·Cin' + (A·B' +

A'·B)'·Cin

Step 2: Implement the expression for Cout. Cout = (A·B) + (Cin·(A ⊕ B)) =

(A·B) + (Cin·(A·B' + A'·B))

To implement this circuit:

1. Create an XOR gate for A ⊕ B

2. Connect the output of this XOR gate and Cin to another XOR gate

to get S

3. Create an AND gate for A·B

4. Create an AND gate that takes the output of the first XOR gate and

Cin

5. Connect the outputs of the two AND gates to an OR gate to get Cout

The resulting circuit will have three inputs (A, B, and Cin) and two outputs

(S and Cout).

Unsolved Problems

Problem 1: Simplify the is a Boolean expression.(A•B•C') + (A•B'•C) +

(A'•B•C) + (A'•B'•C')

104

Hint: This expression represents a function with specific behavior related to

the number of variables that are 1.
Notes

Problem 2: Prove that the expression (A·B) + (B·C) + (C·A) is equal to

(A + B)·(B + C)·(C + A) if and only if A = B = C

Hint: Consider different cases where the variables take different values.

Problem 3: Design a circuit using only NAND gates to implement 6666

Boolean function F = (A·B) + (C·D)

Hint: Remember that NAND gates are universal gates, meaning any Boolean

function can be implemented using only NAND gates.

Problem 4: Simplify Boolean expression ((A + B)·C) + ((A + C)·B) using

Boolean algebra

Hint: Try distributing terms and looking for common factors.

Problem 5: Implement a binary-to-Gray code converter using Boolean

algebra

Hint: For an n-bit binary number, the Gray code can be obtained by XORing

Boolean Algebra: From Subalgebras to Minimization of Boolean

Functions

3.5 Subalgebras, Direct Products, and Homomorphism

Subalgebras

A subalgebra of a Boolean algebra B is subset of B that is closed under the

operations of meet (∧), join (∨), and complement (¬), and contains the

bounds 0 and 1.

Definition: Let (B, ∧, ∨, ¬, 0, 1) be a Boolean algebra. A subset S of B is a

subalgebra if:

1. 0 ∈ S and 1 ∈ S

2. For all a, b ∈ S: a ∧ b ∈ S

3. For all a, b ∈ S: a ∨ b ∈ S

4. For all a ∈ S: ¬a ∈ S

105

each bit with its more significant neighbor.

Example: In Boolean algebra of power set P({1, 2, 3, 4}), the collection S =

{∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} forms a subalgebra.
Notes

To verify this:

•

•

S contains ∅ (0) and {1, 2, 3, 4} (1)

For any two elements in S, their intersection is in S:

o

o

o

{1, 2} ∩ {3, 4} = ∅

{1, 2} ∩ {1, 2, 3, 4} = {1, 2}

{3, 4} ∩ {1, 2, 3, 4} = {3, 4}

•

•

For any two elements in S, their union is in S:

o

o

o

{1, 2} ∪ {3, 4} = {1, 2, 3, 4}

{1, 2} ∪∅ = {1, 2}

{3, 4} ∪∅ = {3, 4}

For any element in S, its complement is in S:

o

o

o

o

¬∅ = {1, 2, 3, 4}

¬{1, 2} = {3, 4}

¬{3, 4} = {1, 2}

¬{1, 2, 3, 4} = ∅

Direct Products

The direct product of Boolean algebras allows us to construct larger

Boolean algebras from smaller ones.

Definition: Let B₁, B₂, ..., Bₙ be Boolean algebras. The direct product B₁ ×

B₂ × ... × Bₙ is the Boolean algebra whose elements are n-tuples (b₁, b₂, ...,

bₙ) where bᵢ ∈ Bᵢ, with operations defined component-wise:

•

•

•

•

(a₁, a₂, ..., aₙ) ∧ (b₁, b₂, ..., bₙ) = (a₁∧b₁, a₂∧b₂, ..., aₙ∧bₙ)

(a₁, a₂, ..., aₙ) ∨ (b₁, b₂, ..., bₙ) = (a₁∨b₁, a₂∨b₂, ..., aₙ∨bₙ)

¬(a₁, a₂, ..., aₙ) = (¬a₁, ¬a₂, ..., ¬aₙ)

0 = (0₁, 0₂, ..., 0ₙ)

106

• 1 = (1₁, 1₂, ..., 1ₙ) Notes

Example: Consider two Boolean algebras B₁ = {0, 1} & B₂ = {0, 1}. The

direct product B₁ × B₂ consists of the following elements:

•

•

•

•

(0, 0)

(0, 1)

(1, 0)

(1, 1)

With operations:

•

•

•

(0, 1) ∧ (1, 0) = (0∧1, 1∧0) = (0, 0)

(0, 1) ∨ (1, 0) = (0∨1, 1∨0) = (1, 1)

¬(0, 1) = (¬0, ¬1) = (1, 0)

This direct product B₁ × B₂ is isomorphic to Boolean algebra of power set

P({, b}).

Homomorphism

A homomorphism between Boolean algebras preserves the algebraic

structure.

Definition: Let (B, ∧, ∨, ¬, 0, 1) and (B', ∧', ∨', ¬', 0', 1') be Boolean

algebras. A function f: B → B' is a homomorphism if for all a, b ∈ B:

1. f(a ∧ b) = f(a) ∧' f(b)

2. f(a ∨ b) = f(a) ∨' f(b)

3. f(¬a) = ¬'f(a)

4. f(0) = 0'

5. f(1) = 1'

Types of homomorphisms:

•

•

•

An isomorphism is a bijective homomorphism

A monomorphism is an injective homomorphism

An epimorphism is a surjective homomorphism

107

Example of a homomorphism: Let B be the Boolean algebra of the power Notes
set P({1, 2, 3}) and let B' be the Boolean algebra {0, 1}. Define f: B → B'

as:

f(S) = { 1 if 1 ∈ S 0 if 1 ∉ S }

This is a homomorphism because:

• f(S ∩ T) = 1 if and only if 1 ∈ S ∩ T, which happens if and only if 1 6666

∈ S and 1 ∈ T, which happens if and only if f(S) = 1 and f(T) = 1,

which happens if and only if f(S) ∧ f(T) = 1

• Similarly for union and complement

Kernel of a homomorphism: The kernel of a homomorphism f: B → B' is

the set {a ∈ B | f(a) = 0'}.

3.6 Joint-Irreducible Elements, Atoms, and Minterms

Joint-Irreducible Elements

An element in a Boolean algebra is join-irreducible if it cannot be

expressed as the join (logical OR) of two strictly smaller elements.

Definition: An element a in a Boolean algebra B is join-irreducible if a ≠ 0

and for any b, c ∈ B, if a = b ∨ c, then either a = b or a = c.

In other words, a join-irreducible element cannot be broken down into

simpler elements using the join operation.

Atoms

Atoms are the minimal non-zero elements in a Boolean algebra.

Definition: An element in Boolean algebra B is an atom if a ≠ 0 & for any b

∈ B, if b ≤ a, then either b = 0 or b = a.

Properties of atoms:

1. Every atom is join-irreducible

2. In a finite Boolean algebra, every non-zero element can be 39

expressed as a join of atoms

3. If x is an atom and y is any element in the Boolean algebra, then

either x ∧ y = 0 or x ∧ y = x

108

Example: In Boolean algebra of the power set P({1, 2, 3}), the atoms are

the singleton sets {1}, {2}, and {3}. Each non-empty set can be expressed as

a union of these atoms.

Notes

Minterms

In a Boolean algebra on n variables, minterm is product (AND) of n literals,

where each variable appears exactly once in either complemented or

uncomplemented form.

Definition: For n Boolean variables x₁, x₂, ..., xₙ, a minterm is a product

term x₁' ∧ x₂' ∧ ... ∧ xₙ' where each xᵢ' is either xᵢ or ¬xᵢ.

For n variables, there are 2ⁿ possible minterms, each corresponding to one

possible assignment of truth values to variables.

Notation:Minterms are often denoted as mᵢ where i is decimal equivalent of

the binary number formed by replacing each uncomplemented variable with

1 and each complemented variable with 0.

Example: For two variables x and y, the four minterms are:

•

•

•

•

m₀ = ¬x ∧¬y (corresponds to x=0, y=0)

m₁ = ¬x ∧ y (corresponds to x=0, y=1)

m₂ = x ∧¬y (corresponds to x=1, y=0)

m₃ = x ∧ y (corresponds to x=1, y=1)

Properties of minterms:

1. Each minterm evaluates to 1 for exactly one combination of input

values

2. Any Boolean function can be expressed as & sum (OR) of minterms

3. Minterms are mutually exclusive (the product of any two distinct

minterms is 0)

3.7 Boolean Forms and Their Equivalence

Boolean Forms

A Boolean form (or Boolean expression) is a combination of Boolean

variables and constants connected by Boolean operations.

109

Definition: A Boolean form is recursively defined as:

1. Constants 0 and 1 are Boolean forms

Notes

3. If F and G are Boolean forms, then so are:

o

o

o

o

o

¬F (negation/complement)

F ∧ G (conjunction/AND)

F ∨ G (disjunction/OR)

F → G (implication)

F ↔ G (equivalence)

Example: The following are Boolean forms:

•

•

•

x ∧ (y ∨ z)

¬x ∨ (y ∧¬z)

(x → y) ∧ (¬y → z)

Equivalence of Boolean Forms

Two Boolean forms are equivalent if they represent the same Boolean

function - that is, they evaluate to the same output for all possible input

combinations.

Definition: Boolean forms F & G are equivalent (denoted F ≡ G) if for all

possible assignments of values to their variables, F & G have the same

value.

Basic equivalence laws:

1. Idempotent laws:

o

o

x ∨ x ≡ x

x ∧ x ≡ x

2. Commutative laws:

o

o

x ∨ y ≡ y ∨ x

x ∧ y ≡ y ∧ x

110

2. Variables x₁, x₂, ..., xₙ are Boolean forms

3. Associative laws: Notes

o

o

(x ∨ y) ∨ z ≡ x ∨ (y ∨ z)

(x ∧ y) ∧ z ≡ x ∧ (y ∧ z)

4. Distributive laws:

o

o

x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)

5. De Morgan's laws:

o

o

¬(x ∨ y) ≡¬x ∧¬y

¬(x ∧ y) ≡¬x ∨¬y

6. Complement laws:

o

o

x ∨¬x ≡ 1

x ∧¬x ≡ 0

7. Identity laws:

o

o

x ∨ 0 ≡ x

x ∧ 1 ≡ x

8. Dominance laws:

o

o

x ∨ 1 ≡ 1

x ∧ 0 ≡ 0

9. Absorption laws:

o

o

x ∨ (x ∧ y) ≡ x

x ∧ (x ∨ y) ≡ x

10. Double negation:

¬¬x ≡ x o

Example of proving equivalence: To prove (x ∧ y) ∨ (x ∧¬y) ≡ x:

(x ∧ y) ∨ (x ∧¬y) ≡ x ∧ (y ∨¬y) (by distributive law) ≡ x ∧ 1 (by

complement law) ≡ x (by identity law)

111

Truth Tables for Verification of Equivalence Notes

Another way to verify the equivalence of Boolean forms is to construct truth 444444

tables for each form and check if they produce the same outputs for all input

combinations.

x
0
01212121212

1
1

y
0
1
0
1

¬x
1

¬x ∧ y x ∨ (¬x ∧ y) x ∨ y
0
1
0
0

0
1
1
1

0
1
1
1

1
0
0

Since the truth tables for x ∨ (¬x ∧ y) & x ∨ y match for all input

combinations, the two Boolean forms are equivalent.

112

Example: Verify that x ∨ (¬x ∧ y) ≡ x ∨ y using a truth table.

UNIT X Notes

3.8 Minterm Boolean Forms and Sum of Products (SOP)

Minterm Expansion

Every Boolean function can be expressed as a sum (OR) of minterms. 444444

Minterm expansion theorem: Any Boolean function f(x₁, x₂, ..., xₙ) can be

uniquely expressed as:

f(x₁, x₂, ..., xₙ) = ∨ {mₖ | f evaluates to 1 when the variables have the values

corresponding to minterm mₖ}

In other words, a function can be represented as the OR of all minterms for

which the function outputs 1.

Example: For the function f(x, y) = x ∨ y, the truth table is:

x y f(x, y)

0 0 0 2626262626

0 1 1

1 0 1 1212121212

1 1 1

The function outputs 1 for the input combinations (0, 1), (1, 0), and (1, 1),

which correspond to minterms m₁, m₂, and m₃. Therefore:

f(x, y) = m₁ ∨ m₂∨ m₃ = (¬x ∧ y) ∨ (x ∧¬y) ∨ (x ∧ y)

Sum of Products (SOP) Form 2626262626

A Sum of Products (SOP) form is a Boolean expression that is a

disjunction (OR) of product terms (AND terms).

Definition: A Boolean expression is in SOP form if it is written as a sum

(OR) of products (AND) of literals, where a literal is either a variable or its

negation.

Example: The following are SOP forms:

• (x ∧ y) ∨ (¬x ∧ z)

113

• (x ∧ y ∧ z) ∨ (x ∧¬y ∧ z) ∨ (¬x ∧ y ∧¬z) Notes

Every Boolean function can be expressed in SOP form. The minterm

expansion of a function is a special case of SOP form where each product 1212121212 2626262626

term is minterm.

Converting a Boolean Function to SOP Form

There are several methods to convert a Boolean function to SOP form:

1. Using a truth table:

o

o

Construct the truth table for the function 444444

Identify all input combinations for which the function

outputs 1

o

o

Form the minterms corresponding to these input

combinations

Express the function as the OR of these minterms

2. Using Boolean algebra:

o

o

o

Apply distributive laws to expand expressions

Use other Boolean algebraic laws to simplify and rearrange

Continue until the expression is in SOP form

Example: Convert the function f(x, y, z) = x → (y ∧ z) to SOP form.

First, rewrite implication: x → (y ∧ z) ≡¬x ∨ (y ∧ z)

This is already close to SOP form, but let's verify with a truth table:

x
02626262626

0
0
0
1
11212121212

1
1

y
0
0
1
1
0
0
1
1

z y ∧ z x → (y ∧ z) = ¬x ∨ (y ∧ z)
0
1
0
1
0
1
0
1

0
0
0
1
0
0
0
1

1
12626262626

1
1
0
0
0
1

114

The function outputs 1 for the input combinations (0, 0, 0), (0, 0, 1), (0, 1,

0), (0, 1, 1), and (1, 1, 1), which correspond to minterms m₀, m₁, m₂, m₃, and

m₇. Therefore:

Notes

f(x, y, z) = m₀ ∨ m₁∨ m₂∨ m₃∨ m₇ = (¬x ∧¬y ∧¬z) ∨ (¬x ∧¬y ∧ z) ∨ (¬x ∧ y

∧¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ y ∧ z)

This can be simplified to: f(x, y, z) = ¬x ∨ (x ∧ y ∧ z)

3.9 Canonical Forms and Minimization of Boolean Functions

Canonical Forms

canonical form is a standard way of representing Boolean function. The two

main canonical forms are:

1. Sum of Minterms (SOM): A Boolean function expressed as the

disjunction (OR) of minterms.

2. Product of Maxterms (POM): A Boolean function expressed as the

conjunction (AND) of maxterms.

Maxterms

A maxterm is sum (OR) of n literals, where each variable appears exactly 1212121212

once in either complemented or uncomplemented form.

Definition: For n Boolean variables x₁, x₂, ..., xₙ, a maxterm is a sum term

x₁' ∨ x₂' ∨ ... ∨ xₙ' where each xᵢ' is either xᵢ or ¬xᵢ.

Notation: Maxterms are often denoted as Mᵢ where i is the decimal

equivalent of binary number formed by replacing each complemented

variable with 1 and each uncomplemented variable with 0.

Example: For two variables x & y, the four maxterms are:

•

•

•

•

M₀ = x ∨ y (corresponds to x=0, y=0)

M₁ = x ∨¬y (corresponds to x=0, y=1)

M₂ = ¬x ∨ y (corresponds to x=1, y=0)

M₃ = ¬x ∨¬y (corresponds to x=1, y=1)

Canonical SOP and POS Forms

115

•

•

Canonical SOP (Sum of Products):f(x₁, x₂, ..., xₙ) = ∨ mᵢ for all i Notes
where f outputs 1

Canonical POS (Product of Sums):f(x₁, x₂, ..., xₙ) = ∧ Mᵢ for all i

where f outputs 0

Example: For the function f(x, y) = x ⊕ y (exclusive OR), the truth table is:

x
0
0
1
1

y
0
1
0
1

f(x, y)
0
1
1
0

Canonical SOP: f(x, y) = m₁ ∨ m₂ = (¬x ∧ y) ∨ (x ∧¬y) Canonical POS: f(x,

y) = M₀∧ M₃ = (x ∨ y) ∧ (¬x ∨¬y)

Minimization of Boolean Functions

Minimizing Boolean functions is important for creating efficient digital

circuits. The goal is to find an equivalent form with the minimum number of

literals and operations.

Algebraic Minimization

This approach uses Boolean algebra laws to simplify expressions.

Example: Simplify the expression f(x, y, z) = (x ∧ y) ∨ (¬x ∧ y) ∨ (x ∧ z) ∨

(¬x ∧ z)

f(x, y, z) = (x ∧ y) ∨ (¬x ∧ y) ∨ (x ∧ z) ∨ (¬x ∧ z) = y ∧ (x ∨¬x) ∨ z ∧ (x

∨¬x) (factoring) = y ∧ 1 ∨ z ∧ 1 (complement law) = y ∨ z (identity law)

Karnaugh Maps (K-maps)

A Karnaugh map is a graphical method for simplifying Boolean

expressions. It represents a truth table in a grid where adjacent cells differ by

only one bit in their input values.

Steps for using K-maps:

1. Construct the K-map grid for the number of variables

2. Fill in the grid with function outputs

116

3. Group adjacent 1s in powers of 2 (1, 2, 4, 8, etc.) Notes

4. For each group, form a product term with the common variables

5. Express the function as the OR of these product terms

Example: Minimize the function f(x, y, z) = (x ∧¬y ∧¬z) ∨ (x ∧¬y ∧ z) ∨ (x

∧ y ∧ z) ∨ (¬x ∧ y ∧ z)

First, let's create the K-map:

yz

00 01 11 10

x 0 0 0 1 0

1 1 1 1 0

We see two groupings:

•

•

A group of 3 cells for x¬z, which gives the term x ∧¬z

A group of 2 cells for yz, which gives the term y ∧ z

Therefore, the minimized expression is: f(x, y, z) = (x ∧¬y) ∨ (y ∧ z)

Quine-McCluskey Algorithm

The Quine-McCluskey algorithm is a tabular method for minimizing

Boolean functions. It is more systematic than K-maps and can handle

functions with many variables.

Steps of the Quine-McCluskey algorithm:

1. List all minterms for which the function outputs 1

2. Group them by the number of 1s in their binary representation

3. Compare minterms from adjacent groups to find prime implicants

4. Create a prime implicant chart to find the essential prime implicants

5. Select additional prime implicants as needed to cover all minterms

6. Express the function as the OR of the selected prime implicants

Example: Here's a simple example of the Quine-McCluskey algorithm for

function f(w, x, y, z) with minterms 0, 2, 8, 10, 11, 15.

117

Step 1: Group minterms by number of 1s: Notes

•

•

•

•

•

Group 0: (0) = 0000

Group 1: (2) = 0010, (8) = 1000

Group 2: (10) = 1010

Group 3: (11) = 1011

Group 4: (15) = 1111

Step 2: Find prime implicants by comparing adjacent groups:

•

•

•

•

•

Comparing 0000 and 0010: -010 (minterm 0, 2)

Comparing 0000 and 1000: -000 (minterm 0, 8)

Comparing 0010 and 1010: -010 (minterm 2, 10)

Comparing 1010 and 1011: 101- (minterm 10, 11)

Comparing 1011 and 1111: 1-11 (minterm 11, 15)

Step 3: Continue the process until no more combinations are possible.

Step 4: From the prime implicant chart, determine that the minimal

expression is: f(w, x, y, z) = (¬w ∧¬x ∧¬y) ∨ (¬w ∧¬x ∧¬z) ∨ (w ∧ x ∧ z)

Solved Problems

Problem 1: Verify the Subalgebra Property

Problem: Show that the set S = {∅, {a}, {b}, {a, b}} is subalgebra of power

set Boolean algebra P({a, b, c}).

Solution: To be a subalgebra, S must be closed under complement, meet

(intersection), and join (union), and must contain the bounds (∅ and {a, b,

c}).

First, note that S does not contain {a, b, c}, so it cannot be a subalgebra of

P({a, b, c}).

However, if we consider S as a subset of P({a, b}), then:

1. S contains ∅ (0) and {a, b} (1 in P({a, b}))

2. Closure under intersection:

118

o

o

o

{a} ∩ {b} = ∅∈ S Notes

{a} ∩ {a, b} = {a} ∈ S

{b} ∩ {a, b} = {b} ∈ S

3. Closure under union:

o

o

o

{a} ∪ {b} = {a, b} ∈ S

{a} ∪∅ = {a} ∈ S

{b} ∪∅ = {b} ∈ S

4. Closure under complement (relative to {a, b}):

o

o

o

o

¬∅ = {a, b} ∈ S

¬{a} = {b} ∈ S

¬{b} = {a} ∈ S

¬{a, b} = ∅∈ S

Therefore, S is a subalgebra of P({a, b}).

Problem 2: Find a Boolean Homomorphism

Problem: Define a homomorphism from the Boolean algebra P({1, 2, 3, 4})

to the Boolean algebra {0, 1}.

Solution: We need to define a function f: P({1, 2, 3, 4}) → {0, 1} that

preserves all Boolean operations.

Let's define f as: f(S) = { 1 if |S| is even (including 0) 0 if |S| is odd }

To verify this is a homomorphism:

1. f(∅) = 1 since |∅| = 0 is even, and f({1, 2, 3, 4}) = 1 since |{1, 2, 3,

4}| = 4 is even.

2. For complement: f(S^c) = f({1, 2, 3, 4} - S) If |S| is even, then |S^c|

= 4 - |S| is also even, so f(S) = f(S^c) = 1 If |S| is odd, then |S^c| = 4

- |S| is also odd, so f(S) = f(S^c) = 0 This doesn't satisfy f(S^c) =

¬f(S), so our proposed function isn't a homomorphism.

Let's try another definition: f(S) = { 1 if 1 ∈ S 0 if 1 ∉ S }

To verify:

119

1. f(∅) = 0 since 1 ∉∅, and f({1, 2, 3, 4}) = 1 since 1 ∈ {1, 2, 3, 4}. Notes

2. For complement: f(S^c) = f({1, 2, 3, 4} - S) If 1 ∈ S, then 1 ∉S^c,

so f(S) = 1 and f(S^c) = 0 If 1 ∉ S, then 1 ∈S^c, so f(S) = 0 and

f(S^c) = 1 This satisfies f(S^c) = ¬f(S)

120

UNIT XI Notes

3.10 Applications of Boolean Algebra in Digital Circuits

Boolean algebra, developed by George Boole in the mid-19th century, has

become the foundation of digital circuit design. It provides a mathematical

framework for analyzing and designing circuits that process binary

information. In digital systems, variables can only have two values: 0

(OFF/FALSE) and 1 (ON/TRUE). This binary nature makes Boolean

algebra perfectly suited for describing the behavior of digital circuits.

Basic Boolean Operations and Their Circuit Implementations

1. NOT Operation (Inversion)

The NOT operation, denoted by an overbar or the symbol '¬', inverts the

input value.

For a Boolean variable A:

•

•

NOT A (written as A' or ¬A) = 1 if A = 0

NOT A (written as A' or ¬A) = 0 if A = 1

Circuit Implementation (NOT Gate): The NOT operation is implemented

using an inverter or NOT gate. It has one input and one output, with output

being the complement of input.

Truth Table for NOT Gate:

A | A'

0 | 1

1 | 0

2. AND Operation (Conjunction)

The AND operation, denoted by '·' or '∧', returns 1 only if all inputs are 1.

For Boolean variables A and B:

•

•

A AND B (written as A·B or A∧B) = 1 if both A = 1 and B = 1

A AND B (written as A·B or A∧B) = 0 otherwise

121

Circuit Implementation (AND Gate): The AND operation is implemented Notes
using an AND gate, which has two or more inputs and one output.

Truth Table for AND Gate (2 inputs):

A | B | A·B

0 | 0 | 0

0 | 1 | 0

1 | 0 | 0

1 | 1 | 1

3. OR Operation (Disjunction)

The OR operation, denoted by '+' or '∨', returns 1 if at least one input is 1.

For Boolean variables A & B:

•

•

A OR B (written as A+B or A∨B) = 0 if both A = 0 and B = 0

A OR B (written as A+B or A∨B) = 1 otherwise

Circuit Implementation (OR Gate): The OR operation is implemented

using an OR gate, which has two or more inputs & one output.

Truth Table for OR Gate (2 inputs):

A | B | A+B

0 | 0 | 0

0 | 1 | 1

1 | 0 | 1

1 | 1 | 1

4. XOR Operation (Exclusive OR)

The XOR operation, denoted by '⊕', returns 1 if the number of 1s in the

inputs is odd.

For Boolean variables A and B:

122

•

•

A XOR B (written as A⊕B) = 0 if A = B

A XOR B (written as A⊕B) = 1 if A ≠ B

Notes

Circuit Implementation (XOR Gate): The XOR operation is implemented

using an XOR gate. 11111111

Truth Table for XOR Gate (2 inputs):

A | B | A⊕B

0 | 0 | 0

0 | 1 | 1

1 | 0 | 1

1 | 1 | 0

5. NAND Operation (NOT AND)

The NAND operation is the negation of the AND operation.

For Boolean variables A & B:

• A NAND B = NOT (A AND B) = NOT (A·B) = (A·B)'

Circuit Implementation (NAND Gate):A NAND gate, which is an AND

gate followed by a NOT gate, is used to implement the & operation.

Truth Table for NAND Gate (2 inputs):

A | B | (A·B)'

0 | 0 | 1

0 | 1 | 1

1 | 0 | 1

1 | 1 | 0

6. NOR Operation (NOT OR)

The NOR operation is the negation of the OR operation.

123

Notes
For variables A & B that are Boolean:

A NOR B = NOT (A OR B) = NOT (A+B) = (A+B)' •

Circuit Implementation (NOR Gate): The NOR operation is implemented

using a NOR gate, which is an OR gate followed by a NOT gate. 11111111

Truth Table for NOR Gate (2 inputs): 414141

A | B | (A+B)'

0 | 0 | 1

0 | 1 | 0

1 | 0 | 0

1 | 1 | 0

Boolean Algebraic Laws and Theorems

Boolean algebra follows several laws and theorems that are essential for

simplifying expressions and circuit designs.

1. Commutative Laws

•

•

A + B = B + A 11111111

A · B = B · A

2. Associative Laws

•

•

A + (B + C) = (A + B) + C

A · (B · C) = (A · B) · C

3. Distributive Laws

•

•

A · (B + C) = A · B + A · C 414141

A + (B · C) = (A + B) · (A + C) 11111111

4. Identity Laws

•

•

A + 0 = A

A · 1 = A

124

5. Complement Laws Notes

•

•

A + A' = 1

A · A' = 0

6. Idempotent Laws

•

•

A + A = A

A · A = A

7. Absorption Laws

•

•

A + (A · B) = A

A · (A + B) = A

8. De Morgan's Theorems

•

•

(A + B)' = A' · B'

(A · B)' = A' + B'

These theorems are extremely valuable in simplifying Boolean expressions,

which directly translates to simpler and more efficient circuit designs with

fewer gates.

Boolean Functions and Expression Representation

A Boolean function is function that maps binary inputs to binary outputs.

For n Boolean variables, there are 2^n possible input combinations and

2^(2^n) possible Boolean functions.

There are several standard ways to represent Boolean functions:

1. Truth Table

truth table lists all possible input combinations and their corresponding

output values. For n variables, a truth table has 2^n rows.

2. Canonical Forms

Sum of Minterms (SOP - Sum of Products)

A minterm is a product (AND) term where each variable appears exactly 484848

once, either in its true or complemented form. A for which the function value

is 1.

125

For example, for function F(A,B,C) with minterms m1, m4, and m6:

F(A,B,C) = m1 + m4 + m6 = A'·B'·C + A·B'·C' + A·B·C' 414141
Notes

Product of Maxterms (POS - Product of Sums)

A maxterm is a sum (OR) term where each variable appears exactly once, 484848

either in its true or complemented form. The representation of a boolean

function is the product (AND) of its maxterms for which the function value

is 0.

For example, for function F(A,B,C) with maxterms M0, M2, M3, M5, and

M7: F(A,B,C) = M0 · M2 · M3 · M5 · M7

3. Non-Canonical Forms

These are simplified expressions that don't require all variables to appear in

each term. They are typically derived from canonical forms using Boolean

algebraic laws.

Simplification of Boolean Expressions

Simplifying Boolean expressions leads to circuit designs with fewer gates,

Algebraic Simplification

This method involves applying Boolean algebraic laws and theorems to

simplify expressions. For example:

A·B + A·B' = A·(B + B') = A·1 = A

Quine-McCluskey Method

Also known as the tabulation method, this is a systematic procedure for 3434

minimizing Boolean functions. It works well for functions with many

variables but can be computationally intensive.

Digital Circuit Design Using Boolean Algebra

Combinational Logic Circuits 25

Combinational circuits are digital circuits where output depends only on

current input values. They don't have memory elements.

Example: Half Adder A half adder adds two single-bit binary numbers A and

B. It has two outputs: Sum (S) and Carry (C).

126

which reduces cost, power consumption, and complexity.

Boolean functions: Notes

•

•

S = A ⊕ B (XOR operation)

C = A · B (AND operation)

Sequential Logic Circuits

Sequential circuits are digital circuits where the output depends not only on

current inputs but also on the past sequence of inputs. They contain memory

elements like flip-flops.

Example: D Flip-Flop A D flip-flop stores a single bit of data. Its output Q

takes on the value of the D input at the active edge of the clock signal and

retains this value until the next active clock edge.

Digital Circuit Analysis Using Boolean Algebra

Circuit to Boolean Expression

Given a digital circuit, we can derive its Boolean expression by working

through the circuit from inputs to outputs, applying the appropriate Boolean

operations for each gate.

Boolean Expression to Circuit

Given a Boolean expression, we can implement it as a digital circuit by

converting it into a suitable form (like SOP or POS) and then using the

appropriate gates.

Applications in Computer Architecture

Boolean algebra is fundamental to designing critical components of

computer systems:

1. Arithmetic Logic Unit (ALU)

The ALU performs arithmetic and logical operations. It uses Boolean logic

2. Memory and Register Design

Memory cells and registers use logic gates and flip-flops to store and

manipulate binary data.

3. Control Unit

127

to implement operations like addition, subtraction, AND, OR, and NOT.

The control unit generates control signals based on instructions and system

status. These signals control the flow of data through the CPU.
Notes

4. Multiplexers and Demultiplexers

These components route data through the system based on control signals,

implementing complex switching functions using Boolean logic.

5. Encoders and Decoders

These circuits convert between different binary representations, using

Boolean functions to map inputs to outputs.

Real-World Applications

Boolean algebra and digital circuits are fundamental to virtually all modern

electronic systems:

1. Computers and Microprocessors: The central processing unit

(CPU) of a computer is built from millions of logic gates

implementing Boolean functions.

2. Digital Communication Systems: Digital communication systems

use Boolean logic for data encoding, error detection, and correction.

3. Control Systems: Programmable logic controllers (PLCs) use

Boolean functions to implement control algorithms in industrial

settings.

4. Consumer Electronics: Smartphones, digital TVs, and other

consumer devices are built using complex digital circuits.

5. Cryptography: Modern cryptographic systems rely on Boolean

operations for encryption and decryption.

3.11 The Karnaugh Map (K-Map) Method

Introduction to Karnaugh Maps

The Karnaugh Map (K-map) is a graphical method for simplifying Boolean 3434

expressions. Developed by Maurice Karnaugh in 1953, it provides a visual

approach to minimizing Boolean functions by taking advantage of the

adjacency of terms. K-maps make it easy to identify groups of terms that can

be combined, leading to simplified Boolean expressions.

128

Structure of a Karnaugh Map Notes

A K-map is a grid where each cell represents a minterm in a Boolean

function. For an n-variable function, the K-map has 2^n cells.

The key features of a K-map include:

1. Rectangular Grid: The K-map is arranged as a rectangular grid,

with cells representing minterms.

2. Gray Code Ordering: Adjacent cells in the K-map differ by exactly

one variable. This is achieved by using Gray code ordering for the

row and column indices.

meaning that cells on opposite edges are considered adjacent.

K-map Sizes for Different Numbers of Variables: 484848

•

•

•

•

•

2 Variables: 2×2 grid (4 cells)

3 Variables: 2×4 grid (8 cells)

4 Variables: 4×4 grid (16 cells)

5 Variables: Two 4×4 grids (32 cells)

6 Variables: Four 4×4 grids (64 cells)

Constructing a Karnaugh Map

To create a Boolean function's K-map:

1. Determine Number of Variables: Identify how many variables are

in the function.

2. Create the Grid: Draw a grid with the appropriate dimensions

based on the number of variables.

3. Label the Grid: Label the rows and columns using Gray code

ordering.

4. Fill in the Map: For each minterm in the function, place a 1 in the

corresponding cell. For each maxterm, place a 0.

Example: K-map for 3-Variable Function

For function F(A,B,C) = A'B'C + A'BC + AB'C':

129

3. Wrap-around Property: The K-map has a wrap-around property,

BC Notes

A 00 01 11 10

0 | 0 1 1 0 |

1 | 1 0 0 0 |

Where the cells represent minterms m0, m1, m2, m3, m4, m5, m6, and m7:

BC

A 00 01 11 10

0 | m0 m1 m3 m2 |

1 | m4 m5 m7 m6 |

And 1s are placed in cells corresponding to minterms m1, m2, and m4.

Identifying Groups in a Karnaugh Map

The key to simplifying Boolean functions using K-maps is to identify groups

of adjacent 1s. The rules for grouping are:

1. Group Size: Groups must contain 2^n cells (1, 2, 4, 8, 16, etc.).

vertically, or diagonally adjacent at the edges due to wrap-around).

3. Maximal Groups: Always create the largest possible groups.

4. Cover All 1s: All cells containing 1s must be included in at least one

group.

5. Minimal Coverage: Use the fewest possible groups to cover all 1s.

When a variable changes value within a group, it gets eliminated from the

in the simplified term.

Simplifying Boolean Functions Using K-maps

Once groups are identified, we can derive the simplified expression:

130

2. Adjacency: All cells in a group must be adjacent (horizontally,

simplified term. Variables that remain constant throughout the group appear

1. Analyze Each Group: For each group, determine which variables 232323
Notes

stay constant and which ones change.

2. Write Terms: For each group, write a product term containing only

the variables that stay constant.

3. Combine Terms: OR together all the product terms to form the

simplified expression.

Example: Simplifying F(A,B,C) = A'B'C + A'BC + AB'C'

In K-map:

BC

A 00 01 11 10

0 | 0 1 1 0 |

1 | 1 0 0 0 |

We can identify the following groups:

•

•

Group 1: A'BC and A'BC' (cells m1 and m3)

Group 2: A'B'C and AB'C' (cells m0 and m4)

Simplified expression: F(A,B,C) = A'B + C'

Handling Conditions of Don't Care

designs, certain input combinations never occur or their outputs don't matter.

These are called "don't care" conditions, typically denoted by 'X' or 'd' in the

K-map.

Don't care conditions provide flexibility in simplification. When grouping,

we can choose to include or exclude don't care cells based on what leads to

the simplest expression.

Example: Simplifying with Don't Care Conditions

For function F(A,B,C) with minterms m1, m4, m6 and don't cares d3, d5:

BC

A 00 01 11 10

131

----------------- Notes

0 | 0 1 X 0 |

1 | 1 X 0 1 |

By treating the don't cares as 1s when beneficial, we can form larger groups,

resulting in a simpler expression.

K-maps for 4-Variable Functions

For 4-variable functions, we use a 4×4 K-map. The rows and columns are

labeled with 2-variable Gray codes.

Example: K-map for F(A,B,C,D) = Σm(0,1,4,5,12,13)

CD

AB 00 01 11 10

00 | 1 1 0 0 |

01 | 1 1 0 0 |

11 | 0 0 0 0 |

10 | 1 1 0 0 |

By identifying groups, we can simplify this to: F(A,B,C,D) = C'D'

K-maps for 5 and 6 Variables

For 5 and 6 variables, we use multiple 4×4 K-maps:

• 5 Variables: Two 4×4 K-maps, one for when the 5th variable is 0

and one for when it's 1.

• 6 Variables: Four 4×4 K-maps, representing different combinations

of the 5th and 6th variables.

Groups can span across multiple K-maps if the cells are adjacent when

considering the additional variables.

Comparing K-maps with Other Minimization Methods

Advantages of K-maps:

132

1. Visual Approach: K-maps provide a visual method that makes it Notes
easy to identify patterns.

2. Intuitive: The grouping process is intuitive and less prone to errors

than algebraic manipulation.

3. Efficient for Small Functions: K-maps are particularly efficient for

functions with up to 5-6 variables.

Limitations of K-maps:

1. Scalability: K-maps become unwieldy for functions with more than

6 variables.

2. Manual Process: K-map minimization is primarily a manual

process, making it less suitable for computer implementation.

Alternatives to K-maps:

1. Quine-McCluskey Method: This tabular method can handle

functions with more variables and is well-suited for computer

implementation.

2. Espresso Algorithm: A heuristic algorithm for logic minimization

that can handle large functions.

Applications of K-maps in Digital Circuit Design

K-maps are widely used in digital circuit design for:

1. Combinational Logic Design: Simplifying the Boolean expressions

for combinational circuits like multiplexers, decoders, and adders.

2. State Machine Design: Simplifying the next-state and output

functions in sequential circuits.

3. Error Detection and Correction: Designing circuits for error

detection and correction codes.

4. Addressing Hazards: Identifying and resolving hazards in digital

circuits.

Practical Example: Designing a BCD to 7-Segment Display Decoder

A practical application of K-maps is in designing a BCD (Binary-Coded

Decimal) to 7-segment display decoder. This circuit converts a 4-bit BCD

133

input (representing digits 0-9) to outputs that drive a 7-segment display.For

each segment (a-g) of the display, we can create a K-map based on which

digits require that segment to be illuminated. Then, we can derive simplified

Boolean expressions for each segment.

Notes

Solved Problems

Problem 1: Simplify the Boolean expression F(A,B,C) = A'B'C + A'BC +

AB'C + ABC

Solution: First, identify the minterms:

•

•

•

•

A'B'C = m1 (001)

A'BC = m3 (011)

AB'C = m5 (101)

ABC = m7 (111)

Create the K-map:

BC

A 00 01 11 10

0 | 0 1 1 0 |

1 | 0 1 1 0 |

We can identify two groups:

• Group 1: Cells m1 and m5 (vertically aligned, including A'B'C and

AB'C)

• Group 2: Cells m3 and m7 (vertically aligned, including A'BC and

ABC)

For Group 1, B changes while A and C remain constant (C = 1, A varies). So

Group 1 gives us B'C. For Group 2, B changes while A and C remain

constant (C = 1, A varies). So Group 2 gives us BC.

The simplified expression is F(A,B,C) = B'C + BC = C(B' + B) = C

verify this algebraically: F(A,B,C) = A'B'C + A'BC + AB'C + ABC = C(A'B'

+ A'B + AB' + AB) = C(A'(B' + B) + A(B' + B)) = C(A' + A) = C

134

Problem 2: Simplify Boolean function F(A,B,C,D) = Notes
Σm(0,2,8,10,11,14,15)

Solution: Create the K-map:

CD

AB 00 01 11 10

00 | 1 0 0 1 |

01 | 0 0 0 0 |

11 | 0 0 1 1 |

10 | 1 0 1 1 |

We can identify the following groups:

•

•

•

Group 1: Cells m0 and m2 (A'B'C'D' & A'B'C'D)

Group 2: Cells m8 and m10 (AB'C'D' and AB'C'D)

Group 3: Cells m10, m11, m14, and m15 (AB'CD, AB'C'D, ABCD,

and ABC'D)

For Group 1, D changes while A, B, & C remain constant (A = 0, B = 0, C = 232323

0). So Group 1 gives us A'B'C'. For Group 2, D changes while A, B, & C

remain constant (A = 1, B = 0, C = 0). So Group 2 gives us AB'C'. For

Group 3, B and C change while A and D remain constant (A = 1, D = 1). So

Group 3 gives us AD.

The simplified expression is F(A,B,C,D) = A'B'C' + AB'C' + AD

We can further simplify this: F(A,B,C,D) = A'B'C' + AB'C' + AD = B'C'(A' +

A) + AD = B'C' + AD

Problem 3: Design a digital circuit that performs a full adder operation 46

using the K-map method

Solution: A full adder adds three binary digits (A, B, and Cin) and produces

two outputs: Sum (S) and Carry-out (Cout).

Let's derive the Boolean expressions for S and Cout using K-maps.

For Sum (S): S = 1 when an odd number of inputs are 1. S = A ⊕ B ⊕ Cin

135

Truth table:

A | B | Cin | S

0 | 0 | 0 | 0

0 | 0 | 1 | 1

0 | 1 | 0 | 1

0 | 1 | 1 | 0

1 | 0 | 0 | 1

1 | 0 | 1 | 0

1 | 1 | 0 | 0

1 | 1 | 1 | 1

K-map for Sum:

Cin B

Notes

A 00 01 11 10

0 | 0 1 0 1 |

1 | 1 0 1 0 |

We can identify four groups:

•

•

•

•

Group 1: A'B'Cin (cell m1)

Group 2: A'BCin' (cell m2)

Group 3: AB'Cin' (cell m4)

Group 4: ABCin (cell m7)

Simplified expression for Sum: S = A'B'Cin + A'BCin' + AB'Cin' + ABCin =

A ⊕ B ⊕ Cin

For Carry-out (Cout): Cout = 1 when at least two inputs are 1.

Table of truth:

136

A | B | Cin | Cout

0 | 0 | 0 | 0

0 | 0 | 1 | 0

0 | 1 | 0 | 0

0 | 1 | 1 | 1

1 | 0 | 0 | 0

1 | 0 | 1 | 1

1 | 1 | 0 | 1

1 | 1 | 1 | 1

K-map for Cout:

Cin B

Notes

A 00 01 11 10

0 | 0 0 1 0 |

1 | 0 1 1 1 |

We can identify three groups:

•

•

•

Group 1: Cells m3 and m7 (A'BCin and ABCin): BCin

Group 2: Cells m5 and m7 (AB'Cin and ABCin): ACin

Group 3: Cells m6 and m7 (ABC' and ABCin): AB

Simplified expression for Cout: Cout = BCin + ACin + AB

The circuit implementation would use XOR gates for the Sum and AND/OR

gates for the Carry-out.

Problem 4: Simplify Boolean function F(A,B,C,D) with don't care

conditions

F(A,B,C,D) = Σm(1,3,7,11,15) Don't cares: d(0,2,5)

137

Solution: Create the K-map with '1's for minterms and 'X's for don't cares: Notes

CD

AB 00 01 11 10

00 | X 1 1 X |

01 | 0 0 0 X |

11 | 0 0 1 1 |

10 | 0 0 1 0 |

We can identify the following groups:

• Group 1: Cells m1, m3, m0, and m2 (using don't cares m0 and m2):

This group gives us A'

• Group 2: Cells m3, m7, m11, and m15: This group gives us CD

The simplified expression is F(A,B,C,D) = A' + CD

We can confirm this. is correct. When A = 0, the output is 1 (except for 232323

some don't care conditions). When C = 1 and D = 1, the output is 1.

Problem 5: Design a 4-to-2 priority encoder using K-maps

Solution: A 4-to-2 priority encoder has 4 input lines (I0, I1, I2, I3) and

produces a 2-bit binary output (Y1, Y0) representing the highest priority

input that is active (1). Priority increases from I0 (lowest) to I3 (highest).

Truth table:

I3 | I2 | I1 | I0 | Y1 | Y0

0 | 0 | 0 | 0 | X | X (invalid/don't care)

0 | 0 | 0 | 1 | 0 | 0

0 | 0 | 1 | X | 0 | 1

0 | 1 | X | X | 1 | 0

1 | X | X | X | 1 | 1

138

K-map for Y1: Notes

I1 I0

I3I2 00 01 11 10

00 | X 0 0 0 |

01 | 0 0 0 0 |

11 | 1 1 1 1 |

10 | 1 1 1 1 |

Y1 simplifies to I3 + I2

K-map for Y0:

I1 I0

I3I2 00 01 11 10

00 | X 0 1 1 |

01 | 0 0 1 1 |

11 | 1 1 1 1 |

10 | 0 0 0 0 |

Y0 simplifies to I3 + I1

Therefore, the Boolean expressions for the 4-to-2 priority encoder are: Y1 =

I3 + I2 Y0 = I3 + I1

Unsolved Problems

Problem 1:

Problem 2:

Simplify Boolean function F(A,B,C,D) with don't care conditions:

F(A,B,C,D) = Σm(1,3,5,7,9,13,15) Don't cares: d(0,2,4,6,8,10,12,14)

139

Simplify Boolean function F(W,X,Y,Z) = Σm(0,1,2,3,7,8,10,12,13,14,15)

Problem 3: Notes

Design a circuit that converts a 3-bit binary number to excess-3 code using

K-maps.

Problem 4:

Use K-maps to design a circuit that detects if the number of 1s in a 4-bit

input is even.

Problem 5:

Simplify the following Boolean expression using K-maps: F(A,B,C,D) =

A'B'C'D' + A'B'CD' + A'BCD + A'BC'D + AB'C'D' + AB'CD + ABCD' +

ABC'D

Multiple-Choice Questions (MCQs)

1. Boolean algebra is special type of:

a) Number system

b) Lattice

c) Graph

d) Matrix

2. The Boolean identity A+A=? is:

a) A

b) 0

c) 1

d) ¬A

3. The complement of a Boolean variable A is denoted as:

a) A′

b) A2

c) A+A

d) A−1

4. Which Boolean operation represents the logical AND function?

a) +

b) ×

c) .

d) −

140

5. The switching algebra is mainly used in:

a) Calculus
Notes

b) Digital circuit design

c) Probability theory

d) Geometry

6. A Boolean function is in sum-of-products (SOP) form if:

a) It consists of minterms combined with AND operations 1313

b) It consists of minterms combined with OR operations

c) It is expressed as a single term

d) It does not use Boolean variables

7. The Karnaugh Map (K-map) method is used for:

a) Expanding Boolean expressions

b) Minimizing Boolean functions

c) Multiplying matrices

d) Finding derivatives

8. A Boolean algebra is complemented if:

a) Each element has a unique complement

b) The set has a top element

c) Every subset has a maximum element

d) The elements form a ring structure

9. Which logic gate implements the Boolean function A⋅B?

a) OR gate

b) AND gate

c) NOT gate

d) XOR gate

Short Answer Questions

1. Define Boolean algebra and its significance.

2. What are Boolean identities? Give two examples.

3. Explain the concept of switching algebra.

4. What is a minterm in Boolean algebra?

5. How is a Boolean algebra different from an ordinary algebraic

system?

141

6. What are subalgebras in Boolean algebra?

7. Define sum-of-products (SOP) form of Boolean expression.

8. What is a Karnaugh Map (K-map), and why is it useful?

9. How does Boolean algebra apply to digital circuits?

10. Describe the role of NOT, AND, and OR gates in Boolean logic.

Long Answer Questions

Notes

1. Explain the fundamental laws and identities of Boolean algebra with

examples.

2. Describe the structure of a Boolean algebra as a lattice and its

properties.

3. Discuss the concept of minterms and maxterms in Boolean algebra

with examples.

4. Explain the different forms of Boolean expressions and their

equivalence.

5. How is Boolean algebra applied in the design of digital circuits?

6. What is the importance of minimization in Boolean algebra?

Explain different techniques.

7. Compare and contrast sum-of-products (SOP) & product-of-sums

(POS) forms.

8. Discuss the role of homomorphism in Boolean algebra.

9. How does Boolean algebra relate to the design of computer

processors and logic circuits?

142

MODULE IV

UNIT XII

Notes

FINITE STATE MACHINES AND AUTOMATA

Objectives

• To understand the concept of finite state machines (FSM) and their

transition diagrams.

• To analyze the equivalence of finite state machines and their

minimization.

•

•

•

•

To study reduced machines and their significance.

To explore the concept of homomorphism in FSM.

To understand finite automata and acceptors.

To differentiate between deterministic and non-deterministic finite

automata.

• To study Moore and Mealy machines and their applications.

4.1 Introduction to Finite State Machines (FSM)

Finite State Machine (FSM) is mathematical model of computation used to

design both computer programs and sequential logic circuits. It is an abstract

machine that can be in exactly one of a finite number of states at any given

time. The FSM can change from one state to another in response to some

inputs; the change from one state to another is called a transition.

Definition

• finite state machine is formally defined as 5-tuple (Q, Σ, δ, q0, F)

where:

Q is a limited collection of states.

•

•

The alphabet is a limited collection of input symbols.

The transition function is denoted by δ. The initial state is q0, where

q0 ∈ Q. Q × Σ → Q

• F is the collection of accepting or final states, where F ⊆ Q.

Key Characteristics of FSMs

143

1. Finite number of states: An FSM can only be in one of a limited 5151
Notes

number of states at any given time. 1313

2. State transitions: The machine moves from one state to another

based on input and its current state.

3. Determinism: In a deterministic FSM, for each state and input

symbol, there is exactly one next state.

4. Memory limitations: FSMs have no additional memory beyond the

state itself.

Applications of FSMs

Numerous fields make extensive use of finite state machines:

text editors

2. Communication Protocols: Used to define network protocols and

communication systems

3. Digital Circuit Design: Used to model sequential circuits

4. Game Development: Used for character behavior and game state

management

5. Natural Language Processing: Used in tokenization and simple

parsing

6. Control Systems: Used to model and implement control logic

Example of a Simple FSM

Consider a turnstile at a subway entrance that can be in one of two states: 5151

Locked or Unlocked.

•

•

Initial state: Locked

Inputs: Insert coin, Push

The behavior can be described as:

• When the turnstile is Locked and a coin is inserted, it transitions to

Unlocked

144

1. Text Processing: Used in lexical analyzers, pattern matching, and

• When the turnstile is Unlocked and is pushed, it transitions to

Locked
Notes

•

•

When the turnstile is Locked and is pushed, it remains Locked

When the turnstile is Unlocked and a coin is inserted, it remains

Unlocked

This simple example demonstrates the fundamental concept of states and

transitions in FSMs.

4.2 Transition Table and Diagrams of FSM

To represent a finite state machine, we commonly use two visual tools:

transition tables and transition diagrams.

Transition Tables

A transition table is a tabular representation of the transition function δ. It

shows all possible states, inputs, and the resulting next states.

The format of a transition table typically has:

•

•

•

Rows representing current states

Columns representing input symbols

Entries showing the next state for each state-input pair

Example Transition Table

For our turnstile example:

Current State Input: Coin Input: Push

Locked Unlocked

Unlocked

Locked

Locked Unlocked

Transition Diagrams

A transition diagram (or state diagram) is a directed graph representation of

an FSM where:

•

•

•

Nodes represent states (often drawn as circles)

Directed edges represent transitions between states

Edge labels indicate the input symbol that triggers the transition

145

•

•

The initial state is marked with an incoming arrow

Final/accepting states are represented by double circles

Notes

How to Draw a Transition Diagram

1. Draw a circle for each state in the FSM

2. Mark the initial state with an incoming arrow

3. Draw double circles for accepting states

4. For each transition in the transition table, draw a directed edge from

the current state to the next state, labeled with the input symbol

Example Transition Diagram

For the turnstile example:

┌─────────┐ coin ┌──────────┐

│ │ ─────────>

│ Locked │ │ Unlocked │

│ <─────────

└─────────┘ push └──────────┘

│

│ │

↑ │

│ push │

└─────────────────────┘

Extended Notation

In more complex FSMs, we might use extended notation in diagrams:

•

•

•

Multiple labels on a single edge (indicating multiple inputs causing

the same transition)

Multiple transitions with the same label (indicating non-

determinism)

ε-transitions (transitions without consuming input)

Transition Table for Multiple Input Symbols

146

For more complex FSMs with multiple input symbols, the transition table

expands to include all possible inputs:
Notes

State Input 1 Input 2 ... Input n

q0

q1

...

δ(q0,1) δ(q0,2) ... δ(q0,n)

δ(q1,1) δ(q1,2) ... δ(q1,n)

...

qm δ(qm,1) δ(qm,2) ... δ(qm,n)

Where δ(qi,j) represents the next state when the current state is qi and the

input is j.

Converting Between Representations

The transition table and diagram are equivalent representations of the same

From Table to Diagram:

1. Create a node for each state in the table

2. For each entry in the table, draw an edge from the current state to

the next state with the corresponding input label

From Diagram to Table:

1. List all states as rows

2. List all input symbols as columns

3. Fill in the table by following the edges in the diagram

4.3 Equivalence of Finite State Machines

If two finite state machines accept same language or generate same output,

they are regarded as equivalent. To put it another way, they act in the same

way for every potential input sequence.

Definition of Equivalence

Two FSMs A and B are equivalent if:

1. They have the same input alphabet Σ

2. For any input string w ∈Σ*:

147

FSM. You can convert from one to the other:

o

o

If A is an acceptor: A accepts w if and only if B accepts w Notes

If A is a transducer: A produces output y when given input w

if and only if B produces the same output y when given the

same input w

State Equivalence

Within a single FSM, two states p & q are equivalent if:

1. Both are accepting states or both are non-accepting states

2. For any input symbol ∈Σ, the states δ(p,a) and δ(q,a) are equivalent

This recursive definition needs a base case: two states are distinguishable if

one is accepting and the other is not.

To determine if two FSMs are equivalent, we can:

1. Construct a product machine: Combine the two machines and

check if the behavior is consistent

2. Minimize both machines: Reduce both machines to their minimal

form and check if they are isomorphic

3. Table-filling algorithm: Systematically identify distinguishable

state pairs

Table-Filling Algorithm

This algorithm identifies non-equivalent states:

1. Create a table with rows and columns representing all states

(excluding redundant pairs)

2. Initially mark pairs where one state is accepting and the other is

non-accepting

3. Iteratively mark more pairs: if states p and q transition to states p'

and q' on some input a, and p' and q' are marked as non-equivalent,

then mark p and q as non-equivalent

4. Continue until no more pairs can be marked

5. The unmarked pairs represent equivalent states

148

Testing for Equivalence

Notes

Consider two FSMs M1 and M2 with the following transition tables:

FSM M1:

State Input: 0 Input: 1 Accepting?

A

B

C

D

B

A

D

C

C

D

A

B

No

No

No

FSM M2:

State Input: 0 Input: 1 Accepting?

P Q

P

R

S

No

No

No

Q

R

S

S P

R Q

To check if these machines are equivalent, we can verify that:

•

•

•

•

A and P are both non-accepting and have similar transition patterns

B and Q are both non-accepting and have similar transition patterns

C and R are both non-accepting and have similar transition patterns

D and S are both accepting and have similar transition patterns

Therefore, M1 and M2 are equivalent.

4.4 Reduced Finite State Machines

A reduced (or minimal) finite state machine is one that has the minimum

possible number of states while preserving the same behavior as the original

machine.

Importance of State Minimization

Minimizing FSMs is important for:

149

Example of Equivalence Testing

Yes

Yes

1. Efficiency: Reduces implementation complexity and resource Notes
requirements

2. Clarity: Makes the machine easier to understand and analyze

3. Implementation costs: Reduces hardware costs for physical

implementations

State Minimization Algorithm

The process of creating a reduced FSM involves identifying and merging

equivalent states:

1. Identify Equivalent States:

o

o

Use the table-filling algorithm described earlier

Find all pairs of states that are equivalent

2. Merge Equivalent States:

o

o

Create a new state for each equivalence class

Define transitions for these new states based on

representatives from the original machine

3. Generate the Reduced Machine:

o The states of the reduced machine are the equivalence

classes

o

o

The transitions are derived from the original transitions

The initial state is the equivalence class containing the

original initial state

o The accepting states are the equivalence classes containing

original accepting states

Partition Refinement Method

Another approach for minimization is the partition refinement method:

1. Start with a partition containing two blocks: accepting states and

non-accepting states

150

4. Verification: Makes it easier to verify correctness of the design

2. Refine the partition: Split blocks if states in the same block

transition to states in different blocks on some input
Notes

3. Repeat until no further refinement is possible

4. Each block in the final partition represents a state in the minimized

machine

Example of State Minimization

Consider an FSM with states {S0, S1, S2, S3, S4, S5} and the following

transition table:

State Input: 0 Input: 1 Accepting?

S0

S1

S2

S3

S4

S5

S1

S1

S1

S4

S4

S4

S2

S3

S3

S5

S5

S5

No

No

Step 1: Initial partition based on accepting/non-accepting states:

•

•

Block 1: {S0, S3, S4, S5} (accepting states)

Block 2: {S1, S2} (non-accepting states)

Step 2: Refine Block 1 based on transitions:

• For input 0: S0→S1 (Block 2), S3→S4 (Block 1), S4→S4 (Block
1), S5→S4 (Block 1)

• We split Block 1 into {S0} and {S3, S4, S5}

Step 3: Further refinement:

• No further refinement is possible

Final partition:

•

•

•

Block A: {S0}

Block B: {S1, S2}

Block C: {S3, S4, S5}

The minimized machine has 3 states instead of the original 6.

151

Yes

Yes

Yes

Yes

UNIT XIII Notes

4.5 Homomorphism in FSM

Homomorphism is a structure-preserving mapping between two algebraic

structures. In the context of FSMs, it refers to a mapping between states of

two machines that preserves transitions.

Definition of FSM Homomorphism

A homomorphism from FSM M1 = (Q1, Σ, δ1, q01, F1) to FSM M2 = (Q2,

Σ, δ2, q02, F2) is a function h: Q1 → Q2 such that:

1. h(q01) = q02 (initial states map to initial states)

2. For all q ∈ Q1 and a ∈Σ, h(δ1(q, a)) = δ2(h(q), a) (transitions are

preserved)

3. q ∈ F1 if and only if h(q) ∈ F2 (accepting states map to accepting

states)

Types of Homomorphisms

1. Isomorphism: A bijective homomorphism (one-to-one and onto

mapping between states), meaning the two machines are structurally

identical

2. Epimorphism: A surjective homomorphism (onto mapping),

meaning each state in M2 has at least one corresponding state in M1

3. Monomorphism: An injective homomorphism (one-to-one

mapping), meaning distinct states in M1 map to distinct states in M2

4. Endomorphism: A homomorphism from a machine to itself

Properties of Homomorphism

1. Composition: The composition of two homomorphisms is also a

homomorphism

2. Identity: The identity mapping is a homomorphism

Preservation of behavior: If h is a homomorphism from M1 to M2, then

any string approved by M1 is likewise approved by M2

Example of Homomorphism

152

Consider these two FSMs: Notes

FSM M1 with states {A, B, C, D}:

State Input: 0 Input: 1 Accepting?

A

B

C

D

B

A

D

C

C

D

A

B

No

No

State Input: 0 Input: 1 Accepting?

P P Q

P

No

Q Q

A homomorphism h: M1 → M2 could be defined as:

•

•

•

•

h(A) = P

h(B) = P

h(C) = Q

h(D) = Q

This mapping preserves transitions and acceptance properties.

Significance of Homomorphism

Homomorphisms help us understand the structural relationships between 77777

different machines and can be used to:

1. Study the common patterns in different machine designs

2. Transform one machine into another while preserving certain

properties

complex specification

4. Classify machines into equivalence classes based on their behavior

153

Yes

Yes

FSM M2 with states {P, Q}:

Yes

3. Verify that a simplified machine correctly implements a more

UNIT XIV Notes

4.6 Finite Automata and Acceptor Machines

A particular kind of finite state machine that prioritizes language recognition

above computation with output is called a finite automaton.

Definition of Finite Automata

A 5-tuple (Q, Σ, δ, q0, F) is called a finite automaton (FA) where:

Q is a limited collection of states.

• The alphabet, or Σ, is a limited collection of input symbols.

• For deterministic FA, δ is the transition function, which is Q × Σ → Q.

• The starting state is q0, where q0 ∈ Q.

• F is the collection of accepting or final states, where F ⊆Q.Language

Recognition

The primary purpose of a finite automaton is to accept or reject input strings:

•

•

The automaton starts in its initial state

It processes each symbol of the input string one by one, making

transitions according to δ

•

•

After processing the entire input, if the machine is in an accepting

state, string is accepted; otherwise, it is rejected

set of all strings accepted by an automaton is called language of A,

denoted L(A)

Types of Finite Automata

There are several types of finite automata:

1. Deterministic Finite Automaton (DFA): For each state and input

symbol, there is exactly one next state

2. Nondeterministic Finite Automaton (NFA): Can have multiple

possible next states for a given state and input

3. NFA with ε-transitions (ε-NFA): Can make transitions without

consuming an input symbol

154

4. Two-way Finite Automaton: Can move in both directions on the Notes
input tape

5. Finite Automaton with Output: Produces output based on

transitions (transducer)

Acceptor Machines

An acceptor machine is a finite automaton whose sole purpose is to accept

or reject input strings. It has a binary output: accept or reject.

Key characteristics of acceptor machines:

1. They do not produce any additional output beyond

acceptance/rejection

2. They are used to recognize formal languages

3. They either halt in an accepting state (string accepted) or a non-

accepting state (string rejected)

Formal Languages and Automata

Formal languages are sets of strings defined over an alphabet. Finite

automata recognize a specific class of formal languages called regular

languages.

The relationship between automata and languages:

• Each finite automaton recognizes exactly one regular language

A finite automaton can recognize any regular language.

• Union, intersection, and complement operations close regular languages.

Example of an Acceptor Machine

Let's design a DFA that accepts binary strings that have an even number of

1s:

States: {q0, q1} where q0 is the initial and accepting state Transitions:

•

•

•

•

δ(q0, 0) = q0 (staying in the same state if we read a 0)

δ(q0, 1) = q1 (changing to q1 if we read a 1 from q0)

δ(q1, 0) = q1 (staying in q1 if we read a 0)

δ(q1, 1) = q0 (changing back to q0 if we read a 1 from q1)

155

Accepting states: {q0} Notes

This automaton will accept strings like "", "0", "00", "11", "101", etc. (any

string with an even number of 1s).

4.7 Deterministic Finite Automata (DFA)

Deterministic Finite Automaton (DFA) is finite state machine where each 77777

state has exactly one transition for each possible input symbol.

Formal Definition of DFA

A DFA is a 5-tuple (Q, Σ, δ, q0, F) where:

•

•

•

•

•

Q is a finite set of states 77777

Σ is a finite set of input symbols (the alphabet)

δ is the transition function: Q × Σ → Q

q0 is the initial state, where q0 ∈ Q

F is set of final or accepting states, where F ⊆ Q

Key Properties of DFAs

1. Determinism: For each state and input symbol, there is exactly one

next state

2. Completeness: A transition is defined for every state and input

symbol combination

3. No ε-transitions: Transitions occur only when an input symbol is

consumed

4. Unique initial state: There is exactly one start state

5. Zero or more final states: There can be multiple accepting states

Extending the Transition Function

The transition function δ is defined for single input symbols, but we can

extend it to handle strings:

•

•

Define δ*(q, ω) as the state reached from state q after processing

string ω

Base case: δ*(q, ε) = q (empty string leaves the state unchanged)

156

• Recursive case: δ*(q, ωa) = δ(δ*(q, ω), a) for any string ω and Notes
symbol a

Language Accepted by a DFA

The language L(A) accepted by DFA A = (Q, Σ, δ, q0, F) is: L(A) = {ω ∈Σ* |

δ*(q0, ω) ∈ F}

This represents all strings that, when processed starting from initial state,

lead to an accepting state.

DFA Operations

Common operations on DFAs include:

1. Complement: Switching accepting & non-accepting states creates a

DFA that accepts the complement language

2. Union: Combining two DFAs to create a new DFA that accepts

strings accepted by either of the original DFAs

3. Intersection: Creating a DFA that accepts only strings accepted by

both original DFAs

4. Concatenation: Creating a DFA that accepts concatenations of

strings from two languages

5. Kleene Star: Creating a DFA that accepts any number of

concatenations of strings from a language

Constructing DFAs

To construct a DFA for a specific language, follow these steps:

1. Identify states based on what the machine needs to "remember"

about the input processed so far

2. Determine the initial state

3. Define transitions for each state and input symbol 77777

4. Identify which states should be accepting states

Example: Constructing a DFA

Design a DFA to accept binary strings that are multiples of 3:

157

5. Verify the design by testing with sample strings

Step 1: We need to keep track of the remainder when dividing by 3, so we

need three states:
Notes

•

•

•

q0: remainder 0 (initial and accepting state)

q1: remainder 1

q2: remainder 2

Step 2: Define transitions based on how binary digits affect the remainder:

•

•

For a number n, appending 0 gives 2n, and appending 1 gives 2n+1

So the remainders change as follows:

o

o

o

From remainder 0: digit 0 → remainder 0, digit 1 →

remainder 1

From remainder 1: digit 0 → remainder 2, digit 1 →

remainder 0

From remainder 2: digit 0 → remainder 1, digit 1 →

remainder 2

Step 3: Create the transition table:

State Input: 0 Input: 1

q0

q1

q2

q0

q2

q1

q1

q0

q2

Step 4: The accepting state is q0 (remainder 0)

This DFA will accept binary strings like "", "11", "110", "1001", etc. (all

binary representations of multiples of 3).

Solved Problems

Problem 1: Design a DFA for Strings Ending with "01"

Problem: Design deterministic finite automaton that accepts all binary

strings that end with substring "01".

Solution:

158

1. States: We need to keep track of whether we've seen a "0" followed Notes
by a "1" at the end of the string. 77777

o

o

o

q0: Initial state (haven't seen anything relevant yet)

q1: Have seen a "0" (waiting for a "1")

q2: Have seen "01" (accepting state)

2. Transitions:

o

o

o

From q0 with input 0: Go to q1 (potential start of "01")

From q0 with input 1: Stay in q0 (reset)

From q1 with input 0: Stay in q1 (still waiting for "1", but

update the "0")

o

o

o

From q1 with input 1: Go to q2 (pattern "01" completed)

From q2 with input 0: Go to q1 (new potential start of "01")

From q2 with input 1: Go to q0 (pattern broken)

3. Transition Table:

State Input: 0 Input: 1

q0 q1

q1

q1

q0

q2

q0

q1

q2

4. Initial State: q0

5. Accepting States: {q2}

o

o

o

o

String "01": q0 → q1 → q2 (Accepted)

String "1101": q0 → q0 → q0 → q1 → q2 (Accepted)

String "010": q0 → q1 → q2 → q1 (Rejected)

String "011": q0 → q1 → q2 → q0 (Rejected)

Problem 2: Minimize a DFA

159

6. Verification:

Problem: Minimize the following DFA: Notes

States: {q0, q1, q2, q3, q4, q5} Alphabet: {0, 1} Transitions:

•

•

•

•

•

•

δ(q0, 0) = q1, δ(q0, 1) = q2

δ(q1, 0) = q3, δ(q1, 1) = q4

δ(q2, 0) = q3, δ(q2, 1) = q4

δ(q3, 0) = q3, δ(q3, 1) = q5

δ(q4, 0) = q3, δ(q4, 1) = q5

δ(q5, 0) = q3, δ(q5, 1) = q5 Initial state: q0 Accepting states: {q3,

q5}

Solution:

1. Initial Partition: Separate accepting and non-accepting states

o

o

P1 = {q3, q5} (accepting states)

P2 = {q0, q1, q2, q4} (non-accepting states)

2. Refine Partitions:

o For P2:

▪

▪

▪

On input 0: q0→q1, q1→q3, q2→q3, q4→q3

On input 1: q0→q2, q1→q4, q2→q4, q4→q5

States q1, q2, q4 all go to P1 on input 0, while q0

doesn't

▪ States q0, q1, q2 go to different places on input 1

Refine P2 into {q0}, {q1}, {q2}, {q4} ▪

o For P1:

▪

▪

▪

On input 0: q3→q3, q5→q3

On input 1: q3→q5, q5→q5

These transitions are consistent, so P1 remains {q3,

q5}

3. Further Refinement:

160

o

o

o

Check if states {q1, q2, q4} have consistent transitions

given their current partitions
Notes

q1, q2, q4 all transition to the same partitions on respective

inputs

Therefore, {q1, q2, q4} can be combined into one partition

4. Final Partitions:

o

o

o

P1 = {q3, q5} (accepting states)

P2 = {q0}

P3 = {q1, q2, q4}

5. Minimized DFA:

o

o

o

States: {[q0], [q1, q2, q4], [q3, q5]}

Let's rename them as {A, B, C}

Transitions:

▪

▪

▪

δ(A, 0) = B, δ(A, 1) = B

δ(B, 0) = C, δ(B, 1) = C

δ(C, 0) = C, δ(C, 1) = C

o

o

Initial state: A

Accepting states: {C}

The minimized DFA has 3 states instead of the original 6.

Problem 3: Prove Two FSMs are Equivalent 3838

Problem: Prove that the following two FSMs are equivalent:

FSM M1:

•

•

•

States: {q0, q1, q2}

Alphabet: {a, b}

Transitions:

o δ(q0, a) = q1, δ(q0, b) = q2

161

o

o

δ(q1, a) = q0, δ(q1, b) = q2

δ(q2, a) = q2, δ(q2, b) = q2

Notes

•

•

Initial state: q0

Accepting states: {q0, q1}

FSM M2:

•

•

•

States: {s0, s1}

Alphabet: {a, b}

Transitions:

o

o

δ(s0, a) = s1, δ(s0, b) = s1

δ(s1, a) = s0, δ(s1, b) = s1

•

•

Initial state: s0

Accepting states: {s0}

Solution:

1. Examine State Behaviors:

•

•

•

Strings containing an even number of "a"s and no "b"s are

accepted by state q0.

Strings with an odd number of "a"s and no "b"s are accepted by

state q1.

All strings are rejected by state q2, which is a "trap" state from

which you cannot escape.

•

•

•

•

•

'b' in any string results in q2, which is unacceptable.

oIn M2:

with an even number of 'a's are accepted by state s0.

with an odd number of 'a's are accepted by state s1.

that finish in s0 may be acceptable if they contain 'b's.

2. Trace Sample Strings:

o

o

String "": In M1, stays at q0 (accepting); in M2, stays at s0

(accepting)

String "a": In M1, goes to q1 (accepting); in M2, goes to s1

(non-accepting)

162

o

o

String "aa": In M1, q0→q1→q0 (accepting); in M2,

s0→s1→s0 (accepting)
Notes

String "b": In M1, q0→q2 (non-accepting); in M2, s0→s1

(non-accepting)

Wait, the FSMs are giving different outputs for the string "a"! M1 accepts it,

but M2 doesn't.

3. Conclusion: The two FSMs are not equivalent because they produce

different results for at least one input string.

This example shows how important it is to carefully analyze machine

behavior and test with concrete examples when comparing FSMs.

Problem 4: Design an FSM to Control a Vending Machine

Problem: Design finite state machine for simple vending machine that

accepts nickels (5¢) & dimes (10¢) for a product that costs 15¢. The

Solution:

1. States: We need states to track the amount of money inserted so far

o

o

o

o

o

o

q0: Initial state (0¢ inserted)

q5: 5¢ inserted

q10: 10¢ inserted

q15: 15¢ inserted (enough to dispense product)

q20: 20¢ inserted (product dispensed, 5¢ returned)

q25: 25¢ inserted (product dispensed, 10¢ returned)

2. Inputs: {nickel, dime}

3. Transitions:

o

o

o

o

δ(q0, nickel) = q5

δ(q0, dime) = q10

δ(q5, nickel) = q10

δ(q5, dime) = q15 (dispense product)

163

machine should return any excess money.

o

o

o

o

o

o

δ(q10, nickel) = q15 (dispense product)

δ(q10, dime) = q20 (dispense product, return 5¢)

δ(q15, nickel) = q20 (dispense product, return 5¢)

δ(q15, dime) = q25 (dispense product, return 10¢)

δ(q20, nickel) = q25 (dispense product, return 10¢)

δ(q20, dime

Notes

4.8 Non-Deterministic Finite Automata

Non-deterministic Finite Automata (NFA) represent a powerful extension of

Deterministic Finite Automata (DFA). Unlike DFAs, where for each state

and input symbol there is exactly one next state, NFAs allow for multiple

possible transitions or even no transition at all.

Definition of an NFA

Non-deterministic Finite Automaton (NFA) is formally defined as 5-tuple:

M = (Q, Σ, δ, q0, F) where:

•

•

•

•

Q is finite set of states

δ is transition function: δ: Q × (Σ ∪ {ε}) → P(Q)

q0 is initial or start state (q0 ∈ Q)

F is set of final or accepting states (F ⊆ Q)

Note: P(Q) represents the power set of Q, meaning the transition function

can map to any subset of states (including the empty set).

Key Characteristics of NFAs

1. Multiple Transitions: For a given state and input symbol, an NFA

can transition to multiple states.

2. Epsilon (ε) Transitions: NFAs can make transitions without

consuming any input symbol, these are called epsilon transitions.

3. No Transitions: For some state-input combinations, there may be

no defined transitions (which is equivalent to transitioning to an

empty set of states).

Accepting a String in an NFA

164

A string is accepted by an NFA if there exists at least one path from start

state to any accepting state that consumes entire input string. This differs

from DFAs where a string is only accepted if the single possible path leads

to an accepting state.

Notes

Example of an NFA

Consider an NFA that accepts strings that end with "ab" over the alphabet

{a, b}:

States: Q = {q0, q1, q2} Alphabet: Σ = {a, b} Start state: q0 Final states: F =

{q2} Transition function:

•

•

•

•

•

δ(q0, a) = {q0, q1}

δ(q0, b) = {q0}

δ(q1, b) = {q2}

δ(q2, a) = ∅

δ(q2, b) = ∅

This NFA works by staying in state q0 for any number of 'a's and 'b's, then

when it sees an 'a', it can optionally move to state q1. From q1, if it sees a 'b',

it moves to the accepting state q2.

Epsilon (ε) NFA

An ε-NFA is an NFA that also allows transitions on the empty string ε. This

means the automaton can change its state without reading any input symbol. 3131

For example, if we have δ(q0, ε) = {q1, q2}, then from state q0, the

automaton can spontaneously move to state q1 or q2 without consuming any

input.

Epsilon Closure

The ε-closure of a state q, denoted as ε-closure(q), q by following zero or

more ε-transitions.

For a set of states S, ε-closure(S) = ∪q∈Sε-closure(q). 3838

4.9 Equivalence of DFA and NFA

165

Despite their differences, DFAs and NFAs are equivalent in terms of

languages they can recognize.
Notes

Theorem

For every NFA, there exists an equivalent DFA that accepts exactly the same

language.

Proof Sketch (NFA to DFA Conversion)

We can convert any NFA to an equivalent DFA using the subset construction

method:

1. The states of the DFA are subsets of the NFA states (elements of

power set P(Q)).

2. start state of the DFA is the ε-closure of the NFA's start state.

3. A state in the DFA is accepting if it contains at least one accepting

state from the NFA.

4. For each DFA state S (a subset of NFA states) and input symbol a,

transition function is defined as: δ_DFA(S, a) = ε-

closure(∪q∈Sδ_NFA(q, a))

Example of NFA to DFA Conversion

Let's convert the NFA from our previous example to a DFA:

NFA:

•

•

•

•

•

States: Q = {q0, q1, q2}

Alphabet: Σ = {a, b}

Start state: q0

Final states: F = {q2}

Transitions:

o

o

o

o

δ(q0, a) = {q0, q1}

δ(q0, b) = {q0}

δ(q1, b) = {q2}

δ(q2, a) = ∅

166

o δ(q2, b) = ∅ Notes

DFA Construction:

1. Start state of DFA: {q0}

2. For δ_DFA({q0}, a):

o

o

δ_NFA(q0, a) = {q0, q1}

So δ_DFA({q0}, a) = {q0, q1}

3. For δ_DFA({q0}, b):

o

o

δ_NFA(q0, b) = {q0}

So δ_DFA({q0}, b) = {q0}

4. For δ_DFA({q0, q1}, a):

o

o

δ_NFA(q0, a) ∪δ_NFA(q1, a) = {q0, q1} ∪∅ = {q0, q1}

So δ_DFA({q0, q1}, a) = {q0, q1}

5. For δ_DFA({q0, q1}, b):

o

o

δ_NFA(q0, b) ∪δ_NFA(q1, b) = {q0} ∪ {q2} = {q0, q2}

So δ_DFA({q0, q1}, b) = {q0, q2}

6. For δ_DFA({q0, q2}, a):

o

o

δ_NFA(q0, a) ∪δ_NFA(q2, a) = {q0, q1} ∪∅ = {q0, q1}

So δ_DFA({q0, q2}, a) = {q0, q1}

7. For δ_DFA({q0, q2}, b):

o

o

δ_NFA(q0, b) ∪δ_NFA(q2, b) = {q0} ∪∅ = {q0}

So δ_DFA({q0, q2}, b) = {q0}

The resulting DFA has:

•

•

•

•

States: {{q0}, {q0, q1}, {q0, q2}}

Start state: {q0}

Final states: {{q0, q2}}

Transitions as defined above

167

DFA to NFA Conversion Notes

Converting a DFA to an NFA is straightforward since every DFA is already

an NFA. We can simply maintain the same states, transitions, start state, and

final states, but represent the transition function in the NFA format.

State Complexity

While DFAs and NFAs are equivalent in power, NFAs can often represent

the same language with fewer states. In the worst case, when converting an

NFA with n states to a DFA, the resulting DFA may have up to 2^n states.

4.10 Moore and Mealy Machines

Moore and Mealy machines are types of finite state transducers used to

model systems that produce output based on input and state transitions.

Moore Machine

Moore machine is a 6-tuple M = (Q, Σ, Δ, δ, λ, q0) where:

•

•

•

•

•

•

Q is a finite set of states 3131

Σ is a finite set of input symbols

Δ is a finite set of output symbols

δ is the transition function: δ: Q × Σ → Q

λ is the output function: λ: Q → Δ

q0 is the start state

In Moore machine, output depends only on current state, not on input

symbol.

Example of a Moore Machine

Consider a Moore machine for a simple vending machine that accepts

nickels (N) and dimes (D), and dispenses candy (C) when 15 cents or more

is inserted:

States: Q = {0, 5, 10, 15} Input alphabet: Σ = {N, D} Output alphabet: Δ =

{0, C} Start state: q0 = 0

Transition function δ:

• δ(0, N) = 5

168

•

•

•

•

•

•

•

δ(0, D) = 10

δ(5, N) = 10

δ(5, D) = 15

δ(10, N) = 15

δ(10, D) = 15

δ(15, N) = 15

δ(15, D) = 15

Notes

Output function λ:

•

•

•

•

λ(0) = 0

λ(5) = 0

λ(10) = 0

λ(15) = C

Mealy Machine

Mealy machine is also a 6-tuple M = (Q, Σ, Δ, δ, λ, q0) but with a different

output function:

Q is a limited collection of states.

A finite set of input symbols is represented by Σ, and a finite set of output

symbols by Δ.

The transition function is denoted by δ. δ: Q × Σ → Q

• The output function is represented by λ: Q × Σ → Δ.

• The initial state is q0.In a Mealy machine, output depends on both current

state & the input symbol.

Example of Mealy Machine

Let's reimagine vending machine as a Mealy machine:

States: Q = {0, 5, 10} Input alphabet: Σ = {N, D} Output alphabet: Δ = {0,

C} Start state: q0 = 0

Transition function δ:

169

•

•

•

•

•

•

δ(0, N) = 5

δ(0, D) = 10

δ(5, N) = 10

δ(5, D) = 0

δ(10, N) = 0

δ(10, D) = 0

Notes

Output function λ:

•

•

•

•

•

•

λ(0, N) = 0

λ(0, D) = 0

λ(5, N) = 0

λ(5, D) = C

λ(10, N) = C

λ(10, D) = C

Comparison of Moore and Mealy Machines

1. Output Generation:

o

o

Moore: Output depends only on current state

Mealy: Output depends on both current state and current

input

2. Timing:

o

o

Moore: Output is associated with the state

Mealy: Output is associated with the transition

3. Number of States:

o Mealy machines can often achieve the same functionality

with fewer states than Moore machines

4. Equivalence:

o Every Moore machine can be changed into a comparable

Mealy machine

170

o Every Mealy machine can be changed into a comparable 33

Moore machine
Notes

Conversion Between Moore and Mealy Machines

Mealy to Moore Conversion

To convert a Mealy machine to a Moore machine:

1. For each state q and each input symbol a in the Mealy machine,

create a new state (q, a) in the Moore machine

2. Set the output of each new state (q, a) to λ_Mealy(q, a)

3. For each transition δ_Mealy(q, a) = p, create transitions from all

states (q, b) to the state (p, c) where c is the input symbol

Moore to Mealy Conversion

A Moore machine can be changed into a Mealy machine by:

1. Keep the same set of states

2. For each transition δ_Moore(q, a) = p, set the Mealy output function

λ_Mealy(q, a) = λ_Moore(p)

4.11 Applications of Finite State Machines

Finite State Machines (FSMs) have numerous practical applications across

various fields:

1. Lexical Analysis in Compilers

Lexical analyzers (lexers) use FSMs to identify tokens in source code. For

example, recognizing identifiers, keywords, numbers, and operators in a

programming language.

Example: A simple FSM for recognizing C-style identifiers (starting with

letter or underscore, followed by letters, digits, or underscores):

•

•

•

Start state checks for letter or underscore

If valid, transition to "valid identifier" state

In "valid identifier" state, accept more letters, digits, or underscores

FSMs are used in regular expression engines to match patterns in text.

171

2. Text Processing and Pattern Matching

Example: An FSM for matching email addresses could have states for

checking the local part, the @ symbol, and the domain part.
Notes

3. Digital Circuit Design

Sequential circuits can be modeled using FSMs, with flip-flops representing

states and combinational logic implementing transitions.

Example: A 3-bit binary counter can be modeled as an FSM with 8 states,

with transitions representing the increment operation.

4. Protocol Specification

Network protocols are often specified using state machines to define valid

sequences of messages

sequences of messages.

Example: In the TCP protocol, a connection goes through states like

CLOSED, LISTEN, SYN_SENT, ESTABLISHED, etc., with transitions

based on received packets.

5. Natural Language Processing

FSMs can be used to model grammar rules and parse simple language

constructs.

Example: A part-of-speech tagger might use an FSM to identify noun

phrases or verb phrases in a sentence.

6. Game Programming

Character behavior, game logic, and AI decision-making are often

implemented using FSMs.

Example: An enemy NPC might have states like PATROL, CHASE,

health.

7. Embedded Systems and Control Systems

FSMs are used to model and implement the behavior of embedded and

control systems.

Example: A microwave oven controller might have states like IDLE,

COOKING, and PAUSED, with transitions based on buttons pressed and

timer events.

172

ATTACK, and RETREAT, with transitions based on player proximity and

8. User Interface Design Notes

UI workflows can be modeled as FSMs to ensure valid state transitions.

Example: A login form might have states like INITIAL, VALIDATING,

SUCCESS, and ERROR, with transitions based on user inputs and server

responses.

Model-based testing uses FSMs to generate test cases by exploring possible

state transitions.

Example: Testing a web application by modeling it as an FSM and

generating test sequences that cover all transitions.

10. Biological Systems Modeling

FSMs can model biological processes like gene regulation, cell signaling,

and metabolic pathways.

Example: A gene regulatory network might be modeled as an FSM with

states representing gene expression levels and transitions representing

regulatory interactions.

Solved Problems

Problem 1: NFA Construction and String Acceptance

Construct an NFA that accepts strings over {a, b} where the third-to-last

character is 'a'. Then determine whether the string "bababa" is accepted.

Solution:

We need an NFA that accepts any string where the third-to-last character is

9. Automated Testing

'a'.

Step 1: Construct the NFA. Let's define our NFA:

•

•

•

•

States: Q = {q0, q1, q2, q3}

Alphabet: Σ = {a, b}

Start state: q0

Final states: F = {q3}

The transitions are:

173

•
18

•

•

•

•

•

δ(q0, a) = {q0, q1}

δ(q0, b) = {q0}

δ(q1, a) = {q2}

δ(q1, b) = {q2}

δ(q2, a) = {q3}

δ(q2, b) = {q3}

Notes

State q0 is the initial state where we stay until we decide to start checking

for the pattern. When we see an 'a' we can transition to q1 which means

we've seen the potential 'a' that might be the third-to-last character. Then we

need to see exactly two more characters, which we track with states q2 and

q3.

Step 2: Check if "bababa" is accepted.

Let's trace through the string "bababa":

1. We start at state q0.

2. Read 'b': We stay in q0, so current states = {q0}

3. Read 'a': We can stay in q0 or transition to q1, so current states =

{q0, q1}

4. Read 'b': From q0 we stay in q0, and from q1 we move to q2, so

current states = {q0, q2}

5. Read 'a': From q0 we can stay in q0 or move to q1, and from q2 we

move to q3, so current states = {q0, q1, q3}

6. Read 'b': From q0 we stay in q0, from q1 we move to q2, and from

q3 we have no transitions, so current states = {q0, q2}

7. Read 'a': From q0 we can stay in q0 or move to q1, and from q2 we

move to q3, so current states = {q0, q1, q3}

After processing the entire string, we are in states {q0, q1, q3}, which

includes final state q3.

Therefore, string "bababa" is accepted by NFA.

Problem 2: NFA to DFA Conversion

174

Convert the following NFA to a DFA:

NFA:

Notes

•

•

•

•

•

States: Q = {q0, q1, q2}

Alphabet: Σ = {0, 1}

Start state: q0

Final states: F = {q2}

Transitions:

o

o

o

o

o

o

δ(q0, 0) = {q0, q1}

δ(q0, 1) = {q0}

δ(q1, 0) = ∅

δ(q1, 1) = {q2}

δ(q2, 0) = {q2}

δ(q2, 1) = {q2}

Solution:

We'll use the subset construction method to convert this NFA to a DFA:

Step 1: Define start state of DFA as {q0}.

Step 2: For each DFA state, compute the transitions on each input symbol.

For state {q0}:

•

•

On input 0: δ({q0}, 0) = {q0, q1}

On input 1: δ({q0}, 1) = {q0}

For state {q0, q1}:

• On input 0: δ({q0, q1}, 0) = δ(q0, 0) ∪δ(q1, 0) = {q0, q1} ∪∅ = {q0,

q1}

• On input 1: δ({q0, q1}, 1) = δ(q0, 1) ∪δ(q1, 1) = {q0} ∪ {q2} =

{q0, q2}

For state {q0, q2}:

175

•

•

On input 0: δ({q0, q2}, 0) = δ(q0, 0) ∪δ(q2, 0) = {q0, q1} ∪ {q2} = Notes
{q0, q1, q2}

On input 1: δ({q0, q2}, 1) = δ(q0, 1) ∪δ(q2, 1) = {q0} ∪ {q2} =

{q0, q2}

For state {q0, q1, q2}:

• On input 0: δ({q0, q1, q2}, 0) = δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0) = {q0,

q1} ∪∅∪ {q2} = {q0, q1, q2}

• On input 1: δ({q0, q1, q2}, 1) = δ(q0, 1) ∪δ(q1, 1) ∪δ(q2, 1) = {q0}

∪ {q2} ∪ {q2} = {q0, q2}

Step 3: Define the final states of the DFA as those subsets that contain at

least one final state from the NFA. In this case, the final state of NFA is q2,

so final states of the DFA are {q0, q2} and {q0, q1, q2}.

The resulting DFA:

•

•

•

•

•

States: {{q0}, {q0, q1}, {q0, q2}, {q0, q1, q2}}

Alphabet: Σ = {0, 1}

Start state: {q0}

Final states: {{q0, q2}, {q0, q1, q2}}

Transitions:

o

o

o

o

o

o

o

o

δ({q0}, 0) = {q0, q1}

δ({q0}, 1) = {q0}

δ({q0, q1}, 0) = {q0, q1}

δ({q0, q1}, 1) = {q0, q2}

δ({q0, q2}, 0) = {q0, q1, q2}

δ({q0, q2}, 1) = {q0, q2}

δ({q0, q1, q2}, 0) = {q0, q1, q2}

δ({q0, q1, q2}, 1) = {q0, q2}

Problem 3: Epsilon-NFA to NFA Conversion

Convert the following ε-NFA to an NFA:

176

ε-NFA: Notes

•

•

•

•

•

States: Q = {q0, q1, q2, q3}

Alphabet: Σ = {a, b}

Start state: q0

Final states: F = {q3}

Transitions:

o

o

o

o

o

o

o

o

δ(q0, ε) = {q1}

δ(q0, a) = {q0}

δ(q1, a) = {q2}

δ(q1, b) = {q1}

δ(q2, ε) = {q3}

δ(q2, b) = {q2}

δ(q3, a) = {q3}

δ(q3, b) = {q0}

Solution:

To convert an ε-NFA to an NFA, we need to compute the ε-closure of each

state and then use that to determine the new transitions.

Step 1: Compute the ε-closure of each state.

• ε-closure(q0) = {q0, q1} (because q0 can reach q1 via an ε-

transition)

•

•

ε-closure(q1) = {q1} (no ε-transitions from q1)

ε-closure(q2) = {q2, q3} (because q2 can reach q3 via an ε-

transition)

• ε-closure(q3) = {q3} (no ε-transitions from q3)

Step 2: Compute the new transitions for the NFA.

For state q0:

177

•

•

δ_NFA(q0, a) = ε-closure(δ_ε-NFA(q0, a) ∪δ_ε-NFA(q1, a)) = ε-

closure({q0} ∪ {q2}) = {q0, q1} ∪ {q2, q3} = {q0, q1, q2, q3}
Notes

δ_NFA(q0, b) = ε-closure(δ_ε-NFA(q0, b) ∪δ_ε-NFA(q1, b)) = ε-

closure(∅∪ {q1}) = {q1}

For state q1:

• δ_NFA(q1, a) = ε-closure(δ_ε-NFA(q1, a)) = ε-closure({q2}) = {q2,

q3}

• δ_NFA(q1, b) = ε-closure(δ_ε-NFA(q1, b)) = ε-closure({q1}) =

{q1}

For state q2:

▪

▪

For q2, a, δ_NFA = ε-closureε-closure(∅∪ {q3}) = {q3} (δ_ε-

NFA(q2, a) ∪δ_ε-NFA(q3, a))

δ_NFA(q2, b) = ε-closure(δ_ε-NFA(q2, b) ∪δ_ε-NFA(q3, b)) = ε-

closure({q2}).

For state q3:

▪ δ-closure(δ_ε-NFA(q3, a)) = ε-closure({q3}) = {q3}¹ =

δ_NFA(q3, a)

▪ The equation δ_NFA(q3, b) = ε-closure(δ_ε-NFA(q3, b)) = ε-

closure({q0}) = {q0, q1}

Step 3: Define the new NFA.

The resulting NFA:

•

•

•

•

•

States: Q = {q0, q1, q2, q3}

Alphabet: Σ = {a, b}

Start state: q0

Final states: F = {q3}

Transitions:

o

o

δ(q0, a) = {q0, q1, q2, q3}

δ(q0, b) = {q1}

178

o δ(q1, a) = {q2, q3} Notes

o δ(q1, b) = {q1}

o δ(q2, a) = {q3}

A = {q0, q1, q2, q3} o δ(q2, b)

o

o

δ(q3, a) = {q3}

δ(q3, b) = {q0, q1}

Problem 4: Moore to Mealy Machine Conversion

Convert following Moore machine to a Mealy machine:

Moore machine:

•

•

•

•

•

States: Q = {S0, S1, S2}

Input alphabet: Σ = {0, 1}

Output alphabet: Δ = {A, B}

Start state: S0

Output function:

o

o

o

λ(S0) = A

λ(S1) = B

λ(S2) = A

• Transition function:

o

o

o

o

o

o

δ(S0, 0) = S0

δ(S0, 1) = S1

δ(S1, 0) = S2

δ(S1, 1) = S0

δ(S2, 0) = S1

δ(S2, 1) = S2

Solution:

To convert Moore machine to Mealy machine, we need to associate the

output with the transitions rather than the states.

179

Step 1: Keep the same set of states, input alphabet, output alphabet, and start

state.
Notes

Step 2: For each transition δ_Moore(q, a) = p, set the Mealy output function

λ_Mealy(q, a) = λ_Moore(p).

For transitions from S0:

•

•

δ_Mealy(S0, 0) = S0, and λ_Mealy(S0, 0) = λ_Moore(S0) = A

δ_Mealy(S0, 1) = S1, and λ_Mealy(S0, 1) = λ_Moore(S1) = B

For transitions from S1:

•

•

δ_Mealy(S1, 0) = S2, and λ_Mealy(S1, 0) = λ_Moore(S2) = A

δ_Mealy(S1, 1) = S0, and λ_Mealy(S1, 1) = λ_Moore(S0) = A

For transitions from S2:

•

•

δ_Mealy(S2, 0) = S1, and λ_Mealy(S2, 0) = λ_Moore(S1) = B

δ Mealy(S2 1) = S2 and λ Mealy(S2 1) = λ Moore(S2) = A

• δ_Mealy(S2, 1) = S2, and λ_Mealy(S2, 1) = λ_Moore(S2) = A

The resulting Mealy machine:

•

•

•

•

•

States: Q = {S0, S1, S2}

Input alphabet: Σ = {0, 1}

Output alphabet: Δ = {A, B}

Start state: S0

Transition function:

o

o

o

o

o

o

δ(S0, 0) = S0

δ(S0, 1) = S1

δ(S1, 0) = S2

δ(S1, 1) = S0

δ(S2, 0) = S1

δ(S2, 1) = S2

• Output function:

180

o

o

o

o

o

o

λ(S0, 0) = A

λ(S0, 1) = B

λ(S1, 0) = A

λ(S1, 1) = A

λ(S2, 0) = B

λ(S2, 1) = A

Notes

Problem 5: Mealy to Moore Machine Conversion

Convert following Mealy machine to Moore machine:

Mealy machine:

•

•

•

•

•

States: Q = {S0, S1}

Input alphabet: Σ = {0, 1}

Output alphabet: Δ = {X, Y}

Start state: S0

Transition function:

o

o

o

o

δ(S0, 0) = S0

δ(S0, 1) = S1

δ(S1, 0) = S0

δ(S1, 1) = S1

• Output function:

o

o

o

o

λ(S0, 0) = X

λ(S0, 1) = Y

λ(S1, 0) = Y

λ(S1, 1) = X

Solution:

To convert a Mealy machine to a Moore machine, we need to create new

states that represent the combinations of original states and outputs.

181

Step 1: Create new states by considering pairs (q, a) where q is an original

state and a is an input.
Notes

For the given Mealy machine, we have:

•

•

•

•

(S0, 0) with output X

(S0, 1) with output Y

(S1, 0) with output Y

(S1, 1) with output X

We need to create states in the Moore machine that correspond to the state-

output pairs in the Mealy machine.

Let's create the following states:

•

•

•

•

S0X: represents being in state S0 and producing output X

S1X: represents being in state S1 and producing output X

Step 2: Define the transitions and outputs for the Moore machine.

For every transition δ_Mealy(q, a) = p with output λ_Mealy(q, a) = o, we

create a transition in the Moore machine from any state corresponding to q

to the state corresponding to (p, o).

For example, if δ_Mealy(S0, 0) = S0 with output λ_Mealy(S0, 0) = X, then

we have a transition from S0X to S0X in the Moore machine.

Multiple-Choice Questions (MCQs)

1. A finite state machine (FSM) consists of:

a) States and transitions

b) Only states

c) Only inputs

d) A single final state

2. A transition table in an FSM represents:

a) The sequence of states and inputs

b) Only the starting state

182

S0Y: represents being in state S0 and producing output Y

S1Y: represents being in state S1 and producing output Y

c) Only the final state Notes
d) Random movements between states

3. Two FSMs are equivalent if:

a) They have the same number of states

b) They accept the same set of inputs and produce the same outputs

c) They have different transition tables

d) They use different symbols for the same transitions

4. process of reducing number of states in an FSM while

preserving its behavior is called:

a) State elimination

b) State minimization

c) State transition

d) State merging

5. A finite automaton that reads an input string and determines

whether it belongs to a specific language is called a:

a) Transition system

b) Acceptor

c) Reducer

d) Transformer

6. deterministic finite automaton (DFA) is different from a non-

deterministic finite automaton (NFA) because:

a) DFA has only one possible move for each input in a given state 2727

b) A DFA can have multiple transitions for the same input symbol

c) A DFA does not have final states

d) A DFA accepts only infinite languages

7. Which of the following is true about an NFA?

a) It has at most one transition per input symbol

b) It can have multiple transitions for the same input symbol

c) It cannot accept any language

d) It is always equivalent to a Turing machine

8. Moore and Mealy machines are different because:

a) A Moore machine's output depends only on the current state,

while a Mealy machine’s output depends on both the state and input

b) A Mealy machine does not use states

183

c) A Moore machine has no transitions

d) A Mealy machine cannot accept inputs
Notes

9. The minimum number of states required for a DFA that

recognizes the language of binary strings ending in "01" is:

a) 1

b) 2

c) 3

d) 4

10. Finite state machines are widely used in:

a) Circuit design

b) Compiler construction

c) Text processing

d) All of the above

Short Answer Questions

1. Define a finite state machine with an example.

2. What is a transition table, and how is it used in FSMs?

3. Explain the difference between deterministic and non-deterministic

finite automata.

4. What is the significance of equivalence in FSMs?

5. Describe the process of state minimization in finite automata.

6. What is a finite automaton? Give an example.

7. Explain Moore and Mealy machines with differences.

8. How can an NFA be converted into a DFA?

9. What are the applications of finite state machines?

10. How does an FSM differ from a Turing machine?

Long Answer Questions

1. Explain in detail the structure of a finite state machine and its

components.

2. Describe the transition table and diagram of an FSM with an

example.

184

3. How do you determine whether two FSMs are equivalent? Explain

with an example.
Notes

4. What is state minimization in finite state machines? Explain with a

step-by-step example.

5. Differentiate between DFA and NFA with examples.

6. Convert the following NFA to a DFA and explain the process:

7. Discuss the applications of finite automata in text processing and

pattern matching.

8. Describe Moore and Mealy machines with examples and their

applications.

9. Explain how FSMs are used in compiler design and lexical analysis.

10. Provide a real-world example of FSM usage in digital electronics

and networking.

185

MODULE V

UNIT XV

Notes

GRAMMARS AND LANGUAGES

Objectives

• To understand phrase-structure grammars and their role in language

generation.

•

•

To analyze rewriting rules, derivations, and sentential forms.

To study different types of grammars: regular, context-free, and

context-sensitive.

•

•

•

•

•

•

To explore regular sets and regular expressions.

To understand the pumping lemma and its applications.

To learn about Kleene’s theorem and its significance.

To study syntax analysis and its importance in computing.

To examine Polish notation and its use in expression conversion.

To convert infix expressions to Polish and reverse Polish notation.

5.1 Introduction to Grammars and Language

Formal language theory provides a mathematical framework for describing

languages, both natural and artificial. At the heart of this theory are

grammars - systems that define rules for generating valid strings in a

language.

Languages serve as a means of communication, whether between humans or

between humans and machines. In computer science, we're particularly

interested in formal languages, which are precisely defined sets of strings

over a specific alphabet.

A formal language consists of:

•

•

An alphabet (Σ): a finite set of symbols

set of strings or sentences formed by combining these symbols

according to specific rules

186

For example, in English, the alphabet includes the 26 letters (a-z),

punctuation marks, and spaces. In programming languages, the alphabet

includes keywords, operators, identifiers, and other tokens.

Notes

The rules that determine which strings belong to a language are formalized

using grammars. A grammar acts like a recipe for generating all valid strings

in a language while excluding invalid ones.

5.2 Phrase-Structure Grammars

A phrase-structure grammar (also called a generative grammar) is a formal

system that defines a language by specifying how to form valid strings from

the alphabet. It was introduced by Noam Chomsky in the 1950s as a way to

describe the syntax of natural languages.

•

•

•

•

V is a finite set of variables (or non-terminal symbols)

Σ is finite set of terminal symbols (the alphabet of the language)

R is a finite set of production rules or rewriting rules

S is the start symbol (S ∈ V)

The sets V and Σ are disjoint (they have no elements in common).

Terminal symbols are the basic building blocks of the language - they appear 52

in the final strings of the language. In programming languages, these could

be keywords, operators, identifiers, etc.Non-terminal symbols (variables) are

placeholders that get replaced during the derivation process. They represent

syntactic categories or phrases and do not appear in the final strings of the

language.

Example: Consider a simple grammar for arithmetic expressions with

addition:

• "Start" is represented by S, and "expression" by E.

• Σ = {a, +, (,)} The symbols a, +, and () stand for variables, addition, and

parenthesis, respectively.

• The initial symbol is S.

• The following rules are present in R:

187

A phrase-structure grammar G is defined as a 4-tuple G = (V, Σ, R, S) where:

G = (V, Σ, R, S) where:

o

o

o

o

S → E Notes

E → a

E → E + E

E → (E)

This grammar can generate strings like "a", "a+a", "(a)", "a+(a+a)", and so

on.

188

UNIT XVI

5.3 Rewriting Rules, Derivations, and Sentential Forms

Rewriting Rules

Notes

The production rules or rewriting rules in a grammar define how variables

can be replaced or rewritten to form new strings. Each rule has form:

α → β

where:

•

•

α is a string containing at least one non-terminal symbol

β is a string of terminal and/or non-terminal symbols (β can be

empty)

The rule α → β means that can be replaced by β in any string.

Derivations

A derivation is a sequence of strings where each string is obtained from the

previous one by applying a production rule. It shows the step-by-step

process of generating a string in the language.A derivation starts with the

start symbol S and ends with a string of terminal symbols. Each step in the

derivation is denoted by the symbol ⇒, which means "derives in one step."

For example, using the grammar for arithmetic expressions given earlier, we

can derive the string "a+a" as follows:

S ⇒ E ⇒ E+E ⇒a+E⇒a+a

We can also represent multiple derivation steps using the symbol ⇒. So, S

⇒a+a means "S derives a+a in zero or more steps."

Sentential Forms

A sentential form is any string that can be derived from the start symbol S. 2727

It may contain both terminal and non-terminal symbols.

In the derivation S ⇒ E ⇒ E+E ⇒a+E⇒a+a, the sentential forms are:

•

•

S

E

• a+E

189

• a+a Notes
• E+E

Note that only the final form "a+a" consists entirely of terminal symbols and

thus belongs to language generated by grammar. The other sentential forms

are intermediate steps in the derivation process.

5.4 Language Generated by a Grammar

The language generated by a grammar G, denoted as L(G), is the set of all

strings of terminal symbols that can be derived from the start symbol S using

the production rules of G.

Formally, L(G) = {w ∈Σ* | S ⇒* w}

where:

• Σ* is the set of all strings over the alphabet Σ (including the empty

string)

• S ⇒* w means that w can be derived from S in zero or more steps

In other words, a string w belongs to L(G) if and only if:

1. w consists only of terminal symbols from Σ

2. There exists a derivation from S to w using the production rules of

G

For example, the language generated by our arithmetic expression grammar

includes strings like "a", "a+a", "(a)", "a+(a+a)", etc.

5.5 Types of Grammars

Noam Chomsky classified grammars into four types based on the form of

their production rules. This classification is known as the Chomsky

hierarchy. We'll focus on three important types: regular grammars, context-

free grammars, and context-sensitive grammars.

Regular Grammars

A regular grammar is most restrictive type of grammar in the Chomsky

hierarchy. It generates regular languages, which can be recognized by finite

automata.

190

In a regular grammar, all production rules must have one of the following

forms:
Notes

•

•

•

A → a (where A is a non-terminal, is terminal)

A → aB (where A & B are non-terminals, a is a terminal)

A → ε (where ε is the empty string)

There are two types of regular grammars:

• Right-linear grammar: All rules have the form A → aB or A → a

or A → ε

• Left-linear grammar: All rules have the form A → Ba or A → a or

A → ε

•

•

•

•

V = {S}

Σ = {0, 1}

S is the start symbol 202020

R contains:

o

o

o

S → 0S

S → 1S

S → ε

This grammar generates all binary strings, including the empty string: L(G)

= {0, 1}*

Regular grammars are useful for describing patterns like identifiers,

numbers, and other tokens in programming languages.

Context-Free Grammars (CFG)

Context-free grammar (CFG) is less restrictive than a regular grammar and

can describe more complex language structures. It generates context-free

languages, which can be recognized by pushdown automata.In context-free

grammar, all production rules must have form: A → α (where A is a single

non-terminal and α is a string of terminals and/or non-terminals). The key

191

Example of a Right-linear Grammar: G = (V, Σ, R, S) where:

characteristic of a CFG is that a non-terminal can be replaced regardless of

its context (the symbols around it).
Notes

•

•

•

•

V = {S}

Σ = {(,)}

S is the start symbol

R contains:

o

o

o

S → (S)

S → SS

S → ε

This grammar generates all balanced parentheses strings: L(G) = {ε, (), ()(),

(()), (())(), ...}

Context-free grammars are widely used to describe syntax of programming

languages, as they can handle nested structures like expressions, statements,

and blocks.

Context-Sensitive Grammars (CSG)

A context-sensitive grammar (CSG) is more powerful than a CFG and can

describe even more complex language structures. It generates context-

sensitive languages, which can be recognized by linear bounded automata.In

a context-sensitive grammar, all production rules must have the form: αAβ

→ αγβ (where A is a non-terminal, α and β are strings of terminals and/or

non-terminals, and γ is a non-empty string of terminals and/or non-

terminals)

The key characteristic of CSG is that a non-terminal can be replaced only in

specific contexts (the symbols around it).

•

•

•

V = {S, A, B, C}

Σ = {a, b, c}

S is start symbol

192

Example of a Context-Free Grammar: G = (V, Σ, R, S) where:

Example of Context-Sensitive Grammar: G = (V, Σ, R, S) where:

• R contains: Notes

o

o

o

o

o

o

o

o

S → ABC

AB → aAB

BC → BC

AC → ABC

C → c

aA → aa

aB → ab

bB → bb

This grammar generates language L(G) = {a^nb^nc^n | n ≥ 1}, which

Context-sensitive grammars can describe language features that require

checking multiple related parts of a program, such as declaring variables

Solved Problems

Problem 1: Regular Grammar

Problem: Construct regular grammar that generates the language of all

binary strings that end with 01.

•

•

Σ = {0, 1}

The language L(G) = {w01 | w ∈ {0, 1}*}

Let's define our grammar:

•

•

•

V = {S, A, B}

S is the start symbol 202020

R contains:

o

o

S → 0S (stay in state S after seeing 0)

S → 1S (stay in state S after seeing 1)

193

consists of strings with equal numbers of a's, b's, and c's in that order.

before using them or maintaining type consistency.

Solution: We need to construct a grammar G = (V, Σ, R, S) where:

o

o

o

o

S → 0A (transition to state A after seeing 0)

A → 1B (transition to final state B after seeing 1)

S → 1A (transition to state A after seeing 1)

A → 0A (stay in state A after seeing 0)

Notes

Here S represents the initial state, A represents the state after seeing the first

0 of the final "01", and B represents the final state after seeing the complete

"01" pattern.

Let's trace a derivation for the string "1001": S ⇒ 1S ⇒ 10S ⇒ 100A ⇒

1001B

Since B is our final state, the string "1001" is accepted by the grammar,

which is correct as it ends with "01".

Problem 2: Context-Free Grammar

Problem: Construct context-free grammar that generates language of all

strings with equal numbers of a's & b's.

•

•

Σ = {a, b}

The language L(G) = {w ∈ {a, b}* | na(w) = nb(w)}, where na(w)

and nb(w) are the numbers of a's and b's in w

Let's define our grammar:

•

•

•

V = {S}

S is the start symbol

R contains:

o

o

o

S → aSb (add an 'a' at the beginning and a 'b' at the end)

S → bSa (add a 'b' at the beginning & an 'a' at the end)

S → SS (concatenate two strings with equal numbers of a's

and b's)

o S → ε (the empty string has equal numbers of a's and b's,

namely zero)

194

Solution: We need to construct a grammar G = (V, Σ, R, S) where:

This grammar generates all strings with equal numbers of a's and b's. Let's Notes
trace a derivation for the string "ab": S ⇒aSb⇒aSb⇒aεb⇒ab

And for the string "abab": S ⇒ SS ⇒aSbS⇒abS⇒abaSb⇒abaεb⇒abab

Problem 3: Context-Sensitive Grammar

Problem: Construct a context-sensitive grammar that generates the language

L = {a^nb^nc^n | n ≥ 1}.

•

•

Σ = {a, b, c}

language L(G) = {a^nb^nc^n | n ≥ 1}

This is a classic example of language that is not context-free but is context-

sensitive.

Let's define our grammar:

•

•

•

S is the start symbol

R contains:

o

o

o

o

o

o

o

o

o

o

o

o

S → aXYZ

X → aX

XY → XbY

YZ → YcZ

X → B

Y → C

BbC → BBC

BcC → BcC

BC → BC

aB → ab

bC → bc

cZ → c

195

Solution: We need to construct a grammar G = (V, Σ, R, S) where:

V = {S, A, B, C, X, Y, Z}

Let's trace a derivation for the string "aabbcc": SNotes
⇒aXYZ⇒aaXYZ⇒aaXbYZ⇒aaXbYcZ⇒aaBbYcZ⇒aaBbCcZ⇒aabBCcZ

⇒abbCcZ⇒abcZ⇒abc

This grammar works by first generating a sequence of a's followed by

placeholders for b's & c's. Then it inserts b's and c's in the appropriate

positions, ensuring that there are equal numbers of each.

Problem 4: Ambiguous Grammar

Problem: Show that the following context-free grammar is ambiguous: G =

({S}, {a, b}, {S → aSb | S → ab | SS}, S)

Solution: A grammar is ambiguous if there exists a string in the language

that has more than one leftmost derivation (or, equivalently, more than one

parse tree).

Let's consider the string "aababb":

Derivation 1: S ⇒ SS ⇒aSbS⇒aabS⇒aabab

Derivation 2: S ⇒aSb⇒aSSb⇒aSabb⇒aababb

Both derivations generate the same string "aababb", but they represent

different ways of structuring the string. This demonstrates that the grammar

is ambiguous.

In practical terms, ambiguity in a grammar can lead to parsing conflicts in

compiler design, so it's often desirable to rewrite ambiguous grammars as

unambiguous ones.

Problem 5: Leftmost and Rightmost Derivations

Problem: For the context-free grammar G = ({S, A, B}, {a, b}, R, S) with

rules:

•

•

•

•

S → aAB

A → aBb

A → ε

B → b

Find both leftmost and rightmost derivations for the string "aabbb".

196

Solution: In a leftmost derivation, we always replace leftmost non-terminal

in each step. In a rightmost derivation, we always replace rightmost non-

terminal.

Notes

Leftmost Derivation: S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB

(replace B in "aBb") ⇒aabb (replace the remaining B)

Wait, this gives us "aabb", not "aabbb". Let's check if "aabbb" is actually in

the language:

S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB (replace B in "aBb")

⇒aabb (replace the remaining B)

It seems "aabbb" might not be derivable from this grammar. Let's double-

check with another attempt:

S ⇒aAB (replace S) ⇒aB (replace A with ε) ⇒ ab (replace B)

This gives us "ab", not "aabbb".

Let's try one more approach:

S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabBB (replace b with B in

"aBb" - no, that's not a valid production)

Let me review the grammar again...

My apologies for the confusion. Looking at the rules carefully, I see that

"aabbb" is indeed not derivable from this grammar. The grammar can

generate strings like "ab", "aabb", etc., but not "aabbb".

Let's consider the string "aabb" instead:

Leftmost Derivation: S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB

(replace B in "aBb") ⇒aabb (replace the remaining B)

Rightmost Derivation: S ⇒aAB (replace S) ⇒aAb (replace B) ⇒aaBbb

(replace A) ⇒aabb (replace B in "aBb")

Unsolved Problems

Problem 1: Regular Grammar

Construct regular grammar that generates the language of all binary strings

that contain the substring "101".

197

Problem 2: Context-Free Grammar Notes

Construct a context-free grammar that generates language of all strings over 202020

{a, b} that have more a's than b's.

Problem 3: Ambiguity

Prove that the following grammar is ambiguous and provide an

unambiguous grammar that generates the same language: G = ({S}, {a, b},

{S → aSb | S → ε | SS}, S)

Problem 4: Context-Sensitive Grammar

Construct a context-sensitive grammar that generates the language L =

{a^nb^mc^nd^m | n, m ≥ 1}.

Problem 5: Derivation and Language

For the grammar G = ({S, A, B}, {a, b}, R, S) with rules:

•

•

•

S → AB

A → aA | ε

B → bB | ε

a) Give leftmost and rightmost derivations for the string "aabb". b) Describe

Summary

In this chapter, we've explored the fundamental concepts of formal language

theory, focusing on grammars and their classification according to the

We started by introducing the concept of formal language as precisely

defined set of strings over an alphabet. We then described phrase-structure

grammars as formal systems for generating languages, consisting of terminal

symbols, non-terminal symbols, production rules, and a start symbol.

We discussed how these grammars work through rewriting rules and

derivations, which show the step-by-step process of generating strings in a

language. We also defined sentential forms as intermediate strings in the

derivation process.

198

in English the language L(G) generated by this grammar.

Chomsky hierarchy.

language generated by grammar is the set of all strings of terminal symbols

that can be derived from the start symbol using production rules of the

grammar.

Notes

We then explored three important types of grammars in the Chomsky

hierarchy:

1. Regular Grammars: most restrictive type, generating languages

recognized by finite automata.

2. Context-Free Grammars (CFG): More powerful than regular

grammars, generating languages recognized by pushdown automata.

3. Context-Sensitive Grammars (CSG): Even more powerful,

generating languages recognized by linear bounded automata.

Each type of grammar has its own constraints on the form of production

rules, resulting in different expressive power. Regular grammars are used for

simple patterns like tokens in programming languages. Context-free

grammars can handle nested structures like expressions and statements.

Context-sensitive grammars can enforce relationships between different

parts of a program.Understanding these concepts is essential for designing

programming languages, building compilers and interpreters, and

implementing various text processing applications. The mathematical

framework provided by formal language theory helps us reason about the

199

syntax and structure of languages in a precise and systematic way.

UNIT XVII Notes

5.5 Regular Sets and Regular Expressions

Regular sets (also called regular languages) are a fundamental concept in

formal language theory. They represent languages that can be recognized by

finite automata.

Definition of Regular Sets

A regular set or regular language over an alphabet Σ is defined recursively

as:

1. The empty set ∅ is a regular set

2. The set {ε} containing only the empty string is a regular set

3. For each a ∈Σ, the set {a} is a regular set

4. If A & B are regular sets, then A ∪ B (union), A · B (concatenation),

and * (Kleene star) are also regular sets

5. No other sets are regular sets

Regular Expressions

Regular expressions are a notation system used to specify regular languages.

They provide a concise way to describe patterns in strings.

Formal Definition of Regular Expressions

Given an alphabet Σ, the set of regular expressions over Σ is defined

recursively:

1. ∅ is a regular expression denoting the empty set

2. ε is a regular expression denoting the set {ε} (containing only the

empty string)

3. For each symbol a ∈Σ, a is regular expression denoting set {a}

4. If r and s are regular expressions, then:

o (r|s) is a regular expression denoting the union of the

languages of r and s

o (rs) is a regular expression denoting the concatenation of the

languages of r and s

200

o (r*) is a regular expression denoting the Kleene star of the 555

language of r
Notes

Operations on Regular Expressions

1. Union (r|s): Represents strings that match either r or s

2. Concatenation (rs): Represents strings formed by concatenating a

string that matches r with a string that matches s

3. *Kleene Star (r)**: Represents strings formed by concatenating zero

or more strings that match r

Examples of Regular Expressions

1. a(b|c)* represents strings starting with 'a' followed by any number of

'b's or 'c's

2. (a|b)*c represents strings ending with 'c' preceded by any number of

'a's or 'b's

3. (ab)* represents strings consisting of zero or more repetitions of 'ab'

4. ab represents strings consisting of zero or more ''s followed by zero

or more 'b's

Solved Problems for Regular Sets and Regular Expressions

Problem 1: Construct a regular expression for the language of all strings

over {, b} that contain an even number of a's.

Solution: Let's break this down:

•

•

We need strings with an even number of a's (including zero)

The b's can appear any number of times at any position

First, let's define two parts:

•

•

E: strings with an even number of a's

O: strings with an odd number of a's

We can define these recursively:

• E = babab* | b* (either there are two a's separated by any number of

b's, or there are no a's)

201

• O = bab (there is exactly one a with any number of b's before and Notes
after)

But this doesn't capture strings with more than two a's. Let's try a different

approach:

The regular expression is: (b|abab)

To see why this works:

•

•

b: allows adding b's without affecting the parity of a's

aba*b: every time we use this pattern, we add two a's (keeping the

count even)

• The outer Kleene star allows repeating these patterns any number of

times

Problem 2: Construct a regular expression for strings over {a, b, c} that don't

contain the substring 'abc'.

Solution: We can approach this by characterizing all strings that don't have

'abc':

•

•

•

•

Any string without an 'a'

Any string without a 'b'

Any string without a 'c'

Strings where 'a' and 'b' are separated by at least one character other

than 'b'

• Strings where 'b' and 'c' are separated by at least one character other

than 'c'

The regular expression is: (b|c)* | (a|c)* | (a|b)* | a*(bacb|cabc)a |

b*(abca|cbac)b

This is quite complex. A simpler way to think about it is to say that we can 1717

have any string except those containing 'abc'.

Another approach: we can describe this as strings where every 'a' is not

followed by 'bc', or every 'ab' is not followed by 'c':

(a(¬(bc))|b|c)*

202

Where ¬(bc) means any string not starting with 'bc'. This can be written as: Notes
(a(b(a|b)|c|ε)|b|c)*

Problem 3: Prove that the set of all strings over {a, b} with an equal number

of 's and b's is not a regular language.

Solution: We'll use the pumping lemma (which will be covered in section

5.6) to prove this.

Let's call this language L = {w ∈ {a, b}* | |w|a = |w|b}, where |w|a and |w|b

Assume L is regular. By the pumping lemma, there exists a pumping length

p such that any string s in L with |s| ≥ p can be written as s = xyz where:

1. |xy| ≤ p

2. |y| > 0

3. For all i ≥ 0, xyiz is in L

Consider s = apbp (p a's followed by p b's). Clearly s is in L since it has an

equal number of 's and b's.

By pumping lemma, s can be written as xyz where |xy| ≤ p & |y| > 0. This

means y consists only of a's (since xy is a prefix of length at most p of

apbp).

Let's say y = ak for some k > 0. Then xy2z = ap+kbp, which has p+k a's and

p b's. Since p+k ≠ p, xy2z is not in L.

This contradicts condition 3 of the pumping lemma. Therefore, L is not 9

5.6 The Pumping Lemma and Its Applications

Pumping Lemma is a powerful tool used to prove that certain languages are

not regular. It gives a necessary (but not sufficient) condition for a language

Statement of the Pumping Lemma

For any regular language L, there exists a positive integer p (called the

pumping length) such that any string s in L of length at least p can be written

as s = xyz where:

203

denote the number of a's and b's in w respectively.

regular.

to be regular.

1. |xy| ≤ p Notes

2. |y| > 0 (y is non-empty)

3. For all i ≥ 0, xyiz is in L

Intuitively, the pumping lemma states that any sufficiently long string in a

regular language has a non-empty substring that can be "pumped" (repeated

any number of times) while keeping the resulting string in the language.

Steps to Use the Pumping Lemma

To prove that a language L is not regular using the pumping lemma:

1. Assume that L is regular

2. By the pumping lemma, there exists a pumping length p

3. Choose a string s in L of length at least p

4. According to the pumping lemma, s can be split as s = xyz where

|xy| ≤ p, |y| > 0

5. Find a value of i such that xyiz is not in L

6. This contradicts the pumping lemma, proving that L is not regular

Applications of the Pumping Lemma

Here are some classic examples:

Solved Problem: Prove that the language L = {anbn | n ≥ 0} is not regular

Solution:

1. Assume that L is regular

2. By the pumping lemma, there exists a pumping length p

3. Consider the string s = apbp which is in L

4. By the pumping lemma, s can be written as s = xyz where |xy| ≤ p

and |y| > 0

5. Since |xy| ≤ p, xy consists only of a's, which means y consists only

of a's

6. Let y = ak for some k > 0

204

Pumping lemma is primarily used to prove that languages are not regular.

7. Consider xy2z = ap+kbp Notes

8. This string has p+k a's but only p b's, so it's not in L

9. This contradicts the pumping lemma, so L is not regular

Solved Problem: Prove that the language L = {ww | w ∈ {a, b}*} is not

regular

Solution:

1. Assume that L is regular

2. By the pumping lemma, there exists a pumping length p

3. Consider the string s = apbapb which is in L (w = apb)

4. By the pumping lemma, s can be written as s = xyz where |xy| ≤ p

and |y| > 0

5. Since |xy| ≤ p, xy is a prefix of apb, which means y consists only of

a's

6. Let y = ak for some k > 0

7. Consider xy0z = s with the substring y removed

8. This string has p-k a's in the first half but still p a's in the second half

9. Therefore, xy0z is not of the form ww, so it's not in L

10. This contradicts the pumping lemma, so L is not regular

5.7 Kleene's Theorem and Finite Automata

Kleene's Theorem establishes the equivalence between regular expressions

and finite automata. It consists of two parts:

1. Every language recognized by finite automaton can be described by 555

a regular expression

2. Every language described by regular expression can be recognized

by a finite automaton

This theorem is fundamental as it provides different ways to represent

regular languages, each with its own advantages.

From Finite Automata to Regular Expressions

205

To convert a finite automaton to a regular expression: Notes

1. Add new start state with ε-transitions to the original start state

2. Add a new accept state with ε-transitions from all original accept

states

3. For each state, use the state elimination method to obtain a regular

expression

State Elimination Method

1. Choose a state q (not the start or accept state)

2. For each pair of states (qi, qj) with transitions to and from q, create a

new transition directly from qi to qjlabeled with the regular

expression ri,q · (rq,q)* · rq,j, where ri,j is the label on the transition

from qi to qj

3. Remove state q and all its incoming and outgoing transitions

4. Repeat until only the start and accept states remain

5. The label on the transition from start to accept is the resulting

regular expression

Finite Automata to Regular Expressions

To convert a regular expression to a finite automaton, we use Thompson's

construction:

1. For each basic regular expression (∅, ε, or a), construct a simple

NFA

2. For composite regular expressions (r|s, rs, r*), combine the NFAs for

the subexpressions

Thompson's Construction Rules

1. For ∅: Two states with no transitions

2. For ε: Two states connected by an ε-transition

3. For a symbol a: Two states connected by an a-transition

4. For r|s: Combine the NFAs for r and s with new start and accept

states

206

5. For rs: Connect the accept state of the NFA for r to the start state of

the NFA for s
Notes

6. For r*: Add ε-transitions to allow skipping r or repeating r any

number of times

Solved Problem: Convert the Regular Expression (a|b)*abb to an NFA

Solution:

We'll apply Thompson's construction:

1. First, create NFAs for a and b

2. Combine them using the union operation to get (a|b)

3. Apply the Kleene star to get (a|b)*

4. Create NFAs for a, b, and b

5. Concatenate all these NFAs to get (a|b)*abb

The resulting NFA will have states for each component, with appropriate

transitions connecting them:

•

•

•

A start state q0

ε-transitions from q0 to the start states of NFAs for a and b

A cycle from the accept state of (a|b) back to the start states via ε-

transitions

•

•

The accept state of (a|b)* connected to the start state of the first a

The accept state of the first a connected to the start state of the first

b

•

•

The accept state of the first b connected to start state of the second b

accept state of the second b as the final accept state

Multiple-Choice Questions (MCQs)

1. A grammar in formal language theory consists of:

a) A set of terminals & non-terminals

b) set of rewriting rules

c) start symbol

d) All of the above

207

2. The language generated by a grammar is:

a) A set of terminals
Notes

b) A set of derivations

c) A set of strings that can be produced using production rules

d) A sequence of grammar rules

3. Which of the following grammars is the most restrictive?

a) Typical Grammar

b) Context-Free Grammar

c) Context-Sensitive Grammar

d) Phrase-Structure Grammar

4. A regular expression is used to describe:

a) Context-free languages

b) Context-sensitive languages

c) Regular languages

d) None of the above

5. pumping lemma is used to:

a) Prove that a language is finite

b) Prove that a language is regular

c) Prove that a language is context-sensitive

d) Convert regular expressions into finite automata 1717

6. Kleene’s Theorem states that:

a) Every finite automaton has an equivalent regular expression 555

b) Every CFG can be converted into a DFA

c) Every Turing machine can be converted into a regular grammar

d) None of the above

7. Syntax analysis is also known as:

a) Parsing

b) Lexical analysis

c) Compilation

d) Tokenization

8. Polish notationis also called:

a) Prefix notation

b) Infix notation

208

c) Postfix notation

d) Mixed notation
Notes

9. The expression A+BA + B in Reverse Polish Notation (RPN) is

written as:

a)+BA+B

b) AB+AB+

c) B+AB+A

d) +AB+AB

10. Which data structure is commonly used for evaluating

expressions in Reverse Polish Notation?

a) Queue

b) Stack

c) Linked List

d) Tree

Short Answer Questions

1. Define phrase-structure grammar with an example.

2. What is the difference between derivation and sentential forms?

3. Explain regular, context-free, and context-sensitive grammars with

examples.

4. What are regular sets in formal language theory?

5. Define regular expressions and their importance in pattern matching.

6. Explain the significance of the pumping lemma in language

classification.

7. State Kleene’s theorem and explain its implications.

8. What is syntax analysis? Why is it important in compiler design?

9. Define Polish notation and Reverse Polish Notation (RPN).

10. How can infix expressions be converted to postfix notation?

Long Answer Questions

209

1. Explain phrase-structure grammars and their role in language

generation.
Notes

2. Describe rewriting rules, derivations, and sentential forms with

examples.

3. Discuss the differences between regular, context-free, and context-

sensitive grammars.

4. Explain the concept of regular expressions and how they are used in

pattern matching.

5. State and prove Kleene’s Theorem with examples.

6. Explain syntax analysis and its role in compiler construction.

7. Describe Polish notation and Reverse Polish Notation with

conversion techniques.

8. Convert the following infix expression to Polish notation and

Reverse Polish Notation:

(C−D)(A + B)∗(C + B) * (C - D)

9. Discuss significance of syntax analysis in programming language

processing.

210

