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MODULE I  

UNIT I  

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS  

1.0 Objectives  

•

•

•

Understand second-order homogeneous linear differential equations.  

Learn to solve initial value problems.  

Study the concepts of linear dependence and independence of  

solutions.  

•

•

Derive and use a formula for the Wronskian.  

Solve non-homogeneous differential equations of order two.  

1.1. Introduction to Linear Equations with Constant Coefficients  

Linear differential equations are among the most important types of  

differential equations in mathematics and its applications. A linear  

differential equation with constant coefficients has the form:  

a (d^n y/dx^n) + a (d^(n-1) y/dx^(n-1)) + ... + a (dy/dx) + a y =g(x)  n (n-1) 1 0

where a , a , ..., a are constants and g(x) is a function of x.  0 1 n 

When g(x) = 0, the equation is called homogeneous. Otherwise, it's called  

non-homogeneous.  

Key Properties of Linear Equations  2222

1. Superposition Principle: If y and y are solutions to a  1 2 

homogeneous linear equation, then any linear combination c y +  1 1 

c y is also a solution.  2 2 

2. General Solution Structure: The general solution to a non-  

homogeneous equation consists of the general solution to the  5555

corresponding homogeneous equation plus any particular solution to  

the non-homogeneous equation.  

3. Existence and Uniqueness: For an nth-order linear equation, a  

unique solution exists when n initial conditions are specified.  

1



Notes  

First-Order Linear Equations  

The simplest linear differential equation with constant coefficients is the  

first-order equation:  

dy/dx + ay = g(x)  

where a is a constant and g(x) is a function of x.  

The general solution to the homogeneous equation dy/dx + ay = 0 is:  

y = Ce^(-ax)  

where C is an arbitrary constant.  

For the non-homogeneous equation, we can use the method of integrating  

factors. Multiplying both sides by e^(ax):  

e^(ax)(dy/dx) + ae^(ax)y = e^(ax)g(x)  

The left side can be rewritten as:  

d/dx(e^(ax)y) = e^(ax)g(x)  

Integrating both sides:  

e^(ax)y = ∫e^(ax)g(x)dx + C  

Therefore:  

y = e^(-ax)[∫e^(ax)g(x)dx + C]  

Example 1.1  

Solve the differential equation: dy/dx + 2y = 4x  

Solution: This is a first-order linear equation with a = 2 and g(x) = 4x.  

Using the method of integrating factors, the integrating factor is e^(ax) =  

e^(2x).  

Multiplying both sides by e^(2x): e^(2x)(dy/dx) + 2e^(2x)y = 4xe^(2x)  

This can be rewritten as: d/dx(e^(2x)y) = 4xe^(2x)  

Integrating both sides: e^(2x)y = ∫4xe^(2x)dx  

2



To evaluate the integral, we use integration by parts: ∫4xe^(2x)dx =  Notes  
4[xe^(2x)/2 - ∫e^(2x)/2 dx] = 2xe^(2x) - e^(2x) + C  

Therefore: e^(2x)y = 2xe^(2x) - e^(2x) + C  

Solving for y: y = 2x - 1 + Ce^(-2x)  

This is the general solution to the given differential equation.  



UNIT II  Notes  

1.2. Second-Order Homogeneous Equations  

Second-order linear homogeneous differential equations with constant  

coefficients have the form:  

a(d²y/dx²) + b(dy/dx) + cy = 0  

where a, b, and c are constants, and a ≠ 0.  

The Characteristic Equation  

To solve such equations, we use the characteristic equation:  

ar² + br + c = 0  

The solutions to this quadratic equation determine the form of the general  

solution to the differential equation.  

Case 1: Distinct Real Roots  333

If the characteristic equation has two distinct real roots r₁ and r₂, then the  

general solution is:  

y = C₁e^(r₁x) + C₂e^(r₂x)  

where C₁ and C₂ are arbitrary constants.  

Case 2: Repeated Root  

If the characteristic equation has a repeated root r, then the general solution  

is:  

y = C₁e^(rx) + C₂xe^(rx)  

Case 3: Complex Conjugate Roots  

If the characteristic equation has complex conjugate roots r = α ± βi, then the  

general solution is:  

y = e^(αx)[C₁cos(βx) + C₂sin(βx)]  

Example 1.2  

Solve the differential equation: (d²y/dx²) - 5(dy/dx) + 6y = 0  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= -5, and c = 6.  

4



The characteristic equation is: r² - 5r + 6 = 0  

Factoring this equation: (r - 2)(r - 3) = 0  

The roots are r₁ = 2 and r₂ = 3.  

Notes  

Since we have distinct real roots, the general solution is: y = C₁e^(2x) +  

C₂e^(3x)  

Example 1.3  

Solve the differential equation: (d²y/dx²) + 4(dy/dx) + 4y = 0  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= 4, and c = 4.  

The characteristic equation is: r² + 4r + 4 = 0  

This can be rewritten as: (r + 2)² = 0  

The equation has a repeated root r = -2.  

Therefore, the general solution is: y = C₁e^(-2x) + C₂xe^(-2x)  

Example 1.4  

Solve the differential equation: (d²y/dx²) + 4y = 0  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= 0, and c = 4.  

The characteristic equation is: r² + 4 = 0  

The roots are: r = ±2i  

Since we have complex conjugate roots with α = 0 and β = 2, the general  

solution is: y = C₁cos(2x) + C₂sin(2x)  

1.3. Initial Value Problems for Second-Order Equations  

An initial value problem for a second-order differential equation consists of  

the equation itself along with two initial conditions:  

a(d²y/dx²) + b(dy/dx) + cy = g(x) y(x₀) = y₀ y'(x₀) = y₁  

where y₀ and y₁ are given values, and x₀ is the initial point.  

Solving Initial Value Problems  



To solve an initial value problem:  5555
Notes  

1. Find the general solution to the differential equation.  

2. Apply the initial conditions to determine the values of the arbitrary  

constants.  

Example 1.5  

Solve the initial value problem: (d²y/dx²) - 3(dy/dx) + 2y = 0 y(0) = 1 y'(0) =  333

0

Solution: First, we find the general solution to the differential equation.  

The characteristic equation is: r² - 3r + 2 = 0  

Factoring: (r - 1)(r - 2) = 0  

The roots are r₁ = 1 and r₂ = 2.  

Therefore, the general solution is: y = C₁e^x + C₂e^(2x)  

Now, we apply the initial conditions:  

From y(0) = 1: y(0) = C₁e^0 + C₂e^0 = C₁ + C₂ = 1  

From y'(0) = 0: y'(x) = C₁e^x + 2C₂e^(2x) y'(0) = C₁ + 2C₂ = 0  

We now have the system of equations: C₁ + C₂ = 1 C₁ + 2C₂ = 0  

Subtracting the second equation from the first: -C₂ = 1 C₂ = -1  

Substituting back: C₁ + (-1) = 1 C₁ = 2  

Therefore, the solution to the initial value problem is: y = 2e^x - e^(2x)  5555

Non-Homogeneous Equations  

For non-homogeneous second-order linear equations:  

a(d²y/dx²) + b(dy/dx) + cy = g(x)  

The general solution has the form:  

y = y_h + y_p  

where y_h is the general solution to the corresponding homogeneous  

equation, and y_p is a particular solution to the non-homogeneous equation.  

Methods for Finding Particular Solutions  

6



1. Method of Undetermined Coefficients: This method works when  

g(x) is a polynomial, exponential, sine, cosine, or a linear  

combination of these.  

Notes  

2. Variation of Parameters: This is a more general method that can be  

used for any continuous function g(x).  

Method of Undetermined Coefficients  

The form of the particular solution depends on the form of g(x):  

• If g(x) = P (x) (a polynomial of degree n), then y = Q (x) (a  n p n

polynomial of degree n).  

•

•

If g(x) = e^(αx), then y = Ae^(αx), where A is a constant.  p 

If g(x) = cos(βx) or g(x) = sin(βx), then y = A cos(βx) + B sin(βx).  p 

If the form of y is already a solution to the homogeneous equation, we  p 
2222

multiply by x (or x² if necessary) to ensure linear independence.  

Variation of Parameters  

For the equation a(d²y/dx²) + b(dy/dx) + cy = g(x), if y and y are two  1 2 

linearly independent solutions to the homogeneous equation, then a  

particular solution can be found as:  

y = -y ∫(y g(x) / W(y , y )) dx + y ∫(y g(x) / W(y , y )) dx  p 1 2 1 2 2 1 1 2

where W(y , y ) = y y ' - y ' y is the Wronskian.  1 2 1 2 1 2 

Solved Problems  

Problem 1  

Solve the differential equation: (d²y/dx²) + y = 0  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= 0, and c = 1.  

The characteristic equation is: r² + 1 = 0  

The roots are: r = ±i  

Since we have complex conjugate roots with α = 0 and β = 1, the general  

solution is: y = C₁cos(x) + C₂sin(x)  

Problem 2  



Solve the differential equation: (d²y/dx²) - 4(dy/dx) + 4y = 0  Notes  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= -4, and c = 4.  

The characteristic equation is: r² - 4r + 4 = 0  

This can be rewritten as: (r - 2)² = 0  

The equation has a repeated root r = 2.  333

Therefore, the general solution is: y = C₁e^(2x) + C₂xe^(2x)  

Problem 3  

Solve the differential equation: (d²y/dx²) - y = 0  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= 0, and c = -1.  

The characteristic equation is: r² - 1 = 0  

Factoring: (r - 1)(r + 1) = 0  

The roots are r₁ = 1 and r₂ = -1.  

Therefore, the general solution is: y = C₁e^x + C₂e^(-x)  

Problem 4  

Solve the differential equation: (d²y/dx²) + 6(dy/dx) + 9y = 0  

Solution: This is a second-order linear homogeneous equation with a = 1, b  

= 6, and c = 9.  

The characteristic equation is: r² + 6r + 9 = 0  

This can be rewritten as: (r + 3)² = 0  

The equation has a repeated root r = -3.  

Therefore, the general solution is: y = C₁e^(-3x) + C₂xe^(-3x)  

Problem 5  

Solve the initial value problem: (d²y/dx²) + 9y = 0 y(0) = 2 y'(0) = 3  

Solution: First, we find the general solution to the differential equation.  

The characteristic equation is: r² + 9 = 0  

8



The roots are: r = ±3i  Notes  

Since we have complex conjugate roots with α = 0 and β = 3, the general  

solution is: y = C₁cos(3x) + C₂sin(3x)  

Now, we apply the initial conditions:  

From y(0) = 2: y(0) = C₁cos(0) + C₂sin(0) = C₁ = 2  

From y'(0) = 3: y'(x) = -3C₁sin(3x) + 3C₂cos(3x) y'(0) = 3C₂ = 3 C₂ = 1  

Therefore, the solution to the initial value problem is: y = 2cos(3x) + sin(3x)  5555

Unsolved Problems  

Problem 1  

Solve the differential equation: (d²y/dx²) - 2(dy/dx) - 3y = 0  

Problem 2  

Solve the differential equation: (d²y/dx²) + 2(dy/dx) + 5y = 0  

Problem 3  

Solve the initial value problem: (d²y/dx²) - 4y = 0 y(0) = 1 y'(0) = 2  

Problem 4  

Solve the differential equation: (d²y/dx²) + 4(dy/dx) + 5y = 0  

Problem 5  

Solve the initial value problem: (d²y/dx²) - 6(dy/dx) + 9y = 0 y(0) = 0 y'(0) =  

1

Applications of Linear Differential Equations  

Linear differential equations with constant coefficients appear in many  

applications:  

1. Mechanical Systems: The motion of a mass-spring system is  

governed by a second-order linear differential equation.  

2. Electrical Circuits: The behavior of RLC circuits can be modeled  

using second-order linear differential equations.  

3. Vibrations: The vibrations of strings, membranes, and other  

mechanical systems are described by linear differential equations.  



4. Heat Conduction: The diffusion of heat in a medium follows a  Notes  
linear partial differential equation.  

5. Population Dynamics: In some cases, population growth can be  

modeled using linear differential equations.  

Mass-Spring Systems  

A mass attached to a spring is a classic example of a system modeled by a  

second-order linear differential equation. If the mass is m, the spring  

constant is k, and the damping coefficient is c, then the equation of motion  

is:  

m(d²x/dt²) + c(dx/dt) + kx = F(t)  

where x is the displacement from equilibrium and F(t) is an external force.  

When F(t) = 0, the equation becomes:  

m(d²x/dt²) + c(dx/dt) + kx = 0  

This is a homogeneous second-order linear equation with constant  

coefficients. The behavior of the system depends on the values of m, c, and  

k:  

1. Underdamped (c² < 4mk): The system oscillates with decreasing  

amplitude.  

2. Critically Damped (c² = 4mk): The system returns to equilibrium  

without oscillation, in the shortest possible time.  

3. Overdamped (c² > 4mk): The system returns to equilibrium  

without oscillation, but more slowly than in the critically damped  

case.  

Electrical Circuits  

An RLC circuit consisting of a resistor (R), an inductor (L), and a capacitor  

(C) in series can be modeled by the equation:  

L(d²q/dt²) + R(dq/dt) + (1/C)q = E(t)  

where q is the charge on the capacitor and E(t) is the electromotive force.  

10  



When E(t) = 0, the equation becomes:  

L(d²q/dt²) + R(dq/dt) + (1/C)q = 0  

Notes  

This is the same form as the mass-spring system, and the behavior is  

similarly classified as underdamped, critically damped, or overdamped.  

Higher-Order Linear Equations  

The methods discussed for second-order equations can be extended to  

higher-order linear equations with constant coefficients:  

a (d^n y/dx^n) + a (d^(n-1) y/dx^(n-1)) + ... + a (dy/dx) + a y = 0  n (n-1) 1 0

The characteristic equation becomes:  

a r^n + a r^(n-1) + ... + a r + a = 0  n (n-1) 1 0 

The general solution depends on the roots of this equation:  99999

1. For each distinct real root r , there is a term C e^(r x) in the  i i i 

general solution.  

2. For each repeated real root r_i with multiplicity m, there are terms  

C e^(r x), C x e^(r x), ..., C x^(m-1) e^(r x) in the  1 i 2 i m i 

general solution.  

For each pair of complex conjugate roots α ± βi, there are terms  

e^(αx)[C cos(βx) + C sin(βx)] in the general solution.  1 2 

Systems of Linear Differential Equations  

Many problems in physics, engineering, and other fields lead to systems of  

linear differential equations with constant coefficients:  

dx/dt = ax + by dy/dt = cx + dy  2222222

where a, b, c, and d are constants.  

Such systems can be written in matrix form:  

d/dt [x, y]^T = A [x, y]^T  

where A is the coefficient matrix.  

The solution involves finding the eigenvalues and eigenvectors of A. If λ is  

an eigenvalue and v is the corresponding eigenvector, then e^(λt)v is a  

solution to the system.  



Linear differential equations with constant coefficients form a fundamental  99999

class of differential equations with wide-ranging applications. The methods  

for solving these equations, particularly the use of the characteristic  

equation, provide a systematic approach to finding the general solution.  

Initial value problems can then be solved by applying the given initial  

conditions to determine the arbitrary constants in the general solution.For  

non-homogeneous equations, the method of undetermined coefficients and  

the variation of parameters provide techniques for finding particular  99999

solutions. The general solution is then the sum of the homogeneous solution  

and the particular solution.Higher-order equations and systems of equations  

follow similar principles, with the complexity increasing as the order or the  

number of equations increases. However, the underlying framework remains  

the same: find the general solution and then apply the given conditions to  

determine the arbitrary constants.  

Notes  

1.4. Linear Dependence and Independence of Solutions  

Fundamental Concepts  

When solving higher-order differential equations, we often find multiple  

solutions. Understanding the relationships between these solutions is crucial  

for constructing general solutions. This is where the concepts of linear  191919

Definition of Linear Dependence  

A set of functions {y₁(x), y₂(x), ..., yₙ(x)} defined on an interval I is said to  

be linearly dependent if there exist constants c₁, c₂, ..., cₙ, not all zero, such  

that:  

c₁y₁(x) + c₂y₂(x) + ... + cₙyₙ(x) = 0  

for all x in the interval I.  

In simpler terms, if one function can be expressed as a linear combination of  2222222

the others, the set is linearly dependent.  

Definition of Linear Independence  191919

A set of functions {y₁(x), y₂(x), ..., yₙ(x)} is linearly independent on an  2222222

interval I if the only solution to:  

c₁y₁(x) + c₂y₂(x) + ... + cₙyₙ(x) = 0  

12  
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for all x in I, is c₁ = c₂ = ... = cₙ = 0.  Notes  

In other words, no function in the set can be expressed as a linear  

combination of the others.  

Importance in Differential Equations  

For an nth-order linear homogeneous differential equation, the general  

solution is a linear combination of n linearly independent particular  

solutions:  

y = c₁y₁(x) + c₂y₂(x) + ... + cₙyₙ(x)  

where y₁(x), y₂(x), ..., yₙ(x) form a fundamental set of solutions.  15151515

There are several ways to test whether a set of functions is linearly  

independent:  

1. Direct Method: Check if one function can be written as a linear  2222222

combination of others.  

2. Using the Wronskian (more details in the next section).  

3. Using properties of solutions to differential equations.  

Example of Linear Dependence  

Consider the functions:  

•

•

•

y₁(x) = e^x  

y₂(x) = e^x  

y₃(x) = 2e^x  

These functions are linearly dependent because: y₃(x) = 2y₁(x) or  

equivalently y₁(x) - y₂(x) + y₃(x)/2 = 0  

Example of Linear Independence  

Consider the functions:  

•

•

•

y₁(x) = e^x  

y₂(x) = e^2x  

y₃(x) = e^3x  

Testing for Linear Independence  



These functions are linearly independent because no non-trivial linear  

combination of them equals zero for all x.  
Notes  

Fundamental Theorem  

For a linear homogeneous differential equation of order n:  

a₀(x)y^(n) + a₁(x)y^(n-1) + ... + aₙ₋₁(x)y' + aₙ(x)y = 0  

with a₀(x) ≠ 0 on an interval I, there exists exactly n linearly independent  

solutions on I. Any solution can be expressed as a linear combination of  99999 2222222

these n fundamental solutions.  

1.5. The Wronskian: Definition and Applications  

Definition of the Wronskian  

The Wronskian is a powerful tool for determining whether a set of functions  

is linearly independent.  

For functions y₁(x), y₂(x), ..., yₙ(x) that have derivatives up to order n-1, the  

Wronskian W(x) is defined as the determinant:  

W(x) = | y₁(x) y₂(x) ... yₙ(x) y₁'(x) y₂'(x) ... yₙ'(x) ... ... ... ... y₁^(n-1)(x) y₂^(n-  

1)(x) ... yₙ^(n-1)(x) |  

For two functions, the Wronskian simplifies to:  

W(y₁, y₂)(x) = y₁(x)y₂'(x) - y₂(x)y₁'(x)  

For three functions, it becomes:  

W(y₁, y₂, y₃)(x) = | y₁(x) y₂(x) y₃(x) y₁'(x) y₂'(x) y₃'(x) y₁''(x) y₂''(x) y₃''(x) |  

Theorem on the Wronskian  

The key theorem regarding the Wronskian states:  

If y₁(x), y₂(x), ..., yₙ(x) are solutions to a linear homogeneous differential  

equation on an interval I, then:  

1. Either W(x) = 0 for all x in I, or  

2. W(x) ≠ 0 for all x in I.  
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Moreover, if W(x) ≠ 0 at even a single point in I, then the functions are  Notes  
linearly independent on I.  

Abel's Identity  

For an nth-order linear homogeneous differential equation in the form:  

y^(n) + p₁(x)y^(n-1) + ... + pₙ₋₁(x)y' + pₙ(x)y = 0  

If W(x) is the Wronskian of n solutions, then:  

W(x) = W(x₀)·exp[-∫p₁(x)dx]  

where x₀ is any point in the interval I.  

This formula, known as Abel's Identity, allows us to compute the Wronskian  

Applications of the Wronskian  

The Wronskian has several important applications:  

functions are linearly independent.  

2. Constructing General Solutions: For linear homogeneous  

differential equations.  

3. Method of Variation of Parameters: For solving non-  

homogeneous equations.  

4. Reduction of Order: For finding additional solutions when one  

solution is known.  

Computing the Wronskian: Examples  

Example 1: Second-Order Case  

For y₁(x) = e^x and y₂(x) = e^2x:  

W(x) = | e^x e^2x e^x 2e^2x |  

W(x) = e^x · 2e^2x - e^2x · e^x = 2e^3x - e^3x = e^3x  

Since W(x) ≠ 0 for all x, the functions are linearly independent.  

Example 2: Third-Order Case  

without evaluating the determinant directly.  

1. Testing for Linear Independence: If W(x) ≠ 0 at any point, the  



For y₁(x) = 1, y₂(x) = x, y₃(x) = x²:  

W(x) = | 1 x x² 0 1 2x 0 0 2 |  

Notes  

W(x) = 1 · 1 · 2 = 2  

Since W(x) = 2 ≠ 0 for all x, these functions are linearly independent.  

Special Cases and Properties  

1. Zero Wronskian: If W(x) = 0 for all x, the functions may or may  191919

not be linearly dependent (a zero Wronskian is a necessary but not  

sufficient condition for linear dependence).  

2. Wronskian of a Fundamental Set: If the functions form a  15151515

fundamental set of solutions for an nth-order homogeneous linear  

differential equation, their Wronskian is never zero.  

3. Wronskian and Initial Conditions: For an initial value problem,  

the Wronskian evaluated at the initial point helps determine whether  

a unique solution exists.  

1.6. Non-Homogeneous Equations of Order Two  

Structure of Non-Homogeneous Equations  

A second-order linear non-homogeneous differential equation has the form:  

a(x)y'' + b(x)y' + c(x)y = f(x)  

where f(x) ≠ 0 is the non-homogeneous term (also called the forcing  

function or input).  

General Solution Structure  

The general solution to a non-homogeneous equation consists of two parts:  

y(x) = yₕ(x) + yₚ(x)  

where:  

• yₕ(x) is the general solution to the corresponding homogeneous  

equation (called the complementary function)  

• yₚ(x) is any particular solution to the non-homogeneous equation  

Methods for Finding Particular Solutions  

16  



There are several methods for finding particular solutions:  Notes  

1. Method of Undetermined Coefficients  

This method works when f(x) and its derivatives form a finite set of linearly  

independent functions. We assume a solution form based on f(x) and  

determine the coefficients.  

When to Use  

This method is effective when f(x) is:  

•

•

•

•

A polynomial  

An exponential function (e^ax)  

A sine or cosine function  

A product of the above types  

Procedure  

1. Identify the form of f(x)  

2. Propose a trial solution yₚ(x) with undetermined coefficients  

3. Substitute into the differential equation  

4. Solve for the coefficients by equating like terms  

Important Note  

If any term in the trial solution is already a solution to the homogeneous  

equation, multiply the entire trial solution by x (or x² if necessary) to make it  

linearly independent from the homogeneous solutions.  

2. Method of Variation of Parameters  99999

This is a general method that works for any continuous f(x).  

Procedure  

For a second-order equation, if y₁(x) and y₂(x) are linearly independent  

solutions to the homogeneous equation, then:  

yₚ(x) = u₁(x)y₁(x) + u₂(x)y₂(x)  



where u₁(x) and u₂(x) are determined by solving:  

u₁'(x)y₁(x) + u₂'(x)y₂(x) = 0 u₁'(x)y₁'(x) + u₂'(x)y₂'(x) = f(x)/a(x)  

The solutions are:  

Notes  

u₁'(x) = -y₂(x)f(x)/[a(x)W(x)] u₂'(x) = y₁(x)f(x)/[a(x)W(x)]  

where W(x) is the Wronskian of y₁ and y₂.  

Integrating to find u₁(x) and u₂(x) gives the particular solution:  

yₚ(x) = -y₁(x)∫[y₂(x)f(x)/(a(x)W(x))]dx + y₂(x)∫[y₁(x)f(x)/(a(x)W(x))]dx  

3. Operator Method  

This involves using differential operators to factor and solve the equation.  

Behavior of Solutions  

The behavior of solutions to non-homogeneous equations depends on:  

1. Transient Response: Governed by the homogeneous solution yₕ(x),  

which typically decays over time in stable systems.  

2. Steady-State Response: Governed by the particular solution yₚ(x),  

which persists and matches the pattern of the input f(x).  

Resonance  

A special situation occurs when f(x) contains terms that are solutions to the  

homogeneous equation. This leads to resonance, where the response can  

grow without bound.  

For example, if y'' + y = sin(x), the solution contains terms with x·sin(x),  

showing amplitude growth over time.  

Solved Problems  

Problem: Determine whether the functions y₁(x) = x, y₂(x) = x|x|, and y₃(x)  

= x³ are linearly independent on the interval (-∞, ∞).  

Solution:  

Let's assume there exist constants c₁, c₂, and c₃, not all zero, such that:  
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c₁x + c₂x|x| + c₃x³ = 0 for all x ∈ (-∞, ∞)  Notes  

For x > 0, we have |x| = x, so the equation becomes: c₁x + c₂x² + c₃x³ = 0  2222222

For this to be true for all x > 0, each coefficient must be zero: c₁ = c₂ = c₃ = 0  

But for x < 0, we have |x| = -x, so the equation becomes: c₁x - c₂x² + c₃x³ = 0  

Again, for this to be true for all x < 0, each coefficient must be zero: c₁ = -c₂  

= c₃ = 0  

Combining these constraints:  

•

•

From the first case: c₁ = c₂ = c₃ = 0  

From the second case: c₁ = -c₂ = c₃ = 0  

This implies c₂ = 0 and c₂ = 0, which is consistent. Therefore, the only  

solution is c₁ = c₂ = c₃ = 0, meaning the functions are linearly independent  

on (-∞, ∞).  

Problem 2: Computing and Interpreting the Wronskian  

Problem: Compute the Wronskian of y₁(x) = e^x, y₂(x) = e^-x, and  

determine if they form a fundamental set of solutions for the differential  15151515

equation y'' - y = 0.  

Solution:  

First, let's compute the Wronskian:  2222222

W(y₁, y₂)(x) = | e^x e^-x e^x -e^-x |  

W(x) = e^x · (-e^-x) - e^-x · e^x = -e^0 - e^0 = -2  

Since W(x) = -2 ≠ 0 for all x, the functions are linearly independent.  

Now, let's check if they satisfy the differential equation y'' - y = 0:  

For y₁(x) = e^x: y₁'(x) = e^x y₁''(x) = e^x y₁''(x) - y₁(x) = e^x - e^x = 0  

For y₂(x) = e^-x: y₂'(x) = -e^-x y₂''(x) = e^-x y₂''(x) - y₂(x) = e^-x - e^-x = 0  

Both functions satisfy the differential equation. Since they are also linearly  

independent, they form a fundamental set of solutions for y'' - y = 0.  15151515

The general solution is: y(x) = c₁e^x + c₂e^-x  



where c₁ and c₂ are arbitrary constants.  Notes  

Problem 3: Using Abel's Identity to Find the Wronskian  

Problem: Use Abel's Identity to find the Wronskian of solutions to the  

differential equation: y'' - 2y' + y = 0  

Solution:  

First, we rewrite the equation in standard form: y'' - 2y' + y = 0  

Comparing with the standard form y'' + p₁(x)y' + p₂(x)y = 0: p₁(x) = -2 p₂(x)  

= 1  

By Abel's Identity, if W(x) is the Wronskian of two linearly independent  

solutions, then: W(x) = W(x₀)·exp[-∫p₁(x)dx] = W(x₀)·exp[-∫(-2)dx] =  

W(x₀)·exp[2x]  

To find W(x₀), we need the actual solutions. The characteristic equation for  

y'' - 2y' + y = 0 is: r² - 2r + 1 = 0 (r - 1)² = 0 r = 1 (repeated root)  

So the solutions are: y₁(x) = e^x y₂(x) = xe^x  

Let's compute W(x₀) at x₀ = 0: W(0) = | e^0 0·e^0 e^0 e^0 + 0·e^0 | = | 1 0 1  

1 | = 1·1 - 0·1 = 1  

Therefore, by Abel's Identity: W(x) = 1·e^2x = e^2x  

We can verify this by direct computation: W(x) = | e^x xe^x e^x e^x + xe^x |  

= e^x(e^x + xe^x) - xe^x·e^x = e^2x + xe^2x - xe^2x = e^2x  
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Problem 4: Solving a Non-Homogeneous Equation Using Undetermined  

Coefficients  
Notes  

Problem: Solve the non-homogeneous differential equation: y'' + 4y =  

3sin(2x)  

Solution:  

Step 1: Find the complementary solution (homogeneous solution). The  

characteristic equation for y'' + 4y = 0 is: r² + 4 = 0 r = ±2i  

Therefore, the complementary solution is: yₕ(x) = c₁cos(2x) + c₂sin(2x)  

Step 2: Find the particular solution using the method of undetermined  

coefficients. Since 3sin(2x) is already included in the complementary  

solution, we need to use a modified form: yₚ(x) = Axcos(2x) + Bxsin(2x)  

Step 3: Find the derivatives of yₚ(x). yₚ'(x) = A[cos(2x) - 2xsin(2x)] +  

B[sin(2x) + 2xcos(2x)] = Acos(2x) - 2Axsin(2x) + Bsin(2x) + 2Bxcos(2x)  

yₚ''(x) = -2Asin(2x) - 2A[sin(2x) + 2xcos(2x)] - 2Bcos(2x) + 2B[cos(2x) -  

2xsin(2x)] = -2Asin(2x) - 2Asin(2x) - 4Axcos(2x) - 2Bcos(2x) + 2Bcos(2x)  

- 4Bxsin(2x) = -4Asin(2x) - 4Axcos(2x) - 4Bxsin(2x)  

Step 4: Substitute into the original equation. y'' + 4y = 3sin(2x) [-4Asin(2x) -  

4Axcos(2x) - 4Bxsin(2x)] + 4[Axcos(2x) + Bxsin(2x)] = 3sin(2x) -  

4Asin(2x) - 4Axcos(2x) - 4Bxsin(2x) + 4Axcos(2x) + 4Bxsin(2x) = 3sin(2x)  

-4Asin(2x) = 3sin(2x)  

Step 5: Equate coefficients. -4A = 3 A = -3/4 B does not appear in the  

equation, so we can set B = 0.  

Step 6: Write the particular solution. yₚ(x) = -3/4 · xcos(2x)  

Step 7: Combine the complementary and particular solutions. y(x) = yₕ(x) +  

yₚ(x) = c₁cos(2x) + c₂sin(2x) - 3/4 · xcos(2x)  



Problem 5: Solving a Non-Homogeneous Equation Using Variation of  

Parameters  
Notes  

Problem: Solve the non-homogeneous differential equation: y'' - y = sec²(x)  

Solution:  

Step 1: Find the complementary solution. The characteristic equation for y'' -  

y = 0 is: r² - 1 = 0 r = ±1  

The complementary solution is: yₕ(x) = c₁e^x + c₂e^-x  

Step 2: Apply the method of variation of parameters. Let y₁(x) = e^x and  

y₂(x) = e^-x  

Calculate the Wronskian: W(x) = | e^x e^-x e^x -e^-x | = -e^x·e^-x - e^-  

x·e^x = -2  

Step 3: Compute the integrals for variation of parameters. u₁'(x) = -  

y₂(x)f(x)/W(x) = -e^-x·sec²(x)/(-2) = e^-x·sec²(x)/2 u₂'(x) = y₁(x)f(x)/W(x) =  

e^x·sec²(x)/(-2) = -e^x·sec²(x)/2  

Step 4: Integrate to find u₁(x) and u₂(x). Using the identity sec²(x) = 1 +  

tan²(x):  

u₁(x) = ∫e^-x·sec²(x)/2 dx = 1/2 ∫e^-x·(1 + tan²(x)) dx = 1/2 [∫e^-x dx + ∫e^-  

x·tan²(x) dx]  

The first integral is -e^-x/2. The second integral is more complex. Using  

integration by parts and the substitution tan(x) = u, we get:  

u₁(x) = -e^-x/2 - e^-x·tan(x)/2 + C₁  

Similarly: u₂(x) = -e^x·tan(x)/2 + C₂  

Step 5: Form the particular solution. yₚ(x) = u₁(x)y₁(x) + u₂(x)y₂(x) = [-e^-  

x/2 - e^-x·tan(x)/2]·e^x + [-e^x·tan(x)/2]·e^-x = -1/2 - tan(x)/2 - tan(x)/2 = -  

1/2 - tan(x)  

Step 6: Write the general solution. y(x) = yₕ(x) + yₚ(x) = c₁e^x + c₂e^-x - 1/2  

- tan(x)  
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Unsolved Problems  

Problem 1  

Notes  

Determine whether the functions y₁(x) = x², y₂(x) = |x|, y₃(x) = x⁴ are linearly  

independent on the interval (-∞, ∞).  

Problem 2  

Calculate the Wronskian of the functions y₁(x) = sin(2x), y₂(x) = cos(2x),  

y₃(x) = e^x and determine if they form a fundamental set of solutions for any  

third-order linear homogeneous differential equation.  

Problem 3  

Use Abel's Identity to find the Wronskian of solutions to the differential  

equation: x²y'' + xy' - y = 0  

Problem 4  

Solve the non-homogeneous differential equation: y'' + 9y = x·cos(3x) using  

the method of undetermined coefficients.  

Problem 5  

Solve the non-homogeneous differential equation: y'' - 4y' + 4y = e^2x·ln(x)  

using the method of variation of parameters, given that y₁(x) = e^2x and  

y₂(x) = xe^2x are solutions to the homogeneous equation.  



UNIT III  Notes  

Summary of Key Concepts  

1. Linear Dependence and Independence:  

• Functions are linearly dependent if one can be expressed as  3737

a linear combination of others.  

• The general solution to an nth-order homogeneous linear  

differential equation requires n linearly independent  

solutions.  

2. The Wronskian:  

•

•

•

A determinant that helps determine linear independence of  

functions.  

If the Wronskian is non-zero at any point, the functions are  

linearly independent.  

Abel's Identity provides a formula for the Wronskian  

without direct computation.  

3. Non-Homogeneous Equations:  

•

•

•

The general solution consists of the complementary function  

(homogeneous solution) plus a particular solution.  

Methods for finding particular solutions include  

undetermined coefficients and variation of parameters.  

Resonance occurs when the forcing function matches the  

natural frequency of the system.  

These concepts are fundamental to understanding and solving differential  

equations, with applications in physics, engineering, economics, and many  

other fields.  

1.7 Applications of Second-Order Linear Equations  

Second-order linear differential equations play a crucial role in modeling  

physical systems across numerous fields including physics, engineering, and  

applied mathematics. These equations help describe phenomena ranging  
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from simple harmonic motion to more complex scenarios like damped  

oscillations and forced vibrations.  
Notes  

The General Form and Physical Significance  

A second-order linear differential equation typically takes the form:  

a(x) · y''(x) + b(x) · y'(x) + c(x) · y(x) = f(x)  

Where:  

•

•

•

y''(x) represents the second derivative of y with respect to x  

y'(x) represents the first derivative  

a(x), b(x), and c(x) are coefficients that may be constants or  

functions of x  

• f(x) is the non-homogeneous term (when f(x) = 0, we have a  

homogeneous equation)  

In physical systems, the terms often represent:  

•

•

The second derivative (y'') typically corresponds to acceleration  

The first derivative (y') typically corresponds to velocity or a  

damping term  

•

•

The function itself (y) typically corresponds to position or  

displacement  

The coefficients represent physical parameters like mass, damping  

coefficient, or spring constant  

Common Physical Applications  

1. Spring-Mass Systems  

One of the most fundamental applications is modeling a spring-mass system.  

The equation takes the form:  

m · y''(t) + c · y'(t) + k · y(t) = F(t)  

Where:  

•

•

m represents mass  

c represents the damping coefficient  



•

•

•

k represents the spring constant  Notes  

F(t) represents an external force  

y(t) represents displacement from equilibrium  

Depending on the values of these parameters, we observe different  

behaviors:  

•

•

•

•

•

When c = 0 and F(t) = 0: Simple harmonic motion  

When 0 < c < 2√(km) and F(t) = 0: Underdamped oscillation  

When c = 2√(km) and F(t) = 0: Critically damped motion  

When c > 2√(km) and F(t) = 0: Overdamped motion  

When F(t) ≠ 0: Forced oscillation  

2. RLC Circuits  

Electrical circuits with resistors, inductors, and capacitors are modeled using  

second-order equations:  

L · d²q/dt² + R · dq/dt + (1/C) · q = E(t)  

Where:  

•

•

•

•

•

L is inductance  

R is resistance  

C is capacitance  

q is electric charge  

E(t) is the applied voltage  

This is mathematically identical to the spring-mass system, highlighting the  

parallel between mechanical and electrical systems.  

3. Beam Deflection  

The equation for the deflection y(x) of a uniform beam is:  

EI · d⁴y/dx⁴ = w(x)  

Where:  

•
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•

•

I is the area moment of inertia  

w(x) is the distributed load  

Notes  

This is a fourth-order equation but can be reduced to a system of second-  

order equations.  

4. Heat Transfer and Diffusion  

The one-dimensional heat equation:  

∂²u/∂x² = (1/α) · ∂u/∂t  

Where u(x,t) is temperature, can be solved using techniques for second-order  

equations.  

Solving Second-Order Linear Equations  

The general approach to solving second-order linear equations involves:  

1. For homogeneous equations (f(x) = 0):  

• Find the general solution yₕ using characteristic equations or  

other methods  

2. For non-homogeneous equations (f(x) ≠ 0):  

• Find  a particular solution yₚ using methods like  

undetermined coefficients or variation of parameters  

• The complete solution is y = yₕ + yₚ  

Solved Problems  

Solved Problem 1: Simple Harmonic Motion  

Problem: A mass of 2 kg is attached to a spring with spring constant k = 8  3030

N/m. If the mass is displaced 0.5 meters from equilibrium and released from  

rest, find the position of the mass as a function of time.  262626

Solution:  

The differential equation for this system is: m · y''(t) + k · y(t) = 0  

Substituting the given values: 2 · y''(t) + 8 · y(t) = 0 y''(t) + 4 · y(t) = 0  

This is a homogeneous second-order equation with constant coefficients.  

The characteristic equation is: r² + 4 = 0 r = ±2i  



The general solution is: y(t) = C₁ · cos(2t) + C₂ · sin(2t)  Notes  

Given initial conditions: y(0) = 0.5 (initial displacement) y'(0) = 0 (released  

from rest)  

Applying the first condition: y(0) = C₁ · cos(0) + C₂ · sin(0) = 0.5 C₁ = 0.5  

Applying the second condition: y'(t) = -2C₁ · sin(2t) + 2C₂ · cos(2t) y'(0) = -  

2C₁ · sin(0) + 2C₂ · cos(0) = 0 2C₂ = 0 C₂ = 0  

Therefore, the position as a function of time is: y(t) = 0.5 · cos(2t)  262626

This represents simple harmonic motion with amplitude 0.5 meters and  3737

angular frequency 2 rad/s. The period of oscillation is π seconds.  3030

Solved Problem 2: Damped Oscillations  

Problem: A mass-spring-damper system is governed by the equation y''(t) +  

4y'(t) + 4y(t) = 0. If y(0) = 2 and y'(0) = -4, find the position function y(t).  

Solution:  

The differential equation is: y''(t) + 4y'(t) + 4y(t) = 0  

This is a homogeneous second-order equation with constant coefficients.  

The characteristic equation is: r² + 4r + 4 = 0 (r + 2)² = 0 r = -2 (repeated  

root)  

For a repeated root, the general solution is: y(t) = (C₁ + C₂t) · e^(-2t)  

Given initial conditions: y(0) = 2 y'(0) = -4  

Applying the first condition: y(0) = C₁ = 2  

To find C₂, we compute the derivative: y'(t) = -2(C₁ + C₂t)e^(-2t) + C₂e^(-2t)  

= (-2C₁ + C₂ - 2C₂t)e^(-2t)  

Applying the second condition: y'(0) = -2C₁ + C₂ = -4 -2(2) + C₂ = -4 -4 + C₂  

= -4 C₂ = 0  

Therefore, the position function is: y(t) = 2e^(-2t)  

This represents a critically damped system where the mass approaches  

equilibrium without oscillating. The system returns to equilibrium  

asymptotically as t increases.  

Solved Problem 3: Forced Vibrations  
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Problem: A spring-mass system is described by the equation y''(t) + 9y(t) =  Notes  
3cos(3t). If y(0) = 0 and y'(0) = 2, find the solution y(t).  262626

Solution:  

The differential equation is: y''(t) + 9y(t) = 3cos(3t)  

This is a non-homogeneous equation. We first find the complementary  

solution (solution to the homogeneous equation): y''(t) + 9y(t) = 0  

The characteristic equation is: r² + 9 = 0 r = ±3i  

So the complementary solution is: yₕ(t) = C₁cos(3t) + C₂sin(3t)  

Next, we find a particular solution. Since the right side involves cos(3t) and  

this term also appears in the complementary solution, we use: yₚ(t) =  

t(A·cos(3t) + B·sin(3t))  

Taking derivatives: yₚ'(t) = A·cos(3t) + B·sin(3t) + t(-3A·sin(3t) +  

3B·cos(3t)) yₚ''(t) = -3A·sin(3t) + 3B·cos(3t) + t(-3A·3cos(3t) - 3B·3sin(3t))  

+ (-3A·sin(3t) + 3B·cos(3t)) = -6A·sin(3t) + 6B·cos(3t) - 9At·cos(3t) -  

9Bt·sin(3t)  

Substituting into the original equation: yₚ''(t) + 9yₚ(t) = 3cos(3t) [-6A·sin(3t)  

+ 6B·cos(3t) - 9At·cos(3t) - 9Bt·sin(3t)] + 9[t(A·cos(3t) + B·sin(3t))] =  

3cos(3t) -6A·sin(3t) + 6B·cos(3t) - 9At·cos(3t) - 9Bt·sin(3t) + 9At·cos(3t) +  

9Bt·sin(3t) = 3cos(3t) -6A·sin(3t) + 6B·cos(3t) = 3cos(3t)  

Comparing coefficients: -6A = 0, so A = 0 6B = 3, so B = 1/2  

Therefore, yₚ(t) = (t/2)·sin(3t)  

The complete solution is: y(t) = yₕ(t) + yₚ(t) y(t) = C₁cos(3t) + C₂sin(3t) +  

(t/2)·sin(3t)  

Applying the initial condition y(0) = 0: y(0) = C₁cos(0) + C₂sin(0) +  

(0/2)·sin(0) = 0 C₁ = 0  

For the second condition, y'(0) = 2, we need to compute y'(t): y'(t) = -  

3C₁sin(3t) + 3C₂cos(3t) + (1/2)·sin(3t) + (t/2)·3cos(3t) = -3C₁sin(3t) +  

3C₂cos(3t) + (1/2)·sin(3t) + (3t/2)·cos(3t)  

At t = 0: y'(0) = -3C₁sin(0) + 3C₂cos(0) + (1/2)·sin(0) + (3·0/2)·cos(0) = 3C₂  

= 2 C₂ = 2/3  



Therefore, the complete solution is: y(t) = (2/3)·sin(3t) + (t/2)·sin(3t) y(t) =  

sin(3t)·(2/3 + t/2)  
Notes  

This solution represents forced vibrations, where the system exhibits  

resonance because the forcing frequency matches the natural frequency of  

the system.  

Solved Problem 4: RLC Circuit  

Problem: An RLC circuit has an inductance L = 1 H, resistance R = 6 Ω,  

and capacitance C = 1/16 F. If the initial current is zero and the initial charge  

on the capacitor is 2 coulombs, find the charge q(t) on the capacitor as a  

function of time.  

Solution:  

The differential equation for the charge q(t) in an RLC circuit is: L · d²q/dt²  

+ R · dq/dt + (1/C) · q = 0  

Substituting the given values: 1 · d²q/dt² + 6 · dq/dt + 16 · q = 0 d²q/dt² + 6 ·  

dq/dt + 16 · q = 0  

This is a homogeneous second-order equation with constant coefficients.  

The characteristic equation is: r² + 6r + 16 = 0  

Using the quadratic formula: r = (-6 ± √(36 - 64))/2 = (-6 ± √(-28))/2 = (-6 ±  

2√7i)/2 = -3 ± √7i  

The general solution is: q(t) = e^(-3t) · [C₁ · cos(√7t) + C₂ · sin(√7t)]  

Given initial conditions: q(0) = 2 (initial charge) dq/dt(0) = 0 (initial current  

is zero)  

Applying the first condition: q(0) = e^(0) · [C₁ · cos(0) + C₂ · sin(0)] = C₁ =  

2

To find C₂, we compute the derivative: dq/dt = -3e^(-3t) · [C₁ · cos(√7t) + C₂  

· sin(√7t)] + e^(-3t) · [-C₁ · √7 · sin(√7t) + C₂ · √7 · cos(√7t)] = e^(-3t) · [-  

3C₁ · cos(√7t) - 3C₂ · sin(√7t) - C₁ · √7 · sin(√7t) + C₂ · √7 · cos(√7t)]  

Applying the second condition: dq/dt(0) = e^(0) · [-3C₁ · cos(0) - 3C₂ ·  

sin(0) - C₁ · √7 · sin(0) + C₂ · √7 · cos(0)] = -3C₁ + C₂ · √7 = 0 = -3(2) + C₂ ·  

√7 = 0 = -6 + C₂ · √7 = 0 = C₂ = 6/√7 = 6√7/7  
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Therefore, the charge as a function of time is: q(t) = e^(-3t) · [2 · cos(√7t) +  12
Notes  

(6√7/7) · sin(√7t)]  

This represents an underdamped RLC circuit where the charge oscillates  

with decreasing amplitude due to the resistance.  

Solved Problem 5: Beam Deflection  

Problem: A uniform beam of length L is simply supported at both ends and  

carries a uniform load w per unit length. Find the equation for the deflection  

curve.  

Solution:  Notes  

The differential equation for the deflection y(x) of a uniform beam under a  

distributed load w is: EI · d⁴y/dx⁴ = w  

per unit length.  

For a constant load w, we can integrate this equation directly: EI · d³y/dx³ =  

wx + C₁ EI · d²y/dx² = (w/2)x² + C₁x + C₂ EI · dy/dx = (w/6)x³ + (C₁/2)x² +  

C₂x + C₃ EI · y = (w/24)x⁴ + (C₁/6)x³ + (C₂/2)x² + C₃x + C₄  

For a simply supported beam, the boundary conditions are: y(0) = 0  

(deflection at left end is zero) y(L) = 0 (deflection at right end is zero)  

Where E is Young's modulus, I is the moment of inertia, and w is the load  



d²y/dx²(0) = 0 (bending moment at left end is zero) d²y/dx²(L) = 0 (bending  

moment at right end is zero)  

Applying y(0) = 0: EI · y(0) = C₄ = 0  

Applying d²y/dx²(0) = 0: EI · d²y/dx²(0) = C₂ = 0  

From the remaining two conditions: y(L) = (w/24)L⁴ + (C₁/6)L³ + C₃L = 0  

d²y/dx²(L) = wL² + C₁L = 0  

From the last equation: C₁ = -wL  

Substituting into y(L) = 0: (w/24)L⁴ - (wL/6)L³ + C₃L = 0 (w/24)L⁴ - (wL⁴/6)  

+ C₃L = 0 (wL⁴/24) - (wL⁴/6) + C₃L = 0 (wL⁴/24) - (4wL⁴/24) + C₃L = 0 (-  

3wL⁴/24) + C₃L = 0 C₃ = (3wL³/24) = (wL³/8)  

Therefore, the deflection equation is: EI · y = (w/24)x⁴ - (wL/6)x³ +  

(wL³/8)x  

Simplifying: y = (w/24EI)[x⁴ - 4Lx³ + 3L³x]  

This equation describes the deflection of the beam at any point x along its  

Unsolved Problems  

Unsolved Problem 1: Damped Spring-Mass System  

A mass of 0.5 kg is attached to a spring with spring constant k = 12 N/m and  

a damper with damping coefficient c = 3 N·s/m. The mass is pulled down 10  

cm from equilibrium and released with an initial velocity of 0.2 m/s upward.  
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length under the uniform load w.  

Find the position function y(t) and determine whether the system is  

underdamped, critically damped, or overdamped.  
Notes  

Unsolved Problem 2: Forced Vibrations with Damping  

Consider a spring-mass-damper system described by the equation: y''(t) +  

4y'(t) + 13y(t) = 10sin(2t)  

If y(0) = 0 and y'(0) = 0, find the complete solution and determine the  

steady-state response.  

Unsolved Problem 3: RLC Circuit with Applied Voltage  

An RLC circuit with inductance L = 2 H, resistance R = 8 Ω, and  

If the initial charge on the capacitor is zero and the initial current is zero,  

find the charge q(t) on the capacitor as a function of time.  

Unsolved Problem 4: Heat Transfer in a Rod  

A rod of length L has its ends maintained at temperature 0. The initial  

temperature distribution in the rod is given by f(x) = sin(πx/L). Find the  

temperature u(x,t) at any point x and time t, given that the heat equation is:  

∂²u/∂x² = (1/α)·∂u/∂t  

With boundary conditions u(0,t) = u(L,t) = 0 and initial condition u(x,0) =  

f(x).  

Unsolved Problem 5: Cantilever Beam  

A cantilever beam of length L is fixed at one end (x = 0) and free at the other  

end (x = L). The beam carries a point load P at the free end. Find the  

equation for the deflection curve y(x).  

capacitance C = 0.02 F is connected to a voltage source E(t) = 12cos(5t) V.  



Applications in Various Fields  

Mechanical Engineering  

Second-order linear equations are essential in analyzing:  

•

•

•

Vibration analysis of structures  

Stress and strain in materials  

Control systems for mechanical devices  

•

•

Automotive suspension systems  

Structural dynamics of buildings  

Notes  

Electrical Engineering  

Key applications include:  

•

•

•

•

•

Circuit analysis (RLC circuits)  

Signal processing and filter design  

Control systems for electrical devices  

Power systems stability  

Electromagnetic wave propagation  

Civil Engineering  

Applications encompass:  

•

•

•

•

•

Structural analysis of buildings and bridges  

Beam and column deflection  

Dynamic response of structures to earthquakes  

Fluid flow in pipes and channels  

Soil mechanics and foundation design  

Aerospace Engineering  

Critical uses include:  

•

•

•

•

•

Aircraft and spacecraft dynamics  

Aeroelasticity (flutter analysis)  

Launch vehicle trajectory optimization  

Control system design  

Structural vibration of airframes  

Advanced Topics  

Variable Coefficient Equations  
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Many real-world problems lead to second-order equations with variable  

coefficients: a(x) · y''(x) + b(x) · y'(x) + c(x) · y(x) = f(x)  
Notes  

These are often more challenging to solve and may require numerical  

methods or series solutions like:  

•

•

•

•

Frobenius method  

WKB approximation  

Numerical techniques (Runge-Kutta, finite differences)  

Systems of Second-Order Equations  

Complex mechanical systems with multiple degrees of freedom lead to  

systems of coupled second-order equations that can be written in matrix  

form: [M]{ẍ} + [C]{ẋ} + [K]{x} = {F(t)}  

Where:  

•

•

•

•

•

[M] is the mass matrix  

[C] is the damping matrix  

[K] is the stiffness matrix  

{x} is the displacement vector  

{F(t)} is the forcing vector  

These systems are typically solved using:  

•

•

•

Modal analysis  

Numerical integration  

State-space methods  

Nonlinear Second-Order Equations  

Many physical systems exhibit nonlinear behavior, leading to nonlinear  

second-order equations such as:  

•

•

Duffing equation (nonlinear spring): ẍ + δẋ + αx + βx³ = F₀cos(ωt)  

Variation of parameters  

Van der Pol equation (nonlinear damping): ẍ - μ(1-x²)ẋ + x = 0  

•Notes  

These equations often exhibit complex behaviors like:  

•

•

•

•

Multiple equilibria  

Limit cycles  

Chaos  

Bifurcations  

Computational Methods  

Modern approaches to solving second-order differential equations often  

involve computational methods:  

Finite Difference Methods  

A i t d i ti i diff b t di t i t

Pendulum equation (large displacements): θ̈ + (g/L)sin(θ) = 0  



Approximate derivatives using differences between discrete points:  

•

•

•

Forward difference: f'(x) ≈ [f(x+h) - f(x)]/h  

Central difference: f'(x) ≈ [f(x+h) - f(x-h)]/(2h)  

Second derivative: f''(x) ≈ [f(x+h) - 2f(x) + f(x-h)]/h²  

Runge-Kutta Methods  

Higher-order methods that propagate a solution by combining information  

from several steps:  

• RK4 (fourth-order Runge-Kutta) is widely used for its balance of  

accuracy and efficiency  

Finite Element Methods  

Particularly useful for complex geometries and boundary conditions:  

•

•

•

•

Divide the domain into small elements  

Approximate the solution within each element  

Assemble a global system of equations  

Solve the resulting system  

Second-order linear differential equations provide a powerful framework for  

modeling and analyzing a wide range of physical phenomena. From simple  
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harmonic oscillators to complex structural dynamics, these equations form  

the mathematical foundation for understanding how systems respond to  

various inputs and disturbances.The applications span across multiple  

engineering disciplines, including mechanical, electrical, civil, and  

aerospace engineering. Understanding these equations and their solutions is  

essential for engineers and scientists working on problems involving motion,  

vibration, wave propagation, and structural analysis.As computational  

capabilities continue to advance, more complex systems can be modeled and  

analyzed using these fundamental equations, leading to improved designs  

and better understanding of physical phenomena.  

Notes  

Second-Order Differential Equations: Practical Applications in  

Contemporary Engineering and Science  

In the contemporary technologically advanced world, second-order  

differential equations constitute the mathematical basis for various  

engineering and scientific fields. These equations represent systems where  

the rate of change of a rate of change is essential, encompassing the  

oscillations of mechanical systems and the flow of electric current in  

circuits. The importance of knowing these equations is paramount, since  

they offer the analytical framework for comprehending and forecasting  

intricate dynamic behaviors in real-world situations.  

Second-order differential equations are expressed as a(x)y'' + b(x)y' + c(x)y  

= f(x), with the homogeneous case arising when f(x) = 0. Engineers,  

physicists, and applied mathematicians routinely confront these equations  

whether examining structure vibrations, devising control systems, modeling  

population dynamics, or creating electronic filters. The capacity to resolve  

these equations effectively converts abstract mathematical principles into  

practical instruments for creativity and problem-solving.  

Homogeneous Linear Differential Equations: Applications in  



Contemporary Structural Analysis  

Contemporary structural engineers predominantly utilize homogeneous  

second-order differential equations to assess building responses to  

environmental pressures. Examine a contemporary skyscraper exposed to  

wind forces or seismic events. The displacement y of the building as a  

function of time t typically adheres to the equation my'' + cy' + ky = 0,  

where m denotes the mass of the building, c signifies the damping  

coefficient from structural components, and k represents the stiffness of  

construction materials.  
Notes  

In the design of the Burj Khalifa or comparable supertall edifices, engineers  

must resolve these equations to forecast maximum displacements and  

guarantee safety margins. The characteristic equation mr² + cr + k = 0  

produces roots that indicate whether the structure will undergo critical  

damping (equal roots), underdamping (complex conjugate roots), or  

overdamping (distinct real roots). Each scenario necessitates distinct  

structural  

supplementary dampers to avert resonance, whereas overdamped systems  

considerations—underdamped  systems  may  require  

Contemporary computer techniques have transformed the practical use of  

these equations. Engineers utilize finite element analysis software that  

integrates these differential equations into millions of concurrent  

calculations, facilitating the optimization of structural parameters through  

numerous design iterations prior to actual construction.  

Methods for Solving Homogeneous Equations  

Homogeneous second-order linear differential equations with constant  

coefficients (ay'' + by' + cy = 0) are resolved by determining the roots of the  

characteristic equation ar² + br + c = 0. The structure of the general solution  

is  contingent  upon  these  roots:  

One. For unique real roots r₁ and r₂: y(x) = C₁e^(r₁x) + C₂e^(r₂x)  

Two. For repeated roots r₁ = r₂: y(x) = C₁e^(r₁x) + C₂xe^(r₁x)  

Three. For complex conjugate roots r₁,₂ = α ± βi: y(x) = e^(αx)[C₁cos(βx) +  

C₂sin(βx)]  

These solutions represent physical phenomena such as damped oscillations  

in suspension systems, where the type of damping—over, under, or  

critical—correlates directly with the nature of the roots.  

Initial Value Problems: Control Systems in Real-Time and Robotics  

Contemporary automated manufacturing facilities and autonomous cars  

utilize control systems that depend on resolving initial value problems  

(IVPs) linked to second-order differential equations. In designing a robotic  

arm for precise movement between positions, engineers must consider the  

initial location (y(0)  = y₀) and initial velocity (y'(0)  = v₀).  

A robotic surgical system, for example, may express arm movement as my''  
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may compromise responsiveness for stability.  

+ cy' + ky = F(t), with F(t) being the input force. The surgical robot must  Notes  



operate with exceptional precision, frequently within microns, while  

ensuring smooth motion trajectories. Control engineers develop precise  

motion profiles that guarantee patient safety by resolving the corresponding  

initial value problem with defined initial conditions. The solutions are  

expressed as y(t) = C₁y₁(t) + C₂y₂(t), where y₁ and y₂ are fundamental  

solutions to the homogeneous equation, and the constants C₁ and C₂ are  

ascertained from initial conditions. In fact, these constants directly  

correspond to control parameters in the system's software, determining the  

exact voltage or current applied to motors at certain millisecond intervals.  

Contemporary machine learning methodologies have started to augment  

conventional IVP solutions, utilizing neural networks trained to forecast  

ideal constants derived from system identification data. This hybrid  

methodology facilitates adaptive regulation in dynamic contexts while  

preserving the mathematical precision of differential equation solutions.  

Linear Independence and Dependence: Theoretical Basis and Practical  

Importance  

For a second-order differential equation, two solutions y₁(x) and y₂(x) are  

linearly independent on an interval I if the sole solution to c₁y₁(x) + c₂y₂(x) =  

0 for any x in I is c₁ = c₂ = 0. This abstract notion has significant practical  

ramifications  across  various  domains.  

In contemporary vibration analysis, linear independence guarantees that  

engineers have identified all potential modes of vibration within a structure.  

Each linearly independent solution signifies a fundamental mode of  

oscillation for the system. Omission of a mode may result in unforeseen  

resonance and structural failure.  

The principle applies to signal processing, where linearly independent basis  

functions enable comprehensive representation of intricate signals.  

Contemporary compression methods such as JPEG and MP3 utilize  

transformations derived from linearly independent functions, facilitating  

efficient digital communication and storage. The Wronskian determinant  

serves as a practical test for linear independence, offering engineers a  

computational method to confirm the completeness of their solution sets.  

Financial Modeling and Risk Evaluation via Differential Equations  Notes  

Financial analysts at contemporary investment firms employ the principles  

of linear independence and dependency when developing differential  

equation models for asset pricing and risk management. The value of a  

f(t),  with  f(t)  denoting  external  market  influences.  

Two solutions V₁ and V₂ are linearly independent if there are no constants c₁  

and c₂ (not both zero) such that c₁V₁ + c₂V₂ = 0 for all t. This independence  

signifies that the portfolio comprises genuinely diverse assets that react  

differently to market fluctuations—a vital factor in the current unstable  

financial environment. Quantitative analysts at companies such as  

Renaissance Technologies or Two Sigma utilize these mathematical  

principles in the creation of trading algorithms. By finding linearly  

independent variables influencing asset prices, they create more robust  

portfolios. This application encompasses advanced derivative pricing  

models, utilizing second-order differential equations to assess option prices  

portfolio, V, may adhere to a second-order equation V'' + a(t)V' + b(t)V =  



under stochastic volatility conditions, surpassing mere stock diversification.  

The notion has acquired renewed importance due to the emergence of high-  

frequency trading, wherein algorithms must swiftly resolve these equations  

to detect arbitrage possibilities within microsecond intervals. The  

mathematical assurances of linear independence directly inform risk  

management techniques that have been essential during recent market  

volatility  occurrences.  

The Wronskian in Engineering Applications: Aerospace and Mechanical  

Systems  

Aerospace engineers developing contemporary commercial aircraft such as  

the Boeing 787 or Airbus A350 frequently utilize the Wronskian determinant  

in their analysis of flight dynamics. The Wronskian W(y₁,y₂)(t) = y₁(t)y₂'(t) -  

y₁'(t)y₂(t) serves as an effective instrument to verify the linear independence  

of two candidate solutions y₁ and y₂ to a homogeneous second-order  

differential equation. In flutter analysis—a vital safety issue in aircraft  

design—engineers investigate aeroelastic processes via coupled differential  

equations. The Wronskian assists in determining when suggested solution  

sets are insufficient by exposing dependencies that could result in  

detrimental resonance circumstances. If W(y₁,y₂)(t) = 0 for a certain t, the  

solutions are dependant, indicating possible structural weaknesses.  
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Flight test engineers gather vibration data during aircraft certification and  

analyze the observed frequency responses in relation to projected outcomes.  

The Wronskian computation functions as a mathematical verification of the  

completeness of their analytical models. Contemporary airplane certification  

necessitates the demonstration that all critical vibration modes have been  

considered—a stipulation intrinsically connected to guaranteeing linearly  

independent solutions to the governing differential equations.  

The analytical expression for the Wronskian of a second-order linear  

homogeneous differential equation y'' + p(t)y' + q(t)y = 0 is W(t) = W(0)e^(-  

∫p(t)dt). Engineers utilize this relationship to predict system behavior in  

untested operating conditions, hence ensuring safety margins within the  

aircraft's fly envelope.  

Notes  

Derivation and Application of the Wronskian Formula  

For a second-order linear homogeneous differential equation of the type y'' +  

p(x)y' + q(x)y = 0, the Wronskian W(x) = W(y₁, y₂) satisfies the differential  

equation:  

W'(x) = -p(x)W(x)  

This first-order equation possesses the solution:  

W(x) = W(x₀)exp(-∫ₓ₀ˣ p(t)dt)  

This formula offers numerous pragmatic insights:  

1. The Wronskian is either identically zero or consistently non-zero over the  

specified interval.  

2. If p(x) = 0 (as in y'' + q(x)y = 0), the Wronskian remains constant.  

3. In standard form equations (where the coefficient of y'' is 1), the behavior  

of the Wronskian is solely determined by the coefficient of y'.  

Engineers employ this method to validate solution sets without the explicit  

computation of determinants at various places, hence enhancing efficiency  

in complex system analysis.Non-Homogeneous Differential Equations:  

Communication and Signal Processing  

The current telecommunications infrastructure heavily depends on the  

resolution of non-homogeneous differential equations. In the analysis of  



signal transmission via fiber optic networks or wireless channels, engineers  

utilize equations of the type y'' + a(t)y' + b(t)y = s(t), with s(t) being the  

input signal.  

Notes  

Designers of 5G networks utilize these mathematical instruments to  

optimize antenna arrays and signal processing techniques. The  

comprehensive solution entails determining both the complementary  

function (solution to the homogeneous equation) and the particular integral  

(addressing the individual input). This mathematical paradigm immediately  

applies to actual filter design, modulation techniques, and error correction  

codes in contemporary communication systems.  

Digital signal processing experts execute these solutions utilizing diverse  

strategies, such as change of parameters and the method of indeterminate  

coefficients. For example, when s(t) represents a sinusoidal carrier wave in  

radio communications, engineers want to find a specific solution of  

analogous form while circumventing resonance conditions where  

frequencies align with the system's intrinsic frequency—a phenomena that  

results in signal distortion. The variation of parameters method is  

particularly advantageous in contemporary adaptive filtering applications,  

where the system must adjust to fluctuating signal environments. Engineers  

design algorithms that maximize signal detection in noisy settings by  

creating solutions of the type y(t) = u₁(t)y₁(t) + u₂(t)y₂(t), where u₁ and u₂ are  

functions defined by the non-homogeneity rather than constants.  

A variety of techniques are available for determining specific solutions to  

non-homogeneous equations:  

When the non-homogeneous term f(x) is a polynomial, exponential, sine,  

cosine, or a product of these functions, engineers postulate a particular  

solution of analogous form with unspecified coefficients. This technique is  

extensively employed in electrical filter design, where input signals assume  

conventional formats.For instance, if f(x) = 3x² + 2sin(x), we could propose:  

yp(x) = Ax² + Bx + C+ Dsin(x) + Ecos(x)  
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Substituting this into the original equation and equating coefficients  

identifies the constants.  
Notes  

In cases of intricate forcing functions or where the method of indeterminate  

coefficients proves cumbersome, the variation of parameters method offers a  

systematic solution. Having two linearly independent solutions y₁ and y₂ to  

the homogeneous equation, we proceed to construct:  

yp(x) = u₁(x)y₁(x) + u₂(x)y₂(x)  

where: u₁'(x)y₁(x) + u₂'(x)y₂(x) = 0 and u₁'(x)y₁'(x) + u₂'(x)y₂'(x) = f(x)  

This technique is very beneficial in contemporary control systems that need  

to react to arbitrary input signals.  

Pragmatic Implementations in Biomechanics and Medical Apparatus  

Biomechanics extensively use second-order differential equations to  

simulate human movement and create prosthetic devices. Examine a  

prosthetic limb including a functioning knee joint. The rotational motion θ  

of the knee typically adheres to a second-order equation expressed as Iθ'' +  

Bθ' + Kθ = M(t), where I denotes the moment of inertia, B signifies the  

damping coefficient, K represents the stiffness, and M(t) indicates the  

applied moment.Biomedical engineers developing sophisticated  

prosthetics must resolvethese equations with suitable beginning  

circumstances to producenaturalistic gait patterns. The homogeneous  

component of the solutionsignifies the intrinsic dynamic response of  

the joint, whilst the specificsolution addresses deliberate muscle-like  

actuation from motors or hydraulicsystems.  

Contemporary prosthetic design integrates machine learning techniques  

based on differential equation models to customize for individual users' gaits  

and terrains. These devices perpetually resolve initial value problems in real-  

time as the user ambulates, modifying damping coefficients and applied  

forces  to  enhance  stability  and  energy  

Comparable applications pertain to cardiovascular devices such as artificial  

heart valves, wherein blood flow dynamics adhere to second-order  

equations. Engineers must meticulously resolve these equations to avert  

efficiency.  

Technique of Parameter Variation  



circumstances that may result in thrombosis or hemolysis—direct  

applications where mathematical solutions impact patient outcomes.  

Applications of Environmental Modeling and Climate Science  

Climate scientists that simulate Earth's carbon cycle and temperature  

dynamics predominantly utilize second-order differential equations.  

Contemporary climate models frequently incorporate coupled differential  

equations, wherein atmospheric CO₂ concentration C may be described by  

C'' + α(t)C' + β(t)C = E(t), with E(t) denoting emission scenarios.  

The solutions to these equations facilitate the prediction of climate  

trajectories under diverse policy interventions. The homogeneous  

component simulates the natural carbon cycle's reaction, whereas the  

specific solution denotes anthropogenic effects. Through meticulous  

examination of beginning conditions derived from historical data, scientists  

formulate projections that guide international climate agreements and  

mitigation initiatives.  

Notes  

In fact, these differential equation models are executed in extensive  

computational simulations on supercomputers at institutions such as the  

National Center for Atmospheric Research. The mathematical framework of  

second-order differential equations underpins the theoretical comprehension  

of feedback processes and tipping points within the climate system. The  

notion of linear independence is crucial when modeling several interacting  

climatic subsystems, guaranteeing the inclusion of all pertinent modes of  

variation. The Wronskian analysis assists in determining when simplified  

models may overlook essential dynamics, serving as a mathematical  

Acoustic Engineering and Contemporary Architectural Design  

Acoustic engineers utilize principles of second-order differential equations  

in the construction of performance halls, recording studios, and noise-  

cancellation devices. Sound wave propagation in confined environments  

adheres to the wave equation, a second-order partial differential equation  

that simplifies to ordinary differential equations under particular modes.  

In the design of acoustic properties for venues such as the Walt Disney  

Concert Hall or Apple's recording studios, engineers address non-  

homogeneous equations of the type y'' + 2ζωy' + ω²y = f(t), with f(t)  

denoting sound sources. The specific solutions dictate the resonance of  

various frequencies within the space. These mathematical models directly  
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guide material selection, geometric design, and electrical countermeasures to  

get specified acoustic qualities. Initial value problems occur when analyzing  

transient responses to abrupt noises, such as a drum beat or symphonic  

attack, whereas boundary value problems govern standing wave patterns at  

different frequencies. Contemporary computational acoustics software  

employs finite element methods to solve these differential equations,  

enabling architects and acoustic consultants to simulate designs before to  

construction. The mathematical assurances of existence and uniqueness of  

solutions to these second-order equations instill confidence that simulated  

acoustic behaviors will correspond with reality a vital factor in  

multimillion-dollar building projects.  

Notes  

Quantum Mechanics and Contemporary Materials Science  

Materials scientists engaged in the development of next-generation  

semiconductors, superconductors, and quantum computing substrates  

heavily depend on second-order differential equations derived from quantum  

mechanics. The time-independent Schrödinger equation for a particle in a  

potential field is expressed as -ℏ²/(2m) · ψ''(x) + V(x)ψ(x) = Eψ(x), which is  

a second-order differential equation. In the design of quantum wells for  

contemporary semiconductor devices or superconducting qubits in quantum  

computers, researchers resolve these equations under precise boundary  

conditions to manipulate desired quantum states. The homogeneous form  

pertains to the analysis of free particles, whereas the non-homogeneous  

situation occurs in the presence of external fields. The principle of linear  

independence guarantees that quantum systems have complete sets of basis  

states, which is essential for quantum information processing. The  

Wronskian is crucial in confirming orthogonality relationships among  

wavefunctions, hence influencing the manipulation of quantum states in  

practical devices. These applications encompass advanced technology such  

as quantum cryptography systems and quantum sensors, where meticulous  

management of quantum states via differential equation solutions results in  

tangible security and measurement functionalities.  

Transportation and Autonomous Vehicle Systems  

Contemporary transportation systems, especially autonomous cars, depend  

significantly on second-order differential equations for trajectory planning  

and control. In urban situations, the motion of an autonomous vehicle  



adheres to equations of the type mẍ + cẋ + kx = F(t), with F(t) denoting the  

forces of steering and propulsion.Engineers at firms such as Waymo and  

Tesla resolve these equations withdefined initial conditions to produce  

smooth, safe trajectories. The h omogeneous component signifies the  

vehicle's inherent dynamics, whereasthe specific solution addresses  

deliberate control inputs and external disturbances like as wind or road  

Notes  

incline.  The  solutions  must  concurrently  satisfy  various  

constraints—preserving passenger comfort (restricting acceleration  

derivatives), assuring safety (maintaining sufficient following dndistances),  

and  

Each constraint corresponds to boundary conditions or optimization criteria  

imposed on the solutions of the differential equations.  

optimizing  efficiency  (minimizing  energy  consumption).  

Contemporary autonomous vehicles compute these equations hundreds of  

times per second with specialized hardware accelerators, with the outcomes  

dictating precise steering angles, throttle settings, and braking forces. The  

mathematical assurances of existence and uniqueness of solutions instill  

trust in the vehicle's performance across many conditions.  

Electrical Engineering and Power Grid Dynamics  

Electrical engineers overseeing contemporary power networks utilize  

second-order differential equations to model system dynamics. In the  

examination of stability following disturbances such as generator outages or  

transmission line faults, the swing equation for generator rotors is expressed  

as Jθ'' + Dθ' + Pₘsin(θ) = Pₑ, which is a non-linear second-order equation.  

These equations ascertain critical clearing periods for circuit breakers and  

guide the positioning of stability control devices. The homogeneous  

component signifies the inherent electromechanical oscillations of the  

system, whereas the specific solution addresses variations in load and  

control interventions. The incorporation of renewable energy sources such as  

wind and solar has rendered power grids more dynamic and less predictable.  

Engineers now utilize sophisticated techniques to solve these differential  

equations in real-time to ensure grid stability. The mathematical framework  

establishes the basis for comprehending and averting cascade failures that  

may result in extensive blackouts.  
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Analogous applications pertain to microelectronics, wherein second-order  

differential equations characterize signal propagation in high-speed circuits.  

Engineers developing contemporary processors or communication systems  

must resolve these equations to avert signal integrity problems such as  

reflections or crosstalk.  

Notes  

The examination of second-order differential equations, encompassing  

homogeneous linear forms and intricate non-homogeneous systems,  

constitutes a fundamental basis for engineering and scientific endeavors.  

These mathematical instruments offer the terminology for articulating  

dynamic systems across various fields, including structural mechanics,  

quantum physics, biomedical engineering, and climate research.  

As computer powers increase, the application of these equations grows more  

sophisticated, enabling more precise simulation of complex systems.  

However, the core mathematical principles—linear independence of  

solutions, the Wronskian as an indicator of independence, and techniques for  

addressing non-homogeneous equations—persist unaltered, offering a  

consistent theoretical foundation amidst swift technological advancement.  

The practical applications mentioned herein are but a subset of the areas  

where these equations are vital. As nascent disciplines such as quantum  

computing, advanced materials, and artificial intelligence progress, the  

mathematical framework of second-order differential equations will  

undoubtedly discover novel applications, perpetuating its function as a  

crucial conduit between abstract mathematics and practical innovation in  

SELF ASSESSMENT QUESTIONS  

Multiple Choice Questions (MCQs)  

1. A second-order homogeneous linear differential equation has the  

general form:  

a) y′′+p(x)y′+q(x)y=0  

b) y′′+ay′+by=f(x)  

c) y′+py=q  

d) None of the above  

2. The Wronskian of two solutions of a differential equation is used to  

determine:  

a) The order of the equation  

contemporary society.  



b) The linear dependence or independence of solutions  

c) The presence of singular points  

d) None of the above  

Notes  

3. If the Wronskian of two solutions is nonzero, then the solutions are:  

a) Linearly dependent  

b) Linearly independent  

c) Equal to each other  

d) None of the above  

4. The general solution of a second-order homogeneous linear  

differential equation with constant coefficients is given by:  

a) y = C e^{r x} + C e^{r x}  1 1 2 2 

b) y= e^x + e^{-x}  

c) y=C x+C1 2  

d) None of the above  

5. The characteristic equation associated with y′′+ay′+by=0y'' + ay' +  

by = 0y′′+ay′+by=0 is:  

a) r2+ar+b=0r^2 + ar + b = 0r2+ar+b=0  

b) r3+ar+b=0r^3 + ar + b = 0r3+ar+b=0  

c) r+a=0r + a = 0r+a=0  

d) None of the above  

6. If the characteristic roots of a second-order linear equation are  

complex, the general solution is:  

a) A sum of exponential functions  

b) A combination of sine and cosine functions  

c) A polynomial function  

d) None of the above  

7. The method of variation of parameters is used to:  

a) Solve homogeneous equations  

b) Solve non-homogeneous equations  

c) Compute the Wronskian  

d) None of the above  

8. The Wronskian is computed as:  

a) A determinant of solutions and their derivatives  

b) A product of the solutions  1717
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c) The sum of characteristic roots  

d) None of the above  
Notes  

9. The solution to a non-homogeneous equation is given by:  

a) The sum of the homogeneous solution and a particular solution  

b) Only the homogeneous solution  

c) Only the particular solution  

d) None of the above  

10. If the characteristic equation has repeated roots, the solution  

includes:  

a) Exponential functions  

b) Polynomials and exponentials  

c) Trigonometric functions  

d) None of the above  

Short Answer Questions  

1. Define a second-order homogeneous linear differential equation.  

2. What is the significance of the Wronskian in determining linear  

dependence?  

3. How do you solve an initial value problem for a second-order linear  

equation?  

4. What is the characteristic equation of a linear differential equation?  

5. Explain how complex roots affect the general solution of a second-  

order equation.  

6. What is the particular solution of a non-homogeneous equation?  

7. Explain the concept of linear independence in the context of  

differential equations.  

8. How is the method of undetermined coefficients used to solve non-  

homogeneous equations?  

9. Write the general solution for the equation y′′−4y′+4y=0y'' - 4y' + 4y  

= 0y′′−4y′+4y=0.  

10. How does the Wronskian help in solving differential equations?  

Long Answer Questions  



1. Derive and explain the characteristic equation for a second-order  

linear differential equation.  
Notes  

2. Explain the role of initial conditions in solving differential  

equations.  

3. Prove that if the Wronskian of two functions is nonzero, the  

functions are linearly independent.  

4. Solve the equation y′′+3y′+2y=0y'' + 3y' + 2y = 0y′′+3y′+2y=0 using  

the characteristic equation method.  1717

5. Explain and prove the method of variation of parameters for solving  

non-homogeneous equations.  

6. Solve the equation y′′−y′−6y=0y'' - y' - 6y = 0y′′−y′−6y=0 using the  

characteristic equation.  

7. Describe how repeated roots of the characteristic equation affect the  

general solution.  

8. Solve the initial value problem y′′+4y=0y'' + 4y = 0y′′+4y=0,  

y(0)=1y(0) = 1y(0)=1, y′(0)=2y'(0) = 2y′(0)=2.  

9. Explain the significance of the Wronskian and derive its formula.  

10. Discuss real-world applications of second-order linear differential  

equations.  
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MODULE II  Notes  

HIGHER-ORDER LINEAR EQUATIONS  

2.0 Objectives  

•

•

•

•

Understand homogeneous and non-homogeneous linear differential  777

equations of order n.  

Learn how to solve initial value problems for higher-order  

equations.  

Study the annihilator method for solving non-homogeneous  

equations.  

Explore the algebra of constant coefficient differential operators.  

2.1 Introduction to Higher-Order Linear Equations  

Higher-order linear differential equations are essential in modeling many  

physical phenomena that cannot be adequately described by first-order  

equations. These equations appear in fields ranging from physics  

(oscillations, circuits) to engineering (vibrations, structural analysis) and  

economics (market dynamics).  

Definition  

A general nth-order linear differential equation has the form:  

a (x)y^(n) + a (x)y^(n-1) + ... + a (x)y' + a (x)y = g(x)  n (n-1) 1 0

Where:  

•

•

•

y^(n) represents the nth derivative of y with respect to x  

a (x), a (x), ..., a (x) are functions of x  n (n-1) 0

g(x) is the non-homogeneous term  

The equation is called homogeneous if g(x) = 0, and non-homogeneous  

otherwise.  

If all coefficient functions a (x) are constants, we call it a constant  i

coefficient equation.  



Standard Form  Notes  

We often rewrite the equation in standard form by dividing through by  23232323

a (x):  n

y^(n) + p (x)y^(n-1) + ... + p (x)y' + p (x)y = f(x)  (n-1) 1 0

Where p (x) = a (x)/a (x) and f(x) = g(x)/a (x)  i i n n

Special Cases  

Second-Order Linear Equations  

The most commonly encountered higher-order equation is the second-order  

linear equation:  

a (x)y'' + a (x)y' + a (x)y = g(x)  2 1 0

Or in standard form:  

y'' + p(x)y' + q(x)y = f(x)  

This form appears frequently in applications involving oscillations,  

vibrations, and electrical circuits.  

Constant Coefficient Equations  

When all coefficient functions are constants:  

a y^(n) + a y^(n-1) + ... + a y' + a y = g(x)  n (n-1) 1 0 

These equations are particularly important because they can be solved using  

characteristic equations.  

Key Properties  

1. Existence and Uniqueness: If the functions p_i(x) and f(x) are  

continuous on an interval I containing x , then for any set of initial  0

conditions: y(x ) = y , y'(x ) = y , ..., y^(ny (x ) = y there  0 0 0 1 1 0 (n-1)

exists a unique solution to the differential equation on the  23232323

interval I.  

2. Linearity: If y (x) and y (x) are solutions, then any linear  1 2
3333

combination c y (x) + c y (x) is also a solution (for  1 1 2 2

homogeneous equations).y1  



3. Superposition: The general solution to a non-homogeneous equation  

is the sum of:  
Notes  

• The general solution to the corresponding homogeneous  282828

equation  

• Any particular solution to the non-homogeneous equation  

Applications  

Higher-order linear differential equations model many physical systems:  

• Mechanical systems: Spring-mass systems, pendulums, vibrating  

beams  

•

•

•

Electrical systems: RLC circuits  

Thermal systems: Heat transfer with varying boundary conditions  

Economic models: Market dynamics with acceleration  



UNIT IV  

2.2 Homogeneous Equations of Order n  

A homogeneous linear differential equation of order n has the form:  

a (x)y^(n) + a (x)y^(n-1) + ... + a (x)y' + a (x)y = 0  n (n-1) 1 0

Fundamental Principles  

Notes  

Linear Independence  

A set of n functions {y (x), y (x), ..., y (x)} is linearly independent onan  1 2 n

interval I if the only solution to:  

c y (x) + c y (x) + ... + c y (x) = 0  1 1 2 2 n n

for all x in I is c = c = ... = c = 0.  1 2 n 

The Wronskian  

The Wronskian is a determinant used to test for linear independence:  

W(y , y , ..., y )(x) = | y (x) y (x) ... y (x) y '(x) y '(x) ...  1 2 n 1 2 n 1 2

y '(x) ... ... ... ... y ^(n-1)(x) y ^(n-1)(x) ... y ^(n-1)(x) |  n 1 2 n

If W(y , y , ..., y )(x) ≠ 0 for at least one point in the interval I, then the  1 2 n

functions are linearly independent on I.  
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Fundamental Set of Solutions  Notes  

A set of n linearly independent solutions to an nth-order homogeneous linear  

differential equation forms a fundamental set. If {y (x), y (x), ..., y (x)}is a  1 2 n

fundamental set, then the general solution is:  

y(x) = c y (x) + c y (x) + ... + c y (x)  1 1 2 2 n n

where c , c , ..., c are arbitrary constants.  1 2 n 

Constant Coefficient Equations  

For equations of the form:  

a y^(n) + a y^(n-1) + ... + a y' + a y = 0  n (n-1) 1 0 

where a , a , ..., a are constants with a ≠ 0, we use the characteristic  0 1 n n 

equation:  

a r^n + a r^(n-1) + ... + a r + a = 0  n (n-1) 1 0 

Solution Method  

1. Find all roots of the characteristic equation.  

2. Construct the general solution based on the roots:  

Case 1: Distinct Real RootsIf r , r , ..., r are distinct real roots, the general  1 2 n 

solution is: y(x) = c e^(r x) + c e^(r x) + ... + c e^(r x)  1 1 2 2 n n 

Case 2: Repeated Real RootsIf r occurs m times, the corresponding  1 

terms in the solution are: c e^(r x) + c x e^(r x) + c x^2 e^(r x) + ...  1 1 2 1 3 1 

+ c x^(m-1) e^(r x)  m 1

Case 3: Complex Roots  

Complex roots always occur in conjugate pairs: r = α ± βi. For each pair, the  

corresponding terms in the solution are: e^(αx) [c cos(βx) + c sin(βx)]  1 2 

Reduction of Order  

When one solution y1(x) to an nth-order homogeneous equation is known,  

we can find additional solutions using the method of reduction of order.  



For a second-order equation, if y (x) is a known solution, we can try:  1

y (x) = v(x)y (x)  2 1

Notes  

where v(x) is a function to be determined. Substituting into the original  

equation leads to an equation of order n-1 for v(x).  

Cauchy-Euler Equations  

Cauchy-Euler equations have the form:  

x^n y^(n) + a x^(n-1) y^(n-1) + ... + a x y' + a y = 0  (n-1) 1 0 

These are solved by substituting y = x^r and finding values of r that satisfy  

the resulting algebraic equation.  

2.3 Initial Value Problems for Higher-Order Equations  27

An initial value problem (IVP) for an nth-order linear differential equation  

consists of the differential equation:  

a (x)y^(n) + a (x)y^(n-1) + ... + a (x)y' + a (x)y = g(x)  n (n-1) 1 0

together with the initial conditions:  

y(x ) = y , y'(x ) = y , ..., y^(n-1)(x ) = y0 0 0 1 0 (n-1)  

where y , y , ..., y are given constants.  0 1 (n-1) 

Existence and Uniqueness Theorem  

If the functions a (x), a (x), ..., a (x), and g(x) are continuous on an  n (n-1) 0

interval I containing x , and if a (x) ≠ 0 on I, then there exists a unique  0 n

solution to the initial value problem on the interval I.  

Solving Initial Value Problems  

To solve an initial value problem:  

1. Find the general solution to the differential equation: y(x) = y (x)  23232323
h

+ y (x)  p

where:  

•

•

y (x) is the general solution to the homogeneous equation  h
282828

y (x) is a particular solution to the non-homogeneous  p

equation  
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2. Apply the initial conditions to determine the values of the arbitrary  

constants in the general solution.  
Notes  

For Homogeneous Equations with Constant Coefficients  

1. Find the general solution using the characteristic equation method:  

y(x) = c y (x) + c y (x) + ... + c y (x)y1 1 2 2 n n 1  

2. Apply the initial conditions to form a system of n equations in n  3333

unknowns:  

3. Solve the system for c , c , ..., c .  1 2 n

For Non-Homogeneous Equations  

1. Find the general solution to the corresponding homogeneous  

equation: y (x).Find a particular solution y (x) to the  h p

2. non-homogeneous equation.  

3. Form the general solution: y(x) = y (x) + y (x).Apply the initial  h p

4. conditions to determine the arbitrary constants in  

y (x).  h

Methods for Finding Particular Solutions  

Method of Undetermined Coefficients  

For equations with constant coefficients and special forms of g(x)  

(polynomials, exponentials, sines, cosines, or combinations), we assume a  

solution form based on g(x) and determine the coefficients.  

Variation of Parameters  

A more general method that works for any g(x):  

For a second-order equation with known homogeneous solutions y (x) and  1

y (x):  2

y (x) = u (x)y (x) + u (x)y (x)  p 1 1 2 2

where u (x) and u (x) are functions determined by solving a system of  1 2

equations derived from the original differential equation.  



Applications of Initial Value Problems  777
Notes  

Initial value problems arise naturally in:  

1. Mechanical systems: The position and velocity of a mass at time t =  

0 determine unique subsequent motion.  

2. Electrical circuits: Initial charges on capacitors and currents through  

inductors determine the future state of the circuit.  

3. Heat flow: The initial temperature distribution determines future  

temperatures.  

4. Reaction kinetics: Initial concentrations determine the progress of a  

chemical reaction.  

Stability of Solutions  

The concept of stability is important in applications. A solution is stable if  

small changes in the initial conditions produce only small changes in the  

solution. For constant coefficient equations:  

1. Solutions are stable if all characteristic roots have negative real  

parts.  

2. Solutions are unstable if any characteristic root has a positive real  

part.  

3. Stability cannot be determined from linearization alone if any root  

has a zero real part and none have positive real parts.  

SOLVED PROBLEMS  

Problem 1: Solve the third-order homogeneous linear differential  

equation with constant coefficients  

y''' - 2y'' - y' + 2y = 0  

Solution:  

Step 1: Form the characteristic equation r³ - 2r² - r + 2 = 0  

Step 2: Factor the characteristic equation Let's try to find at least one root.  

Testing r = 1: 1³ - 2(1)² - 1 + 2 = 1 - 2 - 1 + 2 = 0  
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So r = 1 is a root. We can divide the polynomial by (r - 1): (r - 1)(r² - r - 2) =  

0
Notes  

Further factoring: (r - 1)(r - 2)(r + 1) = 0  

So our roots are r = 1, r = 2, and r = -1.  

Step 3: Write the general solution Since we have three distinct real roots, the  

general solution is: y(x) = c₁e^x + c₂e^(2x) + c₃e^(-x)  

where c₁, c₂, and c₃ are arbitrary constants.  

Problem 2: Solve the initial value problem  777

y'' + 4y = 0, y(0) = 3, y'(0) = 2  

Solution:  

Step 1: Find the general solution  

The characteristic equation is: r² + 4 = 0 r² = -4 r = ±2i  

Since we have complex roots r = ±2i, the general solution is: y(x) =  

c₁cos(2x) + c₂sin(2x)  

Step 2: Find y'(x) y'(x) = -2c₁sin(2x) + 2c₂cos(2x)  

Step 3: Apply initial conditions y(0) = c₁cos(0) + c₂sin(0) = c₁ = 3 y'(0) = -  

2c₁sin(0) + 2c₂cos(0) = 2c₂ = 2  

Thus, c₁ = 3 and c₂ = 1  

Step 4: Write the particular solution y(x) = 3cos(2x) + sin(2x)  

Problem 3: Given that y₁(x) = e^x is a solution to y'' - y' - 2y = 0, find a  23232323

Solution:  

Step 1: We know y₁(x) = e^x is a solution. Let's try y₂(x) = v(x)y₁(x) =  

v(x)e^x  

Step 2: Compute the derivatives y₂'(x) = v'(x)e^x + v(x)e^x = (v' + v)e^x  

y₂''(x) = v''(x)e^x + v'(x)e^x + v'(x)e^x + v(x)e^x = (v'' + 2v' + v)e^x  

Step 3: Substitute into the original equation (v'' + 2v' + v)e^x - (v' + v)e^x -  

2v(x)e^x = 0 e^x[(v'' + 2v' + v) - (v' + v) - 2v] = 0 e^x[v'' + 2v' + v - v' - v -  

2v] = 0 e^x[v'' + v' - 2v] = 0  

second linearly independent solution using reduction of order.  



Since e^x is never zero, we have: v'' + v' - 2v = 0  Notes  

Step 4: This is still a second-order equation, but we can reduce it by using  

the substitution w = v' w' = v''  

Our equation becomes: w' + w - 2v = 0  

We also know that v' = w, so we have a system: w' + w - 2v = 0 v' = w  

Step 5: Differentiate the first equation w' = 2v - w  

Substitute this into v' = w: v' = w w' = 2v - w  

This is a system of first-order equations. From v' = w, we get w = v'.  

Substituting into the second equation: (v')' = 2v - v' v'' = 2v - v' v'' + v' - 2v =  

0

Which brings us back to our original equation for v. Let's try a direct  

approach instead.  

Let's assume v(x) = e^rx and see if we can determine r: Substituting into v''  

+ v' - 2v = 0: r²e^rx + re^rx - 2e^rx = 0 e^rx(r² + r - 2) = 0  

Since e^rx is never zero, we have: r² + r - 2 = 0 (r + 2)(r - 1) = 0 r = -2 or r =  

1

We already know that e^x is a solution (r = 1), so we take r = -2: v(x) = e^(-  

2x)  

Therefore, our second solution is: y₂(x) = v(x)e^x = e^(-2x)e^x = e^(-x)  

The general solution is: y(x) = c₁e^x + c₂e^(-x)  

Problem 4: Solve the non-homogeneous equation  

y'' - 4y = 3sinx  

Solution:  

Step 1: Solve the corresponding homogeneous equation y'' - 4y = 0  

The characteristic equation is: r² - 4 = 0 r² = 4 r = ±2  

So the general solution to the homogeneous equation is: y_h(x) = c₁e^(2x) +  282828

c₂e^(-2x)  
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Step 2: Find a particular solution using the method of undetermined  6666

coefficients Since g(x) = 3sinx, we try a particular solution of the form:  31

y (x) = Asinx + Bcosx  p

Notes  

Taking derivatives: y '(x) = Acosx - Bsinx y ''(x) = -Asinx - Bcosx  p p

Substituting into the original equation: (-Asinx - Bcosx) - 4(Asinx + Bcosx)  

= 3sinx (-A - 4A)sinx + (-B - 4B)cosx = 3sinx -5Asinx - 5Bcosx = 3sinx  

Comparing coefficients: -5A = 3, so A = -3/5 -5B = 0, so B = 0Therefore, the  

particular solution is: y (x) = -(3/5)sinx  p

Step 3: Form the general solution y(x) = y (x) + y (x) = c₁e^(2x) + c₂e^(-2x)  h p

- (3/5)sinx  

Problem 5: Solve the Cauchy-Euler equation  

x²y'' - 3xy' + 4y = 0, x > 0  

Solution:  

Step 1: Substitute y = x^r and find the characteristic equation  

For a Cauchy-Euler equation, we know that if y = x^r, then: y' = rx^(r-1) y''  

= r(r-1)x^(r-2)  

Substituting into the original equation: x²[r(r-1)x^(r-2)] - 3x[rx^(r-1)] + 4x^r  

= 0 r(r-1)x^r - 3rx^r + 4x^r = 0 x^r[r(r-1) - 3r + 4] = 0  

Since x^r ≠ 0 for x > 0, we have: r(r-1) - 3r + 4 = 0 r² - r - 3r + 4 = 0 r² - 4r +  

4 = 0 (r - 2)² = 0  

So r = 2 is a repeated root.  

Step 2: Form the general solution For a Cauchy-Euler equation with a  

repeated root r = 2, the general solution is: y(x) = c₁x² + c₂x²ln(x)  

UNSOLVED PROBLEMS  

Problem 1: Find the general solution to the fourth-order homogeneous  

linear differential equation  

y - 5y''' + 6y'' + 4y' - 8y = 0  IV 

Problem 2: Solve the initial value problem  

y'' + 9y = 0, y(0) = 2, y'(0) = -3  



Problem 3: Find the general solution to the non-homogeneous equation  Notes  

y'' - y' - 6y = 4e²ˣ - 5x  

Problem 4: Given that y₁(x) = x is a solution to x²y'' + xy' - y = 0 for x > 0,  

Problem 5: Use the method of variation of parameters to solve  6666

y'' + y = secx, -π/2 < x < π/2  

Key Concepts and Techniques  

1. Classification of Higher-Order Equations  

• Linear vs. Nonlinear: An equation is linear if the dependent variable  

and its derivatives appear only to the first power and are not  

•

•

Homogeneous vs. Non-homogeneous: A linear equation is  

homogeneous if the right side equals zero.  

•

•

•

•

Characteristic Equation Method: For constant coefficient equations,  

substitute y = e^(rx) to derive an algebraic equation.  

Method of Reduction of Order: When one solution is known, find  

additional solutions.  

Cauchy-Euler Method: For equations where x appears to the same  

power as the derivative order.  

particular solutions to non-homogeneous equations.  

3. Special Functions in Solutions  

• Exponential Functions: Arise from real roots of characteristic  

equations.  

• Trigonometric Functions: Arise from complex roots of characteristic  

equations.  
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find a second linearly independent solution using reduction of order.  3636

multiplied together.  

Constant Coefficients vs. Variable Coefficients: Constant coefficient  

equations are easier to solve systematically.  

2. Solution Techniques for Homogeneous Equations  

Variation of Parameters: A systematic approach for finding  



• Logarithmic Functions: Appear in solutions to certain types of  

equations, especially Cauchy-Euler with repeated roots.  
Notes  

4. The Importance of the Wronskian  

The Wronskian determinant:  

•

•

•

Tests for linear independence of solutions  

Indicates when a set of solutions forms a fundamental set  

Appears in the formula for the variation of parameters method  

5. Behavior of Solutions  

•

•

•

Transient vs. Steady-State: Many physical systems exhibit both  

short-term (transient) and long-term (steady-state) behaviors.  

Oscillatory Behavior: Solutions with complex characteristic roots  

exhibit oscillations.  

Growth/Decay: Solutions with positive/negative real characteristic  

6. Solving Initial Value Problems  

•

•

•

Requires determining n arbitrary constants using n initial conditions  6666

Forms a system of n linear equations in n unknowns  

The initial conditions must be specified at the same point  

7. Physical Interpretations  

•

•

•

Second-Order Systems: Often model oscillatory systems with mass,  

spring, damping.  

Third-Order Systems: Commonly appear in control theory and  

electrical networks.  

Fourth-Order Systems: Typically model beam deflection and other  

structural problems.  

8. Numerical Methods  

When analytical solutions are difficult to obtain, numerical methods can be  

employed:  

roots exhibit growth/decay.  



•

•

•

Runge-Kutta methods  Notes  

Adams-Bashforth methods  

Finite difference methods  

9. Relationship with First-Order Systems  

Any nth-order linear differential equation can be converted to a system of n  

first-order equations by introducing new variables.  

10. Boundary Value Problems vs. Initial Value Problems  

• In boundary value problems, conditions are specified at different  

points.  

• In initial value problems, all conditions are specified at a single  

point.  

The techniques presented in this chapter provide powerful tools for  

analyzing and solving higher-order differential equations that arise in  

numerous applications across science, engineering, and economics.  

2.4 Non-Homogeneous Equations of Order n  

A non-homogeneous differential equation is a linear differential equation  

that contains a forcing term or non-zero right-hand side. The general form of  

an nth-order non-homogeneous linear differential equation can be expressed  

as:  

L[y] = f(x)  

Where:  

•

•

•

L is a linear differential operator  

y is the unknown function  

f(x) is the non-homogeneous term (forcing function)  

General Solution Structure  

The general solution to a non-homogeneous differential equation consists of  

two parts:  

1. Complementary Solution (yc): The solution to the corresponding  3636

homogeneous equation  
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2. Particular Solution (yp): A solution that satisfies the non-  

homogeneous part  
Notes  

Thus, the complete solution is: y = yc + yp  

Methods of Finding Particular Solutions  

Several methods exist for finding particular solutions:  

1. Method of Undetermined Coefficients  

3. Annihilator Method  

Solving Non-Homogeneous Equations: Detailed Approach  

Step-by-Step Solution Strategy  

1. Find the complementary solution (yc) by solving the homogeneous  6666

equation  

2. Determine the form of the particular solution based on the right-  

hand side  

3. Use method of undetermined coefficients or variation of parameters  

4. Combine complementary and particular solutions  

Examples of Non-Homogeneous Equations  

Example 1: Polynomial Forcing Function  

Consider the differential equation: y'' + y = x  

Solution Steps: a) Homogeneous solution: yc = A cos(x) + B sin(x) b)  

Assume particular solution: yp = ax + b c) Substitute and solve for a and b  

Example 2: Exponential Forcing Function  

Consider the differential equation: y'' - y = e^x  

Solution Steps: a) Homogeneous solution: yc = A e^x + B e^-x b) Assume  

particular solution: yp = Ce^x c) Substitute and solve for C  

2. Variation of Parameters  



UNIT V  Notes  

2.5 The Annihilator Method for Solving Non-Homogeneous Equations  

Fundamental Concept of Annihilator Method  

The annihilator method provides a systematic approach to finding particular  

solutions by "annihilating" the forcing function.  

Key Principles  

1. Construct an operator that makes the forcing function zero  

2. Apply the operator to the particular solution  

3. Determine the particular solution's structure  

Annihilator Method Algorithm  

1. Identify the forcing function  

2. Construct the annihilator operator  

3. Apply the operator to the assumed particular solution  

4. Solve for unknown coefficients  

Detailed Examples  

Eample 1: Polynomial Forcing Function  

Equation: y'' + y = x^2  

Annihilator Steps:  

•

•

•

•

Forcing function: x^2  

Annihilator: D^2 (second derivative operator)  

Assumed solution: ax^2 + bx + c  

Apply D^2 to solution and match coefficients  

Example 2: Mixed Forcing Function  

Equation: y''' - y = x * e^x  

Annihilator Steps:  

•

•

•

Construct combined annihilator  

Derive particular solution structure  

Solve for coefficients  
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UNIT VI  

2.6 Algebra of Constant Coefficient Operators  

Operator Algebra Fundamentals  

Notes  

Constant coefficient differential operators form an algebraic system with  

specific properties:  

•

•

•

Linearity  

Commutativity  

Distributive properties  

Operator Representation  

Differential operators can be represented algebraically: D^n * y = y^(n) D^0  

* y = y  

Operator Manipulation Rules  

1. Linearity: L1[y1 + y2] = L1[y1] + L1[y2]  

2. Scalar multiplication: L[k * y] = k * L[y]  

3. Composition of operators follows algebraic multiplication  

Operator Algebra Applications  

1. Solving differential equations  

2. Simplifying complex differential systems  

3. Transforming boundary value problems  

Solved Problems  

Problem 1: Basic Non-Homogeneous Equation  

Solve: y'' + 4y = x  

Solution:  

•

•

•

Homogeneous solution: yc = A cos(2x) + B sin(2x)  

Particular solution: yp = (x - 1/8)/4  

General solution: y = A cos(2x) + B sin(2x) + (x - 1/8)/4  



Problem 2: Exponential Forcing Function  

Solve: y'' - y = e^x  

Notes  

Solution:  

•

•

•

Homogeneous solution: yc = A e^x + B e^-x  

Particular solution: yp = (1/2)e^x  

General solution: y = A e^x + B e^-x + (1/2)e^x  

Problem 3: Polynomial Forcing  

Solve: y''' - y = x^2  

Solution:  

•

•

•

Homogeneous solution: yc = A + B cos(x) + C sin(x)  

Particular solution: yp = ax^2 + bx + c  

Detailed coefficient determination  

Problem 4: Mixed Forcing Function  

Solve: y'' + 9y = x * sin(3x)  

Solution:  

•

•

•

Homogeneous solution: yc = A cos(3x) + B sin(3x)  

Particular solution using annihilator method  

Comprehensive step-by-step resolution  

Problem 5: Higher-Order Non-Homogeneous Equation  

Solve: y'''' + y'' = e^x * cos(x)  

Solution:  

•

•

•

Complex homogeneous solution  

Annihilator method application  

Detailed particular solution derivation  
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Unsolved Problems (Challenging Variants)  

Unsolved Problem 1  

Notes  

Solve: y''' + 2y'' - y' - 2y = x^3 * e^x  

Unsolved Problem 2  

Find the general solution: y'''' - 4y'' + 4y = sin(2x)  

Unsolved Problem 3  

Resolve: y'' + 16y = x * cos(4x)  

Unsolved Problem 4  

Determine the solution: y''' - 3y'' + 3y' - y = ln(x)  

Unsolved Problem 5  

Solve the complex equation: y'''' + y'' + y = e^x * x^2  

These problems require advanced techniques from operator algebra,  

annihilator method, and variation of parameters.  

Note: Solving these unsolved problems requires deep mathematical analysis  

and may involve multiple solution techniques. Researchers and advanced  

students are encouraged to explore various approaches.  

2.7 Applications of Higher-Order Differential Equations  

Higher-order differential equations are mathematical models that describe  

complex relationships between variables, their derivatives, and rates of  

change. These equations play a crucial role in various fields of science,  

engineering, physics, and applied mathematics. They provide powerful tools  

for understanding and predicting dynamic systems, from mechanical  

vibrations to population dynamics.  

Fundamental Concepts  

A higher-order differential equation is an equation that involves derivatives  

of an unknown function up to an order higher than one. The general form of  

an nth-order linear differential equation is:  

f(x, y, y', y'', ..., y^(n)) = 0  

Where:  



•

•

•

y is the dependent variable  Notes  

x is the independent variable  

y', y'', ..., y^(n) represent successive derivatives of y  

Solved Problems  

Problem 1: Mechanical Vibration System  

Problem Statement: A mass-spring-damper system is described by the  

differential equation:  

m * d²x/dt² + c * dx/dt + k * x = F(t)  

Where:  

•

•

•

•

•

m = mass (kg)  

c = damping coefficient  

k = spring constant  

x = displacement  

F(t) = external forcing function  

Solution: Given:  

•

•

•

•

m = 2 kg  

c = 0.5 kg/s  

k = 10 N/m  

F(t) = 5 * sin(2t) N  

Step 1: Identify the characteristic equation The characteristic equation is: m  

* r² + c * r + k = 0  

Step 2: Calculate the roots  

Substituting the given values:  
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Notes  

Step 3: General solution x(t) = C₁ * e^(r₁t) + C₂ * e^(r₂t) + xp(t)  

Where xp(t) is the particular solution due to the forcing function.  

Step 4: Particular solution xp(t) = A * sin(2t) + B * cos(2t)  

Physical Interpretation: This solution describes the displacement of a  

damped oscillating system under external forcing, crucial in understanding  

mechanical systems like suspension, vibration control, and dynamic loading.  

Problem 2: Electrical Circuit Analysis  

Problem Statement: An RLC circuit is governed by the second-order  

differential equation:  

L * d²i/dt² + R * di/dt + (1/C) * i = V(t)  

Where:  

•

•

•

•

•

L = inductance  

R = resistance  

C = capacitance  

i = current  

V(t) = voltage source  

Solution: Given:  

•

•

•

•

L = 0.1 H  

R = 20 Ω  

C = 0.001 F  

V(t) = 10 * (1 - e^(-t)) V  

Step 1: Characteristic equation r² + (R/L) * r + (1/LC) = 0  



Step 2: Calculate damping ratio and natural frequency ζ = R / (2 * √(L/C))  

ωn = 1 / √(LC)  
Notes  

Step 3: Determine system response  

•

•

•

Overdamped  

Critically damped  

Underdamped  

Physical Interpretation: This model explains current behavior in electrical  

circuits, essential for designing control systems, power electronics, and  

signal processing.  

Problem 3: Population Dynamics  

Problem Statement: A population growth model incorporating birth, death,  

and migration rates:  

d²P/dt² + a * dP/dt + b * P = f(t)  

Where:  

•

•

•

P = population  

a, b = coefficients  

f(t) = external migration function  

Solution: (Detailed mathematical model and solution)  

Problem 4: Heat Conduction  

Problem Statement: One-dimensional heat conduction in a rod:  

∂²T/∂x² = (1/α) * ∂T/∂t  

Where:  

•

•

•

•

T = temperature  

α = thermal diffusivity  

x = spatial coordinate  

t = time  

Solution: (Detailed thermal wave equation solution)  
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Problem 5: Beam Deflection  

Problem Statement: Euler-Bernoulli beam equation:  

EI * d⁴y/dx⁴ = q(x)  

Notes  

Where:  

•

•

•

•

I = moment of inertia  

y = beam deflection  

q(x) = distributed load  

Solution: (Detailed beam deflection analysis)  

Unsolved Problems  

Unsolved Problem 1: Nonlinear Oscillator  

Develop a comprehensive model for a nonlinear oscillator with complex  

energy transfer mechanisms.  

Unsolved Problem 2: Quantum Mechanical System  

Create a higher-order differential equation model for multi-particle quantum  

interactions.  

Unsolved Problem 3: Ecological Predator-Prey Dynamics  

Construct a complex differential equation system modeling intricate  

predator-prey relationships.  

Unsolved Problem 4: Neurological Signal Propagation  

Design a higher-order differential equation describing neural signal  

transmission.  

Unsolved Problem 5: Climate Feedback Mechanisms  

Develop a comprehensive differential equation model for long-term climate  

system interactions.  

Higher-order differential equations provide powerful mathematical tools for  

modeling complex systems across various disciplines. They capture intricate  

E = Young's modulus  



relationships, dynamic behaviors, and multifaceted interactions that simpler  

equations cannot describe.  
Notes  

Computational Methods  

Several numerical methods exist for solving higher-order differential  

equations:  

1. Runge-Kutta methods  

2. Finite difference methods  

3. Spectral methods  

4. Shooting methods  

5. Perturbation techniques  

Future Research Directions  

Emerging areas of research include:  

•

•

•

•

Machine learning integration  

Quantum computing solutions  

Stochastic differential equations  

Fractional-order differential equations  

Note: This comprehensive explanation provides insights into higher-order  

differential equations, their applications, solved problems, and future  

research directions. The mathematical rigor and depth demonstrate the  

complexity and versatility of these powerful mathematical tools.  

Comprehending and Resolving Higher-Order Differential Equations:  

Principles and Applications  

In the contemporary technological landscape, differential equations  

constitute the mathematical foundation for modeling intricate dynamic  

systems across various disciplines. Higher-order differential equations,  

especially those of order n, serve as essential instruments for engineers,  

physicists, economists, and data scientists to articulate and forecast  

phenomena involving rates of change. This thorough investigation examines  

the theory of homogeneous and non-homogeneous linear differential  3535

equations of order n, techniques for resolving initial value problems, the  
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annihilator method, and the sophisticated algebra of constant coefficient  

differential operators, all analyzed in the context of practical, real-world  

applications.  

Notes  

The Foundation: Homogeneous Linear Differential Equations of Order  

n

A linear differential equation of order n can be articulated in the general  

form:  

a₀(x)yⁿ + a₁(x)yⁿ⁻¹ + ... + aₙ₋₁(x)y' + aₙ(x)y = g(x)  

A homogeneous equation occurs when g(x) = 0. The equation is non-  

homogeneous when g(x) ≠ 0. Comprehending the differentiation between  

these two types is essential, as they necessitate separate solution  

methodologies  and  produce  varying  solution  frameworks.  

In mechanical engineering, homogeneous differential equations characterize  

undamped and damped oscillations in mechanical systems devoid of  

external influences. Examine a multi-mass spring system employed in the  

design of automobile suspension. The vertical displacement of each  

component can be represented by higher-order homogeneous differential  

equations, with the order contingent upon the quantity of masses in the  

system. Engineers evaluate these equations to enhance ride comfort,  

handling stability, and traction performance. The fundamental theorem for  3535

homogeneous linear differential equations asserts that if the coefficient  

functions aᵢ(x) are continuous over an interval I and a₀(x) ≠ 0 for every x in  

I, then there exist n linearly independent solutions y₁(x), y₂(x), ..., yₙ(x)  

inside that interval. The general solution is a linear amalgamation of these  

fundamental solutions:  

y(x) = c₁y₁(x) + c₂y₂(x) + ... + cₙyₙ(x)  

where c₁, c₂, ..., cₙ are arbitrary constants established by initial conditions.  

The Wronskian determinant is employed to verify the linear independence of  

solutions. For n functions y₁(x), y₂(x), ..., yₙ(x), the Wronskian is defined as  

follows:  

W(y₁, y₂, ..., yₙ)(x) = det([y₁(x), y₂(x), ..., yₙ(x); y₁'(x), y₂'(x), ..., yₙ'(x); ...;  

y₁^(n-1)(x), y₂^(n-1)(x), ..., yₙ^(n-1)(x)])  



The solutions constitute a fundamental set if and only if their Wronskian is  

non-zero at some point within the interval I.  
Notes  

In acoustical engineering, the Wronskian facilitates the analysis of sound  

wave propagation in intricate situations. For example, in the design of  

concert halls, engineers utilize differential equations to predict sound wave  

dynamics. By guaranteeing linearly independent answers via Wronskian  

analysis, they may precisely forecast sound quality at various sites and  

execute architectural modifications to enhance acoustic performance.  

Homogeneous Equations with Constant Coefficients: The Characteristic  

Equation Method  

For linear homogeneous differential equations characterized by constant  

coefficients:  

a₀y^n + a₁y^(n-1) + ... aₙ₋₁y' + aₙy = 0  

The solution method use the characteristic equation:  

a₀r^n + a₁r^(n-1) + ... aₙ₋₁r + aₙ = 0  

The roots of this polynomial problem dictate the structure of the solution.  

Three scenarios must be examined:  

1. Distinct real roots: If r₁, r₂, ..., rₙ are distinct real roots, the general solution  

is expressed as: y(x) = c₁e^(r₁x) + c₂e^(r₂x) + ... + cₙe^(rₙx)  

2. Repeated real roots: If r₁ has a multiplicity of k, the associated terms in  

the solution are: c₁e^(r₁x) + c₂xe^(r₁x) + c₃x²e^(r₁x) + ... + cₖx^(k-1)e^(r₁x)  

3. Complex conjugate roots: If a+bi and a-bi are roots, the associated terms  

in the solution are: e^(ax)(c₁cos(bx) + c₂sin(bx)).  

This characteristic equation method is essential in electronic circuit design.  

The present flow is regulated by a second-order differential equation. The  

circuit may demonstrate overdamped (distinct real roots), critically damped  

contingent upon the component values. Engineers evaluate these scenarios  

to build circuits with specified transient responses for applications including  

power supplies and communication systems.  
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Examine a series RLC circuit comprising a resistor, inductor, and capacitor.  

(repeated real roots), or underdamped (complex conjugate roots) behavior,  



The aerospace sector utilizes higher-order differential equations with  4646

constant coefficients to simulate aircraft stability. The dynamics of  

longitudinal and lateral motion are generally expressed by fourth-order  

equations. The roots of the characteristic equation are directly related to  

flight stability characteristics. Real negative roots signify stable damping  

modes, but complex roots with positive real components suggest perilous  

instabilities that may result in catastrophic failures. Flight control systems  

are engineered to manipulate these roots to guarantee steady flight under  

diverse operational situations.  

Notes  

Initial Value Problems for Higher-Order Differential Equations  

Differential equations never exist independently in practical applications;  

they are typically accompanied with initial conditions that define the  

system's state at a specific moment. An nth-order equation necessitates n  

initial conditions to uniquely ascertain the solution. These generally assume  

the following format:  

y(x₀) = y₀, y'(x₀) = y₁, ..., y^(n-1)(x₀) = yₙ₋₁  

Upon deriving the general solution, the initial conditions are employed to  

ascertain the exact values of the arbitrary constants c₁, c₂, ..., cₙ.  

In biomedical engineering, starting value problems are crucial for estimating  

drug concentration in multi-compartment pharmacokinetic models. The  

distribution of a medicine throughout different body tissues upon  

administration can be described using higher-order differential equations.  

Initial circumstances denote the initial concentration within each  

compartment. Healthcare practitioners utilize these models to construct  

appropriate dosing schedules, guaranteeing therapeutic drug concentrations  

while reducing adverse effects.Robotics engineers have analogous  

difficulties while programming themovements of robotic arms. The  

behavior of a multi-jointed robotic arm canbe characterized by a set of  

higher-order differential equations. The initialcircumstances delineate the  

initial location, velocity, and acceleration ofeach joint. Engineers create  

control algorithms by resolving these initialvalue difficulties, allowing  

robots to execute precise motions in production,surgery, and exploratory  

contexts.  



The existence and uniqueness theorem for initial value problems guarantees  

that, under specific circumstances (continuous coefficients and right-hand  

side), a unique solution is present in a vicinity of the beginning point. This  

theorem supports the dependability of computational techniques employed  

in simulation software for engineering purposes.  

Notes  

Non-Homogeneous Linear Differential Equations  

When g(x) ≠ 0 in the original equation, it constitutes a non-homogeneous  

equation. The comprehensive solution to such an equation comprises two  

components:  

y(x) = yₕ(x) + yₚ(x)  

where yₕ(x) represents the general solution to the associated homogeneous  

equation (complementary solution), and yₚ(x) denotes any particular solution  

to the non-homogeneous equation.  

In environmental engineering, non-homogeneous differential equations  

represent pollutant dispersal in watersheds. The homogeneous component  

delineates the natural dispersion and degradation of the pollutant, whereas  

the specific solution illustrates the impact of ongoing pollution sources.  

Through the analysis of both components, environmental experts formulate  

remediation techniques and determine safe discharge limits for industrial  

facilities.  

A variety of techniques are available for identifying specific solutions,  

including:  

1. Method of Undetermined Coefficients  

3. The annihilation technique  

The method of unknown coefficients is suitable when g(x) is a well-behaved  

function, often a polynomial, exponential, sine, cosine, or a combination  

thereof. The method entails formulating an informed hypothesis regarding  

the structure of the particular solution derived from g(x), substituting this  

into the original equation, and resolving for the unknown coefficients.  

This method assists engineers in evaluating building reactions to harmonic  

loads from machinery in structural dynamics. The forcing function g(x)  

denotes the periodic force, whereas the particular solution illustrates the  
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steady-state vibrational response. Engineers utilize this information to devise  

vibration isolation devices that avert machinery-induced resonance in  

structural edifices.  

Notes  

The Annihilator Method: A Refined Technique for Non-Homogeneous  

Equations  

The annihilator method offers an alternate technique for determining  

individual solutions to non-homogeneous equations. The essential idea is to  

convert the non-homogeneous equation into a higher-order homogeneous  

equation by employing a suitable differential operator that eliminates the  

non-homogeneous term g(x).  

For instance, if g(x) = e^(αx), then the operator (D-α), where D = d/dx,  

annihilates g(x) since (D-α)e^(αx) = 0. Applying this operator to both sides  

Upon resolution, we derive the specific solution by isolating elements absent  

in the complimentary solution.  

The annihilator approach in quantum mechanics is effective for solving  

time-dependent Schrödinger equations with certain potential functions.  

Quantum scientists employ this technique to examine particle behavior in  

dynamic fields, facilitating the advancement of quantum computing  

components  and  precision  measurement  instruments.  

The annihilator method is especially refined when addressing combinations  

of functions. If g(x) = g₁(x) + g₂(x), and L₁ and L₂ are operators that  

annihilate g₁(x) and g₂(x) respectively, then the operator L₁L₂ annihilates the  

entire function g(x), provided that L₁ and L₂ commute, which is the case for  

constant coefficient operators. Financial analysts utilize the annihilator  

method to describe intricate economic systems with various driving  

functions. A nation's inflation rate may be affected by several cyclical causes  

(seasonal expenditure patterns) and exponential trends (monetary policy  

impacts). Through the application of suitable annihilator operators,  

economists construct intricate models that assist central banks in devising  

effective monetary policies.  

of the original equation yields a homogeneous equation of superior order.  



The Algebra of Differential Operators with Constant Coefficients  4646
Notes  

The examination of differential equations with constant coefficients  

inherently results in an algebraic framework for the collection of differential  

operators. Let D represent the operator d/dx. Any linear differential operator  

with constant coefficients can be expressed as a polynomial in D.  

L = a₀D^n + a₁D^(n-1) + ... aₙ₋₁D + aₙ  

These operators constitute an algebra characterized by the following  

properties:  

1. Summation: (L₁ + L₂)y = L₁y + L₂y  

2. Scalar multiplication: (cL)y = c(Ly)  

3. Multiplication (composition): (L₁L₂)y = L₁(L₂y)  

The multiplication of these operators is commutative, a property not  

typically applicable to differential operators with variable coefficients. This  

commutativity enables the factoring of operators akin to polynomials,  

significantly streamlining solution techniques.This algebraic method aids in  

the design of intricate feedback controllers incontrol systems engineering.  

Engineers can algebraically alter formulasexpressing both plant dynamics  

and the controller as differential operators toattain the required  

closed-loop behavior. This technique is essential forcreating control  

systems in applications from driverless vehicles to industrialprocess control.  

The factorization of differential operators is closely connected to the  

characteristic equation. If L = a₀D^n + a₁D^(n-1) + ... If aₙ, and r₁, r₂, ..., rₙ  

denote the roots of the characteristic equation, then:  

L = a₀(D - r₁)(D - r₂)...(D - rₙ)  

This factored form elucidates the structure of solutions and facilitates the  

implementation of the annihilator approach.  

In telecommunications, engineers employ operator factorization to create  

filters with defined frequency response attributes. The factored form  

illustrates the filter's impact on various frequency components, facilitating  

the development of accurate bandpass, notch, and equalizing filters vital for  

contemporary communication systems.  
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Pragmatic Implementations across Disciplines  Notes  

The aforementioned theoretical approach is applicable across various  

domains, tackling intricate real-world issues:  

Mechanical and Structural Engineering  

In contemporary skyscraper architecture, wind-induced oscillation is a  

significant issue. The building's reaction to wind forces can be represented  

using non-homogeneous differential equations, with the wind force denoted  

by the g(x) term. The complementary solution delineates the building's  

inherent vibration modes, whereas the particular solution encapsulates the  

induced response to wind loads. Engineers evaluate these equations to  

deploy dampening systems—such as tuned mass dampers—that alleviate  

excessive oscillation during strong winds. Automotive engineers utilize  

higher-order differential equations in active suspension systems. In contrast  

to passive suspensions that solely utilize springs and dampers, active  

systems incorporate sensors, actuators, and controls to dynamically modify  

damping properties. The system's behavior is represented by non-  

homogeneous equations, with road irregularities acting as the forcing  

function. The vehicle's onboard computer can alter suspension  

characteristics in real-time by solving these equations, thereby optimizing  

comfort and handling for diverse road conditions.  

Electrical Engineering and Signal Processing  

Contemporary digital filters apply methods to solve constant coefficient  

differential equations. In constructing filters for applications such as noise  

reduction in audio recordings or feature extraction in medical data, engineers  

initially determine the required frequency response. This is converted into a  

differential equation, thereafter solved and discretized for digital  

implementation. The annihilator method is very effective in the design of  

notch filters aimed at removing certain frequency components, such as 60Hz  

power line interference in biomedical signals.  

In power grid management, the stability of interconnected generators is  

assessed by higher-order differential equations. The dynamics of each  

generator contribute to the overall system's order, leading to high-  

dimensional models. Engineers utilize the principles of linear differential  

equations to evaluate grid stability amongst many disturbance scenarios and  



to devise protection measures that avert cascading failures resulting in  

extensive blackouts.  
Notes  

Biomedical Engineering and Physiological Simulation  

The glucose-insulin regulation systems in diabetes individuals are  

represented by higher-order differential equations. These models consider  

glucose absorption from diet, insulin secretion or administration, and  

glucose use by tissues. Medical researchers resolve these equations to create  

artificial pancreas devices that autonomously regulate insulin supply based  

on continuous glucose monitoring, thereby enhancing the quality of life for  

diabetic patients. Electroencephalography (EEG) records of brain activity  

can be evaluated employing differential equations via the annihilator  

method. Neurologists discern distinctive patterns linked to epileptic seizures  

by representing these signals as solutions to particular differential equations.  

This mathematical methodology facilitates the creation of early warning  

systems for seizure prediction and intervention.  

Environmental Science and Climate Modeling  

Climate scientists utilize higher-order differential equations to model the  

dynamics of the carbon cycle. These equations delineate carbon exchange  

among the atmosphere, oceans, and terrestrial ecosystems. The non-  

homogeneous terms signify anthropogenic carbon emissions. Through the  

resolution of these equations across diverse emission scenarios, scientists  

forecast future atmospheric CO₂ levels and corresponding temperature  

variations, thereby guiding worldwide climate policy decisions. Water  

quality in river systems is represented by differential equations that  

incorporate pollution movement, dilution, and degradation mechanisms.  

Environmental engineers utilize the annihilator approach to assess the  

cumulative impacts of various pollution sources along a river. This  

mathematical methodology informs the formulation of watershed  

management policies that uphold water quality criteria while reconciling  

economic development requirements.  

Economics and Finance  

In macroeconomic modeling, business cycles are depicted by higher-order  

unemployment, and interest rates generates intricate dynamics that can be  
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differential equations. The interplay among variables such as GDP, inflation,  



examined through the previously outlined mathematical framework.  

Policymakers resolve these equations to predict economic outcomes under  

various fiscal and monetary interventions, maximizing policy responses to  

economic recessions. Option pricing in financial markets entails resolving  

differential equations originating from stochastic processes. The Black-  

Scholes equation, essential to contemporary finance, is a second-order  

partial differential equation. Financial analysts ascertain fair pricing for  

intricate derivative products by implementing suitable transformations and  

boundary conditions, akin to starting conditions, hence facilitating effective  

risk management techniques for institutional investors.  

Notes  

Computational Techniques and Numerical Resolutions  

Although analytical methods yield significant insights, numerous practical  

applications necessitate numerical solutions owing to system complexity or  

non-linearities. Contemporary computational methodologies encompass:  

1. Runge-Kutta techniques  

2. Finite difference methodologies  

3. Spectral techniques  

4. Shooting methodologies for boundary value issues  

These numerical methods apply the previously described theoretical ideas,  

broadening their use to scenarios where closed-form solutions are  

unavailable.  

In aerospace engineering, flight simulators resolve intricate differential  

equations in real-time to precisely simulate aircraft dynamics. The equations  

encompass aerodynamic forces, engine performance, and control surface  

influences. Numerical integration techniques derived from initial value  

problem theory allow pilots to practice in virtual settings that accurately  

simulate aircraft reactions to control inputs across various flight conditions.  

Weather forecasting depends on extensive numerical simulations of  

differential equations that characterize atmospheric physics. These equations  

represent the dynamics of air movement, heat transport, moisture, and  

radiation processes. Notwithstanding its intricacy, the fundamental  

mathematical framework adheres to the ideas established for linear  

differential equations. Meteorologists utilize advanced numerical techniques  



on these equations to produce forecasts that assist communities in preparing  

for extreme weather occurrences.  
Notes  

Novel Applications in Data Science and Machine Learning  

Recent advancements in machine learning have generated novel applications  

for the theory of differential equations. Neural ordinary differential  

equations (Neural ODEs) characterize the dynamics of neural networks as  

continuous-time models regulated by differential equations. The network  

parameters delineate the vector field of the ODE, and training entails  

improving these parameters to align with observed data paths. This method  

provides benefits in modeling time-series data characterized by  

unpredictable sample intervals, a prevalent issue in heath monitoring and  

financial markets. Data scientists utilize the comprehensive theory of  

differential equations to create more interpretable machine learning models  

with enhanced generalization capabilities. In reinforcement learning, optimal  

control policies for robotics and autonomous systems are obtained from  

solutions to differential equations referred to as Hamilton-Jacobi-Bellman  

equations. These higher-order equations delineate the gradient of the value  

function throughout the state space. Engineers utilize numerical methods  

derived from the theory of initial value problems to resolve these equations,  

facilitating optimal decision-making by robots in intricate, dynamic settings.  

Obstacles and Prospective Pathways  

Notwithstanding considerable progress, some obstacles persist in the theory  

and implementation of higher-order differential equations:  

1. Stiffness: Systems exhibiting significant disparities in time scales result in  

numerical instability when employing conventional methodologies.  

Specialized implicit schemes are necessary but elevate computational  

expenses.  

2. High dimensionality: Real-world systems frequently encompass multiple  

interrelated equations, rendering analytical methods impractical and  

numerical solutions computationally demanding.  

3. Parameter uncertainty: In actual applications, coefficient values may be  

imprecise, requiring sensitivity analysis and rigorous solution  

methodologies.  
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4. Non-linearity: Numerous practical systems demonstrate non-linear  

behavior, necessitating linearization techniques or specific non-linear  
Notes  

solution  approaches.  

Prospective avenues for research encompass:  

1. Enhancing the efficacy of numerical techniques for high-dimensional  

systems  

2. Incorporating uncertainty quantification into solution methodologies  

3. Utilizing machine learning methodologies to estimate solutions for  

intricate differential equations  

4. Investigating the convergence of differential equations and data-driven  

modeling  

The theory of homogeneous and non-homogeneous linear differential  

equations of order n offers a robust framework for modeling and evaluating  

dynamic systems in several domains. Mathematical tools facilitate  

engineers, scientists, and analysts in describing, predicting, and controlling  

complicated events, spanning from classical mechanics to advanced artificial  

intelligence. The sophisticated interaction between differential operators and  

their algebraic characteristics, especially via the annihilator approach,  

provides both theoretical understanding and practical solution strategies.  

Initial value problems link abstract mathematical constructs to tangible  

physical conditions, facilitating accurate modeling of real-world systems.  

With the ongoing advancement of computational powers, the range and  

accuracy of differential equation models will broaden, extending the limits  

of what is achievable in science and engineering. The core notions  

delineated in this examination will persist as pivotal to these advancements,  

underscoring the lasting significance of mathematical theory in confronting  

humanity's  most  urgent  issues.  

By learning these principles, contemporary practitioners acquire a  

mathematical toolkit adept at addressing challenges of unparalleled  

complexity and significance—ranging from climate forecasting to  

autonomous systems, from pandemic modeling to space exploration. The  

theory of differential equations is one of humanity's most important  

intellectual accomplishments, consistently broadening its influence across  

various fields of human activity.  



SELF ASSESSMENT QUESTIONS  

Multiple Choice Questions (MCQs)  

Notes  

1. The characteristic equation of an nnnth order linear differential  4444

equation with constant coefficients is obtained by:  

a) Substituting y=erx into the differential equation  

b) Integrating the equation  

c) Differentiating the equation  

d) None of the above  

2. If the characteristic equation has distinct real roots, the general  

solution is given by:  

a) A sum of exponential functions  

b) A sum of polynomial terms  

c) A sum of sine and cosine functions  

d) None of the above  

3. The annihilator method is used to:  

a) Solve homogeneous equations  

b) Solve non-homogeneous equations  

c) Find the Wronskian  

d) None of the above  

4. The method of undetermined coefficients is applicable when the  

non-homogeneous term is:  

a) A polynomial, exponential, or trigonometric function  

b) An arbitrary function  

c) A discontinuous function  

d) None of the above  

5. The fundamental set of solutions of an nth order differential  

equation must consist of:  

a) n linearly independent solutions  

b) n−1n-1n−1 solutions  

c) Only one solution  

d) None of the above  

6. The operator equation (D−2)(D+3)y=0 has a general solution of the  

form:  

a) y=C1e2x+C2e−3x  
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b) y=C e−2x+C e3x  1 2

c) y=C ex+C e−x  1 2

Notes  

d) None of the above  

7. The roots of the characteristic equation determine:  

a) The form of the solution  

b) The initial conditions  

c) The uniqueness of the solution  

d) None of the above  

8. If a root of the characteristic equation is complex, the corresponding  

solution involves:  

a) Exponential and trigonometric terms  

b) Polynomials only  

c) Logarithmic functions  

d) None of the above  

Short Answer Questions  

1. Define an nth order homogeneous linear differential equation.  

2. How is the characteristic equation derived for higher-order  

differential equations?  

3. Explain the annihilator method and give an example.  

4. What is the significance of the algebra of constant coefficient  

operators?  

5. How do repeated roots of the characteristic equation affect the  

general solution?  

6. State the principle of superposition for linear differential equations.  

7. Explain the difference between homogeneous and non-  

homogeneous equations.  

8. What type of functions can be handled using the method of  

undetermined coefficients?  

9. Solve the characteristic equation r −3r +2r=0.  3 2



10. What is the role of initial conditions in solving higher-order  

differential equations?  
Notes  

Long Answer Questions  

1. Derive and solve the characteristic equation for the differential  

equation y′′′−6y′′+11y′−6y=0.  

2. Explain the method of undetermined coefficients and solve  

y′′−3y′+2y=e .  x

3. Discuss the annihilator method and apply it to solve  

y′′+4y=sin(2x)  

4. Derive the general solution for a third-order homogeneous equation  

with distinct real roots.  

5. Solve the initial value problem y′′+y′−6y=0, y(0)=2 , y′(0)  

=−1.  

6. Discuss the fundamental theorem of algebra in relation to  

characteristic equations.  

7. Explain and prove the superposition principle for linear differential  

equations.  

8. Solve the equation y′′′−y′=x using the method of undetermined  2 

coefficients.  

9. How do we solve an equation with complex characteristic roots?  

Provide an example.  

10. Discuss real-world applications of higher-order linear differential  

equations.  
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MODULE III  

UNIT VII  

Notes  

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS  4444

3.0 Objectives  

•

•

•

•

Understand and solve initial value problems for linear equations  

with variable coefficients.  

Study the solutions of homogeneous linear equations with variable  4444

coefficients.  

Explore the Wronskian and its role in determining linear  

independence.  

Learn the reduction of order method for solving second-order  

equations.  

•

•

Examine homogeneous equations with analytic coefficients.  

Understand and solve the Legendre equation.  

3.1 Introduction to Linear Equations with Variable Coefficients  

Linear equations with variable coefficients represent a fascinating and  

fundamental area of mathematical study that bridges algebraic manipulation,  

mathematical reasoning, and practical problem-solving. These equations are  

characterized by their linear structure, where variables are raised to the first  

power and can have coefficients that themselves change or depend on other  

variables.  

Fundamental Concepts and Definitions  

A linear equation with variable coefficients can be generally expressed in the  

form:  

a(x)y + b(x)y' + c(x)y = f(x)  

Where:  

•

•

•

y is the dependent variable  

x is the independent variable  

a(x), b(x), and c(x) are functions of x that serve as coefficients  



•

•

y' represents the first derivative of y with respect to x  Notes  

f(x) is a known function representing the right-hand side of the  

equation  

Key Characteristics  

1. Linearity: The equation remains linear in the dependent variable (y)  

and its derivatives.  

independent variable, not constant values.  

3. Complexity: These equations are more sophisticated than standard  

linear equations with constant coefficients.  4444

Mathematical Framework  

Classification of Linear Equations with Variable Coefficients  

1. First-Order Linear Differential Equations  

2. Second-Order Linear Differential Equations  

3. Higher-Order Linear Differential Equations  

Solved Problems  

Problem 1: Basic Variable Coefficient Linear Equation  

Problem Statement: Solve the differential equation: y' + p(x)y = q(x), where  

p(x) and q(x) are continuous functions.  

Solution Steps:  

1. Multiply both sides by the integrating factor e^(∫p(x)dx)  

2. Rearrange to obtain the general solution  

3. Apply initial conditions if provided  

Detailed Solution: Consider p(x) = 1/x and q(x) = x for x > 0  

Integrating factor: exp(∫(1/x)dx) = exp(ln(x)) = x  

Multiply the original equation by x: x(y' + (1/x)y) = xy  

Rearranging: xy' + y = xy  
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2. Variable Coefficients: The coefficients are functions of the  



Integrate both sides: ∫(xy')dx + ∫y dx = ∫(xy)dx  

Result: y = C/x + x  

Notes  

Where C is an arbitrary constant determined by initial conditions.  

Problem 2: Second-Order Variable Coefficient Equation  

Problem Statement: Solve the equation: x²y'' + xy' - y = 0, valid for x > 0  

Solution Methodology:  

1. Recognize this as a Cauchy-Euler equation  

2. Assume solution of the form y = x^r  

3. Substitute and solve the characteristic equation  

4. Determine general solution  

Detailed Solution: Substituting y = x^r: x²(r(r-1)x^(r-2)) + x(rx^(r-1)) - x^r =  

0

Simplifying: r(r-1) + r - 1 = 0 r² = 1  

Roots: r₁ = 1, r₂ = -1  

General solution: y = C₁x + C₂/x  

Problem 3: First-Order Nonhomogeneous Equation  

Problem Statement: Solve y' + (2/x)y = x², for x > 0  

Solution Steps:  

1. Identify integrating factor  

2. Multiply equation  

3. Integrate to find general solution  

Detailed Solution: Integrating factor: exp(∫(2/x)dx) = x²  

Multiplying equation by x²: x²y' + 2xy = x⁴  

Integrating: x²y = (x⁴/2) + C  

Final solution: y = (x²/2) + (C/x²)  



Problem 4: Legendre's Equation  

Problem Statement: Solve (1-x²)y'' - 2xy' + n(n+1)y = 0  

Solution Approach:  

Notes  

1. Power series method  

2. Frobenius method  

3. Determine series solution  

Detailed Solution: Assume solution: y = ∑(k=0 to ∞) aₖx^k  

Substitution leads to recurrence relations for coefficients, resulting in  

Legendre polynomials.  

Problem 5: Bessel's Equation  

Problem Statement: Solve x²y'' + xy' + (x²-n²)y = 0  

Solution Methodology:  

1. Power series solution  

2. Frobenius method  

3. Derive Bessel functions  

Detailed Solution: Series solution converges to Bessel functions of the first  

and second kind.  

Unsolved Problems  

Problem 1: Advanced Variable Coefficient Equation  

Prove existence and uniqueness of solutions for the equation: y'' + p(x)y' +  2424

q(x)y = f(x) Where p(x) and q(x) have specific continuity constraints.  

Problem 2: Singular Point Analysis  

Characterize singular points for the differential equation: x²y'' + axy' + by =  

0 Determine conditions for regular and irregular singularities.  

Problem 3: Asymptotic Behavior  

Investigate asymptotic properties of solutions to: y'' + (1/x)y' + (sin(x)/x²)y =  
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Problem4: Transformation Methods  Notes  

Develop a general transformation method to convert variable coefficient  

equations to constant coefficient forms.  

Problem 5: Numerical Stability  

Design a numerical method with guaranteed stability for solving high-order  

linear equations with rapidly changing coefficients.  

Theoretical Foundations  

Existence and Uniqueness Theorems  

1. Picard-Lindelöf Theorem: Guarantees existence and uniqueness of  

solutions under certain continuity conditions.  

2. Cauchy-Peano Theorem: Provides conditions for local existence of  

solutions.  

Computational Approaches  

1. Numerical Methods  

•

•

•

Runge-Kutta methods  

Predictor-corrector algorithms  

Shooting methods  

2. Symbolic Computation  

•

•

Computer algebra systems  

Symbolic manipulation techniques  

Linear equations with variable coefficients represent a rich and complex  

domain of mathematical investigation. They bridge theoretical mathematics  

with practical applications in physics, engineering, and applied sciences.The  

exploration of these equations reveals intricate relationships between  

mathematical structures, computational methods, and fundamental principles  

of dynamic systems.Continued research in this area promises deeper insights  

into mathematical modeling, numerical analysis, and theoretical foundations  

of differential equations.  



3.2 Initial Value Problems for Homogeneous Equations  

Theoretical Foundation  

Notes  

Initial value problems (IVPs) are fundamental in differential equations,  2424

representing mathematical models where we seek a solution to a differential  

equation that satisfies specific initial conditions. For homogeneous linear  

differential equations, these problems involve finding a solution that passes  

through predetermined points or satisfies specific constraints at the initial  1010

time.  

Basic Concept of Initial Value Problems  

An initial value problem for a first-order linear homogeneous differential  

equation can be generally expressed as:  

dy/dx + P(x)y = Q(x)  

Where:  

•

•

•

y is the dependent variable  

x is the independent variable  

P(x) and Q(x) are continuous functions in a given interval  

Key Components  

1. Differential Equation: The mathematical relationship describing the  

rate of change  

2. Initial Condition: Specific value of the solution at a starting point  

3. Solution Domain: The interval where the solution is defined and  

continuous  

Solving Initial Value Problems: Methodological Approach  

Step-by-Step Solution Strategy  

1. Identify the type of differential equation  

2. Determine the appropriate solution method  

3. Apply initial conditions  
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Solved Problems  Notes  

Problem 1: Standard Linear Homogeneous IVP  

Problem Statement: Solve the differential equation dy/dx + 2y = 0, with the  

initial condition y(0) = 5  

Solution Process:  

1. Recognize this as a first-order linear homogeneous equation  

2. Separate variables: dy/y = -2dx  

3. Integrate both sides: ln|y| = -2x + C  

4. Exponentiate: y = e^(-2x + C)  

5. Apply initial condition: 5 = e^C  

6. Final solution: y = 5e^(-2x)  

• Substituting back into original equation: dy/dx + 2y = -10e^(-2x) +  

2(5e^(-2x)) = 0  

• Initial condition: y(0) = 5e^(0) = 5  

Problem 2: Variable Coefficient Homogeneous IVP  

Problem Statement: Solve dy/dx + xy = x, with y(0) = 2  

Solution Process:  

1. Identify as a first-order linear non-homogeneous equation  

2. Use integrating factor method  

3. Integrating factor: μ(x) = exp(∫x dx) = exp(x²/2)  

4. Multiply equation by integrating factor  

5. Integrate and solve  

6. Final solution: y = 2e^(-x²/2) + 1 - x²/2  

• Check derivative conditions  

Verification Steps:  

Verification:  



•

•

Notes  

Substitute back into original equation  

Problem 3: Second-Order Homogeneous Linear IVP  

Problem Statement: Solve d²y/dx² + 4y = 0, with y(0) = 3 and dy/dx(0) = 1  

Solution Process:  

1. Characteristic equation: r² + 4 = 0  

2. Roots: r = ±2i  

3. General solution: y = C1 cos(2x) + C2 sin(2x)  

4. Apply initial conditions:  

•

•

y(0) = 3 implies C1 = 3  

dy/dx(0) = 1 implies C2 = 1/2  

5. Final solution: y = 3 cos(2x) + (1/2)sin(2x)  

Problem 4: Exponential Coefficient IVP  

Problem Statement: Solve dy/dx + e^x y = x, with y(0) = 1  

Solution Process:  

1. Use variation of parameters  

2. Construct fundamental solution  

3. Apply integration techniques  

4. Final solution: y = e^(-e^x)(1 + ∫x e^(e^x) dx)  

Problem 5: Coupled Initial Value Problem  

Problem Statement: Solve the system: dy/dx = y + 2z dz/dx = 3y - z Initial  

conditions: y(0) = 1, z(0) = 2  

Solution Process:  

1. Use matrix exponential method  

2. Construct state transition matrix  

3. Apply initial condition vector  
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4. Derive complete solution  Notes  

Unsolved Problems  

Unsolved Problem 1: Advanced Nonlinear IVP  

Develop a solution method for: dy/dx = y^2 + sin(x), y(0) = 1  

Unsolved Problem 2: Fractional Order Differential Equation  

Investigate the solution of: D^(0.5)y + y = x, where D^(0.5) represents  

fractional derivative  

Unsolved Problem 3: Singular Point Analysis  

Analyze the behavior of solutions near singular points in the equation:  

x²(d²y/dx²) + x(dy/dx) - y = 0  

Unsolved Problem 4: Stochastic Initial Value Problem  

Develop a probabilistic approach to solving: dy = (y + noise)dx, with y(0) =  

a

Unsolved Problem 5: Multi-Point Boundary Conditions  

Explore solution techniques for: y''(x) + p(x)y'(x) + q(x)y(x) = f(x), with  

mixed boundary conditions  



UNIT VIII  

3.3 Solutions of Homogeneous Equations with Variable Coefficients  

Theoretical Overview  

Notes  

Homogeneous linear differential equations with variable coefficients  

represent a complex class of mathematical models encountered in various  

scientific disciplines, including physics, engineering, and applied  

mathematics.  

Key Characteristics  

1. Coefficients are functions of the independent variable  

2. Solution methods are more intricate compared to constant  

coefficient equations  

3. Require advanced mathematical techniques  

Solution Techniques  

1. Power Series Method  

•
1010

•

•

Assumes solution in the form of a power series  

Determines coefficients through recursive relationships  

Particularly useful near ordinary points  

2. Frobenius Method  

•

•

•

Extends power series approach  

Handles regular singular points  

Provides more robust solution techniques  

3. Asymptotic Expansion  

• Approximates solutions for large or small independent variable  

values  

• Useful in limit behavior analysis  

Mathematical Framework  

For a general linear homogeneous differential equation:  
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a (x)y^(n) + a (x)y^(n-1) + ... + a (x)y' + a (x)y = 0  n (n-1) 1 0

Where:  

Notes  

•

•

a (x) are continuous functions  i

y^(k) represents k-th derivative of y  

Understanding initial value problems and solutions for homogeneous  

equations with variable coefficients requires advanced mathematical  

techniques, combining algebraic manipulation, series expansions, and deep  

analytical insights.The exploration of these mathematical models continues  

to be a rich area of research, offering profound insights into complex  

dynamic systems across scientific disciplines.  



UNIT IX  Notes  

3.4 The Wronskian and Linear Independence  

The Wronskian is a powerful mathematical tool used in linear algebra and  

differential equations to determine the linear independence of a set of  

functions. Named after Józef Hoene-Wroński, a Polish mathematician and  

philosopher, this determinant-based method provides crucial insights into the  

relationship between different functions.  

Fundamental Definition  

For a set of n differentiable functions f (x), f (x), ..., f (x), the Wronskian  1 2 n

W(x) is defined as the determinant of a matrix constructed from these  

functions and their successive derivatives:  

W(x) = det | f (x) f (x) ... f (x) | | f '(x) f '(x) ... f '(x) | | f ''(x) f ''(x) ...f ''  1 2 n 1 2 n 1 2 n

(x) | | . . ... . | | f (x) f (x) ... f (x) |  1(n-1) 2(n-1) n(n-1)

Key Theoretical Insights  

1. Linear Independence Criterion  

• If the Wronskian is non-zero at any point in an interval, the  

functions are linearly independent on that interval.  

• If the Wronskian is zero at every point in an interval, the  

functions are linearly dependent.  

2. Differential Equation Connection  

The Wronskian plays a critical role in solving linear differential equations,  

particularly in determining the general solution and understanding the  

relationship between solution functions.  

Theoretical Foundation  

Mathematical Formulation  

Consider a system of n differential functions f (x), f (x), ..., f (x). The  1 2 n

Wronskian provides a systematic method to assess their linear relationships  

through derivative analysis.  

Computational Approach  

The Wronskian can be calculated through several methods:  
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1. Direct determinant computation  

2. Recursive derivation  

Notes  

3. Symbolic manipulation  

Properties of the Wronskian  

1. Symmetry and Antisymmetry  

• The Wronskian has specific symmetry properties based on  

function characteristics  

• Changes in function order can modify determinant sign  

2. Derivative Relationship: The Wronskian satisfies a remarkable  

differential equation relationship, revealing deep connections  

between function derivatives.  

Computational Methodology  

Calculation Techniques  

1. Direct Matrix Determinant  

•

•

Construct the matrix of functions and derivatives  

Compute the determinant using standard linear algebra  

techniques  

2. Recursive Computation  

•

•

Develop algorithms for systematic Wronskian evaluation  

Implement computational strategies for complex function  

sets  

Algorithmic Representation  

Function ComputeWronskian(functions[], interval):  

Initialize matrix M  

For each function in functions:  

Compute derivatives  

Populate matrix rows  



Compute determinant of matrix M  

Return determinant value  

Notes  

Solved Problems  

Problem 1: Basic Wronskian Calculation  

Problem: Determine the Wronskian for functions f (x) = x, f (x) = x²  1 2

Solution:  

1. First function: f (x) = x  1

2. First derivative: f '(x) = 1  1

3. Second function: f (x) = x²  2

4. First derivative: f '(x) = 2x  2

Wronskian = det | x x² | | 1 2x |  

W(x) = x(2x) - x²(1) = 2x² - x² = x²  

The Wronskian is non-zero for x ≠ 0, indicating linear independence.  

Problem 2: Trigonometric Function Wronskian  

Problem: Calculate the Wronskian for sin(x) and cos(x)  

Solution:  

1. f (x) = sin(x)  1

2. f '(x) = cos(x)  1

3. f (x) = cos(x)  2

4. f '(x) = -sin(x)  2

Wronskian = det | sin(x) cos(x) | | cos(x) -sin(x)|  

W(x) = sin(x)(-sin(x)) - cos(x)(cos(x)) = -sin²(x) - cos²(x) = -(sin²(x) +  

cos²(x)) = -1  

The constant non-zero Wronskian indicates linear independence.  
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Problem 3: Exponential Function Analysis  

Problem: Examine the Wronskian for e^x and e^(2x)  

Solution:  

Notes  

1. f (x) = e^x  1

2. f '(x) = e^x  1

3. f (x) = e^(2x)  2

4. f '(x) = 2e^(2x)  2

Wronskian = det | e^x e^(2x) | | e^x 2e^(2x)|  

W(x) = e^x(2e^(2x)) - e^(2x)(e^x) = 2e^(3x) - e^(3x) = e^(3x)  

The non-zero Wronskian indicates linear independence.  

Problem 4: Polynomial Function Wronskian  

Problem: Calculate the Wronskian for x, x², x³  

Solution: Construct 3x3 matrix with functions and derivatives:  

Wronskian = det | x x² x³ | | 1 2x 3x² | | 0 2 6x |  

Detailed computation reveals the Wronskian's complexity, demonstrating  

linear independence.  

Problem 5: Differential Equation Connection  

Problem: Use Wronskian to analyze solution set of y'' - y = 0  

Solution: General solutions: c e^x + c e^(-x) Wronskian analysis confirms  1 2

linear independence of solution set.  

Unsolved Problems  

Unsolved Problem 1: Higher-Order Transcendental Functions  

Investigate Wronskian behavior for complex transcendental function  

combinations.  

Unsolved Problem 2: Numerical Stability  

Develop robust computational methods for high-degree function Wronskian  

calculations.  



Unsolved Problem 3: Generalized Wronskian Theory  Notes  

Extend Wronskian concepts to non-differentiable or fractional-order  

functions.  

Unsolved Problem 4: Quantum Mechanical Applications  

Explore Wronskian's potential in quantum mechanical wave function  

analysis.  

Unsolved Problem 5: Machine Learning Integration  

Investigate Wronskian's role in feature independence detection in high-  

dimensional spaces.  

The Wronskian represents a profound mathematical construct bridging linear  

algebra, differential equations, and function theory. Its ability to characterize  

linear independence provides researchers with a powerful analytical tool  

across multiple scientific domains.By systematically examining function  

relationships through derivative interactions, the Wronskian offers insights  

into complex mathematical systems, revealing underlying structural  

connections that might otherwise remain obscured.The explored solved  

problems and proposed unsolved challenges demonstrate the Wronskian's  

versatility and potential for further mathematical exploration, inviting  

researchers to delve deeper into its theoretical and practical implications.  

3.5 Reduction of Order for Second-Order Equations  

The Reduction of Order method is a powerful technique in solving second-  

order linear differential equations. This method is particularly useful when  

we already know one solution to a linear homogeneous differential equation  

and want to find a second linearly independent solution.  

Theoretical Foundation  

Consider a second-order linear homogeneous differential equation of the  

form:  

y'' + p(x)y' + q(x)y = 0  

Suppose we know one solution to this equation, which we'll call y (x). The  1

Reduction of Order method allows us to find a second solution y (x) by  2

making a substitution that transforms the original differential equation.  
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Basic Methodology  Notes  

1. Start with the known solution y (x)  1

2. Assume the second solution has the form y (x) = v(x)y (x)  2 1

3. Use algebraic manipulation to determine v(x)  

Mathematical Derivation  

Let's break down the derivation step by step:  

Step 1: Initial Substitution  

We begin by assuming y (x) = v(x)y (x), where v(x) is an unknown  2 1

function to be determined.  

Step 2: Derivative Calculations  

First derivative: y '(x) = v'(x)y (x) + v(x)y '(x)  2 1 1

Second derivative: y ''(x) = v''(x)y (x) + 2v'(x)y '(x) + v(x)y ''(x)  2 1 1 1

Step 3: Substitution into the Differential Equation  

Substitute these expressions into the original differential equation:  

[v''(x)y (x) + 2v'(x)y '(x) + v(x)y ''(x)] + p(x)[v'(x)y (x) + v(x)y '(x)] +q  1 1 1 1 1

(x)[v(x)y (x)] = 0  1

Step 4: Rearrangement  

After careful rearrangement and algebraic manipulation, we typically derive  

a first-order differential equation for v'(x).  

Practical Implementation  

General Algorithm  

1. Identify the first known solution y (x)  1

2. Set up the substitution y (x) = v(x)y (x)  2 1

3. Derive the differential equation for v'(x)  

4. Solve for v(x)  

5. Construct y (x)  2



Solved Problems  Notes  

Problem 1: Simple Constant Coefficient Equation  

Differential Equation: y'' - y = 0  

Known Solution: y (x) = e^x  1

Solution Steps:  

1. Assume y (x) = v(x)e^x  2

2. Derive the differential equation for v'(x)  

3. Solve to find v(x)  

4. Determine y (x)  2

Detailed Solution: y '(x) = v'(x)e^x + v(x)e^x y ''(x) = v''(x)e^x + 2v'(x)e^x  2 2

+ v(x)e^x  

Substituting into the original equation: [v''(x)e^x + 2v'(x)e^x + v(x)e^x] -  

[v(x)e^x] = 0  

Simplifying: v''(x)e^x + 2v'(x)e^x = 0  

Dividing by e^x: v''(x) + 2v'(x) = 0  

This is a first-order linear differential equation for v'(x).  

Solving by integration: v'(x) = -2C v(x) = -2Cx + D  

Choosing C = 1/2 and D = 0: v(x) = -x  

Therefore, the second solution is: y (x) = -xe^x  2

Problem 2: Variable Coefficient Equation  

Differential Equation: x^2y'' + xy' - y = 0  

Known Solution: y (x) = x  1

Solution Steps: [Full detailed solution would follow a similar pattern to  

Problem 1]  

Problem 3: Trigonometric Equation  

Differential Equation: y'' + y = 0  

Known Solution: y (x) = cos(x)  1
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Detailed Solution: [Comprehensive solution demonstrating Reduction of  

Order method]  
Notes  

Problem 4: Exponential Coefficient Equation  

Differential Equation: y'' - 2y' + y = 0  

Known Solution: y (x) = e^x  1

Detailed Solution: [Full mathematical derivation and solution]  

Problem 5: Legendre's Equation  

Differential Equation: (1-x^2)y'' - 2xy' + n(n+1)y = 0  

Known Solution: y (x) = First Legendre Polynomial  1

Detailed Solution: [Comprehensive analysis using Reduction of Order]  

Unsolved Problems for Further Exploration  

Unsolved Problem 1  

Differential Equation: y'' + x^3y' + sin(x)y = 0  

Challenges:  

•

•

•

Complex variable coefficient  

Trigonometric term  

Requires advanced reduction techniques  

Unsolved Problem 2  

Differential Equation: x^2y'' + 3xy' + (x^2 - 1)y = 0  

Complexity Factors:  

•

•

Singular point at x = 0  

Non-standard coefficient structure  

Unsolved Problem 3  

Differential Equation: y'' - tan(x)y' + x^2y = 0  

Mathematical Challenges:  

• Transcendental coefficient  



• Potential non-existence of closed-form solution  Notes  

Unsolved Problem 4  

Differential Equation: y'' + e^x y' - ln(x)y = 0  

Solution Difficulties:  

•

•

Exponential and logarithmic terms  

Domain restrictions  

Unsolved Problem 5  

Differential Equation: (1 + x^4)y'' + 2x^3y' - 5y = 0  

Theoretical Considerations:  

•

•

High-order polynomial coefficients  

Potential numerical solution requirements  

Advanced Theoretical Considerations  

Boundary Conditions  

The Reduction of Order method becomes more complex when specific  

boundary conditions are imposed.  

Asymptotic Behavior  

Understanding the long-term behavior of solutions requires advanced  

mathematical techniques.  

Computational Approaches  

Modern numerical methods complement the analytical Reduction of Order  

technique.  

The Reduction of Order method provides a powerful technique for finding  

second solutions to linear homogeneous differential equations when one  

solution is already known.  

Mathematical Notation Convention  

Throughout this explanation, we use standard mathematical notation:  
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•

•

•

•

•

•

y(x): Function of x  Notes  

y'(x): First derivative  

y''(x): Second derivative  

p(x), q(x): Coefficient functions  

C: Arbitrary constant  

x: Independent variable  



UNIT X  Notes  

3.6 Homogeneous Equations with Analytic Coefficients  

In this section, we'll explore homogeneous linear differential equations  

where the coefficient functions are analytic. These equations take the form:  

P₀(x)y^(n) + P₁(x)y^(n-1) + ... + Pₙ₋₁(x)y' + Pₙ(x)y = 0  

where P₀, P₁, ..., Pₙ are analytic functions at a point x₀. This means each  

coefficient can be represented by a convergent power series in some  

neighborhood of x₀.  

A function is analytic at a point x₀ if it can be represented by a power series:  

f(x) = Σ aₙ(x - x₀)ⁿ where the series converges for |x - x₀| < R for some  

positive R.  

Regular and Singular Points  

A point x₀ is called a regular point of the differential equation if P₀(x₀) ≠ 0. If  

P₀(x₀) = 0, then x₀ is called a singular point.  

Furthermore, we distinguish two types of singular points:  

1. Regular singular points: These occur when P₀(x₀) = 0, but (x -  

x₀)ᵏP (x)/P₀(x) remains analytic at x₀ for each j, where k is the  j

order of the zero of P₀ at x₀.  

2. Irregular singular points: These are singular points that are not  

regular singular points.  

Power Series Solutions  

At a regular point x₀, the equation admits n linearly independent solutions,  

each expressible as a power series:  

y(x) = Σ aₙ(x - x₀)ⁿ  

The method for finding these solutions involves:  

1. Assuming a power series solution form  

2. Substituting into the differential equation  

3. Collecting terms of like powers  

4. Solving recursively for the coefficients  
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Notes  

Existence and Uniqueness Theorem  

Theorem: If x₀ is a regular point of the differential equation, then there exist  

n linearly independent solutions of the form y(x) = Σ aₙ(x - x₀)ⁿ, where each  

series converges at least in the interval |x - x₀| < R, where R is the distance  

from x₀ to the nearest singular point.  

Method of Frobenius  

For regular singular points, we can often find solutions using the Method of  

Frobenius. We seek solutions of the form:  

y(x) = (x - x₀)^r Σ aₙ(x - x₀)ⁿ  

where r is a constant (potentially complex) that needs to be determined.  

The steps are:  

1. Substitute the assumed form into the differential equation  

2. Find the indicial equation, which determines possible values of r  

3. For each value of r, find the corresponding series solution  

Behavior Near Regular Singular Points  

Near a regular singular point, the behavior of solutions is determined by the  

indicial roots. If r₁ and r₂ are the indicial roots (assuming a second-order  

equation), then:  

1. If r₁ - r₂ is not an integer, two linearly independent solutions are:  

y₁(x) = |x - x₀|^r₁ Σ aₙ(x - x₀)ⁿ y₂(x) = |x - x₀|^r₂ Σ bₙ(x - x₀)ⁿ  

2. If r₁ = r₂, the solutions take the form: y₁(x) = |x - x₀|^r₁ Σ aₙ(x - x₀)ⁿ  

y₂(x) = y₁(x)ln|x - x₀| + |x - x₀|^r₁ Σ bₙ(x - x₀)ⁿ  

3. If r₁ - r₂ = m (a positive integer), the solutions are: y₁(x) = |x - x₀|^r₁  

Σ aₙ(x - x₀)ⁿ y₂(x) = cy₁(x)ln|x - x₀| + |x - x₀|^r₂ Σ bₙ(x - x₀)ⁿ where c  

may be zero.  

Radius of Convergence  

The radius of convergence of the power series solutions is often determined  

by the distance to the nearest singular point. If the differential equation has  



singular points at a and b, with x₀ between them, then the series centered at  

x₀ will typically converge in the interval (a,b).  
Notes  

Example of Analysis Around a Regular Point  

Consider the differential equation: y'' + xy' + y = 0 with x₀ = 0  

Here, P₀(x) = 1, P₁(x) = x, P₂(x) = 1  

Since P₀(0) = 1 ≠ 0, the point x₀ = 0 is a regular point.  

We seek a solution of the form: y(x) = Σ aₙxⁿ = a₀ + a₁x + a₂x² + a₃x³ + ...  

The derivatives are: y'(x) = Σ naₙxⁿ⁻¹ = a₁ + 2a₂x + 3a₃x² + ... y''(x) = Σ n(n-  

1)aₙxⁿ⁻² = 2a₂ + 6a₃x + 12a₄x² + ...  

Substituting these into the original equation: (2a₂ + 6a₃x + 12a₄x² + ...) + x(a₁  

+ 2a₂x + 3a₃x² + ...) + (a₀ + a₁x + a₂x² + ...) = 0  

Collecting terms: (2a₂ + a₀) + (6a₃ + a₁ + a₁)x + (12a₄ + 2a₂ + a₂)x² + ... = 0  

For this equation to be satisfied for all x, each coefficient must be zero: 2a₂ +  

a₀ = 0 → a₂ = -a₀/2 6a₃ + 2a₁ = 0 → a₃ = -a₁/3 12a₄ + 3a₂ = 0 → a₄ = -3a₂/12  

= -3(-a₀/2)/12 = a₀/8  

Continuing this process, we get: a₂ = -a₀/2 a₃ = -a₁/3 a₄ = a₀/8 a₅ = a₁/15 ...  

This gives us two linearly independent solutions: y₁(x) = a₀(1 - x²/2 + x⁴/8 -  

...) y₂(x) = a₁(x - x³/3 + x⁵/15 - ...)  

With appropriate choices of a₀ and a₁, we obtain a fundamental set of  

solutions.  

3.7 The Legendre Equation and Its Applications  

The Legendre equation is a second-order linear differential equation that  

arises in many areas of mathematics and physics, particularly when solving  

partial differential equations using separation of variables. The standard  

form is:  

(1-x²)y'' - 2xy' + n(n+1)y = 0  

Where n is a parameter, often a non-negative integer. This equation is  

significant because it appears naturally when solving Laplace's equation in  

spherical coordinates.  
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Properties of the Legendre Equation  Notes  

The Legendre equation has:  

•

•

•

Regular singular points at x = 1 and x = -1  

A regular point at x = 0  

The interval of interest is typically [-1, 1]  

For integer values of n, the equation has polynomial solutions called  

Legendre polynomials, denoted by Pₙ(x).  

Legendre Polynomials  

Legendre polynomials Pₙ(x) are solutions to the Legendre equation when n  

is a non-negative integer. They form a complete orthogonal set on the  

interval [-1, 1] with respect to the weight function w(x) = 1.  

Key Properties of Legendre Polynomials  

1. Orthogonality: ∫₍₋₁₎^1 Pₙ(x)Pₘ(x)dx = 0 if m ≠ n ∫₍₋₁₎^1 [Pₙ(x)]²dx =  

2/(2n+1)  

2. Normalization: Pₙ(1) = 1 for all n  

3. Parity: Pₙ(-x) = (-1)ⁿPₙ(x) (even function for even n, odd function for  

odd n)  

4. Rodrigues' Formula: Pₙ(x) = (1/2ⁿn!)(dⁿ/dxⁿ)[(x²-1)ⁿ]  

5. Recurrence Relations: (n+1)Pₙ₊₁(x) = (2n+1)xPₙ(x) - nPₙ₋₁(x) (x²-  

1)P'ₙ(x) = nx[Pₙ(x) - Pₙ₋₁(x)] P'ₙ₊₁(x) - P'ₙ₋₁(x) = (2n+1)Pₙ(x)  

Generating Function  

The generating function for Legendre polynomials is: G(x,t) = 1/√(1-2xt+t²)  

= Σ Pₙ(x)tⁿ  

This function generates all Legendre polynomials when expanded as a  

power series in t.  

First Few Legendre Polynomials  

P₀(x) = 1 P₁(x) = x P₂(x) = (3x² - 1)/2 P₃(x) = (5x³ - 3x)/2 P₄(x) = (35x⁴ -  

30x² + 3)/8 P₅(x) = (63x⁵ - 70x³ + 15x)/8  

Associated Legendre Functions  



When solving more complex problems, we encounter the associated  

Legendre equation: (1-x²)y'' - 2xy' + [n(n+1) - m²/(1-x²)]y = 0  
Notes  

where m is an integer with |m| ≤ n.  

The solutions are called associated Legendre functions, denoted by  

P^m_n(x), and are related to the Legendre polynomials by: P^m_n(x) = (1-  

x²)^(m/2)(d^m/dx^m)Pₙ(x)  

These functions are important in the theory of spherical harmonics and  

quantum mechanics.  

Applications of Legendre Polynomials  

1. Electrostatics: In electrostatics, the potential due to a charge distribution  

with axial symmetry can be expanded in terms of Legendre polynomials:  

Φ(r,θ) = Σ (Aₙr^n + Bₙr^(-n-1))Pₙ(cos θ)  

2. Quantum Mechanics: In quantum mechanics, Legendre polynomials  

appear in the angular part of the solution to the Schrödinger equation for the  

hydrogen atom. The associated Legendre functions form the θ-dependent  

part of spherical harmonics.  

3. Heat Conduction: When solving the heat equation in spherical  

4. Gravitational Potential: The gravitational potential of a body can be  

expanded in terms of Legendre polynomials, which is useful in celestial  

mechanics.  

5. Signal Processing: Legendre polynomials are used in the design of filters  

and in signal processing applications.  

Expansion in Legendre Series  

Any sufficiently well-behaved function f(x) on [-1, 1] can be expanded in  

terms of Legendre polynomials: f(x) = Σ cₙPₙ(x)  

where the coefficients cₙ are given by: cₙ = ((2n+1)/2)∫₍₋₁₎^1 f(x)Pₙ(x)dx  

This is analogous to Fourier series but uses Legendre polynomials as the  

basis functions.  

Spherical Harmonics  
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When solving Laplace's equation in three dimensions using spherical  

coordinates, the angular part of the solution involves the spherical  

harmonics. These are defined in terms of the associated Legendre functions:  

Notes  

Y^m_n(θ,φ) = √[(2n+1)(n-|m|)!/(4π(n+|m|)!)]P^|m|_n(cos θ)e^(imφ)  

Spherical harmonics form a complete orthonormal set on the surface of a  

unit sphere and are extensively used in quantum mechanics, particularly in  

describing the angular momentum states of quantum systems.  

Solved Problems  

Problem 1: Find the general solution of the differential equation y'' - 4y = 0  18

around the regular point x₀ = 0.  

Solution: This is a homogeneous linear differential equation with constant  

coefficients. Let's check if x₀ = 0 is a regular point.  

The equation can be written as: y'' - 4y = 0  

Here, P₀(x) = 1, P₁(x) = 0, P₂(x) = -4  

Since P₀(0) = 1 ≠ 0, the point x₀ = 0 is indeed a regular point.  

We'll assume a power series solution of the form: y(x) = Σ aₙxⁿ = a₀ + a₁x +  

a₂x² + a₃x³ + ...  

The derivatives are: y'(x) = Σ naₙxⁿ⁻¹ = a₁ + 2a₂x + 3a₃x² + ... y''(x) = Σ n(n-  

1)aₙxⁿ⁻² = 2a₂ + 6a₃x + 12a₄x² + ...  

Substituting into the original equation: (2a₂ + 6a₃x + 12a₄x² + ...) - 4(a₀ + a₁x  

+ a₂x² + ...) = 0  

Simplifying: (2a₂ - 4a₀) + (6a₃ - 4a₁)x + (12a₄ - 4a₂)x² + ... = 0  

For this to be true for all x, each coefficient must be zero:  

2a₂ - 4a₀ = 0 ⟹ a₂ = 2a₀ 6a₃ - 4a₁ = 0 ⟹ a₃ = (2/3)a₁ 12a₄ - 4a₂ = 0 ⟹ a₄ =  

(1/3)a₂ = (2/3)a₀  

Continuing this pattern: a₅ = (2/15)a₁ a₆ = (4/45)a₀ ...  

Generally, we find: a₂ₙ = (2ⁿ/n!)a₀ a₂ₙ₊₁ = (2ⁿ/n!)a₁  

This gives us two linearly independent solutions: y₁(x) = a₀(1 + 2x² + (4/3)x⁴  

+ ...) y₂(x) = a₁(x + (2/3)x³ + (2/15)x⁵ + ...)  



These series represent hyperbolic functions: y₁(x) = a₀cosh(2x) y₂(x) =  

a₁sinh(2x)  
Notes  

Therefore, the general solution is: y(x) = C₁cosh(2x) + C₂sinh(2x)  

Which can also be written as: y(x) = A₁e^(2x) + A₂e^(-2x)  

Where C₁, C₂, A₁, and A₂ are arbitrary constants.  

Problem 2: Find the general solution to (1-x²)y'' - 2xy' + 6y = 0 on the  

interval (-1,1).  

Solution: This is a Legendre-type equation. We can rewrite it in the standard  

form: (1-x²)y'' - 2xy' + n(n+1)y = 0  

Comparing with our equation, we have n(n+1) = 6. Solving: n² + n - 6 = 0  

Factoring: (n+3)(n-2) = 0 So n = -3 or n = 2  

Since n = 2 is a non-negative integer, the equation has a polynomial  

To find this polynomial, we can use the Rodrigues' formula: Pₙ(x) =  

(1/2ⁿn!)(dⁿ/dxⁿ)[(x²-1)ⁿ]  

For n = 2: P₂(x) = (1/2²2!)(d²/dx²)[(x²-1)²] = (1/8)(d²/dx²)[(x⁴-2x²+1)] =  

(1/8)(12x² - 4) = (3x² - 1)/2  

The other linearly independent solution (for n = -3) is more complex and  

involves the Legendre function of the second kind, Q₂(x). This function has  

logarithmic singularities at x = ±1.  

For completeness, Q₂(x) = (P₂(x)ln((1+x)/(1-x))/2 - (3/2)xP₁(x) + (3/2)P₀(x)  

Therefore, the general solution on (-1,1) is: y(x) = C₁P₂(x) + C₂Q₂(x) =  

C₁(3x² - 1)/2 + C₂Q₂(x)  

where C₁ and C₂ are arbitrary constants.  

Problem 3: Find the first three non-zero terms in the power series solution  

of y'' + xy = 0 around x₀ = 0.  

Solution: Let's first check if x₀ = 0 is a regular point. In this equation, P₀(x) =  

1, P₁(x) = 0, P₂(x) = x  

Since P₀(0) = 1 ≠ 0, the point x₀ = 0 is a regular point.  
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solution, specifically the Legendre polynomial P₂(x) with a scaling factor.  



We assume a power series solution: y(x) = Σ aₙxⁿ = a₀ + a₁x + a₂x² + a₃x³ + ...  Notes  

The derivatives are: y'(x) = a₁ + 2a₂x + 3a₃x² + 4a₄x³ + ... y''(x) = 2a₂ + 6a₃x  

+ 12a₄x² + 20a₅x³ + ...  

Substituting into the equation y'' + xy = 0: (2a₂ + 6a₃x + 12a₄x² + 20a₅x³ + ...)  

+ x(a₀ + a₁x + a₂x² + a₃x³ + ...) = 0  

Expanding: 2a₂ + (6a₃ + a₀)x + (12a₄ + a₁)x² + (20a₅ + a₂)x³ + ... = 0  

For this to equal zero for all x, each coefficient must be zero: 2a₂ = 0 ⟹ a₂ =  

0 6a₃ + a₀ = 0 ⟹ a₃ = -a₀/6 12a₄ + a₁ = 0 ⟹ a₄ = -a₁/12 20a₅ + a₂ = 0 ⟹ a₅ =  

-a₂/20 = 0 (since a₂ = 0) 30a₆ + a₃ = 0 ⟹ a₆ = -a₃/30 = a₀/180  

Continuing: a₇ = -a₄/42 = a₁/504 a₈ = -a₅/56 = 0 (since a₅ = 0) a₉ = -a₆/72 = -  

a₀/12960  

Therefore, the first three non-zero terms for the solution with a₀ ≠ 0, a₁ = 0  

are: y₁(x) = a₀(1 - x³/6 + x⁶/180 - ...)  

And the first three non-zero terms for the solution with a₀ = 0, a₁ ≠ 0 are:  

y₂(x) = a₁(x - x⁴/12 + x⁷/504 - ...)  

The general solution is a linear combination of these two series: y(x) =  

C₁y₁(x) + C₂y₂(x)  

Problem 4: Find the coefficients in the Legendre series expansion of f(x) =  

x² on [-1,1] up to n = 3.  

Solution: We want to express f(x) = x² as a series of Legendre polynomials:  

f(x) = Σ cₙPₙ(x)  

The coefficients are given by: cₙ = ((2n+1)/2)∫₍₋₁₎^1 f(x)Pₙ(x)dx  

First, let's recall the first few Legendre polynomials: P₀(x) = 1 P₁(x) = x  

P₂(x) = (3x² - 1)/2 P₃(x) = (5x³ - 3x)/2  

Now we can calculate the coefficients:  

For n = 0: c₀ = ((2·0+1)/2)∫₍₋₁₎^1 x²·1 dx = (1/2)∫₍₋₁₎^1 x² dx = (1/2)[x³/3]₍₋₁₎^1  

= (1/2)[(1/3) - (-1/3)] = (1/2)(2/3) = 1/3  

For n = 1: c₁ = ((2·1+1)/2)∫₍₋₁₎^1 x²·x dx = (3/2)∫₍₋₁₎^1 x³ dx = (3/2)[x⁴/4]₍₋₁₎^1  

= (3/2)[(1/4) - (-1/4)] = (3/2)(1/2) = 0  



For n = 2: c₂ = ((2·2+1)/2)∫₍₋₁₎^1 x²·(3x² - 1)/2 dx = (5/2)(1/2)∫₍₋₁₎^1 (3x⁴ - x²)  

dx = (5/4)[3x⁵/5 - x³/3]₍₋₁₎^1 = (5/4)[(3/5 - 1/3) - (-3/5 + 1/3)] = (5/4)(3/5 -  

1/3 + 3/5 - 1/3) = (5/4)(6/5 - 2/3) = (5/4)(18/15 - 10/15) = (5/4)(8/15) = 2/3  

Notes  

For n = 3: c₃ = ((2·3+1)/2)∫₍₋₁₎^1 x²·(5x³ - 3x)/2 dx = (7/2)(1/2)∫₍₋₁₎^1 (5x⁵ -  

3x³) dx = (7/4)[5x⁶/6 - 3x⁴/4]₍₋₁₎^1 = (7/4)[(5/6 - 3/4) - (-5/6 + 3/4)] =  

(7/4)(5/6 - 3/4 + 5/6 - 3/4) = (7/4)(10/6 - 6/4) = (7/4)(5/3 - 3/2) = (7/4)(10/6 -  

9/6) = (7/4)(1/6) = 7/24  

Therefore, the Legendre series expansion of f(x) = x² up to n = 3 is: x² =  

(1/3)P₀(x) + 0·P₁(x) + (2/3)P₂(x) + (7/24)P₃(x) + ...  

Substituting the expressions for the Legendre polynomials: x² = (1/3) +  

(2/3)(3x² - 1)/2 + (7/24)(5x³ - 3x)/2 + ...  

Simplifying: x² = 1/3 + (2/3)(3x² - 1)/2 + (7/24)(5x³ - 3x)/2 = 1/3 + (3x² -  

1)/3 + (35x³ - 21x)/48 = 1/3 - 1/3 + x² + (35x³ - 21x)/48 = x² + (35x³ -  

21x)/48  

We can verify that the coefficient of x² is 1, as expected. The remaining  

terms with x³ and x should sum to zero for higher precision.  

Problem 5: Find the general solution to the differential equation x²y'' + 3xy'  

- 3y = 0 near the regular singular point x = 0.  

Solution: First, let's rewrite the equation in the standard form: y'' + (3/x)y' -  

(3/x²)y = 0  

Here, P₀(x) = 1, P₁(x) = 3/x, P₂(x) = -3/x²  

Since P₁(x) and P₂(x) have poles at x = 0, this is a singular point. To  

determine if it's a regular singular point, we check if xP₁(x) and x²P₂(x) are  

analytic at x = 0:  

xP₁(x) = x(3/x) = 3 (analytic at x = 0) x²P₂(x) = x²(-3/x²) = -3 (analytic at x =  

0)  

Since both are analytic, x = 0 is a regular singular point, and we can use the  

method of Frobenius.  

We assume a solution of the form: y(x) = x^r Σ aₙx^n = x^r(a₀ + a₁x + a₂x² +  

...)  

where a₀ ≠ 0.  
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Taking derivatives: y'(x) = rx^(r-1)(a₀ + a₁x + ...) + x^r(a₁ + 2a₂x + ...) =  

rx^(r-1)a₀ + (ra₁ + a₁)x^r + ...  
Notes  

y''(x) = r(r-1)x^(r-2)a₀ + r(r-1)a₁x^(r-1) + ... + r(a₁ + 2a₂x + ...) + x^r(2a₂ +  

...) = r(r-1)x^(r-2)a₀ + (r(r-1)a₁ + r(r+1)a₁)x^(r-1) + ...  

Substituting into the original equation: x²[r(r-1)x^(r-2)a₀ + ...] + 3x[rx^(r-  

1)a₀ + ...] - 3[x^r(a₀ + ...)] = 0  

Simplifying: r(r-1)x^r a₀ + ... + 3rx^r a₀ + ... - 3x^r a₀ - ... = 0 [r(r-1) + 3r -  

3]x^r a₀ + ... = 0 [r² - r + 3r - 3]a₀x^r + ... = 0 [r² + 2r - 3]a₀x^r + ... = 0  

For the lowest power term to vanish, we need: r² + 2r - 3 = 0  

This is the indicial equation. Solving: r = (-2 ± √(4 + 12))/2 = (-2 ± √16)/2 =  

(-2 ± 4)/2 So r = 1 or r = -3  

For r = 1, we have a solution of the form: y₁(x) = x(a₀ + a₁x + a₂x² + ...)  

For r = -3, we have: y₂(x) = x^(-3)(b₀ + b₁x + b₂x² + ...)  

The general solution is: y(x) = C₁y₁(x) + C₂y₂(x)  

To find the coefficients, we would substitute each solution back into the  

original equation and derive recurrence relations. However, since the  

difference of the roots is 4 (an integer), we might need to check if the second  

solution involves logarithmic terms.  

The complete procedure would involve:  

1. Substituting y₁(x) into the equation to find the a₁ coefficients  

2. Checking if y₂(x) needs logarithmic terms  

3. Finding the b₁ coefficients  

For brevity, the final solution has the form: y(x) = C₁x(a₀ + a₁x + a₂x² + ...) +  

C₂x^(-3)(b₀ + b₁x + b₂x² + ...)  

where the coefficients are determined by recurrence relations.  

Unsolved Problems  

Problem 1: Find the general solution of the differential equation (x² - 4)y'' +  

2xy' - 2y = 0.  



Problem 2: Find the power series solution around x₀ = 0 for the equation y''  Notes  
+ x²y = 0, and determine the radius of convergence.  

Problem 3: Show that if y₁(x) is a solution to y'' + p(x)y' + q(x)y = 0, where  

p(x) and q(x) are analytic at x₀, then y₂(x) = y₁(  

The Theory and Practical Applications of Linear Differential Equations  

with Variable Coefficients  

Linear differential equations with variable coefficients serve as potent  

instruments in contemporary mathematics and its applications, effectively  

modeling a multitude of real-world phenomena with exceptional precision.  

In contrast to their constant-coefficient equivalents, these equations include  

the dynamic characteristics of systems in which parameters vary about the  

independent variable, usually time or space. This theoretical framework is  

practically applied in various domains such as engineering control systems,  

quantum physics, financial modeling, climate science, and biomedical  

engineering.  

The mathematical formulation of numerous physical and engineering  

systems inherently results in differential equations with coefficients as  

functions instead of constants. When combined with certain conditions at a  

designated moment (usually at t = 0), these constitute initial value problems  

Examine a general nth-order linear differential equation characterized by  

variable coefficients:  

a₀(t)y^(n) + a₁(t)y^(n-1) + ... + aₙ₋₁(t)y' + aₙ(t)y = g(t)  

Let a₀(t), a₁(t), ..., aₙ(t) denote continuous functions defined on a certain  

interval, with the condition that a₀(t) ≠ 0 across this interval. An initial value  

problem necessitates the specification of y(t₀), y'(t₀), ..., y^(n-1)(t₀).  

In practical applications, these equations regulate systems in which  

parameters change over time. In aeronautical engineering, the dynamics of  

aircraft during atmospheric reentry entail drag coefficients that fluctuate  

with altitude and velocity. The differential equations that characterize this  

scenario include variable coefficients that represent the changing physical  

parameters. Engineers must resolve these equations to forecast trajectories  

and heat loads throughout essential mission phases.Comparable equations  
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Initial Value Problems for Linear Equations with Variable Coefficients  

(IVPs) that yield unique solutions characterizing the system's behavior.  



emerge in population dynamics, where growth rates may be influenced by  

temporal environmental variables. Epidemiological models monitoring  

disease dissemination include variable transmission rates that account for  

alterations in social behaviors, seasonal influences, or intervention  

strategies. Public health experts depend on the solutions to these equations  

for formulating containment tactics during epidemics. Contemporary  

numerical techniques have transformed our methodology for resolving these  

intricate equations. Adaptive step-size approaches, such as Runge-Kutta-  

Fehlberg algorithms, autonomously modify computational precision in  

response to rapid variations in coefficient functions. This computational  

efficiency is crucial in real-time applications, such as flight control systems  

or financial trading algorithms, where rapid solution generation is required  

under fluctuating conditions.  

Notes  

Homogeneous Linear Equations with Variable Coefficients  

Homogeneous linear differential equations with variable coefficients (where  4747

g(t) = 0) constitute the basis for comprehending more intricate systems.  484848

Their solutions provide the complementary function in the general solution  

to  non-homogeneous  equations.  

The configuration of these equations maintains essential characteristics that  

render their examination methodical. Their solution spaces are specifically  

linear spaces of size n, applicable to nth-order equations. This indicates that  

any solution can be represented as a linear combination of n linearly  484848

independent solutions. In telecommunications engineering, signal  

propagation via diverse media often adheres to homogeneous equations with  

coefficients contingent upon the characteristics of the transmission medium  

at various locations. Engineers developing optical fiber networks resolve  

these equations to comprehend signal behavior when traversing materials  

with differing refractive indices or undergoing stress-induced alterations in  

fiber properties. Quantum mechanics fundamentally depends on the  

Schrödinger equation, a second-order linear differential equation with  

coefficients that vary according to the potential function. The solutions to  

this equation characterize the wave function of quantum systems, ranging  

from elementary particles in potential wells to intricate molecule  

architectures. The advancement of novel materials, quantum computing  

frameworks, and nanotechnology applications relies on the precise  

resolution of these equations. Financial mathematics use stochastic  



differential equations with time-dependent coefficients to represent asset  

prices amid fluctuating market volatility. The Black-Scholes equation for  

option pricing transforms into a variable-coefficient problem when  

integrating time-dependent volatility, interest rates, or dividend yields. This  

enhanced modeling assists risk managers in formulating hedging strategies  

that adjust to changing market conditions.  

Notes  

The Wronskian and Linear Independence  

The Wronskian determinant, named for Polish mathematician Józef Maria  

Hoene-Wroński, is important to the theory of linear differential equations.  

The Wronskian for a collection of functions y₁(t), y₂(t), ..., yₙ(t) is defined as:  

W(y₁, y₂, ..., yₙ)(t) = det[y₁^(j-1)(t)]  

Where j varies from 1 to n and i similarly varies from 1 to n.  

The Wronskian's importance transcends mathematical beauty; it serves as a  

practical criterion for assessing whether a collection of solutions constitutes  

a basic set. If the Wronskian is non-zero at a point, the solutions are linearly  

independent in the vicinity of that point. This characteristic is essential for  

formulating generic solutions.  

Abel's Theorem asserts that if y₁, y₂, ..., yₙ are solutions to a homogeneous  4747

linear differential equation with variable coefficients, then their Wronskian  

is governed by the following relationship:  

W(t) = W(t₀)exp(-∫(a₁(s)/a₀(s))ds)  

This relationship indicates that the Wronskian either identically equals zero  

or remains non-zero throughout the defined interval—a significant result  

with  practical  ramifications.  

In structural engineering, the modal analysis of systems with changeable  

stiffness or mass distribution depends on identifying linearly independent  

mode forms. The Wronskian assists engineers in determining essential  

vibration modes, which are vital for building structures that can withstand  

dynamic loads like earthquakes or wind. By guaranteeing the linear  

independence of mode shapes via Wronskian analysis, engineers may create  

more precise finite element models for intricate structures.  

Control theory widely use state-space representations of systems  

characterized by time-varying characteristics. The controllability and  
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observability of these systems rely on Wronskian-like matrices that assess  Notes  



the linear independence of state trajectories. Autonomous vehicle guiding  

systems utilize these mathematical techniques to guarantee that control  

algorithms remain successful amidst varying environmental variables or  

vehicle  dynamics.  

Researchers in machine learning focusing on differential equation-based  

neural networks employ Wronskian characteristics to develop topologies that  

maintain solution uniqueness. Neural ODE models have demonstrated  

potential in time-series prediction problems where system characteristics  

change over time, for as in climate modeling or physiological monitoring.  

Method of Reduction of Order  

When a solution to a second-order homogeneous linear differential equation  

is known, the reduction of order method offers a systematic technique for  

determining a second, linearly independent solution. This method converts  

the issue into a first-order equation for a corresponding function.  

For the second-order equation y'' + p(t)y' + q(t)y = 0, where y₁(t) is a known  

solution, a second solution y₂(t) can be derived as y₂(t) = v(t)y₁(t) by  

resolving a more straightforward first-order equation for v'(t).  

This technique is widely utilized in quantum mechanics for solving the  

Schrödinger equation in systems exhibiting spherical symmetry. The  

electron wave functions of the hydrogen atom are ascertained by employing  

reduction of order on the radial component of the Schrödinger equation.  

Contemporary computational chemistry software utilizes this method to  

compute molecular orbitals and forecast chemical characteristics. In  

electrical engineering, transmission line equations featuring spatially  

changing impedance can be analyzed by order reduction when one solution  

is obtainable from physical principles. Engineers developing microwave  

circuits or high-frequency communication systems employ these approaches  

to examine signal propagation over non-homogeneous transmission  

mediums. Acoustics engineers analyzing sound propagation in ducts with  

varying cross-sections utilize reduction of order to ascertain the acoustic  

field when one solution mode is established. This research aids in the design  

of noise control systems for HVAC equipment, vehicle exhaust systems, and  

music hall acoustics, where alterations in geometry influence sound wave  

behavior.  

This approach is also effective in evaluating viscoelastic materials whose  

characteristics vary with temperature or stress history. Polymers utilized in  

aerospace components, medical equipment, and consumer products  

demonstrate intricate time-dependent behaviors that can be represented by  

Notes  



differential equations suitable for reduction of order methods.  

Homogeneous Equations with Analytic Coefficients  

When the coefficient functions a₀(t), a₁(t), ..., aₙ(t) are analytic at a point t₀  

(capable of being expressed as convergent power series), the solutions to the  

homogeneous equation have distinctive characteristics. The method of  

Frobenius can be employed to solve these equations by constructing  

solutions in the form of power series or generalized power series.  

For a second-order equation expressed as:  

t²y'' + tp(t)y' + q(t)y = 0  

When p(t) and q(t) are analytic at t = 0, the Frobenius method produces  

solutions in the following form:  

y(t) = tʳ(c₀ + c₁t + c₂t² + ...)  

Where r is a root of the indicial equation, a quadratic equation formulated  

from the differential equation's behavior in proximity to the single point.  

This theoretical framework supports several applications in physics and  

engineering. In fluid dynamics, the examination of flow around barriers  

frequently results in equations with analytical coefficients exhibiting  

singularities near the surface of the obstacle. Aerodynamics engineers  

examining airfoil performance resolve these equations to forecast lift and  

drag attributes across various flying circumstances. The propagation of  

electromagnetic waves in waveguides with changing characteristics results  

in differential equations with analytic coefficients. The Frobenius approach  

allows telecommunications engineers to ascertain field distributions and  

propagation modes in sophisticated optical or microwave systems that  

provide the foundation of contemporary communication networks. Heat  

transfer issues in radially symmetric geometries with temperature-dependent  

thermal characteristics result in variable-coefficient equations suitable for  

series solution techniques. Thermal engineers developing nuclear reactor  

components, heat exchangers, or thermal protection systems for spacecraft  

utilize these solutions when evaluating systems subjected to extreme  
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temperature gradients. The theory of special functions, such as Bessel  

functions, Legendre polynomials, and hypergeometric functions, arises  

inherently from the examination of homogeneous equations with analytic  

coefficients. These specialized functions act as fundamental components for  

resolving intricate technical challenges across various fields.  

Notes  

The Legendre Equation and Its Applications  



The Legendre equation exemplifies a significant category of differential  

equations characterized by variable coefficients.  

(1-x²)y'' - 2xy' + n(n+1)y = 0  

Let n denote a parameter. For non-negative integers n, this equation has  

polynomial solutions referred to as Legendre polynomials, symbolized as  

Pₙ(x).  

These polynomials constitute an orthogonal set throughout the interval [-1,  

1] concerning the standard inner product, rendering them essential in  

approximation theory and the examination of physical systems characterized  

by  spherical  or  ellipsoidal  

In geophysics, Legendre polynomials represent the angular component of  

solutions to Laplace's equation in spherical coordinates. The modeling of  

Earth's gravitational field is based on spherical harmonic expansions derived  

from Legendre polynomials. Satellite-derived gravity measurements from  

missions such as GRACE (Gravity Recovery and Climate Experiment)  

employ mathematical methodologies to monitor alterations in Earth's mass  

distribution, disclosing groundwater depletion, ice sheet melting, and other  

climatically significant events. Quantum physics use Legendre polynomials  

in the examination of angular momentum states. The electron wave  

functions of the hydrogen atom incorporate corresponding Legendre  

functions in their angular components. Contemporary quantum chemistry  

computations for pharmaceutical design, materials research, and molecular  

electronics rely on the efficient calculation of these functions.  

Medical imaging systems, such as magnetic resonance imaging (MRI),  

employ Legendre polynomial expansions to rebuild three-dimensional  

images from measurement data. The mathematical characteristics of these  

polynomials provide effective algorithms for image processing and  

reconstruction, enhancing diagnostic capacities for neurological illnesses,  

cancer detection, and surgical planning. Antenna design for  

geometry.  

telecommunications networks often incorporates Legendre functions in the  

analysis of radiation patterns. Engineers designing phased array radars,  

satellite communication antennas, or 5G cellular network equipment  

enhance directivity and coverage using expansion techniques derived from  

their specialized roles. Weather prediction methods utilize Legendre  

polynomial expansions to represent atmospheric variables on spherical  

domains. Global circulation models that mimic climate trends and forecast  

extreme weather events utilize spectral approaches employing these  

functions to effectively resolve the governing equations of atmospheric  

Notes  



dynamics.  

Numerical Techniques for Equations with Variable Coefficients  

Although analytical solutions offer significant theoretical insights, numerous  

practical applications necessitate numerical methods. The intricacy of  

variable coefficient equations frequently requires computer techniques for  

solution generation. Finite difference methods estimate derivatives at  

discrete locations, converting the differential equation into a system of  

algebraic equations. These approaches must meticulously manage variable  

coefficients by assessing them at suitable grid points. Adaptive mesh  

refinement techniques are especially beneficial when coefficient functions  

exhibit  fast  variation  in  specific  areas.  

Spectral approaches provide solutions as expansions in basis functions,  

sometimes utilizing orthogonal polynomials such as Legendre or Chebyshev  

polynomials. For variable coefficient equations, these approaches produce  

dense matrices while attaining excellent accuracy with a limited number of  

terms. The finite element technique partitions the domain into elements and  

estimates the solution with basis functions within each element. This method  

inherently supports varied coefficients and intricate geometries, rendering it  

common in engineering applications. Simulations of air flows using  

computational fluid dynamics utilize numerical techniques to resolve  

equations with diffusion coefficients that fluctuate with altitude and  

temperature. Weather forecasting systems and climate models depend on  

effective variable-coefficient solvers to anticipate atmospheric behavior  

across various scales. Semiconductor device simulation entails the use of  

drift-diffusion equations characterized by spatially variable mobility and  

diffusion coefficients, which are contingent upon doping profiles and  

electric fields. Electronics makers employ specialized solvers for these  
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equations for designing transistors, solar cells, and integrated circuits that  Notes  

Biomedical applications encompass the simulation of drug diffusion across  

heterogeneous tissues characterized by spatially variable diffusion  

coefficients. Pharmaceutical researchers enhance drug delivery systems and  

forecast therapeutic success with numerical solutions to variable-coefficient  

challenges.  

Asymptotic Techniques for Variable Coefficient Equations  

When parameter values pose difficulties for direct numerical or analytical  

solutions, asymptotic approaches offer useful approximations. These  

techniques examine the behavior of equations in limiting scenarios,  

drive contemporary technology.  



specifically when a parameter approaches extreme values, either extremely  

large or very small. The matched asymptotic expansions approach links  

solutions applicable in distinct locations by aligning them in a shared  

intermediate overlap zone. This method is especially successful for  

equations characterized by quickly varying coefficients or boundary layers.  

The WKB (Wentzel-Kramers-Brillouin) theory approximates solutions to  

equations of the following form:  

ε²y'' + p(t)y = 0  

Where ε represents a minor parameter. This approach produces oscillatory  

solutions characterized by slowly changing amplitude and rapidly  

fluctuating phase, suitable for wave propagation issues involving variable  

medium properties.  

Multiscale analysis distinguishes dynamics at several temporal or spatial  

scales, providing consistently accurate approximations for issues with  

gradually  changing  coefficients.  

Applications  of  quantum mechanics  encompass semiclassical  

approximations for the Schrödinger equation with slowly fluctuating  

potentials. These methods link quantum and classical representations of  

particle motion, crucial for comprehending atomic and molecular  

spectroscopy. Optics researchers examining light propagation in gradient-  

index media utilize WKB algorithms to ascertain ray trajectories and wave  

characteristics. Optical waveguides, metamaterials, and photonic devices  

characterized by spatially variable refractive indices get advantages from  

these asymptotic methodologies. Structural mechanics issues concerning  

thin shells or beams with varying thickness employ asymptotic approaches  

to create reduced-order models. Aerospace engineers utilize these estimates  

to reconcile structural integrity with weight limitations when building  

lightweight structures for aircraft or spacecraft.  

Notes  

Stability Assessment for Systems with Variable Coefficients  

The stability of solutions to differential equations with variable coefficients  

poses distinct challenges in comparison to systems with fixed coefficients.  

Lyapunov theory offers methodologies for assessing stability without the  

necessity  of  explicitly  solving  the  equations.  

In linear systems ẋ = A(t)x, where A(t) is a matrix with variable coefficients,  

stability is contingent upon the characteristics of the state transition matrix.  

When A(t) possesses specific structures, such as periodicity or near-  
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Floquet  theory  provides  further  insights.  

Control systems with time-varying parameters necessitate rigorous stability  

analysis to guarantee performance amid fluctuating situations. Adaptive  

control techniques that adjust control parameters based on system changes  

depend on stability criteria for variable coefficient systems. The evaluation  

of power grid stability entails differential equations with coefficients  

Engineers engaged in the development of smart grid technology and  

renewable energy integration methods scrutinize these equations to avert  

cascade failures and guarantee dependable electricity delivery. Biological  

systems frequently display time-dependent features as a result of  

environmental factors or developmental alterations. Population dynamics  

models, brain networks featuring plastic synapses, and metabolic pathways  

with regulated enzyme activity all provide variable-coefficient equations, the  

Contemporary signal processing heavily depends on linear systems  

exhibiting time-varying properties. Adaptive filters, which adjust their  

coefficients according on the characteristics of the input signal, utilize  484848

variable-coefficient difference equations, the discrete counterpart of  

differential equations. These mathematical frameworks facilitate noise  

suppression in dynamic settings, channel equalization for wireless  
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periodicity,  

influenced by generation levels, load demands, and network topology.  

stability of which dictates system behavior.  

Applications in Signal Processing and Telecommunications  

communication, and augmentation of biomedical signals for diagnostic  

applications. Echo cancellation algorithms in teleconferencing systems  

perpetually adjust filter coefficients to accommodate fluctuating acoustic  

surroundings. Radar systems that analyze signals from moving targets  

resolve differential equations in which Doppler effects introduce coefficients  

that vary with time. Military and civilian radar applications, such as air  

traffic control and meteorological observation, rely on these mathematical  

methods to derive target information from received signals. Speech  

recognition systems represent vocal tract features as time-varying filters,  

resulting in variable-coefficient equations that encapsulate the dynamics of  

speech generation. This theoretical framework supports voice assistants,  

Notes  

Monetary Applications  

Financial mathematics increasingly utilizes variable-coefficient differential  

equations to represent intricate market dynamics. The Black-Scholes-Merton  

transcription services, and speaker identification technology.  

model for option pricing can be adapted to include time-varying volatility,  



interest rates, and dividend yields, resulting in variable-coefficient partial  

differential equations. These advanced models encapsulate market  

characteristics such as volatility clustering, the term structure of interest  

rates, and seasonal dividend trends. Financial risk managers employ  

solutions to these equations for formulating hedging strategies for derivative  

portfolios  in  realistic  market  situations.  

Term structure models for interest rates frequently use stochastic differential  

equations with time-varying parameters that represent market expectations  

and central bank actions. These models facilitate bond valuation, mortgage  

rate  prediction,  and  monetary  policy  evaluation.  

Credit risk assessment employs default intensity models featuring time-  

varying parameters that mirror fluctuating economic conditions. Banks and  

financial organizations employ these models for loan pricing, securitization  

structuring, and capital reserve management.  

Applications of Biomedical Engineering  

Healthcare technologies increasingly utilize variable-coefficient differential  

equations to simulate physiological systems with parameters that fluctuate  

according to patient condition, pharmaceutical effects, or circadian rhythms.  

Pharmacokinetic-pharmacodynamic (PK-PD) models delineate drug  

absorption, distribution, metabolism, and excretion through factors  

contingent upon patient features and physiological conditions. These models  

inform individualized dosing strategies, pharmaceutical development, and  

Notes  

therapeutic  enhancement.  

Modeling cardiac electrical activity entails reaction-diffusion equations  

using geographically and temporally variable conductivity tensors that  

represent the variety of heart tissue and pathological conditions.  

Cardiologists employ these models to comprehend arrhythmias, refine  

pacemaker configurations, and formulate therapies for cardiac disorders.  

Models of brain activity integrate neuronal field equations alongside  

connection patterns that change over learning, development, or disease  

advancement. Neuroscientists investigating epilepsy, Alzheimer's disease, or  

awareness utilize these mathematical frameworks to link observed  

phenomena with fundamental neuronal principles.  

Climatology and Ecological Simulation  

Environmental systems inherently encompass characteristics that fluctuate  

spatially and temporally, rendering variable-coefficient differential equations  

vital in climate research and ecology. Global climate models resolve  

equations of atmospheric and oceanic dynamics utilizing coefficients that



equations of atmospheric and oceanic dynamics utilizing coefficients that  

are contingent upon latitude, height, temperature, and more variables. These  

intricate models forecast future climatic scenarios, assess human impacts,  

and examine mitigation measures for climate change. Groundwater  

movement in heterogeneous aquifers adheres to Darcy's law, characterized  

by spatially variable hydraulic conductivity. Hydrologists apply answers to  

these variable-coefficient equations in the design of water delivery systems,  

the remediation of contaminated areas, and the management of aquifer  

recharge. Ecosystem models monitor population dynamics and resource  

and interspecies interactions. onservation biologists and resource managers  

utilize these models to formulate sustainable harvesting practices, construct  

protected areas, or forecast the spread of invasive species.  

Control Systems and Robotics  

Contemporary control theory extensively addresses systems with parameters  

that vary throughout operation. Gain scheduling approaches develop  

controllers that adjust to variations in operating points by resolving families  
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of variable-coefficient differential equations. These technologies facilitate  

flight control systems that ensure stability across varying airspeeds and  

altitudes, process control systems that adapt to fluctuating feedstock  

characteristics, and robotic manipulators that manage items of diverse  

Notes  

weights  or  forms.  

Model predictive control methods consistently resolve variable-coefficient  

optimization problems to ascertain appropriate control actions amidst  

fluctuating restrictions and objectives. These sophisticated controllers drive  

driverless vehicles, optimize industrial processes, and manage energy  

systems. Robotics applications encompass adaptive motion planning in  

dynamic situations, wherein robot dynamics and environmental interactions  

provide variable-coefficient equations. Collaborative robots operating  

alongside people in industrial, healthcare, or service sectors depend on  

solutions to these equations for planning safe and efficient movements.  

Obstacles and Prospective Pathways  

Notwithstanding considerable progress, numerous obstacles persist in the  

theory and implementation of variable-coefficient differential equations. The  

pursuit of computational efficiency in high-dimensional systems  

characterized by rapidly fluctuating coefficients persists in driving algorithm  

development. Machine learning techniques are progressively combined with  

conventional numerical methods to address intricate, data-driven coefficient  

functions. Uncertainty quantification for systems with stochastically variable  

coefficients constitutes a dynamic field of research. Applications like climate  

forecasting, financial risk evaluation, and medical treatment strategizing  

necessitate not only solutions but also confidence metrics for those  

solutions. Multiscale phenomena with coefficients that vary across disparate  

scales require specific methods that connect microscopic and macroscopic  

descriptions. Hierarchical structured materials, biological systems ranging  

from molecular to organismal sizes, and socioeconomic systems linking  

individual behaviors to collective dynamics all offer prospects for theoretical  

advancements. The amalgamation of variable-coefficient differential  

equations with data science techniques creates novel opportunities for hybrid  

modeling methodologies. These strategies integrate theoretical frameworks  

with empirical data to ascertain coefficient functions, evaluate models, and  

provide predictions in contexts where solely theoretical or purely data-  

driven methods would be inadequate.  



Linear differential equations with variable coefficients constitute a robust  

mathematical framework characterized by significant theoretical  

sophistication and extensive practical applicability. This theory offers  

systematic methods for modeling intricate, dynamic systems, encompassing  

core notions of starting value issues and the Wronskian determinant, as well  

as specialized techniques such as reduction of order and series solutions. The  

applications encompass nearly all scientific and engineering fields,  

illustrating the ubiquitous nature of these mathematical constructs. As  

computer capabilities progress and interdisciplinary borders converge, the  

significance of these equations in tackling real-world situations increasingly  

escalates.The development of this discipline demonstrates the collaborative  

connection between abstract mathematical theory and practical problem-  

solving. Theoretical insights stimulate novel applications, whereas practical  

obstacles drive mathematical advancements. This reciprocal process propels  

advancement in both fields, illustrating the efficacy of mathematical  

modeling in comprehending and influencing our environment. In a time of  

unparalleled technological transformation and intricate global issues,  

proficiency in variable-coefficient differential equations equips researchers,  

engineers, and policymakers with vital instruments for analysis, forecasting,  

and design. The ongoing advancement of this mathematical framework is  

poised to unveil new potentials across various domains, including quantum  

computing, artificial intelligence, climate modeling, and personalized  

medicine, thereby reaffirming the enduring significance of mathematical  

theory in tackling humanity's most urgent challenges.  

Notes  

SELF ASSESSMENT QUESTIONS  

Multiple Choice Questions (MCQs)  

1. A second-order linear differential equation with variable coefficients  

has the general form:  

a) y′′+p(x)y′+q(x)y=0  

b) y′′+ay′+by=0  

c) y′+py=qy' + py = qy′+py=q  

d) None of the above  

2. The Wronskian is used to determine:  

a) The order of the equation  

b) The linear dependence or independence of solutions  
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c) The presence of singular points  

d) None of the above  
Notes  

3. If the Wronskian of two solutions is nonzero, then the solutions are:  

a) Linearly dependent  

b) Linearly independent  

c) Equal to each other  

d) None of the above  

4. The reduction of order method is used when:  

a) One solution is known  

b) The equation has constant coefficients  

c) The equation is non-homogeneous  

d) None of the above  

5. A differential equation is said to have analytic coefficients if:  

a) The coefficients are differentiable infinitely many times  

b) The coefficients are constants  

c) The equation has no singular points  

d) None of the above  

6. The Legendre equation arises in:  

a) Quantum mechanics  

b) Classical mechanics  

c) Both (a) and (b)  

d) None of the above  

7. The general solution of a second-order linear differential equation  

requires:  

a) Two linearly independent solutions  

b) A single solution  

c) Three solutions  

d) None of the above  

8. The variation of parameters method is used to:  

a) Solve non-homogeneous equations  

b) Solve homogeneous equations  

c) Compute the Wronskian  

d) None of the above  



9. A solution to the Legendre equation is given by:  

a) Legendre polynomials  
Notes  

b) Exponential functions  

c) Logarithmic functions  

d) None of the above  

10. If y1(x)y_1(x)y1(x) is a known solution of a second-order equation,  

the reduction of order methoy1  

a) A second linearly independent solution  

b) The characteristic equation  

c) The Wronskian  

d) None of the above  

Short Answer Questions  

1. Define a second-order linear equation with variable coefficients.  

2. What is the Wronskian, and how is it used to determine linear  

independence?  

3. Explain the reduction of order method with an example.  

4. What are analytic coefficients, and why are they important?  

5. Describe the Legendre equation and its significance.  

6. How does the method of variation of parameters differ from the  

method of undetermined coefficients?  

7. Solve the equation y′′−xy′+y=0y'' - x y' + y = 0y′′−xy′+y=0 using the  

reduction of order method.  

8. State the conditions for the existence and uniqueness of solutions.  88

9. What are singular points, and how do they affect differential  

equations?  

10. Give an application of the Legendre equation in physics.  

Long Answer Questions  

1. Derive and solve the Legendre equation for Pn(x)P_n(x)Pn(x).  

2. Explain the reduction of order method and solve y′′−2y′+y=0y'' - 2y'  

+ y = 0y′′−2y′+y=0 given that y1=exy1 = e^xy1=ex.y1  
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3. Discuss the role of the Wronskian in differential equations with  

variable coefficients.  
Notes  

4. Derive the variation of parameters formula and use it to solve  

y′′+p(x)y′+q(x)y=f(x)y''  

f(x)y′′+p(x)y′+q(x)y=f(x).  

+ p(x)y'  + q(x)y  =

5. Explain the significance of analytic coefficients and their  

applications.  

6. Solve the initial value problem y′′−xy′+y=0y'' - x y' + y =  

0y′′−xy′+y=0, y(0)=1y(0) = 1y(0)=1, y′(0)=0y'(0) = 0y′(0)=0.  

7. Discuss the physical and mathematical significance of the Legendre  

equation.  

8. What are singular points in differential equations? Explain their  

classification.  

9. Compare and contrast the methods of variation of parameters and  

reduction of order.  



MODULE IV  Notes  

UNIT XI  

LINEAR EQUATIONS WITH REGULAR SINGULAR POINTS  

4.0 Objectives  

• Understand Euler’s equation and its role in solving differential  

equations.  

•

•

•

Learn about second-order equations with regular singular points.  

Study exceptional cases in singular point analysis.  

Explore the Bessel equation and its applications.  

4.1 Introduction to Regular Singular Points  

When dealing with differential equations, we often encounter singularities -  

points where the equation behaves in unusual ways. A particularly important  

class of singularities in the study of differential equations is known as  88

"regular singular points."  

Consider a second-order linear differential equation in the standard form:  

y'' + p(x)y' + q(x)y = 0  

Where p(x) and q(x) are functions of x. A point x₀ is called a singular point  

of this equation if either p(x) or q(x) is not analytic at x₀ (meaning they have  

some kind of discontinuity or undefined behavior at that point).  

Now, a singular point x₀ is called a regular singular point if the functions (x-  

x₀)p(x) and (x-x₀)²q(x) are both analytic at x₀. In other words, when we  

multiply p(x) by (x-x₀) and q(x) by (x-x₀)², the resulting functions should be  

well-behaved at x₀.  

To understand this better, we can rewrite our differential equation in a  

slightly different form:  

(x-x₀)²y'' + (x-x₀)p(x)y' + q(x)y = 0  

If we divide by (x-x₀)², we get:  

y'' + [p(x)/(x-x₀)]y' + [q(x)/(x-x₀)²]y = 0  
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For a regular singular point, the functions P(x) = (x-x₀)p(x) and Q(x) = (x-  

x₀)²q(x) are analytic at x₀, which means they can be expressed as power  

series around x₀. So we can write:  

Notes  

P(x) = (x-x₀)p(x) = p₀ + p₁(x-x₀) + p₂(x-x₀)² + ... Q(x) = (x-x₀)²q(x) = q₀ +  

q₁(x-x₀) + q₂(x-x₀)² + ...  

When we substitute these back, our differential equation becomes:  

y'' + [P(x)/(x-x₀)]y' + [Q(x)/(x-x₀)²]y = 0  

or  

y'' + [(p₀ + p₁(x-x₀) + ...)/(x-x₀)]y' + [(q₀ + q₁(x-x₀) + ...)/(x-x₀)²]y = 0  

This form is particularly useful for finding solutions around regular singular  

points.  

Why Regular Singular Points Matter  

Regular singular points are important because:  

1. They represent a class of singularities for which we can find series  

solutions using a modified power series approach.  

2. Many physical problems lead to differential equations with regular  

singular points.  

3. The behavior of solutions near regular singular points provides  

important information about the overall solution.  

Example of Identifying Regular Singular Points  

Let's examine the equation:  

x²y'' + xy' + (x² - 1)y = 0  

We can rewrite this in the standard form:  

y'' + (1/x)y' + (1 - 1/x²)y = 0  

Here, p(x) = 1/x and q(x) = 1 - 1/x²  

The point x = 0 is a singular point because p(x) and q(x) are not analytic at x  

= 0.  

To check if it's a regular singular point:  



•

•

(x-0)p(x) = x·(1/x) = 1, which is analytic at x = 0  Notes  

(x-0)²q(x) = x²·(1 - 1/x²) = x² - 1, which is also analytic at x = 0  

Therefore, x = 0 is a regular singular point of this differential equation.  

In the next section, we'll see how to solve a special class of differential  

equations with regular singular points known as Euler's equations.  

4.2 Euler's Equation and Its Solution  

Euler's equation is a special type of differential equation with regular  

singular points. It has the form:  

x²y'' + axy' + by = 0  

where a and b are constants. We can also write it in the standard form:  

y'' + (a/x)y' + (b/x²)y = 0  

Notice that x = 0 is a regular singular point because:  

•

•

(x-0)(a/x) = a, which is analytic at x = 0  

(x-0)²(b/x²) = b, which is also analytic at x = 0  

Euler's equation is important because:  

1. It represents the simplest type of equation with a regular singular  

point.  

2. Solutions to more complex equations with regular singular points  

often involve techniques derived from solving Euler's equation.  

3. Many physical phenomena are described by Euler-type equations.  

Method of Solution: Substitution Approach  

One way to solve Euler's equation is to make the substitution x = e^t, which  

transforms the equation into one with constant coefficients.  

Let's substitute x = e^t, which means:  

•

•

y(x) = y(e^t) = Y(t)  

dy/dx = (dY/dt)·(dt/dx) = (dY/dt)·(1/x) = e^(-t)·(dY/dt)  

138  



• d²y/dx² = d/dx(dy/dx) = d/dx(e^(-t)·(dY/dt)) = e^(-t)·d/dx(dY/dt) -  

e^(-t)·(dY/dt)·(1/x) = e^(-t)·(d²Y/dt²)·(1/x) - e^(-2t)·(dY/dt) = e^(-  

2t)·[d²Y/dt² - dY/dt]  

Notes  

Substituting these into the Euler equation x²y'' + axy' + by = 0:  

x²·e^(-2t)·[d²Y/dt² - dY/dt] + ax·e^(-t)·(dY/dt) + b·Y = 0  

Simplifying: e^(2t)·e^(-2t)·[d²Y/dt² - dY/dt] + a·e^t·e^(-t)·(dY/dt) + b·Y = 0  

Which gives us: d²Y/dt² - dY/dt + a·(dY/dt) + b·Y = 0  

Rearranging: d²Y/dt² + (a-1)·(dY/dt) + b·Y = 0  

This is a second-order linear differential equation with constant coefficients,  

which we know how to solve.  

Method of Solution: Power Series Approach  

Another approach is to try a solution of the form y = x^r, where r is a  

constant to be determined.  

If y = x^r, then:  

•

•

y' = rx^(r-1)  

y'' = r(r-1)x^(r-2)  

Substituting into the Euler equation: x²·r(r-1)x^(r-2) + ax·rx^(r-1) + b·x^r =  

0

Simplifying: r(r-1)x^r + ar·x^r + b·x^r = 0  

Factoring out x^r: x^r[r(r-1) + ar + b] = 0  

Since x^r is not identically zero for x ≠ 0, we must have: r(r-1) + ar + b = 0  

This is called the indicial equation or characteristic equation for Euler's  

equation. Rearranging: r² + (a-1)r + b = 0  

This is a quadratic equation in r that we can solve to find the possible values  

Cases for Solutions to Euler's Equation  

The nature of the solutions depends on the roots of the indicial equation r² +  

(a-1)r + b = 0:  

of r.  



Case 1: Two Distinct Real Roots (r₁ and r₂)  Notes  

If the indicial equation has two distinct real roots r₁ and r₂, then the general  

solution to the Euler equation is:  

y(x) = c₁x^(r₁) + c₂x^(r₂)  

where c₁ and c₂ are arbitrary constants.  

Case 2: Repeated Real Root (r₁ = r₂ = r)  

If the indicial equation has a repeated root r, then the general solution is:  

y(x) = c₁x^r + c₂x^r·ln(x)  

Case 3: Complex Conjugate Roots (r₁ = α + iβ, r₂ = α - iβ)  

If the indicial equation has complex conjugate roots α ± iβ, the general  

solution can be written as:  

y(x) = x^α[c₁cos(βln(x)) + c₂sin(βln(x))]  

Example: Solving an Euler Equation  

Let's solve the equation: x²y'' - 3xy' + 4y = 0  

Step 1: Identify that this is an Euler equation with a = -3 and b = 4.  

Step 2: Form the indicial equation: r² + (a-1)r + b = 0 r² + (-3-1)r + 4 = 0 r² -  

4r + 4 = 0 (r - 2)² = 0  

Step 3: Since we have a repeated root r = 2, the general solution is: y(x) =  

c₁x² + c₂x²ln(x)  

This gives us the complete solution to the Euler equation.  
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UNIT XII  Notes  

4.3 Second-Order Equations with Regular Singular Points  1111

Now that we understand Euler's equation, we can tackle more general  

second-order differential equations with regular singular points.  

Series Solutions around Regular Singular Points  

Consider a general second-order differential equation with a regular singular  

point at x = 0:  

x²y'' + xp(x)y' + q(x)y = 0  

Where p(x) and q(x) are analytic at x = 0 and can be expressed as power  

series:  

p(x) = p₀ + p₁x + p₂x² + ... q(x) = q₀ + q₁x + q₂x² + ...  

To find a solution, we try a modified power series of the form:  

y(x) = x^r Σ(n=0 to ∞) aₙx^n = x^r(a₀ + a₁x + a₂x² + ...)  

where r is a constant to be determined and a₀ ≠ 0.  

The method of finding solutions involves:  

1. Substituting the series into the differential equation.  

3. Determining the recurrence relation for the coefficients aₙ.  

4. Constructing the solutions based on the nature of the roots of the  

indicial equation.  

Let's work through this process:  

Step 1: Derive the Indicial Equation  

When we substitute the series solution into the differential equation and  

collect the lowest power terms (which will involve x^r), we get what's called  

the indicial equation:  

r(r-1) + p₀r + q₀ = 0  

This is a quadratic equation in r, and its roots determine the form of our  

solutions.  

2. Finding the indicial equation to determine possible values of r.  



Step 2: Analyze the Roots of the Indicial Equation  

Let's denote the roots of the indicial equation as r₁ and r₂, with r₁ ≥ r₂.  

There are three possible cases:  

Notes  

1. The roots differ by a non-integer: r₁ - r₂ ≠ integer  

2. The roots are equal: r₁ = r₂  

3. The roots differ by a positive integer: r₁ - r₂ = positive integer  

Step 3: Construct the Solutions Based on the Roots  

Case 1: Roots Differ by a Non-Integer  

If r₁ - r₂ is not an integer, we obtain two linearly independent solutions:  

y₁(x) = x^(r₁) Σ(n=0 to ∞) aₙx^n y₂(x) = x^(r₂) Σ(n=0 to ∞) bₙx^n  

where a₀ ≠ 0 and b₀ ≠ 0.  

Case 2: Equal Roots  

If r₁ = r₂ = r, then we get:  

y₁(x) = x^r Σ(n=0 to ∞) aₙx^n y₂(x) = y₁(x)ln(x) + x^r Σ(n=1 to ∞) bₙx^n  

Case 3: Roots Differ by a Positive Integer  

If r₁ - r₂ = m (a positive integer), then:  

y₁(x) = x^(r₁) Σ(n=0 to ∞) aₙx^n y₂(x) = Cy₁(x)ln(x) + x^(r₂) Σ(n=0 to ∞)  

bₙx^n  

where C may be zero or non-zero depending on the specific equation.  

Method of Frobenius  

The procedure we've outlined is known as the Method of Frobenius. It  

provides a systematic way to find series solutions around regular singular  

points.  

Here's a step-by-step approach:  

1. Identify a regular singular point x₀.  

2. Shift the equation to make x₀ = 0 (if necessary) by substituting x →  

x + x₀.  
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3. Try a solution of the form y = x^r Σ(n=0 to ∞) aₙx^n with a₀ ≠ 0.  Notes  

4. Substitute into the differential equation and collect terms with the  

same power of x.  

5. From the lowest power terms, derive the indicial equation.  

6. Based on the roots of the indicial equation, determine the form of  

the solutions.  

7. Find the recurrence relation for the coefficients aₙ and solve for  

them.  

8. Construct the general solution.  

Example: Applying the Method of Frobenius  

Let's solve the equation: x²y'' + x(1-x)y' - (1+x)y = 0  

x(1-x) is analytic at x = 0. q(x) = -(1+x), so x²q(x) = -x²(1+x) is analytic at x  

= 0.  

Step 2: Try a solution of the form y = x^r Σ(n=0 to ∞) aₙx^n.  

Step 3: Derive the indicial equation. For the lowest power terms (x^r), we  

get: r(r-1) + r - 1 = 0 r² - r + r - 1 = 0 r² - 1 = 0 (r+1)(r-1) = 0  

So the roots are r₁ = 1 and r₂ = -1.  

Step 4: Since r₁ - r₂ = 2 (a positive integer), we use Case 3. The first solution  

is: y₁(x) = x¹(a₀ + a₁x + a₂x² + ...)  

Step 5: Substitute back and find the recurrence relation for aₙ to complete the  

solution.  

Solved and Unsolved Problems  

Solved Problem 1: Identify Regular Singular Points  

Find all singular points of the differential equation and determine which  

ones are regular singular points:  

x(x-2)y'' + (x+1)y' - 3y = 0  

Solution: First, let's rewrite the equation in standard form:  

y'' + [(x+1)/(x(x-2))]y' - [3/(x(x-2))]y = 0  

Step 1: Verify that x = 0 is a regular singular point. p(x) = (1-x), so xp(x) =  



Here p(x) = (x+1)/(x(x-2)) and q(x) = -3/(x(x-2))  Notes  

The singular points occur when the coefficient of y'' is zero, which happens  

when x = 0 or x = 2.  

For x = 0:  

• (x-0)p(x) = x·(x+1)/(x(x-2)) = (x+1)/(x-2), which has a finite limit  

as x→0  

• (x-0)²q(x) = x²·(-3)/(x(x-2)) = -3x/(x-2), which has a finite limit as  

x→0  

Therefore, x = 0 is a regular singular point.  

For x = 2:  

• (x-2)p(x) = (x-2)·(x+1)/(x(x-2)) = (x+1)/x, which has a finite limit  

as x→2  

• (x-2)²q(x) = (x-2)²·(-3)/(x(x-2)) = -3(x-2)/x, which has a finite limit  

as x→2  

Therefore, x = 2 is also a regular singular point.  

Solved Problem 2: Solve an Euler Equation  

Solve the Euler equation: x²y'' + 5xy' + 4y = 0  

Solution: This is an Euler equation with a = 5 and b = 4.  

The indicial equation is: r² + (a-1)r + b = 0 r² + (5-1)r + 4 = 0 r² + 4r + 4 = 0  

(r + 2)² = 0  

We have a repeated root r = -2.  

For a repeated root, the general solution is: y(x) = c₁x^(-2) + c₂x^(-2)ln(x)  

Solved Problem 3: Find Recurrence Relation  

For the differential equation x²y'' + xy' + (x² - 1)y = 0, find the recurrence  

relation for the coefficients in the series solution around x = 0.  

Solution: Let's try a solution of the form y = x^r Σ(n=0 to ∞) aₙx^n.  

Step 1: Find the indicial equation. The equation can be written as: y'' +  

(1/x)y' + (1 - 1/x²)y = 0  
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The indicial equation is: r(r-1) + r + (-1) = 0 r² = 1 r = ±1  Notes  

So the roots are r₁ = 1 and r₂ = -1.  

Step 2: Let's find the recurrence relation for the first solution with r = 1.  

Substituting y = x¹ Σ(n=0 to ∞) aₙx^n into the original equation and  

collecting terms with the same power of x, we get:  

Σ(n=0 to ∞) [(n+1)(n+2)aₙ₊₂ + aₙ]x^(n+1) = 0  

For this to be zero for all x, each coefficient must be zero: (n+1)(n+2)aₙ₊₂ +  

aₙ = 0  

Solving for aₙ₊₂: aₙ₊₂ = -aₙ/[(n+1)(n+2)]  

This is our recurrence relation.  

Solved Problem 4: Find Series Solution  

Find the first four terms of the series solution to the differential equation:  

xy'' - y' + 4x³y = 0  

with the initial condition y(0) = 1, y'(0) = 2.  

Solution: First, let's rewrite the equation in standard form: y'' - (1/x)y' + 4x²y  

= 0  

This has a regular singular point at x = 0.  

Let's try a solution of the form y = Σ(n=0 to ∞) aₙx^n. We need to find a₀, a₁,  

a₂, and a₃.  

Substituting into the equation: Σ(n=2 to ∞) n(n-1)aₙx^(n-2) - Σ(n=1 to ∞)  

naₙx^(n-2) + 4Σ(n=0 to ∞) aₙx^(n+2) = 0  

Shifting indices to match powers of x: Σ(n=0 to ∞) (n+2)(n+1)aₙ₊₂x^n -  

Σ(n=0 to ∞) (n+1)aₙ₊₁x^n + 4Σ(n=2 to ∞) aₙ₋₂x^n = 0  

Collecting terms for each power of x: For n = 0: 2·1·a₂ - 1·a₁ = 0 → a₂ = a₁/2  

For n = 1: 3·2·a₃ - 2·a₂ = 0 → a₃ = 2a₂/6 = a₁/6  

From the initial conditions: y(0) = a₀ = 1 y'(0) = a₁ = 2  

Therefore: a₀ = 1 a₁ = 2 a₂ = a₁/2 = 2/2 = 1 a₃ = a₁/6 = 2/6 = 1/3  

The first four terms of the series solution are: y(x) = 1 + 2x + x² + (1/3)x³ +  

...  



Solved Problem 5: Find General Solution  Notes  

Find the general solution to the differential equation: x²y'' - x(x+2)y' +  41

(x+2)y = 0  

Solution: Let's verify that x = 0 is a regular singular point and find the  

solutions around this point.  

Rewriting in standard form: y'' - [(x+2)/x]y' + [(x+2)/x²]y = 0  

For x = 0:  

•

•

x·(-(x+2)/x) = -(x+2), which is analytic at x = 0  

x²·((x+2)/x²) = x+2, which is analytic at x = 0  

So x = 0 is a regular singular point.  

Let's try a solution of the form y = x^r Σ(n=0 to ∞) aₙx^n.  

The indicial equation is: r(r-1) - 2r + 2 = 0 r² - r - 2r + 2 = 0 r² - 3r + 2 = 0 (r-  

1)(r-2) = 0  

So the roots are r₁ = 2 and r₂ = 1.  

Since r₁ - r₂ = 1 (a positive integer), we have: y₁(x) = x²(a₀ + a₁x + a₂x² + ...)  

y₂(x) = Cy₁(x)ln(x) + x(b₀ + b₁x + b₂x² + ...)  

For this particular equation, further calculation shows that C = 0, so the  

general solution is: y(x) = c₁x²(a₀ + a₁x + a₂x² + ...) + c₂x(b₀ + b₁x + b₂x² +  

...)  

Unsolved Problem 1  

Determine if x = 0 is a regular singular point for the differential equation:  

x³y'' + x²y' - 2y = 0  

If it is, find the indicial equation and its roots.  

Unsolved Problem 2  

Solve the Euler equation: x²y'' - 3xy' - 3y = 0  

Unsolved Problem 3  

Find the general solution to the differential equation: x²y'' + 3xy' + (x² - 1)y  

= 0  
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Unsolved Problem 4  Notes  

Derive the recurrence relation for the coefficients in the series solution to:  

x²y'' + xy' + (x - 1)y = 0  

around the regular singular point x = 0.  

Unsolved Problem 5  

For the differential equation: x²y'' - x(2-x)y' + 2(1-x)y = 0  

Determine all singular points and classify them as regular or irregular. Then  

find the general solution around x = 0.  1111

In this comprehensive exploration of differential equations with regular  

singular points, we have:  

1. Defined and characterized regular singular points in second-order  

linear differential equations  

2. Studied Euler's equations as the simplest type of equations with  

regular singular points  

3. Learned multiple methods for solving Euler's equations  

4. Developed the Method of Frobenius for finding series solutions  

around regular singular points  

5. Analyzed different cases based on the roots of the indicial equation  

6. Worked through several solved examples to illustrate the techniques  

7. Provided challenging unsolved problems for practice  

The theory of differential equations with regular singular points has  1111

numerous applications in physics, engineering, and other sciences. The  

methods we've developed, particularly the Method of Frobenius, provide  

powerful tools for solving these equations and understanding the behavior of  

their solutions near singular points.  

Regular singular points represent a special case where, despite the presence  

of a singularity, we can still find well-behaved series solutions. This  

distinguishes them from irregular singular points, which require different  

and often more complex approaches.By mastering the techniques presented  



here, you'll be equipped to handle a wide range of differential equations that  

arise in various applications.  
Notes  

4.4 Frobenius Method for Solving Singular Equations  

The Frobenius method is a powerful technique for solving linear ordinary  1111

differential equations with regular singular points. Unlike the power series  

method which works for ordinary points, the Frobenius method allows us to  

find solutions near singular points where the standard approach fails.  

Introduction to Regular Singular Points  

A second-order linear differential equation in standard form is written as:  

y'' + P(x)y' + Q(x)y = 0  

A point x = x₀ is called a regular singular point if both (x - x₀)P(x) and (x -  

x₀)²Q(x) are analytic at x = x₀. This means that while P(x) and Q(x) may  

have poles at x₀, these poles are of limited order (at most 1 for P and at most  

2 for Q).  

When we encounter a regular singular point, the standard power series  

method fails. However, the Frobenius method allows us to find solutions by  

assuming a modified form of the solution.  

The Frobenius Method Approach  

The key insight of the Frobenius method is to look for solutions of the form:  

y(x) = (x - x₀)^r Σ aₙ(x - x₀)^n  

where r is a constant that we need to determine, and {aₙ} are coefficients to  

be found. Without loss of generality, we can assume a₀ ≠ 0.  

For simplicity, we'll often take x₀ = 0, which means we're looking for  

solutions of the form:  

y(x) = x^r Σ aₙx^n = x^r(a₀ + a₁x + a₂x² + ...)  

The Frobenius method consists of the following steps:  

2. Express P(x) and Q(x) as Laurent series around x₀  
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1. Verify that x = x₀ is indeed a regular singular point  



3. Substitute the assumed form of the solution into the differential  

equation  
Notes  

4. Find the indicial equation to determine possible values of r  

5. For each value of r, find the recurrence relation for the coefficients  

aₙ  

6. Construct the solutions  

Finding the Indicial Equation  

When we substitute our assumed solution form into the differential equation  

and collect terms with the smallest power of x, we get the indicial equation.  

This is typically a quadratic equation in r that determines the possible values  

If P(x) = p₁/(x - x₀) + p₀ + p₁(x - x₀) + ... and Q(x) = q₂/(x - x₀)² + q₁/(x - x₀) +  

q₀ + ...  

Then the indicial equation is:  

r(r-1) + p₁r + q₂ = 0  

This is also often written as:  

r² + (p₁-1)r + q₂ = 0  

The roots of this equation, r₁ and r₂, are critical for determining the nature of  

the solutions.  

Cases Based on Indicial Equation Roots  

1. Case 1: r₁ and r₂ are distinct and don't differ by an integer  

• Two linearly independent solutions exist: y₁(x) = x^r₁(a₀ +  

a₁x + a₂x² + ...) y₂(x) = x^r₂(b₀ + b₁x + b₂x² + ...)  

2. Case 2: r₁ and r₂ are equal (r₁ = r₂ = r)  

•

•

The first solution is: y₁(x) = x^r(a₀ + a₁x + a₂x² + ...)  

The second solution involves a logarithmic term: y₂(x) =  

y₁(x)ln(x) + x^r(c₁x + c₂x² + ...)  

3. Case 3: r₁ and r₂ differ by an integer (r₁ - r₂ = N, where N is a  

positive integer)  

for r.  



•

•

The solution corresponding to the larger root r₁ is: y₁(x) =  

x^r₁(a₀ + a₁x + a₂x² + ...)  
Notes  

The second solution may or may not involve a logarithmic  

term, depending on certain conditions  

The Recurrence Relation  

After finding r, we substitute our assumed solution into the differential  

equation and collect coefficients of each power of x. This gives us a  

recurrence relation for the coefficients aₙ.  

The general form of the recurrence relation is complex and depends on the  

specific equation, but it allows us to compute a₁, a₂, a₃, etc. in terms of a₀  

(which we typically set to 1).  

Example: Bessel's Equation  

Bessel's equation is a classic example where the Frobenius method is  

applied:  

x²y'' + xy' + (x² - n²)y = 0  

This equation has a regular singular point at x = 0. The indicial equation is r²  

- n² = 0, giving r = ±n.  

The resulting solutions are the Bessel functions of the first and second kind,  

Jₙ(x) and Yₙ(x).  

Worked Examples  

Let's apply the Frobenius method to several examples:  

Example 1: Euler's Equation  

Consider the Euler equation:  

x²y'' + 3xy' - y = 0  

is analytic at x = 0. Q(x) = -1/x², so x²Q(x) = -1 is analytic at x = 0.  

Therefore, x = 0 is a regular singular point.  

Step 2: Find the indicial equation. For Euler's equation, the indicial equation  

is: r(r-1) + 3r - 1 = 0 r² + 2r - 1 = 0  
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Step 1: Verify that x = 0 is a regular singular point. P(x) = 3/x, so xP(x) = 3  



Step 3: Solve the indicial equation. Using the quadratic formula: r = (-2 ±  Notes  
√(4+4))/2 = -1 ± √2  

So r₁ = -1 + √2 ≈ 0.414 and r₂ = -1 - √2 ≈ -2.414  

Step 4: Since r₁ and r₂ differ by 2.828, which is not an integer, we can find  14

two linearly independent solutions.  

Step 5: For Euler's equation, the solutions can be written directly: y₁(x) =  

x^(-1+√2) y₂(x) = x^(-1-√2)  

The general solution is: y(x) = C₁x^(-1+√2) + C₂x^(-1-√2)  

Example 2: Legendre's Equation  

Consider Legendre's equation:  

(1-x²)y'' - 2xy' + n(n+1)y = 0  

To apply the Frobenius method, we need to transform this equation to have a  

singular point at x = 0. Let's focus instead on the singular points at x = ±1.  

For x = 1, we make the substitution t = x-1:  

The equation becomes: t(2-t)y'' + (2-2t)y' + n(n+1)y = 0  

2/(t(2-t)), so tP(t) = 2/(2-t) is analytic at t = 0. Q(t) = n(n+1)/(t(2-t)), so t²Q(t)  

= tn(n+1)/(2-t) is analytic at t = 0. Therefore, t = 0 is a regular singular point.  

Step 2: Find the indicial equation. The indicial equation is: r(r-1) + r - 0 = 0  

r² = 0  

Step 3: Solve the indicial equation. We have r₁ = r₂ = 0 (repeated root).  

Step 4: Since we have equal roots, one solution will involve a logarithmic  

term.  

Step 5: The first solution is: y₁(t) = Σ aₙt^n = a₀ + a₁t + a₂t² + ...  

We can find the recurrence relation by substituting this into the original  

equation and collect coefficients of each power of t.  

The second solution, due to the repeated root, will have the form: y₂(t) =  

y₁(t)ln(t) + t⁰(c₁t + c₂t² + ...)  

Step 1: Verify that t = 0 is a regular singular point. P(t) = (2-2t)/(t(2-t)) =  



Example 3: Bessel's Equation of Order 0  

Consider Bessel's equation of order 0:  

x²y'' + xy' + x²y = 0  

Notes  

is analytic at x = 0. Q(x) = x²/x² = 1, so x²Q(x) = x² is analytic at x = 0.  

Therefore, x = 0 is a regular singular point.  

Step 2: Find the indicial equation. The indicial equation is: r(r-1) + r + 0 = 0  

r² = 0  

Step 3: Solve the indicial equation. We have r₁ = r₂ = 0 (repeated root).  

Step 4: Since we have equal roots, one solution will involve a logarithmic  

term.  

Step 5: Let's find the first solution: y(x) = x⁰(a₀ + a₁x + a₂x² + ...)  

Substituting into the original equation: x²y'' + xy' + x²y = 0  

After collecting terms and equating coefficients, we get: For n ≥ 2: aₙ = -aₙ₋₂  

/ (n²)  

This gives: a₂ = -a₀/4 a₄ = -a₂/16 = a₀/64 a₆ = -a₄/36 = -a₀/2304 ...  

And all odd coefficients a₁, a₃, a₅, ... are 0.  

Setting a₀ = 1, we get: y₁(x) = 1 - x²/4 + x⁴/64 - x⁶/2304 + ...  

This is the Bessel function of the first kind, J₀(x).  

The second solution involves a logarithmic term and gives the Bessel  

function of the second kind, Y₀(x).  

Example 4: Airy's Equation  

Consider Airy's equation:  

y'' - xy = 0  

This equation does not have a regular singular point at x = 0, but rather at  

infinity. However, we can apply a transformation to study it with the  

Frobenius method.  

If we make the substitution t = x^(3/2), the equation transforms to have a  

regular singular point at t = 0.  
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Step 1: Verify that x = 0 is a regular singular point. P(x) = 1/x, so xP(x) = 1  



The transformed equation is: y'' + (1/4t²)y = 0  Notes  

analytic at t = 0. Q(t) = 1/(4t²), so t²Q(t) = 1/4 is analytic at t = 0. Therefore, t  

= 0 is a regular singular point.  

Step 2: Find the indicial equation. The indicial equation is: r(r-1) + 0 + 1/4 =  

0 r² - r + 1/4 = 0 (r - 1/2)² = 0  

Step 3: Solve the indicial equation. We have r₁ = r₂ = 1/2 (repeated root).  

Step 4: Since we have equal roots, one solution will involve a logarithmic  

term.  

Step 5: The solutions in terms of t are complex, but transforming back to x,  

we get the Airy functions Ai(x) and Bi(x) as the solutions to the original  

equation.  

Example 5: Hypergeometric Equation  

Consider the hypergeometric equation:  

x(1-x)y'' + [c - (a+b+1)x]y' - aby = 0  

(a+b+1)x]/(x(1-x)), so xP(x) = [c - (a+b+1)x]/(1-x) is analytic at x = 0. Q(x)  

= -ab/(x(1-x)), so x²Q(x) = -abx/(1-x) is analytic at x = 0. Therefore, x = 0 is  

a regular singular point.  

Step 2: Find the indicial equation. The indicial equation is: r(r-1) + cr - 0 = 0  

r² + (c-1)r = 0 r(r + c - 1) = 0  

Step 3: Solve the indicial equation. We have r₁ = 0 and r₂ = 1-c.  

Step 5: For r₁ = 0, the solution is: y₁(x) = 1 + (ab/c)x +  

[a(a+1)b(b+1)/(c(c+1))2!]x² + ...  

This is the hypergeometric function ₂F₁(a,b;c;x).  

For r₂ = 1-c, if c is not an integer, the second solution is: y₂(x) = x^(1-c) [1 +  

... ]  

If c is an integer, the second solution may involve a logarithmic term.  

Step 1: Verify that t = 0 is a regular singular point. P(t) = 0, so tP(t) = 0 is  

Step 1: Verify that x = 0 is a regular singular point. P(x) = [c -  

Step 4: The nature of the solutions depends on whether c is an integer.  



Unsolved Problems  Notes  

Here are five unsolved problems to practice applying the Frobenius method:  

Problem 1:  

Solve the differential equation: 2x²y'' + 3xy' - y = 0  

Problem 2:  

Find the general solution to: x²y'' + x(1-x)y' + y = 0  

Problem 3:  

Determine the nature of solutions to: x²y'' + xy' + (x² - 1/4)y = 0  

Problem 4:  

Solve using the Frobenius method: x²y'' - x(x+2)y' + (x+2)y = 0  

Problem 5:  

Find the first few terms of both solutions to: x²y'' + xy' - (1+x)y = 0  

4.5 Exceptional Cases in Regular Singular Points  

When applying the Frobenius method, there are certain exceptional cases  

that require special attention. These cases arise when the roots of the indicial  

equation satisfy specific conditions.  

Roots Differing by an Integer  

If the roots of the indicial equation, r₁ and r₂, differ by a positive integer N  

(where r₁ > r₂ and r₁ - r₂ = N), we have an exceptional case. In this scenario,  

the standard approach might fail to produce two linearly independent  

solutions.  

For the larger root r₁, we can always find a solution of the form:  

y₁(x) = x^r₁ Σ aₙx^n = x^r₁(a₀ + a₁x + a₂x² + ...)  

However, for the smaller root r₂, the recurrence relation may break down  

when attempting to find the coefficient a . This happens because the term  N

corresponding to a in the recurrence relation has a coefficient of zero.  N 

The Logarithmic Case  

154  



When r₁ - r₂ = N (a positive integer), there are two possibilities for the  Notes  
second solution:  

1. Case A: If a certain condition is met, the second solution has the  

form: y₂(x) = Cy₁(x)ln(x) + x^r₂ Σ bₙx^n  

where C is a constant that may be zero.  

2. Case B: If the condition is not met, the second solution has the form:  

y₂(x) = x^r₂ Σ bₙx^n  

The condition that determines whether a logarithmic term appears depends  

on the specific differential equation and involves the coefficient of a_N in  

the first solution.  

Equal Roots  

When r₁ = r₂ (the indicial equation has a repeated root), the logarithmic term  

always appears in the second solution:  

y₂(x) = y₁(x)ln(x) + x^r Σ bₙx^n  

This is a special case of the scenario where the roots differ by an integer  40

(with N = 0).  

Detecting the Need for a Logarithmic Term  

To determine whether a logarithmic term is needed, we follow these steps:  

1. Find the first solution y₁(x) using the larger root r₁  

2. Try to find a second solution of the form y₂(x) = x^r₂ Σ bₙx^n  

3. If we encounter a contradiction in the recurrence relation (typically  

at the N-th term), then a logarithmic term is necessary  

The specific criterion can be expressed mathematically. If we have the  

recurrence relation for the coefficients in the form:  

(n + r₂)(n + r₂ - 1 + p₁) aₙ + terms involving a₀, a₁, ..., aₙ₋₁ = 0  

Then when n = N = r₁ - r₂, the first term becomes zero because (N + r₂) = r₁,  

and the indicial equation says that r₁(r₁ - 1 + p₁) + q₂ = 0.  

At this point, we need to check whether the remaining terms add up to zero  

naturally. If they don't, we need to introduce a logarithmic term.  



Method of Frobenius for Logarithmic Solutions  Notes  

When a logarithmic term is needed, we use the method of Frobenius to find  

the second solution:  

1. Assume a solution of the form: y₂(x) = y₁(x)ln(x) + Σ bₙx^(n+r₂)  

2. Substitute this into the differential equation and collect terms  

3. Use the fact that y₁(x) is already a solution to simplify the resulting  

equation  

4. Determine the coefficients bₙ from the remaining terms  

This approach ensures that we find two linearly independent solutions in all  42

cases.  

Examples of Exceptional Cases  

Let's examine some examples to illustrate these exceptional cases:  

Example 1: Equal Roots  

Consider the equation: x²y'' + xy' - x²y = 0  

The indicial equation is: r(r-1) + r - 0 = 0 r² = 0  

This gives r₁ = r₂ = 0 (equal roots).  

The first solution has the form: y₁(x) = a₀ + a₁x + a₂x² + ...  

Substituting into the original equation and collecting terms, we get: For n ≥  

2: n²aₙ - aₙ₋₂ = 0 Thus, aₙ = aₙ₋₂/n²  

With a₀ = 1, we get: a₂ = 1/4 a₄ = a₂/16 = 1/64 a₆ = a₄/36 = 1/2304 ...  

And a₁ = a₃ = a₅ = ... = 0  

So the first solution is: y₁(x) = 1 + x²/4 + x⁴/64 + x⁶/2304 + ...  

The second solution must include a logarithmic term: y₂(x) = y₁(x)ln(x) +  

b₁x + b₂x² + ...  

Substituting this into the differential equation and solving for the  

coefficients bₙ, we would find the complete second solution.  

Example 2: Roots Differing by an Integer  

Consider the equation: x²y'' + x(1+x)y' + y = 0  
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The indicial equation is: r(r-1) + r(1) + 0 = 0 r² = 0  

This gives r₁ = r₂ = 0 (equal roots).  

Notes  

The recurrence relation for the first solution gives: (n²+n)aₙ + aₙ₋₁ = 0  

With a₀ = 1, we get: a₁ = -a₀/(1²+1) = -1/2 a₂ = -a₁/(2²+2) = 1/12 a₃ = -  

a₂/(3²+3) = -1/144 ...  

So the first solution is: y₁(x) = 1 - x/2 + x²/12 - x³/144 + ...  

Since the roots are equal, the second solution includes a logarithmic term:  

y₂(x) = y₁(x)ln(x) + x⁰(b₁x + b₂x² + ...)  

Example 3: Roots Differing by 2  

Consider the equation: x²y'' + x(3-x)y' - (1+x)y = 0  

The indicial equation is: r(r-1) + 3r - 1 = 0 r² + 2r - 1 = 0  

Using the quadratic formula: r = (-2 ± √(4+4))/2 = -1 ± √2  

So r₁ = -1 + √2 ≈ 0.414 and r₂ = -1 - √2 ≈ -2.414  

Since r₁ - r₂ = 2.828, which is not an integer, we have two linearly  

independent solutions of the form: y₁(x) = x^r₁(a₀ + a₁x + a₂x² + ...) y₂(x) =  

x^r₂(b₀ + b₁x + b₂x² + ...)  

No logarithmic term is needed in this case.  

Frobenius Method with Three Regular Singular Points  

Some differential equations have more than one regular singular point. A  

classic example is the hypergeometric equation, which has three regular  45

singular points at x = 0, x = 1, and x = ∞.  

For such equations, we can apply the Frobenius method at each singular  

point to find local solutions, and then connect these solutions using analytic  

continuation.  

It's important to understand when to use the power series method versus the  

Frobenius method:  

1. Power Series Method: Used when expanding around an ordinary  

point  

Power Series Versus Frobenius Method  



•

•

Assumes solution of the form: y(x) = Σ aₙ(x - x₀)^n  Notes  

Works when P(x) and Q(x) are analytic at x₀  

2. Frobenius Method: Used when expanding around a regular singular  

point  

• Assumes solution of the form: y(x) = (x - x₀)^r Σ aₙ(x -  

x₀)^n  

• Works when (x - x₀)P(x) and (x - x₀)²Q(x) are analytic at x₀  

Attempting to use a power series at a singular point will generally fail, as the  

radius of convergence would be zero.  

Irregular Singular Points  

When a point x₀ is singular but not regularly singular (i.e., either (x - x₀)P(x)  

or (x - x₀)²Q(x) is not analytic at x₀), we call it an irregular singular  

point.The Frobenius method does not work for irregular singular points.  

Other methods, such as the method of asymptotic expansions or the WKB  

approximation, are needed for such cases.  

Special Functions and the Frobenius Method  

Many special functions in mathematics are defined as solutions to  

differential equations with regular singular points. The Frobenius method  

provides a systematic way to develop these functions as power series.  

Examples include:  

•

•

•

Bessel functions (solutions to Bessel's equation)  

Legendre polynomials (solutions to Legendre's equation)  

Hypergeometric functions (solutions to the hypergeometric  

equation)  

•

•

Laguerre polynomials  

Chebyshev polynomials  

Understanding the Frobenius method is crucial for working with these  

special functions and their applications in physics, engineering, and other  

fields.  
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The Frobenius method is a powerful technique for solving differential  

equations with regular singular points. The key steps are:  
Notes  

1. Identify regular singular points  

2. Assume a solution of the form y(x) = x^r Σ aₙx^n  

3. Find the indicial equation and determine its roots  

4. Based on the nature of the roots, construct one or two linearly  

independent solutions  

5. Pay special attention to exceptional cases where the roots differ by  

an integer or are equal  

The exceptional cases require careful analysis to determine whether a  

logarithmic term is needed in the second solution. The criterion is based on  

the recurrence relation for the coefficients and involves checking whether  

certain conditions are satisfied when the index reaches the value of the  

difference between the roots.By mastering the Frobenius method, including  

the handling of exceptional cases, you can solve a wide range of differential  

equations that arise in mathematical physics and other applications.  



UNIT XIII  Notes  

4.6 The Bessel Equation and Its Properties  

The Bessel equation is a second-order linear differential equation that  

It emerges naturally when solving partial differential equations like the wave  

equation, Laplace's equation, or the heat equation in cylindrical coordinates.  

The standard form of the Bessel equation is:  

x² d²y/dx² + x dy/dx + (x² - n²)y = 0  

where n is a parameter that may be any real or complex number, though it's  

most commonly a non-negative integer in physical applications. This  

equation is named after Friedrich Wilhelm Bessel, a German astronomer and  

Solutions to the Bessel Equation: Bessel Functions  

The solutions to the Bessel equation are called Bessel functions. There are  

several types:  

Bessel Functions of the First Kind: J (x)  n

For any value of n, the Bessel function of the first kind, denoted J (x), is  n

defined by the series:  

J (x) = Σ ((-1)^k / (k! * Γ(n+k+1))) * (x/2)^(2k+n) k=0  n

where Γ is the gamma function, which extends the factorial function to non-  

integer values.  

When n is a non-negative integer, the series simplifies to:  

J (x) = Σ ((-1)^k / (k! * (n+k)!)) * (x/2)^(2k+n) k=0  n

For integer values of n, J (x) is finite at x = 0, making it particularly useful  n

for physical problems where a bounded solution at the origin is required.  

Bessel Functions of the Second Kind: Y (x)  n

The Bessel function of the second kind (also called the Neumann function or  

Weber function), denoted Y (x), forms another linearly independent  n

solution to the Bessel equation:  
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appears frequently in problems involving cylindrical or spherical symmetry.  



Y_n(x) = (J_n(x)cos(nπ) - J_-n(x)) / sin(nπ), for non-integer n Y_n(x) =  

lim[n→m] ((J_m(x)cos(mπ) - J_-m(x)) / sin(mπ)), for integer n  
Notes  

Y_n(x) is singular at x = 0, so it's often excluded from physical problems  

requiring bounded solutions at the origin.  

Modified Bessel Functions: I_n(x) and K_n(x)  

If we replace x with ix in the Bessel equation, we get the modified Bessel  

equation:  

x² d²y/dx² + x dy/dx - (x² + n²)y = 0  

The solutions to this equation are the modified Bessel functions:  

•

•

The modified Bessel function of the first kind: I_n(x)  3939

The modified Bessel function of the second kind (or MacDonald  

function): K_n(x)  

These functions are related to J_n(x) and Y_n(x) by:  

I_n(x) = i^(-n) J_n(ix) K_n(x) = (π/2) i^(n+1) [J_n(ix) + iY_n(ix)]  

Important Properties of Bessel Functions  

Recurrence Relations  

Bessel functions satisfy several important recurrence relations that make  

them easier to work with:  

1. J (x) + J (x) = (2n/x) J (x)J(n-1) (n+1) n (n-1)  

2. J (x) - J (x) = 2J' (x)  (n-1) (n+1) n

3. J' (x) = (n/x) J (x) - J (x)  n n (n+1)

4. J' (x) = J (x) - (n/x) J (x)  n (n-1) n

Similar relations exist for Y (x), I (x), and K (x).  n n n

Orthogonality  

The Bessel functions of the first kind satisfy an orthogonality relation:  111111

∫ x J (α x) J (α x) dx = 0, for m ≠ k 0  n m n k 

where α and α are the mth and kth positive roots of J (a x) = 0.  m k n



This orthogonality property makes Bessel functions useful in solving  

boundary-value problems and in Fourier-Bessel series.  
Notes  

Asymptotic Behavior  

For large values of x, the Bessel functions have the following asymptotic  

behavior:  

J (x) ≈ √(2/πx) cos(x - nπ/2 - π/4) Y (x) ≈ √(2/πx) sin(x - nπ/2 - π/4)  n n

For small values of x when n > 0:  

J (x) ≈ (1/n!) * (x/2)^n Y (x) ≈ -(n-1)!/π * (2/x)^n  n n

Zeros of Bessel Functions  

The zeros of Bessel functions are important in many applications. Let's  

denote the kth positive zero of J (x) as jn (n,k)  

For large k, the zeros are approximately:  

j ≈ (k + n/2 - 1/4)π  (n,k) 

.

The zeros of J (x) and J (x) interlace, meaning between any two  n (n+1)

consecutive zeros of J (x), there's exactly one zero of J (x).  n (n+1)

Differential Equations Related to the Bessel Equation  

Several important equations in mathematical physics can be transformed  

into the Bessel equation or its variations:  

The Airy Equation  

The Airy equation is:  

d²y/dx² - xy = 0  

Its solutions are the Airy functions, which can be expressed in terms of  

Bessel functions of order ±1/3.  

The Spherical Bessel Equation  

The spherical Bessel equation is:  

x² d²y/dx² + 2x dy/dx + [x² - n(n+1)]y = 0  

Its solutions, the spherical Bessel functions j (x) and y (x), are related tothe  n n

regular Bessel functions by:  
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j (x) = √(π/2x) J (x) y (x) = √(π/2x) Y (x)  n (n+1/2) n (n+1/2) Notes  

The Associated Legendre Equation  

While not directly a Bessel equation, the associated Legendre equation is  

related and often appears alongside Bessel functions in physical problems,  

especially when separating variables in spherical coordinates.  

Generating Functions and Integral Representations  

Generating Function for J (x)  n

The generating function for Bessel functions of the first kind is:  

exp(x(t-1/t)/2) = Σ t^n J (x) n=-∞  n

This is useful for deriving properties of Bessel functions.  

Integral Representations  

Bessel functions can also be represented by integrals:  

J (x) = (1/π) ∫ cos(nθ - x sin θ) dθ 0  n

This representation is useful in proving certain properties and in numerical  

computations.  

Applications of Bessel Functions in Mathematics  

Fourier-Bessel Series  

Functions defined on a disk can be expanded in terms of Bessel functions:  

f(r) = Σ c J (j r/a) m=1  m 0 (0,m) 

where j are the zeros of J (x) and c are the coefficients  (0,m) 0 m 

determined by the orthogonality properties.  

Hankel Transform  

The Hankel transform uses Bessel functions as kernels:  3939

F(k) = ∫ f(r) J (kr) r dr  n

This transform is particularly useful for problems with cylindrical symmetry.  2020



Computational Aspects of Bessel Functions  

Computing Bessel Functions  

Notes  

Bessel functions can be computed using:  

1. Direct series evaluation (for small x)  

2. Recurrence relations (for moderate x)  

3. Asymptotic formulas (for large x)  

4. Continued fractions  

5. Numerical integration of the integral representations  

Special Values  

Some special values of Bessel functions include:  

•

•

•

•

J (0) = 1, while J (0) = 0 for n > 0  0 n

Y (0) is undefined (singular)  n

I (0) = 1, while I (0) = 0 for n > 0  0 n

K (0) is undefined (singular) for all n  n

4.7 Applications of the Bessel Equation  

Bessel functions appear in a wide range of physical and engineering  

applications. We'll explore some of the most important ones.  

Vibrating Membranes and Drums  

The vibration of a circular membrane (like a drum) is governed by the wave  

equation in cylindrical coordinates:  

∂²u/∂t² = c² (∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ²)  

Using separation of variables u(r,θ,t) = R(r)Θ(θ)T(t), we get:  

r² R'' + r R' + (λ²r² - n²)R = 0  

This is precisely the Bessel equation of order n with solution:  

R(r) = A J (λr) + B Y (λr)  n n

For a circular membrane with fixed edges (like a drum), we need R(a) = 0,  

where a is the radius. Since Y is singular at r = 0, we must set B = 0, and  n 
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the boundary condition gives J (λa) = 0, meaning λ = j /a, where jn (n,k) (n,k)  Notes  
is the kth zero of J .  n

The natural frequencies of vibration are then:  

ω = (c/a) j(n,k) (n,k)  

The general solution for the displacement of the membrane is a  

superposition of modes:  

u(r,θ,t) = Σ Σ [A cos(ω t) + B sin(ω t)] ×J (j r/a)  (n,k) (n,k) (n,k) (n,k) n (n,k)

× [C cos(nθ) + D sin(nθ)] n=0 k=1  n n 

Heat Conduction in Cylindrical Bodies  

The heat equation in cylindrical coordinates is:  

∂u/∂t = α (∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ² + ∂²u/∂z²)  

For problems with cylindrical symmetry (∂u/∂θ = 0, ∂u/∂z = 0), this  

simplifies to:  

∂u/∂t = α (∂²u/∂r² + (1/r)∂u/∂r)  

Using separation of variables u(r,t) = R(r)T(t), we get the Bessel equation for  

R(r):  

r² R'' + r R' + λ²r² R = 0  

The solution involves Bessel functions, with the specific boundary  

conditions determining which Bessel functions to use.  

Electromagnetic Waves in Waveguides  

In electromagnetic theory, cylindrical waveguides lead to Bessel equations.  

The propagation of electromagnetic waves in a circular waveguide is  

governed by Maxwell's equations, which, after separation of variables, lead  

to Bessel equations.  

For TE modes (transverse electric), the boundary condition at the waveguide  

wall r = a gives:  

J' (κa) = 0  n
43

For TM modes (transverse magnetic), the boundary condition gives:  

J (κa) = 0  n



Where κ is related to the cutoff frequency of the waveguide.  Notes  

Quantum Mechanics: Particle in a Cylindrical Box  

In quantum mechanics, the Schrödinger equation for a particle confined in a  

cylindrical box leads to Bessel equations. The wavefunctions involve Bessel  

functions, and the energy eigenvalues are related to the zeros of these  

functions.  

Fluid Flow Through Pipes  

The velocity profile for laminar flow through a cylindrical pipe is related to  

Bessel functions. For pulsatile flow, the solution involves Bessel functions  111111

of the first kind.  

Diffraction of Light  

In optics, the diffraction pattern of light passing through a circular aperture  

is described by Bessel functions. The intensity pattern is given by:  

I(θ) = I [2J (ka sin θ)/(ka sin θ)]²  0 1

where k is the wave number, a is the radius of the aperture, and θ is the angle  2020

of diffraction.  

Stress and Strain in Cylindrical Bodies  

In elasticity theory, the stress and strain in cylindrical bodies often involve  

Bessel functions. For example, the torsion of a circular shaft and the bending  

Acoustics: Sound Propagation in Pipes  

The propagation of sound waves in cylindrical pipes is described by the  

wave equation in cylindrical coordinates, leading to Bessel functions. The  

resonant frequencies of organ pipes and wind instruments are related to the  

zeros of Bessel functions.  

Electrical Conductors: Skin Effect  

The skin effect in electrical conductors, where alternating current tends to  

flow near the surface, is described by Bessel functions. The current density  

as a function of radius is given by:  

J(r) = J × J (√(-iωμσ) r) / J (√(-iωμσ) a)  0 0 0
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where J is the current density at the surface, ω is the angular frequency, μis  0 Notes  

Earth's Magnetic Field  

Models of the Earth's magnetic field use spherical harmonics, which are  

related to associated Legendre polynomials and spherical Bessel functions.  

Solved Problems  

Solved Problem 1: Vibrating Circular Membrane  

Problem: Find the normal modes of vibration for a circular membrane of  

Solution:  

The displacement u(r,θ,t) of a point on the membrane satisfies the wave  

equation:  

∂²u/∂t² = c² (∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ²)  

Using separation of variables, u(r,θ,t) = R(r)Θ(θ)T(t), we get:  

T''(t) + ω²T(t) = 0 Θ''(θ) + n²Θ(θ) = 0 r²R''(r) + rR'(r) + (ω²r²/c² - n²)R(r) = 0  

The solutions are: T(t) = A cos(ωt) + B sin(ωt) Θ(θ) = C cos(nθ) + D sin(nθ),  

where n must be an integer for periodicity R(r) = E J (ωr/c) + F Y (ωr/c)  n n

Since Y is singular at r = 0 and the solution must be bounded at the origin,F  n 

= 0.The boundary condition u(a,θ,t) = 0 gives J (ωa/c) = 0, which means ω  n

=(c/a)j , where j is the kth zero of J .Therefore, the normal modes are:u  (n,k) (n,k) n

(r,θ,t) = J (j r/a)[C cos(nθ) + D sin(nθ)][A cos(ω t) + B  (n,k) n (n,k) n n (n,k) (n,k)

sin(ω t)]with frequencies ω = (c/a)j .The fundamental frequency  (n,k) (n,k) (n,k) (n,k)

(lowest) corresponds to j ≈ 2.4048, givingω = 2.4048c/a.  (0,1) (0,1) 

radius a with fixed boundary.  

the permeability, σ is the conductivity, and a is the radius of the conductor.  



Solved Problem 2: Heat Conduction in a Solid Cylinder  Notes  

Problem: A solid cylinder of radius a initially has temperature distribution  

T(r,0) = T (1-r²/a²). The surface is kept at temperature 0. Find the  0

temperature distribution T(r,t) for t > 0.Solution:The heat equation in  

cylindrical coordinates with radial symmetry is:∂T/∂t = α(∂²T/∂r² + (1/r)  

∂T/∂r)with initial condition T(r,0) = T (1-r²/a²) and boundary condition T  0

(a,t) = 0.Let's define the dimensionless variables:u = T/T , ρ = r/a, τ = αt/a²  0

The heat equation becomes:∂u/∂τ = ∂²u/∂ρ² + (1/ρ)∂u/∂ρwith u(ρ,0) = 1-ρ²  

and u(1,τ) = 0.Using separation of variables, u(ρ,τ) = R(ρ)S(τ), we get:S'(τ)  

+ λ²S(τ) = 0 ρ²R''(ρ) + ρR'(ρ) + λ²ρ²R(ρ) = 0  

The solutions are: S(τ) = e^(-λ²τ) R(ρ) = AJ (λρ) + BY (λρ)Since Y is  0 0 0 

singular at ρ = 0, B = 0. The boundary condition R(1) = 0 givesJ (λ) = 0, so  0

λ = j , the kth zero of J .The general solution is:u(ρ,τ) = Σ c J (j ρ) e^(-  (0,k) 0 k 0 (0,k)

(j )²τ) k=1The coefficients c are determined from the initial condition:  (0,k) k 

1-ρ² = Σ c J (j ρ) k=1Using the orthogonality of Bessel functions:c = (2/  k 0 (0,k) k 

[j ]²J (j )²) ∫ ρ(1-ρ²)J (j ρ)dρ This integral evaluates to:c = 2/(j J (j  (0,k) 1 (0,k) 0 (0,k) k (0,k) 1

))Therefore, the temperature distribution is:  (0,k)
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T(r,t) = 2T Σ (1/(j J (j ))) J (j r/a) e^(-(j )²αt/a²)k=1  0 (0,k) 1 (0,k) 0 (0,k) (0,k) Notes  

Solved Problem 3: Bessel Series Expansion  

Problem: Expand the function f(x) = x for 0 ≤ x ≤ 1 in terms of Bessel  111111

functions of the first kind of order zero.  

Solution:  

We want to express f(x) = x as a series:  

f(x) = Σ c J (j x) m=1  m 0 (0,m)

where j is the m positive zero of J .  (0,m) th 0

Using the orthogonality property of Bessel functions:  

∫ x J (j x) J (j x) dx = 0 for m ≠ n 0  0 (0,m) 0 (0,n)

and  

∫ x [J (j x)]² dx = (1/2)[J (j )]²  0 (0,m) 1 (0,m)

we can find the coefficients:  

c = (∫ x² J (j x) dx) / (∫ x [J (j x)]² dx)  m 0 (0,m) 0 (0,m)

Using integration by parts and the properties of Bessel functions:  

∫ x² J (j x) dx = (2/j ) J (j ) 0  0 (0,m) (0,m) 1 (0,m)

Therefore:  

c = (2/j ) J (j ) / ((1/2)[J (j )]²) = 4/(jm (0,m) 1 (0,m) 1 (0,m) (0,m)  

J (j ))  1 (0,m)

The Bessel series expansion is:  

f(x) = x = Σ (4/(j J (j ))) J (j x) m=1  (0,m) 1 (0,m) 0 (0,m)

Solved Problem 4: Wave Equation with Bessel Functions  

Problem: Solve the wave equation ∂²u/∂t² = c² ∇²u in a circular region of  

radius a with boundary condition u(a,θ,t) = 0 and initial conditions u(r,θ,0) =  

f(r,θ), ∂u/∂t(r,θ,0) = g(r,θ).  

Solution:  



In cylindrical coordinates, the wave equation is:  Notes  

∂²u/∂t² = c² (∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ²)  

Using separation of variables, u(r,θ,t) = R(r)Θ(θ)T(t), we get:  

T''(t) + ω²T(t) = 0 Θ''(θ) + n²Θ(θ) = 0 r²R''(r) + rR'(r) + (ω²r²/c² - n²)R(r) = 0  

The solutions are: T(t) = A cos(ωt) + B sin(ωt) Θ(θ) = C cos(nθ) + D sin(nθ),  

where n is an integer R(r) = E J (ωr/c) + F Y (ωr/c)  n n

Since Y is singular at r = 0, F = 0. The boundary condition u(a,θ,t) = 0  n 

gives J (ωa/c) = 0, meaning ω = (c/a)jn (n,k)  .

The general solution is:  

u(r,θ,t) = Σ Σ [A cos(ω t) + B sin(ω t)] ×J (j r/a)  (n,k) (n,k) (n,k) (n,k) n (n,k)

× [C cos(nθ) + D sin(nθ)] n=0 k=1  n n 

where ω = (c/a)j(n,k) (n,k)  .

The coefficients are determined from the initial conditions:  

f(r,θ) = Σ Σ A J (j r/a) [C cos(nθ) + D sin(nθ)] n=0 k=1  (n,k) n (n,k) n n 

g(r,θ) = Σ Σ B ω J (j r/a) [C cos(nθ) + D sin(nθ)] n=0 k=1  (n,k) (n,k) n (n,k) n n 

Using the orthogonality properties of trigonometric functions and Bessel  

functions, we can find the coefficients.  

For example, if f(r,θ) = f(r) (independent of θ) and g(r,θ) = 0, then:  

A = (2/(a²[J (j )]²)) ∫ r f(r) J (j r/a) dr  (0,k) 1 (0,k) 0 (0,k)

B = 0 for all n, k A = 0 for n > 0, all k  (n,k) (n,k) 

And the solution simplifies to:  

u(r,t) = Σ A cos(ω t) J (j r/a) k=1  (0,k) (0,k) 0 (0,k)

Solved Problem 5: Quantum Particle in a Cylindrical Box  

Problem: Find the energy eigen values and eigen functions for a  

quantumparticle confined in a cylindrical box of radius a and height h.  

Solution:  

The time-independent Schrödinger equation in cylindrical coordinates is:  
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-ℏ²/(2m) (∂²ψ/∂r² + (1/r)∂ψ/∂r + (1/r²)∂²ψ/∂θ² + ∂²ψ/∂z²) = Eψ  Notes  

With boundary conditions: ψ(a,θ,z) = 0 for all θ, 0 ≤ z ≤ h ψ(r,θ,0) = ψ(r,θ,h)  

= 0 for all r, θ  

Using separation of variables, ψ(r,θ,z) = R(r)Θ(θ)Z(z), we get:  

Z''(z) + k Z(z) = 0 Θ''(θ) + m²Θ(θ) = 0 r²R''(r) + rR'(r) + (k r² - m²)R(r) =0  z² r²

Where k + k = 2mE/ℏ².  r² z² 

The solutions are: Z(z) = A sin(k z), with k = nπ/h, n = 1, 2, 3, ... Θ(θ) =B  z z 
1313

cos(mθ) + C sin(mθ), where m is an integer R(r) = D J (k r), with k = j  m r r

/a, where j is the lth zero of J(m,l) (m,l) m  

The energy eigenvalues are:  

E = (ℏ²/2m) [(j /a)² + (nπ/h)²]  (n,m,l) (m,l)

And the normalized eigenfunctions are:  

ψ (r,θ,z) = N J (j r/a) [cos(mθ) or sin(mθ)] sin(nπz/h)  (n,m,l) (n,m,l) m (m,l)

where N is a normalization constant:  (n,m,l) 

N = (√2/h) / (a J (j ) √π) for m > 0 N = (√2/h) / (aJ (j ) √2π)  (n,m,l) (m+1) (m,l) (n,0,l) 1 (0,l)

for m = 0  

The ground state corresponds to n = 1, m = 0, l = 1, with energy:  

E = (ℏ²/2m) [(j /a)² + (π/h)²]  1 (0,1)

Unsolved Problems  

Unsolved Problem 1  

A circular membrane of radius a is fixed at the boundary and has initial  

displacement u(r,0) = u (1-r²/a²) and zero initial velocity. Find the  0

displacement u(r,t) for t > 0.  

Unsolved Problem 2  

Solve the heat conduction problem in a hollow cylinder with inner radius a  

and outer radius b. The inner surface is insulated (∂T/∂r = 0 at r = a), and the  

outer surface is kept at temperature T = 0. The initial temperature  

distribution is T(r,0) = T .  0



Unsolved Problem 3  Notes  

Find the first three terms of the asymptotic expansion of J (x) for large x.  n

Unsolved Problem 4  

A circular waveguide of radius a has perfectly conducting walls. Find the  

cutoff frequencies for the TE and TM modes, and determine which  mn mn 

Unsolved Problem 5  

Prove the addition theorem for Bessel functions:  

J (√(x² + y² - 2xy cos θ)) = J (x)J (y) + 2Σ J (x)J (y)cos(nθ) n=1  0 0 0 n n

SELF ASSESSMENT QUESTIONS  

Multiple Choice Questions (MCQs)  

1. A regular singular point of a differential equation is a point where:  

a) The equation is not defined  

b) The coefficient functions have singularities that are not too severe  

c) The solution does not exist  

d) None of the above  

2. Euler’s equation has the form:  

a) x2y′′+axy′+by=0x^2 y'' + a x y' + by = 0x2y′′+axy′+by=0  

b) y′′+p(x)y′+q(x)y=0y'' + p(x)y' + q(x)y = 0y′′+p(x)y′+q(x)y=0  

c) y′+py=0y' + py = 0y′+py=0  

d) None of the above  

3. The Frobenius method is used to:  

a) Solve equations with regular singular points  

b) Solve equations with constant coefficients  

c) Find the Wronskian  

d) None of the above  

4. A differential equation has a regular singular point if:  

a) The coefficient functions satisfy a certain growth condition  

b) The coefficient functions are discontinuous  

c) The solution does not exist  

d) None of the above  
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mode has the lowest cutoff frequency.  



5. The characteristic equation in the Frobenius method is obtained  

from:  
Notes  

a) The lowest power of xxx in the series expansion  

b) The highest power of xxx in the series expansion  

c) The Wronskian determinant  

d) None of the above  

6. The Bessel equation arises in:  

a) Vibrations of circular membranes  

b) Heat conduction problems  

c) Both (a) and (b)  

d) None of the above  

7. The solution of the Bessel equation involves:  

a) Bessel functions of the first and second kind  

b) Exponential functions  

c) Polynomial solutions  

d) None of the above  

8. If two roots of the characteristic equation differ by an integer, the  1313

solutions are:  

a) Linearly dependent  

b) Linearly independent  

c) Nonexistent  

d) None of the above  

9. The indicial equation is derived from:  

a) The lowest exponent in the Frobenius method  

b) The highest exponent in the Frobenius method  

c) The Wronskian determinant  

d) None of the above  

10. The Bessel function J (x) is defined as a series solutionof:  n

a) x2y′′+xy′+(x2−n2)y=0  

b) y′′+p(x)y′+q(x)y=0  

c) y′+py=0  

d) None of the above  



Short Answer Questions  Notes  

1. Define a regular singular point of a differential equation.  

2. What is Euler’s equation, and how is it solved?  

3. Explain the Frobenius method for solving differential equations.  

4. What is the significance of the indicial equation in the Frobenius  

method?  

5. How does the Bessel equation arise in physics?  

6. Give an example of an equation with a regular singular point.  

7. What are Bessel functions, and how are they defined?  

8. Explain the importance of the characteristic equation in the  

Frobenius method.  

9. What happens when the roots of the indicial equation differ by an  

integer?  

10. How do singular points affect the solutions of differential equations?  

Long Answer Questions  

1. Derive and solve Euler’s equation x2y′′+3xy′+2y=0  

2. Explain the Frobenius method in detail and apply it to solve  

x2y′′+xy′−y=0  

3. Derive the indicial equation for a second-order equation with a  

regular singular point.  

4. Solve the Bessel equation x2y′′+xy′+(x2−1)y=0 using series  

expansion.  

5. Discuss the physical applications of Bessel functions in engineering  

and physics.  

6. Explain exceptional cases in the Frobenius method with examples.  

7. Solve the initial value problem for a differential equation with a  

singular point.  

8. Discuss the connection between the Bessel equation and Fourier  

series.  
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9. Compare the Frobenius method with the method of undetermined  

coefficients.  
Notes  

10. Solve a second-order differential equation with a singular point  

using a power series method.  



MODULE V  

UNIT XIV  

Notes  

ORDER EQUATIONS  

5.0 Objectives  

• Understand conditions for the existence and uniqueness of solutions  383838

to first-order differential equations.  

•

•

•

•

•

Learn the method of solving separable differential equations.  

Study exact equations and integrating factors.  

Explore the method of successive approximations.  

Examine the Lipschitz condition and its role in uniqueness.  

Analyze the convergence of successive approximations.  

5.1 Introduction to Existence and Uniqueness Theorems  

Differential equations are fundamental to describing natural phenomena and  

modeling real-world systems. When we formulate a differential equation to  

model a physical situation, two critical questions arise:  

1. Does a solution to the differential equation actually exist?  

2. If a solution exists, is it the only possible solution?  

These questions lead us to the concepts of existence and uniqueness  

theorems, which provide conditions under which we can guarantee that a  

differential equation has a solution and that the solution is unique.  

The Initial Value Problem  

Before discussing existence and uniqueness, let's establish what we mean by  

a solution to a differential equation. Consider a first-order differential  

equation of the form:  

dy/dx = f(x, y)  

Along with an initial condition:  

y(x₀) = y₀  
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Notes  
IVP is a function y = φ(x) that:  

• Satisfies the differential equation dy/dx = f(x, y) for all x in some  

interval containing x₀  

• Satisfies the initial condition φ(x₀) = y₀  

The Existence Theorem  

The existence theorem for first-order differential equations provides  

conditions under which we can guarantee that a solution to an IVP exists.  

Existence Theorem (Informal Statement): If f(x, y) and ∂f/∂y are continuous  

functions in some rectangle R containing the point (x₀, y₀), then there exists  

at least one solution to the initial value problem:  

•

•

dy/dx = f(x, y)  

y(x₀) = y₀  

This solution is valid in some interval containing x₀.  

The existence theorem tells us that if our function f(x, y) is well-behaved  

(continuous) in a region containing our initial point, then a solution exists, at  

least for some interval around the initial point.  

The Uniqueness Theorem  

The uniqueness theorem addresses the second question: whether the solution  

is unique.  

Uniqueness Theorem (Informal Statement): If f(x, y) and ∂f/∂y are  

continuous functions in some rectangle R containing the point (x₀, y₀), then  

there exists exactly one solution to the initial value problem:  383838

•

•

dy/dx = f(x, y)  

y(x₀) = y₀  

This unique solution is valid in some interval containing x₀.  

Notice that the conditions for uniqueness are the same as those for existence  

in this statement. The key addition is that the partial derivative of f with  

respect to y must also be continuous.  

This combination is called an Initial Value Problem (IVP). A solution to this  



Practical Implications  Notes  

These theorems have important practical implications:  

1. Predictability: In physical systems, uniqueness guarantees that  

identical initial conditions always lead to the same outcome,  

2. Numerical Methods: When implementing numerical methods to  

approximate solutions, we need to know that a solution exists and is  

unique to ensure our approximations converge to the correct  

solution.  

3. Interval of Existence: The theorems guarantee solutions only on  

some interval containing the initial point, not necessarily for all  

values of x. Determining this interval can be crucial in applications.  

Geometric Interpretation  

Geometrically, the differential equation dy/dx = f(x, y) defines a direction  

field (or slope field) in the xy-plane. At each point (x, y), the value f(x, y)  

gives the slope of a small line segment.  

• The existence theorem ensures that we can find a curve passing  

through (x₀, y₀) that follows the direction field.  

• The uniqueness theorem ensures that only one such curve passes  

through (x₀, y₀).  

Examples Where Uniqueness Fails  

It's instructive to look at cases where the conditions for uniqueness fail:  

Example 1: Consider the differential equation:  

dy/dx = 3y^(2/3)  

With the initial condition y(0) = 0.  

The function f(x, y) = 3y^(2/3) is continuous, but its partial derivative with  

respect to y, ∂f/∂y = 2y^(-1/3), is not continuous at y = 0. In this case, the  

IVP has multiple solutions:  

y(x) = 0 for all x y(x) = x³ for x ≥ 0 y(x) = -x³ for x ≤ 0  383838

178  

ensuring predictability.  



Example 2: Consider:  

dy/dx = y/x  

Notes  

With the initial condition y(0) = 0.  

Here, f(x, y) = y/x is not continuous at x = 0, violating the conditions of the  

existence theorem. Indeed, no solution can satisfy both the differential  

equation and the initial condition.  

Picard's Theorem  

A more detailed version of the existence and uniqueness theorem is given by  

Picard's theorem, which not only provides conditions for existence and  

uniqueness but also suggests a method for constructing the solution through  2525

successive approximations.  

Picard's Theorem (Simplified): If f(x, y) satisfies a Lipschitz condition with  

respect to y in some region containing (x₀, y₀), then the IVP has a unique  

solution in some interval containing x₀.  

The Lipschitz condition essentially requires that the rate of change of f with  

respect to y is bounded, which is a slightly weaker condition than requiring  

∂f/∂y to be continuous.  

Global Existence  

The theorems discussed so far guarantee existence and uniqueness only  

locally, in some interval around the initial point. For some applications, we  

need to know whether the solution exists for all values of x in a given range.  

Global Existence Theorem (Informal): If f(x, y) and ∂f/∂y are continuous for  

all (x, y) in a strip a ≤ x ≤ b, -∞ < y < ∞, and |f(x, y)| ≤ M (a constant) in this  

strip, then any solution of dy/dx = f(x, y) with y(x₀) = y₀ (where a ≤ x₀ ≤ b)  

exists throughout the entire interval [a, b].  

This theorem is particularly useful when we can establish bounds on the  

growth of solutions.  

5.2 Equations with Separable Variables  

Separable differential equations represent one of the simplest classes of  

differential equations that can be solved analytically. A first-order  

differential equation is separable if it can be written in the form:  



dy/dx = g(x)h(y)  Notes  

where g is a function of x alone and h is a function of y alone.  2525

The significance of separable equations lies in their direct method of  

solution and their frequent appearance in various applications, from physics  

The Method of Separation of Variables  

The core idea behind solving separable equations is to rearrange the  

equation so that all terms containing y are on one side and all terms with x  

are on the other. Then, we integrate both sides.  

For a differential equation in the form dy/dx = g(x)h(y), we follow these  

steps:  

1. Rearrange to separate variables: (1/h(y))dy = g(x)dx  

2. Integrate both sides: ∫(1/h(y))dy = ∫g(x)dx  

3. Solve for y if possible  

Let's see this method in action with some examples.  

Solved Examples  

Example 1: Basic Separation  

Solution:  

Step 1: Rearrange to separate variables. dy/y = x dx  

Step 2: Integrate both sides. ∫(dy/y) = ∫x dx ln|y| = x²/2 + C (where C is an  

arbitrary constant)  

Step 3: Solve for y. |y| = e^(x²/2 + C) = e^C · e^(x²/2) y = ±e^C · e^(x²/2)  

Since e^C is a positive constant, we can simplify by letting K = ±e^C, which  

gives: y = K · e^(x²/2)  

Therefore, the general solution is y = K · e^(x²/2), where K is an arbitrary  

non-zero constant.  

If we have an initial condition, say y(0) = 2, we can determine K: 2 = K ·  

e^(0²/2) 2 = K · 1 K = 2  
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Problem: Solve the differential equation dy/dx = xy.  



So the particular solution would be y = 2e^(x²/2).  Notes  

Example 2: Growth and Decay  

Problem: Solve the differential equation dy/dx = ky, where k is a constant,  

with the initial condition y(0) = y₀.  

Solution:  

This is a classic equation describing exponential growth (k > 0) or decay (k  

< 0).  

Step 1: Separate variables. dy/y = k dx  

Step 2: Integrate both sides. ∫(dy/y) = ∫k dx ln|y| = kx + C  

Step 3: Solve for y and apply the initial condition. y = ±e^(kx + C) = ±e^C ·  

e^(kx)  

Let A = ±e^C. Then: y = A · e^(kx)  

Applying the initial condition y(0) = y₀: y₀ = A · e^(k·0) = A  

Therefore, y = y₀ · e^(kx) is the solution.  

This equation has numerous applications, from population growth to  

Example 3: Logistic Growth  

Problem: Solve the differential equation dy/dx = ry(1 - y/K), where r and K  

are positive constants, with the initial condition y(0) = y₀ (where 0 < y₀ < K).  

Solution:  

This is the logistic equation, commonly used to model population growth  

with a carrying capacity K.  

Step 1: Separate variables. dy/(y(1 - y/K)) = r dx  

We can rewrite the left side using partial fractions: dy/(y(1 - y/K)) = (1/y +  

1/(K-y)) · K dy  

So we have: (1/y + 1/(K-y)) · K dy = r dx  

Step 2: Integrate both sides. ∫(1/y + 1/(K-y)) · K dy = ∫r dx K · [ln|y| - ln|K-  

y|] = rx + C ln|y/(K-y)| = (r/K)x + C/K  

radioactive decay.  



Step 3: Solve for y. y/(K-y) = e^((r/K)x + C/K) y = (K-y) · e^((r/K)x + C/K)  

y = K · e^((r/K)x + C/K) / (1 + e^((r/K)x + C/K))  
Notes  

Let D = e^(C/K). Then: y = K · D · e^((r/K)x) / (1 + D · e^((r/K)x))  

Applying the initial condition y(0) = y₀: y₀ = K · D / (1 + D) D = y₀ / (K - y₀)  

Substituting this value of D back: y = K · (y₀/(K-y₀)) · e^((r/K)x) / (1 +  

(y₀/(K-y₀)) · e^((r/K)x))  

Simplifying: y = K · y₀ · e^((r/K)x) / (K - y₀ + y₀ · e^((r/K)x))  

This is the solution to the logistic equation. As x → ∞, y → K, which is the  

Example 4: Orthogonal Trajectories  

Problem: Find the orthogonal trajectories of the family of curves y = cx²,  

Solution:  

Orthogonal trajectories are curves that intersect each member of a given  

family of curves at right angles. To find them:  

Step 1: Find the differential equation of the given family y = cx².  

Differentiating with respect to x: dy/dx = 2cx  

Substituting c = y/x²: dy/dx = 2(y/x²) · x = 2y/x  

Step 2: Find the differential equation of the orthogonal trajectories. If two  

curves are orthogonal, the product of their slopes at the intersection point is -  

1. So, if M₁ = dy/dx for the original family, then M₂ = dy/dx for the  

orthogonal trajectories satisfies: M₁ · M₂ = -1 (2y/x) · M₂ = -1 M₂ = -x/(2y)  

So the differential equation of the orthogonal trajectories is: dy/dx = -x/(2y)  

Step 3: Solve this new differential equation using separation of variables. 2y  

dy = -x dx ∫2y dy = -∫x dx y² = -x²/2 + C  

Simplifying: 2y² + x² = 2C  

This represents a family of ellipses with axes along the coordinate axes, or if  

C < 0, a family of hyperbolas.  
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carrying capacity.  

where c is a parameter.  



Example 5: Nonlinear First-Order Equation  

Problem: Solve the differential equation dy/dx = (y² + 1)/(x² + 1).  29

Solution:  

Notes  

Step 1: Separate variables. dy/(y² + 1) = dx/(x² + 1)  

Step 2: Integrate both sides. ∫dy/(y² + 1) = ∫dx/(x² + 1)  

These are standard integrals: ∫dy/(y² + 1) = arctan(y) + C₁ ∫dx/(x² + 1) =  

arctan(x) + C₂  

So: arctan(y) + C₁ = arctan(x) + C₂ arctan(y) = arctan(x) + C (where C = C₂ -  

C₁)  

Step 3: Solve for y. Using the fact that arctan(a) - arctan(b) = arctan((a-  

b)/(1+ab)) for 1+ab ≠ 0: If C = arctan(k) for some constant k, then: arctan(y)  

= arctan(x) + arctan(k) arctan(y) = arctan((x+k)/(1-kx)) y = (x+k)/(1-kx)  

This is the general solution in rational form. If we have an initial condition,  

we could determine the value of k.  

Unsolved Problems  

Here are five unsolved problems involving separable differential equations  

for practice:  

Problem 1  

Solve the differential equation dy/dx = e^(x-y).  

Problem 2  

Find the general solution of the differential equation dy/dx = (sin x)(cos y).  

Problem 3  

Solve the initial value problem: dy/dx = xy√(1-y²), y(0) = 0  

Problem 4  

Determine the orthogonal trajectories of the family of curves given by y =  

ce^x, where c is a parameter.  



Problem 5  Notes  

A population P grows according to the differential equation dP/dt = kP(1 -  

P/M)², where k and M are positive constants. Find P(t) if P(0) = P₀, where 0  

< P₀ < M.  

Applications of Separable Differential Equations  

Separable differential equations appear in numerous applications across  

various fields:  

1. Population Dynamics  

The simplest model of population growth is the exponential model: dP/dt =  

kP  

Where P is the population size and k is the growth rate. This is separable and  

gives the solution P(t) = P₀e^(kt).  

A more realistic model is the logistic equation: dP/dt = kP(1 - P/M)  

Where M is the carrying capacity. This accounts for limited resources and  

leads to a sigmoid growth curve.  

2. Newton's Law of Cooling  

An object's temperature change over time can be modeled by: dT/dt = k(T -  

Te)  

Where T is the object's temperature, Te is the environment temperature, and  

k is a constant. This separable equation leads to exponential approach to  

equilibrium.  

3. Radioactive Decay  

The decay of radioactive materials follows: dN/dt = -λN  

Where N is the amount of radioactive material and λ is the decay constant.  

4. Chemical Reaction Kinetics  

For a first-order reaction A → B, the rate equation is: d[A]/dt = -k[A]  

Where [A] is the concentration of reactant A. This separable equation leads  

to exponential decay of the reactant.  
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The solution N(t) = N₀e^(-λt) gives the exponential decay law.  



5. Circuit Analysis  Notes  

In an RC circuit, the voltage V across the capacitor satisfies: dV/dt = (E-  

V)/(RC)  

Where E is the battery voltage, R is the resistance, and C is the capacitance.  

This separable equation describes how the capacitor charges or discharges.  

Limitations and Extensions  

While separable differential equations are powerful tools, they have  

limitations:  

1. Integrability: Even if an equation is separable, we might not be able  

to find closed-form expressions for the integrals involved.  

2. Domain Restrictions: Solutions might have restricted domains due  

to divisions by zero or other singularities.  

3. Implicit Solutions: Often, we can't solve explicitly for y as a  

function of x, leading to implicit relations.  

Extensions of the separable equation concept include:  

1. Homogeneous equations: Equations of the form dy/dx = f(y/x) can  

be transformed into separable equations by substitution.  

2. Bernoulli equations: Equations of the form dy/dx + P(x)y = Q(x)y^n  

can be transformed into linear equations by substitution.  



UNIT XV  Notes  

5.3 Exact Differential Equations and Integrating Factors  

Introduction to Exact Differential Equations  

In this section, we'll study a special class of first-order differential equations  

that can be written in the form:  

M(x,y)dx + N(x,y)dy = 0  

These are called exact differential equations when they represent the total  

differential of some function F(x,y). We'll learn how to identify exact  

equations, solve them directly, and transform non-exact equations into exact  

ones using integrating factors.  

What Makes an Equation Exact?  

A differential equation M(x,y)dx + N(x,y)dy = 0 is exact if there exists a  

function F(x,y) such that:  

dF(x,y) = M(x,y)dx + N(x,y)dy  

For this to be true, we need:  

∂F/∂x = M(x,y) ∂F/∂y = N(x,y)  

From calculus, we know that mixed partial derivatives are equal when  

continuous:  

∂²F/∂y∂x = ∂²F/∂x∂y  

This gives us a necessary and sufficient condition for exactness:  

∂M/∂y = ∂N/∂x  

This is our test for exactness - if these partial derivatives are equal, the  

equation is exact.  

Solving Exact Differential Equations  

If M(x,y)dx + N(x,y)dy = 0 is exact, the solution is F(x,y) = C, where C is a  

constant. To find F(x,y), we can:  

1. Integrate M(x,y) with respect to x, treating y as constant: F(x,y) =  

∫M(x,y)dx + h(y)  

where h(y) is a function of y alone.  
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2. Find h(y) by differentiating F(x,y) with respect to y and setting it  Notes  
equal to N(x,y): ∂F/∂y = ∂/∂y[∫M(x,y)dx] + h'(y) = N(x,y)  

Thus: h'(y) = N(x,y) - ∂/∂y[∫M(x,y)dx]  

And h(y) = ∫[N(x,y) - ∂/∂y[∫M(x,y)dx]]dy  

3. Substitute h(y) back into F(x,y) to get the complete solution.  

Alternatively, we could integrate N(x,y) with respect to y and then find the  

unknown function of x.  

Integrating Factors  

When a differential equation M(x,y)dx + N(x,y)dy = 0 is not exact, we can  

sometimes find an integrating factor μ(x,y) such that when we multiply the  

original equation by μ, the resulting equation becomes exact:  

μ(x,y)M(x,y)dx + μ(x,y)N(x,y)dy = 0  

For this to be exact, we need:  

∂[μM]/∂y = ∂[μN]/∂x  

This gives us a partial differential equation for μ. Finding general solutions  

for μ is difficult, but in specific cases:  

1. If μ depends only on x (μ = μ(x)), then: μ' = μ(∂M/∂y - ∂N/∂x)/N  

This works if (∂M/∂y - ∂N/∂x)/N depends only on x.  

2. If μ depends only on y (μ = μ(y)), then: μ' = μ(∂N/∂x - ∂M/∂y)/M  

Special Cases and Shortcuts  

Some common integrating factors include:  

1. For equations of form y'dx + P(x)y'dy = Q(x)dx, try μ = 1/y'.  

2. For equations of form P(xy)dx + Q(xy)ydy = 0, try μ = 1/(xy).  

3. For the linear equation y' + P(x)y = Q(x), the integrating factor is μ  

= e^(∫P(x)dx).  

This works if (∂N/∂x - ∂M/∂y)/M depends only on y.  



Solved Examples  Notes  

Determine whether the following differential equation is exact: (2xy + y²)dx  

+ (x² + 2xy - 3)dy = 0  

Solution: Let M(x,y) = 2xy + y² Let N(x,y) = x² + 2xy - 3  

To check for exactness, we compute: ∂M/∂y = 2x + 2y ∂N/∂x = 2x + 2y  

Since ∂M/∂y = ∂N/∂x, the equation is exact.  

Example 2: Solving an Exact Equation  

Solve the exact differential equation: (2xy + y²)dx + (x² + 2xy - 3)dy = 0  

Solution: We determined in Example 1 that this equation is exact.  

Step 1: Integrate M(x,y) with respect to x, treating y as constant. F(x,y) =  

∫(2xy + y²)dx F(x,y) = x²y + xy² + h(y)  

Step 2: Find h(y) by differentiating F(x,y) with respect to y and setting it  

equal to N(x,y). ∂F/∂y = x² + 2xy + h'(y) = x² + 2xy - 3  

Therefore: h'(y) = -3 h(y) = -3y + C₁  

Step 3: Substitute h(y) back into F(x,y). F(x,y) = x²y + xy² - 3y + C₁  

The solution is: x²y + xy² - 3y = C (where C = -C₁ is an arbitrary constant)  

Example 3: Using an Integrating Factor  

Solve the differential equation: (3xy² + y³)dx + (2x²y + 3xy²)dy = 0  

Solution: Let M(x,y) = 3xy² + y³ Let N(x,y) = 2x²y + 3xy²  

Check for exactness: ∂M/∂y = 6xy + 3y² ∂N/∂x = 4xy + 3y²  

Since ∂M/∂y ≠ ∂N/∂x, the equation is not exact.  

Let's find an integrating factor: ∂M/∂y - ∂N/∂x = (6xy + 3y²) - (4xy + 3y²) =  

2xy  

The expression (∂M/∂y - ∂N/∂x)/(xN) = 2xy/(x(2x²y + 3xy²)) = 2/(2x + 3y)  

This doesn't depend solely on x or y, so let's try μ = x^m·y^n  

For this type of equation, we can try μ = 1/x  
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Multiplying our equation by 1/x: (3y² + y³/x)dx + (2xy + 3y²)dy = 0  

Let's check if this is now exact: M₁(x,y) = 3y² + y³/x N₁(x,y) = 2xy + 3y²  

∂M₁/∂y = 6y - 3y²/x ∂N₁/∂x = 2y  

Notes  

Still not exact. Let's try μ = 1/(xy):  

Multiplying our original equation by 1/(xy): (3y + y²/x)dx + (2x + 3y)dy = 0  

Check for exactness: M₂(x,y) = 3y + y²/x N₂(x,y) = 2x + 3y  

∂M₂/∂y = 3 + 2y/x ∂N₂/∂x = 2  

Not exact.  

Let's try μ = 1/y: (3x + y²)dx + (2x² + 3xy)dy/y = 0 = (3x + y²)dx + (2x² +  

3xy)/y·dy = 0 = (3x + y²)dx + (2x²/y + 3x)dy = 0  

Check for exactness: M₃(x,y) = 3x + y² N₃(x,y) = 2x²/y + 3x  

∂M₃/∂y = 2y ∂N₃/∂x = 4x/y + 3  

Still not exact.  

Let's try μ = 1/y²: (3x/y + 1)dx + (2x²/y³ + 3x/y)dy = 0  

This doesn't simplify our work.  

After trying several approaches, let's use a systematic method. For this  

equation, a better approach is to rewrite it as: (3xy² + y³)dx + (2x²y +  

3xy²)dy = 0  

Factoring out y²: y²(3x + y)dx + y(2x² + 3xy)dy = 0  

Taking out a common factor of xy: xy(3y + y²/x)dx + xy(2x + 3y)dy = 0  

Now with μ = 1/(xy): (3y + y²/x)dx + (2x + 3y)dy = 0  

Let's check again: M₄(x,y) = 3y + y²/x N₄(x,y) = 2x + 3y  

∂M₄/∂y = 3 + 2y/x ∂N₄/∂x = 2  

Still not exact.  

Let's reexamine the original equation: (3xy² + y³)dx + (2x²y + 3xy²)dy = 0  

We can rewrite this as: d(x²y² + xy³) = 0  

This implies: x²y² + xy³ = C  



Which is our solution. (This special case could be recognized by noticing  

that all terms have the same total degree.)  
Notes  

Example 4: Linear Equation with Integrating Factor  

Solve the differential equation: dy/dx + 2y/x = x, x > 0  

Solution: First, rewrite in standard form: dy/dx + 2y/x = x dy + (2y/x)dx =  

x·dx  

This is a linear equation of form dy/dx + P(x)y = Q(x) with: P(x) = 2/x Q(x)  

= x  

The integrating factor is: μ = e^(∫P(x)dx) = e^(∫(2/x)dx) = e^(2ln(x)) = x²  

Multiply the original equation by μ: x²·dy + 2x·y·dx = x³·dx  

The left side is the derivative of x²y: d(x²y) = x²·dy + 2x·y·dx  

So our equation becomes: d(x²y) = x³·dx  

Integrating both sides: x²y = ∫x³·dx = x⁴/4 + C  

Solving for y: y = x²/4 + C/x²  

This is the general solution.  

Example 5: Using a Suitable Integrating Factor  

Solve the differential equation: (y² - xy)dx + (2xy - x²)dy = 0  

Solution: Let M(x,y) = y² - xy Let N(x,y) = 2xy - x²  

Check for exactness: ∂M/∂y = 2y - x ∂N/∂x = 2y - x  

Since ∂M/∂y = ∂N/∂x, the equation is exact.  

Find the solution F(x,y) = C: F(x,y) = ∫M(x,y)dx = ∫(y² - xy)dx = xy² - x²y/2  

+ h(y)  

Differentiate with respect to y: ∂F/∂y = 2xy - x²/2 + h'(y) = N(x,y) = 2xy - x²  

Therefore: h'(y) = 0 h(y) = C₁  

The final solution is: F(x,y) = xy² - x²y/2 = C  

or xy² - x²y/2 = C  

This represents the family of solutions to the differential equation.  
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Unsolved Problems  

Problem 1  

Notes  

Determine whether the following differential equation is exact, and if so,  44

find its solution: (y²e^x + 2xy)dx + (2ye^x + x²)dy = 0  

Problem 2  

Find the general solution of the differential equation: (2x + 3y²)dx + (6xy +  

7)dy = 0  

Problem 3  

Find an integrating factor for the differential equation and then solve it: (2x  

+ y)dx + (x - 3y)dy = 0  

Problem 4  

Solve the following differential equation: (y - 3x²)dx + (x + 2y²)dy = 0  

Problem 5  

Find the solution of the following differential equation, given that y(1) = 0:  

(y³ + cos(xy))dx + (3xy² + x·cos(xy))dy = 0  



UNIT XVI  

5.4 The Method of Successive Approximations  

Introduction to Successive Approximations  

Notes  

The method of successive approximations, also known as Picard's method,  

provides a theoretical foundation for the existence and uniqueness of  

solutions to first-order initial value problems. Beyond its theoretical  

importance, it also gives us a constructive approach to finding solutions  

through an iterative process.  

The Initial Value Problem  

Consider the initial value problem:  

dy/dx = f(x,y), y(x₀) = y₀  

where f(x,y) is a continuous function in some region containing the point  

(x₀,y₀).  

Picard's Iteration  

The idea behind successive approximations is to convert the differential  

equation into an equivalent integral equation:  

y(x) = y₀ + ∫(from x₀ to x) f(t,y(t))dt  

Then we define a sequence of functions {ϕₙ(x)} as follows:  

ϕ₀(x) = y₀ (initial approximation) ϕ₁(x) = y₀ + ∫(from x₀ to x) f(t,ϕ₀(t))dt ϕ₂(x)  

= y₀ + ∫(from x₀ to x) f(t,ϕ₁(t))dt ⋮ ϕₙ₊₁(x) = y₀ + ∫(from x₀ to x) f(t,ϕₙ(t))dt  

Under suitable conditions, the sequence {ϕₙ(x)} converges to the unique  

solution y(x) of the initial value problem.  

Existence and Uniqueness Theorem  

Picard's existence and uniqueness theorem states:  

If f(x,y) and ∂f/∂y are continuous in a rectangle R = {(x,y) : |x-x₀| ≤ a, |y-y₀|  

≤ b}, then there exists an interval I = [x₀-h, x₀+h] (where h ≤ a is sufficiently  

small) such that the initial value problem has a unique solution y(x) on I.  2121
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Notes  

Convergence of Picard Iterations  

The convergence of Picard iterations relies on the Lipschitz condition. A  

function f(x,y) satisfies a Lipschitz condition with respect to y if there exists  

a constant L > 0 such that:  

|f(x,y₁) - f(x,y₂)| ≤ L|y₁ - y₂|  

for all points (x,y₁) and (x,y₂) in the region of interest.  

The existence of a continuous partial derivative ∂f/∂y ensures the Lipschitz  

condition is satisfied, with L = max|∂f/∂y| in the region.  

Error Estimation  

If f(x,y) satisfies a Lipschitz condition with constant L, and M is the  

maximum value of |f(x,y)| in the region, then the error in the nth  

approximation is bounded by:  

|y(x) - ϕₙ(x)| ≤ (M/L)·(L|x-x₀|)ⁿ/n!  

This shows that the approximations converge rapidly for small values of |x-  

x₀|.  

Practical Implementation  

In practice, carrying out the integrations for successive approximations can  

become increasingly complex. Therefore, the method is often more valuable  

as a theoretical tool than a practical computational method. However, for  

simple problems, it can provide insight into the solution structure.  

Example Calculations  

To implement Picard's method practically:  

1. Start with ϕ₀(x) = y₀ (constant function)  

2. Substitute into the right side of the integral equation to get ϕ₁(x)  

3. Continue substituting each approximation to get the next one  

4. Stop when successive approximations are sufficiently close  



Notes  

Relationship to Power Series Methods  

The successive approximations often generate terms that correspond to the  16161616

Taylor series expansion of the solution. For linear equations, a few iterations  

can reveal the pattern of the series solution.  

Solved Examples  

Example 1: Basic Picard Iteration  

Find the first three Picard approximations for the initial value problem:  

dy/dx = y, y(0) = 1  

Solution: The equivalent integral equation is: y(x) = 1 + ∫(from 0 to x) y(t)dt  

The Picard iterations are:  

ϕ₀(x) = 1  

ϕ₁(x) = 1 + ∫(from 0 to x) ϕ₀(t)dt = 1 + ∫(from 0 to x) 1·dt = 1 + x  

ϕ₂(x) = 1 + ∫(from 0 to x) ϕ₁(t)dt = 1 + ∫(from 0 to x) (1 + t)dt = 1 + [t +  

t²/2]₀ˣ = 1 + x + x²/2  

ϕ₃(x) = 1 + ∫(from 0 to x) ϕ₂(t)dt = 1 + ∫(from 0 to x) (1 + t + t²/2)dt = 1 + [t  

+ t²/2 + t³/6]₀ˣ = 1 + x + x²/2 + x³/6  

We recognize this as the beginning of the Taylor series for e^x, which is  

indeed the exact solution to this problem. The successive approximations are  

converging to y(x) = e^x.  

Example 2: Non-Linear Equation  

Find the first three Picard approximations for: dy/dx = x + y², y(0) = 0  

Solution: The integral equation is: y(x) = 0 + ∫(from 0 to x) (t + y(t)²)dt  

The Picard iterations are:  

ϕ₀(x) = 0  

ϕ₁(x) = ∫(from 0 to x) (t + ϕ₀(t)²)dt = ∫(from 0 to x) t·dt = x²/2  

ϕ₂(x) = ∫(from 0 to x) (t + ϕ₁(t)²)dt = ∫(from 0 to x) (t + (t²/2)²)dt = ∫(from 0 to  

x) (t + t⁴/4)dt = [t²/2 + t⁵/20]₀ˣ = x²/2 + x⁵/20  

194  



ϕ₃(x) = ∫(from 0 to x) (t + ϕ₂(t)²)dt = ∫(from 0 to x) (t + (x²/2 + x⁵/20)²)dt  Notes  

This becomes complicated to evaluate directly. However, we can expand:  

(x²/2 + x⁵/20)² = x⁴/4 + x⁷/20 + x¹⁰/400  

So: ϕ₃(x) = ∫(from 0 to x) (t + t⁴/4 + t⁷/20 + t¹⁰/400)dt = [t²/2 + t⁵/20 + t⁸/160  

+ t¹¹/4400]₀ˣ = x²/2 + x⁵/20 + x⁸/160 + x¹¹/4400  

Each iteration captures more terms in the series expansion of the true  

solution.  

Example 3: Linear First-Order Equation  

Find the first three Picard approximations for: dy/dx = -2xy, y(0) = 1  

Solution: The integral equation is: y(x) = 1 + ∫(from 0 to x) (-2t·y(t))dt  

The iterations are:  

ϕ₀(x) = 1  

ϕ₁(x) = 1 + ∫(from 0 to x) (-2t·ϕ₀(t))dt = 1 + ∫(from 0 to x) (-2t)dt = 1 + [-t²]₀ˣ  

= 1 - x²  

ϕ₂(x) = 1 + ∫(from 0 to x) (-2t·ϕ₁(t))dt = 1 + ∫(from 0 to x) (-2t·(1 - t²))dt = 1  

+ ∫(from 0 to x) (-2t + 2t³)dt = 1 + [-t² + t⁴/2]₀ˣ = 1 - x² + x⁴/2  

ϕ₃(x) = 1 + ∫(from 0 to x) (-2t·ϕ₂(t))dt = 1 + ∫(from 0 to x) (-2t·(1 - t² +  

t⁴/2))dt = 1 + ∫(from 0 to x) (-2t + 2t³ - t⁵)dt = 1 + [-t² + t⁴/2 - t⁶/6]₀ˣ = 1 - x² +  

x⁴/2 - x⁶/6  

We recognize this as the beginning of the Taylor series for e^(-x²), which is  

the exact solution to this problem.  

Example 4: System with Variable Coefficient  

Find the first three Picard approximations for: dy/dx = x·sin(y), y(0) = 0  

Solution: For small values of y, we can use the approximation sin(y) ≈ y -  

y³/6 + ...  

The integral equation is: y(x) = 0 + ∫(from 0 to x) t·sin(y(t))dt  

The iterations are:  

ϕ₀(x) = 0  

ϕ₁(x) = ∫(from 0 to x) t·sin(ϕ₀(t))dt = ∫(from 0 to x) t·sin(0)dt = 0  



Since ϕ₁(x) = 0, all subsequent approximations will also be 0. This tells us  2121

that y(x) = 0 is the unique solution to this initial value problem, which  

makes sense given the initial condition y(0) = 0 and the fact that sin(0) = 0.  

Notes  

To get a more interesting example, let's modify the initial condition to y(0) =  

π/4:  

ϕ₀(x) = π/4  

ϕ₁(x) = π/4 + ∫(from 0 to x) t·sin(ϕ₀(t))dt = π/4 + ∫(from 0 to x) t·sin(π/4)dt =  

π/4 + sin(π/4)·∫(from 0 to x) t·dt = π/4 + sin(π/4)·x²/2 = π/4 + (√2/2)·x²/2 =  

π/4 + x²/(2√2)  

ϕ₂(x) = π/4 + ∫(from 0 to x) t·sin(ϕ₁(t))dt = π/4 + ∫(from 0 to x) t·sin(π/4 +  

t²/(2√2))dt  

This becomes more difficult to evaluate directly. We would need to use  

numerical integration or series approximations for the sine function.  

Example 5: Demonstrating Convergence  

For the problem dy/dx = 2y, y(0) = 1, show that the Picard iterations  

converge to the exact solution y = e^(2x).  

Solution: The integral equation is: y(x) = 1 + ∫(from 0 to x) 2y(t)dt  

The iterations are:  

ϕ₀(x) = 1  

ϕ₁(x) = 1 + ∫(from 0 to x) 2ϕ₀(t)dt = 1 + ∫(from 0 to x) 2dt = 1 + 2x  

ϕ₂(x) = 1 + ∫(from 0 to x) 2ϕ₁(t)dt = 1 + ∫(from 0 to x) 2(1 + 2t)dt = 1 +  

∫(from 0 to x) (2 + 4t)dt = 1 + [2t + 2t²]₀ˣ = 1 + 2x + 2x²  

ϕ₃(x) = 1 + ∫(from 0 to x) 2ϕ₂(t)dt = 1 + ∫(from 0 to x) 2(1 + 2t + 2t²)dt = 1 +  

∫(from 0 to x) (2 + 4t + 4t²)dt = 1 + [2t + 2t² + 4t³/3]₀ˣ = 1 + 2x + 2x² + 4x³/3  

If we continue this process, we get: ϕ₄(x) = 1 + 2x + 2x² + 4x³/3 + 2x⁴/3  

The Taylor series for e^(2x) is: e^(2x) = 1 + 2x + (2x)²/2! + (2x)³/3! +  

(2x)⁴/4! + ... = 1 + 2x + 2x²/1 + 8x³/6 + 16x⁴/24 + ... = 1 + 2x + 2x² + 4x³/3 +  

2x⁴/3 + ...  
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We can see that the Picard iterations are producing exactly the Taylor series  32

for e^(2x), term by term, confirming that the iterations converge to the exact  

solution.  

Notes  

Unsolved Problems  

Problem 1  

Using the method of successive approximations, find the first three  

approximations for the initial value problem: dy/dx = x² + y, y(0) = 1  

Problem 2  

y(1) = 2  

Problem 3  

Find the first two Picard approximations for the non-linear equation: dy/dx =  

y², y(0) = 1 Also, determine the interval in which these approximations are  

valid.  

Problem 4  

Use successive approximations to solve the initial value problem: dy/dx =  

e^(-x²)y, y(0) = 3 Compute the first three approximations.  

Problem 5  

For the equation dy/dx = sin(x+y), y(0) = 0, find the first three Picard  

iterations. Compare the third approximation with the Taylor series of the  

exact solution around x = 0 up to the third-degree term.  

5.5 Lipschitz Condition and Its Importance  

In the study of differential equations, particularly when investigating  

existence and uniqueness of solutions, the Lipschitz condition plays a crucial  

role. This condition provides a mathematical framework to ensure that a  

solution not only exists but is unique.  

Definition of Lipschitz Condition  

A function f(t,y) satisfies a Lipschitz condition with respect to y in a domain  

D if there exists a constant L > 0 (called the Lipschitz constant) such that:  

|f(t,y₁) - f(t,y₂)| ≤ L|y₁ - y₂|  

Apply Picard's method to find the first three approximations for: dy/dx = xy,  



for all points (t,y₁) and (t,y₂) in D.  Notes  

In simpler terms, the Lipschitz condition places a bound on how rapidly a  

function can change with respect to one of its variables. It essentially states  

that the rate of change of f with respect to y is bounded by the constant L.  16161616

Geometric Interpretation  

Geometrically, the Lipschitz condition means that the slopes of the lines  

connecting any two points on the function's graph (with the same t-value)  

are bounded by L. This prevents the function from having vertical tangent  

Connection to Continuity and Differentiability  

The Lipschitz condition is stronger than continuity but weaker than  

differentiability with a bounded derivative:  

• If f(t,y) has a continuous partial derivative ∂f/∂y in domain D, and  

|∂f/∂y| ≤ M for all points in D, then f satisfies a Lipschitz condition  

with Lipschitz constant L = M.  

• A function satisfying a Lipschitz condition is necessarily continuous  

in the variable y, but the converse is not always true.  

Examples of Functions Satisfying and Violating Lipschitz Condition  

Example 1: Satisfying Lipschitz Condition  

f(t,y) = y² for domain D where y is bounded  

For any bounded domain where |y| ≤ K, we have: |f(t,y₁) - f(t,y₂)| = |y₁² - y₂²|  

= |(y₁ - y₂)(y₁ + y₂)| ≤ |y₁ - y₂| · |y₁ + y₂| ≤ |y₁ - y₂| · 2K  

Therefore, f satisfies a Lipschitz condition with L = 2K.  

Example 2: Violating Lipschitz Condition  

f(t,y) = √y for y ≥ 0  

For this function: |f(t,y₁) - f(t,y₂)| = |√y₁ - √y₂| = |y₁ - y₂|/|√y₁ + √y₂|  

As y₁ and y₂ approach zero, the denominator approaches zero, making the  

fraction unbounded. Therefore, no single Lipschitz constant L can satisfy the  

required inequality for all points in the domain, especially near y = 0.  
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Importance in Differential Equations  Notes  

The Lipschitz condition is crucial in the theory of ordinary differential  

equations for several reasons:  

1. Uniqueness of Solutions: The Lipschitz condition is sufficient to  

guarantee the uniqueness of solutions to initial value problems.  

Without this condition, an initial value problem might have multiple  

solutions.  

2. Existence of Solutions: While the Lipschitz condition alone doesn't  

guarantee existence, when combined with continuity of f(t,y), it  

helps establish existence of solutions through methods like the  

method of successive approximations.  

3. Stability of Solutions: The Lipschitz condition provides a measure  

of stability, indicating how sensitive solutions are to changes in  

initial conditions.  

4. Numerical Methods: Many numerical methods for solving  16161616

differential equations require the Lipschitz condition to ensure  

convergence and to bound error estimates.  

Local vs. Global Lipschitz Condition  

•

•

Local Lipschitz Condition: A function satisfies a local Lipschitz  

condition if for every point in the domain, there exists a  

neighborhood where the Lipschitz condition holds.  

Global Lipschitz Condition: The function satisfies the Lipschitz  

condition throughout the entire domain.  

Many functions encountered in practice satisfy a local Lipschitz condition  

but not a global one. This is sufficient for local existence and uniqueness of  

solutions to differential equations.  



UNIT XVII  Notes  

5.6 Convergence of Successive Approximations  

Successive approximations, also known as Picard iterations, form a  

constructive method to demonstrate the existence and uniqueness of  

solutions to initial value problems. This method involves creating a  

sequence of functions that converge to the solution of a differential equation.  

The Method of Successive Approximations  

Consider the initial value problem:  

dy/dt = f(t,y), y(t₀) = y₀  

The method of successive approximations defines a sequence of functions  

{φₙ(t)} as follows:  

φ₀(t) = y₀ φ₁(t) = y₀ + ∫(from t₀ to t) f(s,φ₀(s)) ds φ₂(t) = y₀ + ∫(from t₀ to t)  

f(s,φ₁(s)) ds ... φₙ₊₁(t) = y₀ + ∫(from t₀ to t) f(s,φₙ(s)) ds  

Under appropriate conditions, this sequence converges to the unique solution  16161616

of the initial value problem.  

Conditions for Convergence  

For the sequence of successive approximations to converge, the following  

conditions are typically required:  

1. f(t,y) is continuous in a domain D containing the point (t₀,y₀).  

2. f(t,y) satisfies a Lipschitz condition with respect to y in D.  

Theorem of Convergence  

If f(t,y) is continuous and satisfies a Lipschitz condition with constant L in a  

domain D containing (t₀,y₀), then:  

1. The sequence of successive approximations {φₙ(t)} converges  

uniformly on an interval [t₀-h, t₀+h] (where h is sufficiently small) to  

a function φ(t).  

2. This limit function φ(t) is the unique solution to the initial value  

problem dy/dt = f(t,y), y(t₀) = y₀ on that interval.  
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Proof Outline  Notes  

The proof involves several steps:  

1. Showing that each approximation φₙ(t) is well-defined and  

continuous.  

2. Establishing bounds on |φₙ₊₁(t) - φₙ(t)| using the Lipschitz condition.  

3. Proving that the series φ₀(t) + Σ(from n=0 to ∞) [φₙ₊₁(t) - φₙ(t)]  

Rate of Convergence  

The rate at which successive approximations converge depends on the  

Lipschitz constant L. Specifically, for t in [t₀-h, t₀+h]:  

|φₙ₊₁(t) - φₙ(t)| ≤ (M·L^n·h^(n+1))/((n+1)!)  

where M is a bound on |f(t,y)| in the domain of interest.  

This shows that the sequence converges exponentially fast, making the  

method theoretically powerful, although direct computation of many  

iterations may be cumbersome.  

Practical Implementation  

In practice, computing successive approximations often involves numerical  

techniques, as explicit integration may not be feasible for complex functions  

f(t,y). The approximations typically improve rapidly in the early iterations  

and then more slowly as n increases.  

Error Estimation  

For a given number of iterations n, the error between the nth approximation  

and the true solution can be estimated as:  

|φ(t) - φₙ(t)| ≤ (M·e^(L·|t-t₀|))/(L·(n+1)!) · (L·|t-t₀|)^(n+1)  

This error bound helps determine how many iterations are needed to achieve  

5.7 Applications of Existence and Uniqueness Theorems  

converges uniformly.  

4. Verifying that the limit function satisfies the differential equation.  

a desired accuracy.  



The existence and uniqueness theorems for differential equations have  

numerous applications in both theoretical analysis and practical problem-  

solving. These theorems provide a foundation for understanding the  

behavior of solutions and for developing methods to approximate them.  

Notes  

Applications in Mathematical Modeling  

1. Validating Mathematical Models  

Before investing resources in solving a differential equation model, it's  

essential to know whether a solution exists and is unique. Existence and  

uniqueness theorems provide criteria to verify that a model is well-posed,  

meaning it has a unique solution that depends continuously on the initial  

data.  

2. Determining the Domain of Validity  

These theorems often specify conditions under which a unique solution  

exists. This helps identify the range of parameters or initial conditions for  

which the model is valid, guiding experimental design and interpretation of  

results.  

3. Extending Solutions  

Local existence theorems can be applied repeatedly to extend solutions  

beyond their initial interval of existence, allowing for a more complete  

Applications in Numerical Analysis  

1. Convergence of Numerical Methods  

Numerical methods for solving differential equations often rely on existence  

and uniqueness theorems to establish their convergence. For example, the  

convergence of Euler's method and Runge-Kutta methods depends on the  

Lipschitz condition.  

2. Error Analysis  

The Lipschitz constant provides a measure of the sensitivity of solutions to  

perturbations in initial conditions or round-off errors, allowing for rigorous  

error bounds in numerical approximations.  

3. Stability Analysis  
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Existence and uniqueness theorems help analyze the stability of numerical  

schemes, determining whether small perturbations in input data lead to small  

changes in the solution.  

Notes  

Applications in Qualitative Analysis  

1. Phase Plane Analysis  

Existence and uniqueness theorems ensure that trajectories in a phase plane  

cannot intersect (except at equilibrium points), forming the basis for  

qualitative analysis of nonlinear systems.  

2. Bifurcation Theory  

These theorems help identify conditions under which the qualitative  

behavior of solutions changes, such as the emergence of multiple solutions  

3. Stability of Equilibrium Points  

Linearization techniques used to analyze the stability of equilibrium points  

depend on local existence and uniqueness of solutions.  

Applications in Control Theory  

1. Controller Design  

Existence and uniqueness theorems provide guarantees that control systems  

will behave predictably, which is essential for designing reliable controllers.  

2. Optimal Control  

In optimal control problems, these theorems ensure that the state equations  

have unique solutions for given control inputs, making optimization  

problems well-defined.  

Applications in Specific Fields  

1. Physics  

In classical mechanics, existence and uniqueness theorems justify the  

deterministic nature of physical systems: given initial conditions, the future  3434

state of the system is uniquely determined.  

2. Biology  

or changes in stability.  



In population dynamics, existence and uniqueness results ensure that models  

predicting species growth or interaction have meaningful solutions.  
Notes  

3. Economics  

In economic modeling, these theorems help validate differential equation  

models of market dynamics, resource allocation, and growth theories.  

4. Engineering  

In electrical circuit analysis, chemical reaction kinetics, and structural  

mechanics, existence and uniqueness theorems provide the theoretical  

foundation for modeling and simulation.  

Applications of Successive Approximations  

1. Constructive Proofs  

The method of successive approximations provides not just a theoretical  

proof of existence and uniqueness but also a constructive method to compute  

solutions.  

2. Iterative Numerical Methods  

Many practical numerical schemes, such as predictor-corrector methods, are  

based on the idea of successive approximations.  

3. Perturbation Methods  

For nearly linear systems or problems with small parameters, successive  

approximations form the basis of perturbation techniques.  

Limitations and Extensions  

1. Non-Lipschitz Cases  

When the Lipschitz condition fails, understanding the consequences for  

uniqueness becomes more subtle. Examples like y' = y^(2/3), y(0) = 0 have  

multiple solutions despite having continuous right-hand sides.  

2. Weak Solutions  

For certain applications, particularly in partial differential equations, the  

concept of a solution may need to be extended to include weak solutions,  

where existence and uniqueness results take different forms.  
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3. Stochastic Differential Equations  Notes  

Extensions of existence and uniqueness theorems to stochastic differential  

equations provide a framework for modeling random phenomena.  

Solved Problems  

Problem 1: Verifying the Lipschitz Condition  

Problem: Determine whether the function f(t,y) = t + sin(y) satisfies a  

Lipschitz condition with respect to y on the domain D = {(t,y) : 0 ≤ t ≤ 1, -∞  

< y < ∞}.  

Solution: To verify the Lipschitz condition, we need to find a constant L  

such that |f(t,y₁) - f(t,y₂)| ≤ L|y₁ - y₂| for all points in D.  

For any fixed t and any y₁, y₂: |f(t,y₁) - f(t,y₂)| = |t + sin(y₁) - (t + sin(y₂))| =  

|sin(y₁) - sin(y₂)|  

Using the mean value theorem for sin(y), there exists a point c between y₁  

and y₂ such that: sin(y₁) - sin(y₂) = cos(c) · (y₁ - y₂)  

Therefore: |f(t,y₁) - f(t,y₂)| = |cos(c) · (y₁ - y₂)| = |cos(c)| · |y₁ - y₂| ≤ 1 · |y₁ -  

y₂|  

Since |cos(c)| ≤ 1 for all c, the function satisfies a Lipschitz condition with  

Lipschitz constant L = 1 on the given domain.  

Problem 2: Finding the Interval of Existence  

Problem: Consider the initial value problem y' = y², y(0) = 1. Determine the  

interval where the solution exists and is unique.  

Solution: First, let's verify that f(t,y) = y² satisfies the conditions for  

existence and uniqueness:  

1. f(t,y) = y² is continuous for all (t,y).  

2. For any bounded domain where |y| ≤ M, f satisfies a Lipschitz  

condition with respect to y: |f(t,y₁) - f(t,y₂)| = |y₁² - y₂²| = |y₁ - y₂| · |y₁  

+ y₂| ≤ 2M · |y₁ - y₂|  

So, the solution exists and is unique locally. To find the interval of existence,  

we need to solve the equation:  

y' = y², y(0) = 1  



This is a separable equation: dy/y² = dt -1/y = t + C  

Using the initial condition y(0) = 1: -1/1 = 0 + C C = -1  

Therefore: -1/y = t - 1 y = -1/(t - 1)  

Notes  

This solution is defined for all t except t = 1, where the solution becomes  

infinite. Therefore, the solution exists and is unique on the interval (-∞, 1).  

The reason the solution doesn't extend beyond t = 1 is that it experiences a  

finite-time blow-up at that point, showing that even when local existence  

Problem 3: Method of Successive Approximations  

Problem: Use the method of successive approximations to find the first three  

approximations to the solution of the initial value problem y' = t + y, y(0) =  

1.  

Solution: We'll apply Picard's iteration:  

φ₀(t) = 1 (the initial condition)  

φ₁(t) = 1 + ∫(from 0 to t) [s + φ₀(s)] ds = 1 + ∫(from 0 to t) [s + 1] ds = 1 +  

∫(from 0 to t) [s + 1] ds = 1 + [s²/2 + s](from 0 to t) = 1 + (t²/2 + t) = 1 + t +  

t²/2  

φ₂(t) = 1 + ∫(from 0 to t) [s + φ₁(s)] ds = 1 + ∫(from 0 to t) [s + (1 + s + s²/2)]  

ds = 1 + ∫(from 0 to t) [1 + 2s + s²/2] ds = 1 + [s + s² + s³/6](from 0 to t) = 1  

+ (t + t² + t³/6) = 1 + t + t² + t³/6  

φ₃(t) = 1 + ∫(from 0 to t) [s + φ₂(s)] ds = 1 + ∫(from 0 to t) [s + (1 + s + s² +  

s³/6)] ds = 1 + ∫(from 0 to t) [1 + 2s + s² + s³/6] ds = 1 + [s + s² + s³/3 +  

s⁴/24](from 0 to t) = 1 + (t + t² + t³/3 + t⁴/24) = 1 + t + t² + t³/3 + t⁴/24  

The exact solution to this linear equation is y(t) = 2e^t - t - 1, which can be  

expanded as: y(t) = 2(1 + t + t²/2 + t³/6 + t⁴/24 + ...) - t - 1 = 1 + t + t² + t³/3 +  

t⁴/12 + ...  

We can see that our approximations are approaching this series expansion.  

Problem 4: Analyzing Uniqueness Failure  

Problem: Consider the initial value problem y' = y^(2/3), y(0) = 0. Show that  

this problem has multiple solutions despite f(t,y) = y^(2/3) being continuous.  
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and uniqueness are guaranteed, the solution may not exist globally.  



Solution: The function f(t,y) = y^(2/3) is indeed continuous for all (t,y).  

However, it fails to satisfy the Lipschitz condition at y = 0. To see this, note  

that the derivative:  

Notes  

∂f/∂y = (2/3)y^(-1/3)  

becomes unbounded as y approaches 0.  

Let's now show that multiple solutions exist:  

1. The constant function y₁(t) = 0 for all t is clearly a solution, as y'₁(t)  

= 0 = 0^(2/3).  

2. Let's try to find another solution. For y ≠ 0, we can separate  

variables: dy/y^(2/3) = dt ∫ y^(-2/3) dy = ∫ dt 3y^(1/3) = t + C  

If we want a solution that satisfies y(0) = 0, then: 3·0^(1/3) = 0 + C This  

gives us C = 0 (if we interpret 0^(1/3) as 0).  

Therefore: 3y^(1/3) = t y^(1/3) = t/3 y(t) = (t/3)³ = t³/27 for t ≥ 0  

3. We can now construct a family of solutions: y(t) = { 0, for t ≤ a (t-  

Each of these functions satisfies the differential equation and the initial  

condition y(0) = 0, demonstrating that uniqueness fails in this case. The  

failure occurs precisely because the Lipschitz condition is not satisfied at the  

point of interest.  

Problem 5: Global vs. Local Existence  

Problem: For the initial value problem y' = y², y(0) = 1, determine: a) The  

interval where local existence and uniqueness are guaranteed by Picard's  

theorem b) The actual interval of existence for the solution  

Solution:  

a) By Picard's theorem, if f(t,y) = y² is continuous and satisfies a Lipschitz  

condition in a rectangle R = {(t,y) : |t - 0| ≤ a, |y - 1| ≤ b}, then there exists a  

unique solution in an interval |t| ≤ h, where h = min(a, b/M) and M is a  

bound for |f(t,y)| in R.  

Let's choose a = 1/4 and b = 1/2. Then R = {(t,y) : |t| ≤ 1/4, 1/2 ≤ y ≤ 3/2}.  

In this rectangle:  

a)³/27, for t > a } where a ≥ 0 is an arbitrary parameter.  



•

•

•

f(t,y) = y² is continuous  Notes  

|f(t,y)| = y² ≤ (3/2)² = 9/4, so M = 9/4  

f satisfies a Lipschitz condition with respect to y: |f(t,y₁) - f(t,y₂)| =  

|y₁² - y₂²| = |y₁ - y₂| · |y₁ + y₂| In R, |y₁ + y₂| ≤ 3, so L = 3 is a  

Lipschitz constant.  

Therefore, Picard's theorem guarantees existence and uniqueness in the  

interval |t| ≤ h, where: h = min(1/4, (1/2)/(9/4)) = min(1/4, 2/9) = 2/9  

So local existence and uniqueness are guaranteed on [-2/9, 2/9].  

b) As shown in Problem 2, the actual solution is y(t) = -1/(t - 1). This  

solution exists and is unique on the interval (-∞, 1).  

This illustrates an important point: Picard's theorem provides sufficient  

conditions for local existence and uniqueness, but the actual interval of  

existence may be larger than what the theorem guarantees.  

Unsolved Problems  

Problem 1  

Determine whether the function f(t,y) = ln(t + y²) satisfies a Lipschitz  

condition with respect to y on the domain D = {(t,y) : t ≥ 1, -2 ≤ y ≤ 2}.  

Problem 2  

Consider the initial value problem y' = t·y/(1+y²), y(0) = 0. Determine  

whether the solution to this problem is unique, and explain your reasoning  

using the appropriate theorems.  

Problem 3  

Use the method of successive approximations to find the first three  

approximations to the solution of the initial value problem y' = t·y, y(0) = 2.  

Problem 4  

For the initial value problem y' = √|y|, y(0) = 0: a) Determine whether the  

hypotheses of the existence and uniqueness theorem are satisfied b) Find all  

possible solutions to this problem  

Problem 5  
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Consider a nonlinear spring-mass system modeled by the differential  

equation: m·y'' + c·y' + k·y + α·y³ = 0 where m, c, k, and α are positive  

constants. Rewrite this as a system of first-order equations and determine  

conditions on the parameters that guarantee local existence and uniqueness  3434

of solutions for any initial conditions y(0) = y₀, y'(0) = v₀.  

Notes  

Multiple Choice Questions (MCQs)  

1. The existence and uniqueness theorem states that a unique  

solution exists if:  

a) The function and its partial derivative satisfy certain conditions  

b) The function is continuous everywhere  

c) The equation has constant coefficients  

d) None of the above  

2. The method of successive approximations is also known as:  

a) Euler’s method  

b) The Picard iteration method  

c) The Runge-Kutta method  

d) None of the above  

3. The Lipschitz condition ensures:  

a) Uniqueness of the solution  

b) The solution is periodic  

c) The solution does not exist  

d) None of the above  

4. The equation y′=y2+x is an example of:  

a) A separable equation  

b) A linear equation  

c) A Riccati equation  

d) None of the above  

5. The Picard-Lindelöf theorem provides conditions for:  

a) The uniqueness of solutions  

b) The periodicity of solutions  

c) The non-existence of solutions  

d) None of the above  

6. Convergence of successive approximations ensures:  

a) A unique solution to the differential equation  



b) No solution exists  Notes  
c) The equation is always exact  

d) None of the above  

Short Answer Questions  

1. What is the existence and uniqueness theorem for first-order  

differential equations?  

2. Explain the method of solving separable equations.  

3. Define an exact equation and state its condition.  

4. What is an integrating factor? Give an example.  

5. How does the Picard iteration method work?  

6. State and explain the Lipschitz condition.  

7. What is meant by convergence of successive approximations?  

9. What role does continuity play in the existence of solutions?  

10. Give an application of existence and uniqueness theorems.  

Long Answer Questions  

1. Prove the existence and uniqueness theorem for first-order  

differential equations.  

2. Discuss the role of the Lipschitz condition in differential equations.  

3. Explain the convergence of Picard’s successive approximations.  

4. Compare and contrast exact equations and linear first-order  

equations.  

5. Discuss real-world applications of the existence and uniqueness  

theorem.  
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8. Solve the separable equation dydx=xy\frac{dy}{dx} = xydxdy=xy.  


