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Notes  

MODULE I  

UNIT I  

GROUP THEORY  

Objectives  

•

•

•

•

Explore group actions on a set and their applications.  

Learn about isotropy subgroups and orbits.  

Study counting theorems and their significance in  

• Analyze p-groups and the Sylow theorems.  

1.1. Introduction to Group Theory  

A group is one of the fundamental structures in abstract algebra. It  

consists of a set of elements together with an operation that combines  52

any two elements to form a third element, satisfying four conditions  

called the group axioms.  

Definition of a Group  

A group (G, •) consists of a set G together with a binary operation •  

that satisfies the following axioms:  

1. Closure: For all a, b in G, the result of a • b is also in G.  22222222

2. Associativity: For all a, b, c in G, (a • b) • c = a • (b • c).  

3. Identity element: There exists an element e in G such that for  

every element a in G, e • a = a • e = a.  

4. Inverse element: For each a in G, there exists an element b in  

G such that a • b = b • a = e, where e is the identity element.  

Understand the concept of direct products in group theory.  

combinatorial group theory.  



If the operation is also commutative, meaning a • b = b • a for all a, b  

in G, then the group is called an abelian group or a commutative  

group.  

Notes  

Examples of Groups  

1. The integers Z under additionform a group:  

o

o Associativity: (a + b) + c = a + (b + c) for all integers  

a, b, and c.  

o

o

o

Identity: The integer 0 serves as the identity element.  

Inverse: For any integer a, its inverse is -a.  

This is an abelian group.  

2. The non-zero real numbers R under multiplication form a  

group:  

o

o

Closure: The product of two non-zero real numbers is a  

Associativity: (a × b) × c = a × (b × c) for all non-zero  

real numbers a, b, and c.  

o

o

Identity: The number 1 serves as the identity element.  

Inverse: For any non-zero real number a, its inverse is  

1/a.  

o This is an abelian group.  

3. The set of nxn invertible matrices with real entries under  

matrix multiplication forms a group denoted by GL(n, R)  22222222

(General Linear Group):  

o Closure: The product of two invertible matrices is  

invertible.  

2

Closure: The sum of two integers is an integer.  

non-zero real number.  



o

o

Associativity: matrix multiplication is associative.  Notes  

Identity: The identity matrix serves as the identity  

element.  

o

o

Inverse: Every invertible matrix has an inverse matrix.  

This is generally a non-abelian group for n ≥ 2.  

Order of a Group and Order of an Element  

The order of a group G, denoted by |G|, is the number of elements in  

The order of an element a in a group G, denoted by |a|, is the smallest  

positive integer n such that a^n = e, where e is the identity element. If  282828

Subgroups  

A subgroup H of a group G is a subset of G that is itself a group  22222222

under the operation of G. For H to be a subgroup, it must:  

•

•

•

Contain the identity element of G.  

Be closed under the group operation.  

Contain the inverse of each of its elements.  

Cyclic Groups  

A group G is cyclic if there exists an element a in G such that every  

element in G can be written as a^n for some integer n. In this case, a is  

called a generator of G, and we write G = ⟨a⟩.  

Lagrange's Theorem  

If H is a subgroup of a finite group G, then the order of H divides the  

order of G. That is, |H| divides |G|.  

Cosets and Normal Subgroups  

G. If G has infinitely many elements, we say G has infinite order.  

no such n exists, a has infinite order.  



For a subgroup H of a group G and an element a in G, the set aH =  

{ah | h ∈ H} is called the left coset of H in G with respect to a.  

Similarly, Ha = {ha | h ∈ H} is the right coset.  

Notes  

A subgroup N of G is normal if, for every a in G, aN = Na. This is  

equivalent to saying that all left cosets of N are equal to their  

corresponding right cosets.  

Quotient Groups  

If N is a normal subgroup of G, then the set G/N of all left cosets of N  

in G forms a group under the operation (aN)(bN) = (ab)N. This group  

is called the quotient group of G by N.  

Homomorphisms and Isomorphisms  

A group homomorphism is a function f: G → H between two groups  

that preserves the group operation: f(a • b) = f(a) * f(b) for all a, b in  

G, where • is the operation in G and * is the operation in H.  

An isomorphism is a bijective homomorphism. Two groups are  

isomorphic if there exists an isomorphism between them, meaning  

they have the same abstract structure.  

The First Isomorphism Theorem  

If φ: G → H is a group homomorphism, then:  

1. The kernel of φ, Ker(φ) = {a ∈ G | φ(a) = e_H}, is a normal  

subgroup of G.  

2. The image of φ, Im(φ) = {φ(a) | a ∈ G}, is a subgroup of H.  

3. G/Ker(φ) is isomorphic to Im(φ).  

1.2. Direct Products of Groups  

The direct product is a way to construct a new group from existing  

groups. It allows us to build complex groups from simpler ones.  22222222

Definition of Direct Product  

4



Given two groups (G, •) and (H, *), their direct product G × H is the  

set of all ordered pairs (g, h) where g ∈ G and h ∈ H, with the  

operation defined componentwise:  

Notes  

(g₁, h₁) ⊙ (g₂, h₂) = (g₁ • g₂, h₁ * h₂)  

Properties of Direct Products  

1. Identity: The identity element of G × H is (e_G, e_H), where  

e_G and e_H are the identity elements of G and H,  

2. Inverse: The inverse of an element (g, h) in G × H is (g⁻¹, h⁻¹),  

where g⁻¹ is the inverse of g in G and h⁻¹ is the inverse of h in  

H.  

3. Order: If G and H are finite groups, then |G × H| = |G| × |H|.  

4. Abelian: G × H is abelian if and only if both G and H are  

abelian.  

Examples of Direct Products  

1. Z₂ × Z₃: Consider the cyclic group Z₂ = {0, 1} under addition  

modulo 2 and the cyclic group Z₃ = {0, 1, 2} under addition  

modulo 3. Their direct product Z₂ × Z₃ consists of the  

elements: {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}  

For example, (1,2) + (1,1) = (1+1 mod 2, 2+1 mod 3) = (0,0).  

2. R × R: The direct product of the real numbers under addition  

with itself is the Cartesian plane R² under component-wise  

addition.  

Subgroups of Direct Products  

A subgroup of G × H need not be a direct product of subgroups of G  22222222

and H. However, there are two important types of subgroups:  

1. For any subgroup K of G, K × H is a subgroup of G × H.  

respectively.  



2. For any subgroup L of H, G × L is a subgroup of G × H.  Notes  

Projections and Embeddings  

For a direct product G × H, there are natural projection  

homomorphisms:  

•

•

π₁: G × H → G defined by π₁(g, h) = g  

π₂: G × H → H defined by π₂(g, h) = h  

There are also natural embedding homomorphisms:  

•

•

ι₁: G → G × H defined by ι₁(g) = (g, e_H)  

ι₂: H → G × H defined by ι₂(h) = (e_G, h)  

Internal Direct Products  

A group G is an internal direct product of its subgroups N₁ and N₂  

if:  

1. N₁ and N₂ are normal subgroups of G.  

2. N₁ ∩ N₂ = {e}.  

3. G = N₁N₂ = {n₁n₂ | n₁ ∈ N₁, n₂ ∈ N₂}.  

When G is an internal direct product of N₁ and N₂, G is isomorphic to  

the external direct product N₁ × N₂.  

Direct Product of Multiple Groups  

The direct product can be extended to any finite number of groups.  

For groups G₁, G₂, ..., Gₙ, their direct product G₁ × G₂ × ... × Gₙ  

consists of n-tuples (g₁, g₂, ..., gₙ) with component-wise operations.  

Direct Sum  

For abelian groups written additively, the direct product is sometimes  

called the direct sum and denoted by G₁ ⊕ G₂ ⊕ ... ⊕ Gₙ. The  

operation is component-wise addition.  

The Fundamental Theorem of Finitely Generated Abelian Groups  

6



Every finitely generated abelian group is isomorphic to a direct  

product of cyclic groups:  
Notes  

G ≅Z^r⊕ Z_{p₁^{a₁}} ⊕ Z_{p₂^{a₂}} ⊕ ... ⊕ Z_{pₙ^{aₙ}}  

where r is a non-negative integer, Z is the group of integers, and  282828

Z_{p^a} is the cyclic group of order p^a with p prime.  

1.3. Group Actions and Orbits  

Group actions allow us to understand how a group can act on a set,  

providing a powerful framework for analyzing symmetry and other  

properties.  

Definition of a Group Action  

A group action of a group G on a set X is a function φ: G × X → X  

(often written as g·x instead of φ(g,x)) that satisfies:  

1. Identity: e·x = x for all x ∈ X, where e is the identity element  22222222

of G.  

2. Compatibility: (g·h)·x = g·(h·x) for all g, h ∈ G and all x ∈ X.  

Examples of Group Actions  

1. The symmetric group Sₙ acts on the set {1, 2, ..., n} by  

permutation: σ·i = σ(i) for σ ∈ Sₙ and i∈ {1, 2, ..., n}.  

2. A group G acts on itself by conjugation: g·x = gxg⁻¹ for all  

g, x ∈ G.  

3. A group G acts on the set of its subgroups by conjugation:  

g·H = gHg⁻¹ for all g ∈ G and all subgroups H of G.  

4. The dihedral group Dₙ acts on the vertices of a regular n-  

gon by rotation and reflection.  

Orbits and Stabilizers  

For a group action of G on X and an element x ∈ X:  



The orbit of x, denoted by Orb(x), is the set of all elements in X to  

which x can be moved by elements of G: Orb(x) = {g·x | g ∈ G}  
Notes  

The stabilizer of x, denoted by Stab(x), is the subgroup of G  

consisting of all elements that fix x: Stab(x) = {g ∈ G | g·x = x}  

Orbit-Stabilizer Theorem  

For a group G acting on a set X and an element x ∈ X, if G is finite,  

then: |Orb(x)| × |Stab(x)| = |G|  

In other words, the size of the orbit of x multiplied by the size of the  

stabilizer of x equals the size of the group.  

Fixed Points and the Class Equation  

A fixed point of an element g ∈ G is an element x ∈ X such that g·x =  282828

x.  

For a finite group G acting on a finite set X, the class equation is: |X|  

= |X^G| + Σ |Orb(x)|  

where X^G = {x ∈ X | g·x = x for all g ∈ G} is the set of elements of  

X fixed by all elements of G, and the sum is taken over  

representatives x of the distinct orbits with |Orb(x)| > 1.  

Burnside's Lemma  

For a finite group G acting on a finite set X, the number of orbits  

equals the average number of fixed points: Number of orbits = (1/|G|)  

× Σ |X^g|  

where X^g = {x ∈ X | g·x = x} is the set of fixed points of g, and the  

sum is taken over all g ∈ G.  

Group Actions and Counting  

Group actions provide powerful tools for counting in combinatorics:  

1. Counting orbits gives the number of essentially different  

configurations.  

8



2. Pólya's enumeration theorem extends Burnside's lemma to  Notes  
count configurations by their "types."  

Transitive and Regular Actions  

A group action of G on X is transitive if for any x, y ∈ X, there exists  

g ∈ G such that g·x = y. In other words, there is exactly one orbit.  22222222

A group action is regular (or simply transitive) if it is transitive and  

the stabilizer of every point is trivial (i.e., contains only the identity  

element).  

The Orbit Decomposition  

Under a group action, the set X is partitioned into orbits. Each orbit is  

an equivalence class under the relation x ~ y if and only if there exists  

Homomorphic Actions  

If φ: G → Sym(X) is the homomorphism corresponding to an action  

of G on X (where Sym(X) is the symmetric group on X), then:  

1. The kernel of φ is the set of elements that fix every point in X.  

2. The image of φ is a subgroup of Sym(X) that represents the  

effective symmetries of X under the action.  

Solved Problems  

Problem 1: Determine whether the set of 2×2 matrices of the form  

[[a, b], [0, a]] where a ≠ 0 forms a group under matrix  

multiplication.  

Solution:  

Let's call this set G. We need to check all four group axioms:  

1. Closure: For any two matrices in G: [[a, b], [0, a]] × [[c, d],  

[0, c]] = [[ac, ad+bc], [0, ac]]  

g ∈ G such that g·x = y.  22222222



Since ac ≠ 0 when a ≠ 0 and c ≠ 0, the result is in G. So G is closed  Notes  
under matrix multiplication.  

2. Associativity: Matrix multiplication is always associative, so  

this axiom is satisfied.  

3. Identity: The identity matrix [[1, 0], [0, 1]] is in G (take a = 1  

and b = 0), and it serves as the identity element.  

4. Inverse: For a matrix [[a, b], [0, a]] in G, we need its inverse  

to be in G as well. The inverse is [[1/a, -b/a²], [0, 1/a]], which  

has the required form with non-zero values on the diagonal.  

Since all four axioms are satisfied, G is indeed a group under matrix  

multiplication.  

Problem 2: Find all subgroups of Z₄ × Z₂, where Z₄ is the cyclic  

group of order 4 and Z₂ is the cyclic group of order 2.  

Solution:  

First, let's enumerate the elements of Z₄ × Z₂:  

•

•

•

Z₄ = {0, 1, 2, 3} with addition modulo 4  

Z₂ = {0, 1} with addition modulo 2  

Z₄ × Z₂ = {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3,1)}  

The order of Z₄ × Z₂ is 8. By Lagrange's theorem, the possible orders  

of subgroups are 1, 2, 4, and 8.  

1. The trivial subgroup {(0,0)} is the only subgroup of order 1.  

2. Subgroups of order 2:  

o

o

o

⟨(2,0)⟩ = {(0,0), (2,0)}  

⟨(0,1)⟩ = {(0,0), (0,1)}  

⟨(2,1)⟩ = {(0,0), (2,1)}  

3. Subgroups of order 4:  
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o

o

o

o

⟨(1,0)⟩ = {(0,0), (1,0), (2,0), (3,0)} ≅ Z₄  

⟨(0,1), (2,0)⟩ = {(0,0), (0,1), (2,0), (2,1)} ≅ Z₂ × Z₂  

⟨(1,1)⟩ = {(0,0), (1,1), (2,0), (3,1)}  

Notes  

⟨(3,1)⟩ = {(0,0), (1,0), (2,1), (3,0)}  

4. The entire group Z₄ × Z₂ is the only subgroup of order 8.  

In total, Z₄ × Z₂ has 9 subgroups.  

Problem 3: Let G be a group acting on a set X. Prove that if x and  3030

y are in the same orbit, then Stab(x) and Stab(y) are conjugate  

subgroups.  

Solution:  

If x and y are in the same orbit, then there exists some g ∈ G such that  

We want to show that Stab(y) = g·Stab(x)·g⁻¹, where g·Stab(x)·g⁻¹ =  

{ghg⁻¹ | h ∈ Stab(x)}.  

Let h ∈ Stab(x). Then h·x = x.  

Consider ghg⁻¹ ∈g·Stab(x)·g⁻¹. We need to show that ghg⁻¹ ∈ Stab(y),  

(ghg⁻¹)·y = (ghg⁻¹)·(g·x) = g·(h·(g⁻¹·(g·x))) = g·(h·x) = g·x = y  

Therefore, ghg⁻¹ ∈ Stab(y), so g·Stab(x)·g⁻¹ ⊆ Stab(y).  

Consider g⁻¹kg ∈ G. We have: (g⁻¹kg)·x = g⁻¹·(k·(g·x)) = g⁻¹·(k·y) =  

g⁻¹·y = g⁻¹·(g·x) = x  

Thus, g⁻¹kg ∈ Stab(x), which implies k ∈g·Stab(x)·g⁻¹.  

Therefore, Stab(y) ⊆g·Stab(x)·g⁻¹.  

Combining both inclusions, we get Stab(y) = g·Stab(x)·g⁻¹, meaning  

Stab(x) and Stab(y) are conjugate subgroups.  

g·x = y.  

i.e., (ghg⁻¹)·y = y.  

Conversely, let k ∈ Stab(y). Then k·y = y.  



Problem 4: Calculate the number of distinct necklaces that can be  

made with 4 beads, each of which can be either red or blue.  
Notes  

Solution:  

This is a problem of counting orbits under a group action. We can use  

Burnside's lemma.  

The cyclic group C₄ (of order 4) acts on the set of all possible  

colorings of 4 beads by rotation. There are 2⁴ = 16 possible colorings  

(for each bead, we can choose either red or blue).  

By Burnside's lemma, the number of orbits (distinct necklaces) is:  

Number of orbits = (1/|G|) × Σ |X^g|  

where X^g is the set of colorings fixed by element g of the group.  

The group C₄ has 4 elements: the identity e, and rotations by 90°,  

180°, and 270°.  

1. For the identity e, all 16 colorings are fixed: |X^e| = 16.  

2. For a 90° rotation (call it r), a coloring is fixed only if all  

beads have the same color. So |X^r| = 2 (all red or all blue).  

3. For a 180° rotation (r²), a coloring is fixed if beads 1 and 3  

So |X^r²| = 2² = 4.  

4. For a 270° rotation (r³), like the 90° rotation, only the 2 solid-  

colored necklaces are fixed. So |X^r³| = 2.  

Using Burnside's lemma: Number of orbits = (1/4) × (16 + 2 + 4 + 2)  

= (1/4) × 24 = 6  

Thus, there are 6 distinct necklaces possible.  

Problem 5: Let G be a group of order 15. Prove that G is cyclic.  

Solution:  
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By Lagrange's theorem, the order of any element in G divides the  

order of G. So the possible orders for elements are 1, 3, 5, and 15.  
Notes  

The only element of order 1 is the identity element e.  

Let's consider the number of elements of each possible order:  

1. For elements of order 3, they must satisfy a³ = e. Each such  

element generates a cyclic subgroup of order 3.  

2. For elements of order 5, they must satisfy a⁵ = e. Each such  

element generates a cyclic subgroup of order 5.  

The Sylow theorems tell us that G has a Sylow 3-subgroup (a  

subgroup of order 3) and a Sylow 5-subgroup (a subgroup of order 5).  

The number of Sylow p-subgroups, n_p, satisfies:  

•

•

n_p ≡ 1 (mod p)  

n_p divides the order of G divided by p^k, where p^k is the  

highest power of p dividing |G|.  

For p = 3, n₃ ≡ 1 (mod 3) and n₃ divides 5. The only possibility is n₃ =  

1. For p = 5, n₅ ≡ 1 (mod 5) and n₅ divides 3. The only possibility is n₅  

= 1.  

So G has exactly one Sylow 3-subgroup (call it H) and one Sylow 5-  

subgroup (call it K).  

Since both H and K are unique, they are normal in G. Also, H ∩ K =  

{e} because gcd(3,5) = 1.  

Since |H| × |K| = 3 × 5 = 15 = |G|, we have G = H × K (internal direct  

product).  

Since H is a group of order 3 and K is a group of order 5, both are  

cyclic (all groups of prime order are cyclic). Say H = ⟨a⟩ and K = ⟨b⟩.  

Now, consider the element ab in G. We have:  

• (ab)^3 = a^3b^3 = eb^3 = b^3  



•

•

(ab)^5 = a^5b^5 = a^5e = a^5  Notes  

(ab)^15 = a^15b^15 = (a^3)^5(b^5)^3 = e^5e^3 = e  

We need to find the order of ab. Since a has order 3 and b has order 5,  

and 3 and 5 are coprime, the order of ab is lcm(3,5) = 15.  

Thus, G = ⟨ab⟩ is cyclic of order 15.  

Unsolved Problems  

Problem 1: Prove that every subgroup of a cyclic group is cyclic.  60

Problem 2: Let G be a group and let H and K be normal subgroups of  

G such that H ∩ K = {e}. Prove that for all h ∈ H and k ∈ K, hk = kh.  

Problem 3: Determine the number of non-isomorphic groups of order  

8.  

Problem 4: For a finite group G, prove that if for every proper  

subgroup H of G, there exists an element g ∈ G such that g^2 ∉ H,  

then G is a 2-group (i.e., |G| = 2^n for some n).  

Problem 5: Find all elements of the dihedral group D₄ (the group of  

symmetries of a square) that commute with a 90-degree rotation.  
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UNIT II  Notes  

1.4 Isotropy Subgroups  

The isotropy subgroup (also called the stabilizer) is a fundamental  

concept in group action theory that helps us understand how group  

elements interact with specific points in a set.  

Definition of Isotropy Subgroup  

Let G be a group acting on a set X. For any element x in X, the  

isotropy subgroup (or stabilizer) of x, denoted G_x, is defined as:  

G_x = {g ∈ G | g·x = x}  

In other words, G_x consists of all elements of G that fix the point x.  

It is straightforward to verify that G_x is indeed a subgroup of G.  

Properties of Isotropy Subgroups  

1. Subgroup Property: For any x in X, G_x is a subgroup of G.  

Proof:  

o

o

o

Identity: The identity element e ∈ G satisfies e·x = x,  

so e ∈G_x.  

Closure: If g, h ∈G_x, then g·x = x and h·x = x. So  

(gh)·x = g·(h·x) = g·x = x, which means gh∈G_x.  

Inverse: If g ∈G_x, then g·x = x. Applying g^(-1) to  

both sides: g^(-1)·(g·x) = g^(-1)·x, which gives x =  

g^(-1)·x, so g^(-1) ∈G_x.  

2. Conjugacy Relation: For any g ∈ G and x ∈ X, the isotropy  

subgroup of g·x is conjugate to the isotropy subgroup of x:  

G_(g·x) = gG_x g^(-1)  

Proof: An element h belongs to G_(g·x) if and only if h·(g·x) = g·x.  

This is equivalent to g^(-1)·h·g·x = x, which means g^(-1)hg ∈G_x.  

Thus, h ∈gG_x g^(-1).  



3. Fixed Points: The set of all points fixed by a specific group  

element g ∈ G is:  
Notes  

X^g = {x ∈ X | g·x = x}  

This is the set of all points x such that g belongs to the isotropy  363636

subgroup G_x.  

Example 1: Dihedral Group Action  

Consider the dihedral group D_4 acting on the vertices of a square.  

Let's find the isotropy subgroup for vertex 1:  

D_4 consists of:  

•

•

•

Identity (e): leaves all vertices in place  

Rotations: r (90° clockwise), r² (180°), r³ (270°)  

Reflections: s (across horizontal axis), sr (across vertical axis),  

sr² (across diagonal from vertex 1 to 3), sr³ (across diagonal  

from 2 to 4)  

The elements that fix vertex 1 are:  

•

•

e (identity): leaves all vertices in place  

sr² (reflection across diagonal 1-3): fixes vertices 1 and 3  

Therefore, G_1 = {e, sr²}, which is isomorphic to Z_2.  

Example 2: Symmetric Group Action  

Consider S_4 acting on the set X = {1, 2, 3, 4} by the standard  

permutation action.  

The isotropy subgroup of element 1 is: G_1 = {σ ∈ S_4 | σ(1) = 1}  

This consists of all permutations that fix 1, which is isomorphic to  

S_3 as they freely permute {2, 3, 4}.  

So G_1 ≅ S_3, with order |G_1| = 6.  

16  
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Relationship with Orbits  Notes  

One of the most important results connecting isotropy subgroups with  

orbits is:  

Orbit-Stabilizer Theorem: For a group G acting on a set X and an  

element x ∈ X:  

|G| = |Orb(x)| × |G_x|  

where |G| is the order of the group, |Orb(x)| is the size of the orbit of  6565

x, and |G_x| is the order of the isotropy subgroup of x.  

This theorem provides a powerful method for counting orbit sizes  

when we know the isotropy subgroups.  

1.5 Applications of Group Actions  

Group actions provide a unifying framework for various mathematical  363636

problems. Here are several important applications:  

Counting Problems and Burnside's Lemma  

Burnside's Lemma (also known as the Cauchy-Frobenius Lemma) is a  

powerful tool for counting orbits under a group action.  

Burnside's Lemma: Let G be a finite group acting on a finite set X.  

The number of orbits, denoted |X/G|, is given by:  

|X/G| = (1/|G|) × Σ_{g∈G} |X^g|  

where X^g = {x ∈ X | g·x = x} is the set of elements fixed by g.  

Example: Necklaces with Colored Beads  

Consider necklaces made of n beads, each colored with one of k  

colors. Two necklaces are considered equivalent if one can be rotated  

This problem can be modeled as the cyclic group C_n acting on the  

set X of all possible colorings (k^n in total). By Burnside's Lemma,  

the number of distinct necklaces is:  

to obtain the other.  



Number of distinct necklaces = (1/n) × Σ_{d|n} φ(d) × k^(n/d)  Notes  

where φ is Euler's totient function and the sum is over all divisors d of  

n.  

Simplification of Symmetric Structures  

Group actions help identify symmetries in mathematical structures,  

simplifying their analysis.  

Example: Platonic Solids  

The rotational symmetry groups of the Platonic solids are:  

•

•

•

Tetrahedron: A_4 (alternating group on 4 elements)  

Cube/Octahedron: S_4 (symmetric group on 4 elements)  

Dodecahedron/Icosahedron: A_5 (alternating group on 5  

elements)  

These group actions explain why there are exactly five Platonic solids.  3030

Normal Subgroups and Quotient Groups  

Group actions provide a geometric interpretation of normal subgroups  

and quotient groups.  

If N is a normal subgroup of G, then G acts on itself by conjugation:  

g·x = gxg^(-1). The orbits under this action are precisely the  6565

conjugacy classes of G. The isotropy subgroup of the identity element  

e is the centralizer of G.  

Sylow Theorems  

Group actions play a crucial role in proving Sylow's theorems, which  363636

are fundamental results in group theory concerning the existence and  

properties of subgroups whose orders are powers of prime numbers.  

First Sylow Theorem: If G is a finite group and p is a prime dividing  

|G|, then G has a subgroup of order p^k, where p^k is the highest  

power of p dividing |G|.  

18  



The proof uses the action of G on the set of all subsets of G of size  

p^k by left multiplication.  
Notes  

Galois Theory  

In Galois theory, the Galois group of a polynomial acts on its roots.  

This action reveals deep connections between field extensions and  

solvability of polynomial equations.  

For a polynomial f(x) with Galois group G, the orbits of the roots  

under the action of G correspond to the irreducible factors of f(x).  

Representation Theory  

Group actions on vector spaces lead to representation theory, which  

studies how groups can be represented as linear transformations of  

vector spaces.  

A representation of a group G on a vector space V is a homomorphism  

Crystallography  

The classification of crystal structures relies heavily on group actions.  

The 230 space groups in three dimensions describe all possible  

symmetric arrangements of atoms in crystals.  

ρ: G → GL(V), where GL(V) is the general linear group of V.  



UNIT III  Notes  

1.6 Counting Theorems  

Counting theorems in group theory provide powerful tools for  

enumeration problems involving symmetry. Here are the key results:  

Orbit-Counting Formula (Burnside's Lemma)  

As mentioned earlier, Burnside's Lemma gives us a way to count the  

number of orbits:  

|X/G| = (1/|G|) × Σ_{g∈G} |X^g|  

Pólya Enumeration Theorem  

Pólya's enumeration theorem extends Burnside's Lemma to situations  

where we not only want to count orbits but also need to classify them  

Let G be a group acting on a set X, and let w be a weight function that  

assigns weights to elements of X. The Pólya enumeration theorem  

gives a generating function for the weights of the orbits:  

Z_G(w) = (1/|G|) × Σ_{g∈G} w^{cycle(g)}  

where cycle(g) represents the cycle structure of the permutation g, and  

w^{cycle(g)} is a monomial determined by this cycle structure.  

Example: Colored Cubes  

Consider coloring the faces of a cube with k colors. The symmetry  

group of the cube, S_4, acts on the 6 faces.  

Using Pólya's theorem, the generating function for the number of  

distinct colorings is:  

Z_G(x_1 + x_2 + ... + x_k) = (1/24) × (x_1 + x_2 + ... + x_k)^6 + ...  

(additional terms based on cycle structures)  

Orbit-Stabilizer Theorem  
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As introduced earlier, the Orbit-Stabilizer theorem relates the size of  

an orbit to the order of the group and the order of an isotropy  252525

subgroup:  

Notes  

|G| = |Orb(x)| × |G_x|  

This immediately gives:  

|Orb(x)| = |G| / |G_x|  

This theorem is particularly useful for calculating orbit sizes when the  

isotropy subgroups are known.  

Class Equation  

The class equation is a fundamental result that divides the elements of  

a group into conjugacy classes:  

|G| = |Z(G)| + Σ |Cl(g_i)|  

where Z(G) is the center of G, and the sum is taken over  

representatives g_i of non-singleton conjugacy classes Cl(g_i).  

This can be derived by considering the action of G on itself by  

conjugation.  

The Cauchy-Frobenius-Burnside Formula  

This is a generalized version of Burnside's Lemma that takes into  313131

account a weight function:  

Σ_{[x]∈X/G} w([x]) = (1/|G|) × Σ_{g∈G} Σ_{x∈X^g} w(x)  

where w([x]) is the weight of the orbit [x].  

Solved Problems  

Problem 1: Find the number of distinct necklaces with 4 beads,  

each colored either red or blue.  

Solution: This problem can be solved using Burnside's Lemma. We  

have the cyclic group C_4 acting on the set of all possible colorings.  

• Total number of colorings: 2^4 = 16  



• We need to find |X^g| for each g ∈ C_4:  Notes  

o

o

For the identity e, all 16 colorings are fixed: |X^e| = 16  

For a 90° rotation (g_1), a coloring is fixed if all beads have  

the same color: |X^g_1| = 2  

o For a 180° rotation (g_2), a coloring is fixed if opposite beads  

have the same color: |X^g_2| = 2^2 = 4  

o For a 270° rotation (g_3), same as 90°: |X^g_3| = 2  

By Burnside's Lemma: |X/G| = (1/4) × (16 + 2 + 4 + 2) = (1/4) × 24 =  

6

Therefore, there are 6 distinct necklaces with 4 beads colored red or  

blue.  

Problem 2: In the symmetric group S_4, find the isotropy  

subgroup of the element 1 under the natural action of S_4 on {1,  

2, 3, 4}.  

Solution: The isotropy subgroup G_1 consists of all permutations σ ∈  

S_4 such that σ(1) = 1.  

These are precisely the permutations that fix 1 while permuting the  

The number of such permutations is 3! = 6, corresponding to all  

possible ways to arrange {2, 3, 4}.  

Explicitly, G_1 = {e, (2 3), (2 4), (3 4), (2 3 4), (2 4 3)}, where e is the  

identity and the other elements are written in cycle notation.  

This subgroup is isomorphic to S_3, the symmetric group on 3  

elements.  

Problem 3: Find the number of different ways to color the vertices  

of a regular hexagon using 3 colors, where two colorings are  

considered the same if one can be obtained from the other by a  

rotation.  
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Solution: This is a group action problem with the cyclic group C_6  Notes  
acting on the set X of all possible colorings.  

•

•

Total number of colorings: |X| = 3^6 = 729  

We need to find |X^g| for each g ∈ C_6:  

o

o

For the identity (e), all 729 colorings are fixed: |X^e| = 729  

For a 60° rotation (g_1), a coloring is fixed if all vertices have  

the same color: |X^g_1| = 3  

o

o

For a 120° rotation (g_2), a coloring is fixed if vertices at  

positions i, i+2, i+4 have the same color: |X^g_2| = 3^2 = 9  

For a 180° rotation (g_3), a coloring is fixed if vertices at  

positions i and i+3 have the same color: |X^g_3| = 3^3 = 27  

o

o

For a 240° rotation (g_4), same as 120°: |X^g_4| = 9  

For a 300° rotation (g_5), same as 60°: |X^g_5| = 3  

By Burnside's Lemma: |X/G| = (1/6) × (729 + 3 + 9 + 27 + 9 + 3) =  

(1/6) × 780 = 130  

Therefore, there are 130 different ways to color the vertices of a  

regular hexagon using 3 colors, up to rotation.  

Problem 4: Find the class equation for the dihedral group D_8  

(the symmetry group of a regular square).  

Solution: D_8 consists of 8 elements: the identity e, rotations r, r², r³  

by 90°, 180°, and 270°, and reflections s, sr, sr², sr³ across various  

axes.  

To find the conjugacy classes, we use the fact that two elements a, b  

are conjugate if there exists g ∈ D_8 such that g⁻¹ag = b.  

The center Z(D_8) consists of elements that commute with all  

elements of D_8. These are e and r², so |Z(D_8)| = 2.  

For the remaining elements:  



•

•

•

r and r³ form one conjugacy class of size 2  Notes  

The reflections s and sr² form one conjugacy class of size 2  

The reflections sr and sr³ form another conjugacy class of size  

2

Therefore, the class equation is: |D_8| = |Z(D_8)| + |Cl(r)| + |Cl(s)| +  

|Cl(sr)| 8 = 2 + 2 + 2 + 2  

Problem 5: Use the Orbit-Stabilizer theorem to find the number  

of different ways to place 2 identical rooks on a 3×3 chessboard,  

where configurations are considered the same if one can be  

obtained from the other by a rotation or reflection of the board.  

Solution: The dihedral group D_4 acts on the set X of all possible  

placements of 2 identical rooks on a 3×3 board.  

First, let's count the total number of possible placements:  

•

•

We need to choose 2 positions from 9 possible positions  

Number of ways = C(9,2) = 36  

Let's consider a specific configuration x where the rooks are at  

positions (1,1) and (2,2).  

To find the isotropy subgroup G_x, we need elements of D_4 that  

keep these positions fixed:  

•

•

The identity e keeps all positions fixed  

The 180° rotation r² maps (1,1) to (3,3) and (2,2) to (2,2), so it  

doesn't fix our configuration  

• None of the other rotations or reflections fix this configuration  

Therefore, G_x = {e}, and |G_x| = 1.  

By the Orbit-Stabilizer theorem: |Orb(x)| = |D_4| / |G_x| = 8 / 1 = 8  

This means the orbit of our specific configuration has 8 elements.  
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However, this is just one orbit. To find the total number of distinct  

configurations, we need to compute all orbits.  
Notes  

Using Burnside's Lemma:  

•

•

For the identity e, all 36 configurations are fixed: |X^e| = 36  

For 90° rotation r, none of the configurations are fixed: |X^r| =  

0

• For 180° rotation r², configurations where rooks are placed  

symmetrically across the center are fixed: |X^r²| = 0 (since we  

need 2 rooks)  

•

•

For 270° rotation r³, same as 90°: |X^r³| = 0  

For horizontal reflection s, configurations symmetric about the  

horizontal axis are fixed: |X^s| = 3  

•

•

•

For vertical reflection sr², configurations symmetric about the  

vertical axis are fixed: |X^sr²| = 3  

For diagonal reflection sr, configurations symmetric about the  

main diagonal are fixed: |X^sr| = 3  

For diagonal reflection sr³, configurations symmetric about the  

other diagonal are fixed: |X^sr³| = 3  

By Burnside's Lemma: |X/D_4| = (1/8) × (36 + 0 + 0 + 0 + 3 + 3 + 3 +  

3) = (1/8) × 48 = 6  

Therefore, there are 6 different ways to place 2 identical rooks on a  

3×3 chessboard, up to rotation and reflection.  

Unsolved Problems  

Problem 1  

Let G be the alternating group A_4 acting on the set X = {1, 2, 3, 4}  

by the standard permutation action. Find all the isotropy subgroups  5555555

and determine which of them are conjugate to each other.  



Problem 2  Notes  

Consider the action of the symmetric group S_5 on the set of all 2-  

element subsets of {1, 2, 3, 4, 5} by the natural action. Find the orbit  

and isotropy subgroup of the subset {1, 2}.  

Problem 3  

Using Burnside's Lemma, determine the number of distinct ways to  

color the faces of a cube using 3 colors (red, blue, green), where two  

colorings are considered the same if one can be obtained from the  

other by a rotation of the cube.  

Problem 4  

Let the dihedral group D_6 act on the set of all functions from the  

vertices of a regular hexagon to {0, 1}. If this action is by  

composition (i.e., for g ∈ D_6 and a function f, g·f = f∘g⁻¹), find the  

number of orbits.  

Problem 5  

For the group G = Z_2 × Z_2 × Z_2, consider its action on itself by  

conjugation. Find the class equation of G and explain what this tells  

you about the structure of the group.  5555555

Formulas and Key Results  

1. Isotropy Subgroup (Stabilizer): G_x = {g ∈ G | g·x = x}  

2. Orbit-Stabilizer Theorem: |G| = |Orb(x)| × |G_x|  

3. Burnside's Lemma: |X/G| = (1/|G|) × Σ_{g∈G} |X^g|  

4. Conjugacy of Isotropy Subgroups: G_(g·x) = gG_x g^(-1)  

5. Class Equation: |G| = |Z(G)| + Σ |Cl(g_i)|  

6. Pólya Enumeration Theorem: Z_G(w) = (1/|G|) × Σ_{g∈G}  

w^{cycle(g)}  

7. Fixed Points Set: X^g = {x ∈ X | g·x = x}  
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8. Number of Distinct Necklaces with n Beads and k Colors:  Notes  
(1/n) × Σ_{d|n} φ(d) × k^(n/d)  

9. Cauchy-Frobenius-Burnside Formula: Σ_{[x]∈X/G} w([x])  

= (1/|G|) × Σ_{g∈G} Σ_{x∈X^g} w(x)  

10. Orbit Size Formula: |Orb(x)| = |G| / |G_x|  

This comprehensive overview of isotropy subgroups, applications of  

group actions, and counting theorems provides both theoretical  

foundations and practical applications. The solved problems  

demonstrate how these concepts can be applied to specific scenarios,  

while the unsolved problems offer opportunities for further practice  

and deeper understanding of the material.  

p-Groups and their Properties  

Definition and Basic Properties of p-Groups  

A p-group is a group in which every element has order that is a power  595959

of a prime number p. In other words, if G is a p-group, then for every  252525

element g in G, there exists a non-negative integer n such that g^(p^n)  

= e (where e is the identity element).  

Important characteristics of p-groups include:  

1. Finite p-groups have order p^n for some positive integer n.  

3. The order of any subgroup and any quotient group of a p-  

group is also a power of p.  

Center of p-Groups  

Theorem 1: If G is a non-trivial finite p-group, then the center  

Z(G) of G is non-trivial.  

Proof: Let G act on itself by conjugation. For each element g in G, we  

define the class equation:  

|G| = |Z(G)| + ∑|Cl(g)|  

2. Every non-trivial p-group has a non-trivial center.  



Where Cl(g) is the conjugacy class of g, and the sum is taken over  

representatives of distinct non-central conjugacy classes.  
Notes  

For any non-central element g, the size of its conjugacy class is:  

|Cl(g)| = [G : C_G(g)]  

Where C_G(g) is the centralizer of g in G. Since C_G(g) is a proper  5555555

subgroup of G, its index [G : C_G(g)] is divisible by p. This means  

each term in the sum is divisible by p.  

Since |G| = p^n for some n > 0, and the sum is divisible by p, the  

center |Z(G)| must also be divisible by p to satisfy the class equation.  

This implies that |Z(G)| ≥ p, which means Z(G) is non-trivial.  

Normal Subgroups in p-Groups  

Theorem 2: Every non-trivial finite p-group has a normal  

subgroup of order p.  

Proof: We already showed that the center Z(G) of a non-trivial p-  595959

group G is non-trivial. Since Z(G) is a p-group itself, it contains an  

element g of order p. The subgroup H = <g> generated by g has order  

p and is contained in Z(G). Since any subgroup of the center is normal  5555555

in G, H is a normal subgroup of G with order p.  

Maximal Subgroups of p-Groups  

Theorem 3: Let G be a finite p-group. Then every maximal  

subgroup of G has index p in G.  

Proof: Let M be a maximal subgroup of G. The quotient group G/M is  

a p-group with no proper non-trivial subgroups (by maximality of M).  

Such a group must be cyclic of prime order, which means G/M has  

order p. Therefore, [G : M] = p.  

Frattini Subgroup  

The Frattini subgroup Φ(G) of a group G is defined as the intersection  

of all maximal subgroups of G.  
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Theorem 4: If G is a finite p-group, then Φ(G) is the set of non-  

generators of G. Moreover, G/Φ(G) is an elementary abelian p-group.  
Notes  

Proof: An element g in G is called a non-generator if whenever G =  

<X, g> for some subset X of G, we also have G = <X>. It can be  313131

shown that the set of all non-generators forms a characteristic  5555555

subgroup of G, which coincides with Φ(G).  

Since every maximal subgroup of G has index p, each factor group  

G/M (where M is maximal) is cyclic of order p. Therefore, for any  595959

two elements g, h in G, we have g^p and h^p in every maximal  5555555

subgroup, hence in Φ(G). Also, [g,h] (the commutator) is in every  

maximal subgroup. This implies that G/Φ(G) is an elementary abelian  

p-group, i.e., a direct product of cyclic groups of order p.  

Sylow Theorems and Their Applications  

The Sylow theorems, formulated by Norwegian mathematician Peter  

Ludwig Sylow in 1872, are fundamental results concerning the  

existence and properties of certain subgroups in finite groups. These  

theorems provide crucial insights into the structure of finite groups.  

Sylow Theorems  

First Sylow Theorem: Let G be a finite group with order |G| =  

p^n · m, where p is a prime and p does not divide m. Then G  

contains at least one subgroup of order p^n.  

Proof Sketch: The proof uses group actions on sets of fixed size. Let G  

act on the set of all subsets of G of size p^n by left multiplication.  

This action induces orbits whose sizes divide |G|. By analyzing these  

orbits and using properties of binomial coefficients modulo p, we can  

show that at least one such orbit has a size not divisible by p. The  

stabilizer of an element in such an orbit gives us the desired Sylow p-  

subgroup.  

Second Sylow Theorem: All Sylow p-subgroups of a finite group  

G are conjugate to each other. That is, if P and Q are Sylow p-  



subgroups of G, then there exists an element g in G such that Q =  

g^(-1)Pg.  
Notes  

Proof Sketch: Let P be a Sylow p-subgroup of G and let Q be another  

Sylow p-subgroup. Consider the action of Q on the set of left cosets  

G/P by left multiplication. The number of fixed points under this  

action is congruent to |G/P| modulo p. Since |G/P| is not divisible by p,  

Sylow p-subgroups, they must be equal, giving us Q = hPh^(-1) for  

some h in G.  

Third Sylow Theorem: Let G be a finite group and p be a prime.  

If n_p denotes the number of Sylow p-subgroups of G, then:  

1. n_p ≡ 1 (mod p)  

2. n_p divides |G|  

3. n_p = [G : N_G(P)], where P is any Sylow p-subgroup and  

N_G(P) is its normalizer in G.  

Proof Sketch: Let P be a Sylow p-subgroup of G. The group P acts on  313131

the set of all Sylow p-subgroups by conjugation. The orbit-stabilizer  

theorem gives us that the orbit sizes divide |P|. The only fixed point of  

this action is P itself, so the other orbit sizes are divisible by p. This  

gives us n_p ≡ 1 (mod p).  

The second part follows from the fact that n_p = [G : N_G(P)] and  5555555

N_G(P) is a subgroup of G.  252525

Applications of Sylow Theorems  

Here are some significant ones:  

Application 1: Determining possible group structures.  
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there must be a fixed point, say gP. This means that for some q in Q,  

we have qgP = gP, which implies g^(-1)qg is in P. By extending this  

argument, we can show that g^(-1)Qg is contained in P. Since both are  

The Sylow theorems have numerous applications in group theory.  



By analyzing the number of Sylow subgroups, we can often determine  66

whether non-isomorphic groups of a given order can exist.  
Notes  

Application 2: Proving groups of certain orders are not simple.  

A group is simple if it has no proper non-trivial normal subgroups. By  

using the Sylow theorems, we can often prove that groups of certain  

orders must have proper normal subgroups.  

Example: Show that any group of order 15 has a normal subgroup of  

order 5.  

Solution: Let G be a group of order 15 = 3 · 5. By the first Sylow  

theorem, G has at least one Sylow 5-subgroup P of order 5. By the  

third Sylow theorem, the number of Sylow 5-subgroups n_5 satisfies:  

•

•

n_5 ≡ 1 (mod 5)  

n_5 divides 15 The only positive integer that is congruent to 1  

modulo 5 and divides 15 is 1. Therefore, n_5 = 1, meaning G  

has exactly one Sylow 5-subgroup. Since there is only one  

Sylow 5-subgroup and all Sylow 5-subgroups are conjugate  

(by the second Sylow theorem), this unique Sylow 5-subgroup  

must be normal in G.  

Application 3: Classification of groups of specific orders.  

The Sylow theorems are instrumental in classifying groups of specific  

orders. For example, they help determine that there are exactly two  

non-isomorphic groups of order 6: the cyclic group C_6 and the  

dihedral group D_6.  

Solved Problems  

Problem 1: Prove that a group of order p^2 (p prime) is abelian.  

Solution: Let G be a group of order p^2. We need to prove that G is  

abelian, i.e., gh = hg for all g, h in G.  

There are two possibilities for G:  



1. G is cyclic of order p^2  

2. G is not cyclic  

Notes  

If G is cyclic, then G is automatically abelian.  

If G is not cyclic, then its elements (except the identity) have order p.  

Let g be a non-identity element of G. Then |g| = p, so the subgroup  

<g> has p elements.  

By Lagrange's theorem, G has p + 1 distinct subgroups of order p  

(including <g>). Let h be an element not in <g>. Then <h> is another  

subgroup of order p, and <g> ∩ <h> = {e} (the identity).  

Every element in G can be uniquely written as g^ih^j where 0 ≤ i, j <  

p. Now we need to show that gh = hg.  

Consider the center Z(G) of G. We know that in p-groups, the center  

is non-trivial. Since G has order p^2, either Z(G) = G (meaning G is  

abelian) or |Z(G)| = p.  

If |Z(G)| = p, then G/Z(G) has order p, which means G/Z(G) is cyclic.  

But if G/Z(G) is cyclic, then G must be abelian (this is a known result  

in group theory).  

Therefore, in all cases, G must be abelian.  

Problem 2: Find all Sylow subgroups in S_4 (the symmetric group  

on 4 elements).  

Solution: The order of S_4 is 4! = 24 = 2^3 · 3.  

Sylow 2-subgroups: These are subgroups of order 2^3 = 8. By the  

third Sylow theorem, the number of Sylow 2-subgroups n_2 satisfies:  

•

•

•

n_2 ≡ 1 (mod 2)  

n_2 divides 24 = 2^3 · 3  

n_2 divides 3  

So n_2 = 1 or n_2 = 3.  
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Let's identify these subgroups. Consider the subgroup generated by  

the permutations (1,2), (3,4), and (1,3)(2,4). This forms a Sylow 2-  

subgroup isomorphic to D_8 (the dihedral group of order 8).  

Notes  

Other Sylow 2-subgroups can be obtained through conjugation. For  

example:  

•

•

The subgroup generated by (1,3), (2,4), and (1,2)(3,4)  

The subgroup generated by (1,4), (2,3), and (1,2)(3,4)  

Therefore, S_4 has exactly 3 Sylow 2-subgroups.  

Sylow 3-subgroups: These are subgroups of order 3^1 = 3. By the  

third Sylow theorem, the number of Sylow 3-subgroups n_3 satisfies:  

•

•

•

n_3 ≡ 1 (mod 3)  

n_3 divides 24 = 2^3 · 3  

n_3 divides 8  

So n_3 = 1, 4, or 7. But since n_3 ≡ 1 (mod 3), we have n_3 = 1, 4.  

The Sylow 3-subgroups are cyclic of order 3. One such subgroup is  

generated by the 3-cycle (1,2,3). Through conjugation, we can find  

that there are exactly 4 Sylow 3-subgroups:  

•

•

•

•

<(1,2,3)>  

<(1,2,4)>  

<(1,3,4)>  

<(2,3,4)>  

Therefore, S_4 has exactly 4 Sylow 3-subgroups.  

Problem 3: Prove that any group of order 20 has a normal  

subgroup of order 5.  

Solution: Let G be a group of order 20 = 2^2 · 5.  



By the first Sylow theorem, G has at least one Sylow 5-subgroup P of  

order 5.  
Notes  

By the third Sylow theorem, the number of Sylow 5-subgroups n_5  

satisfies:  

•

•

•

n_5 ≡ 1 (mod 5)  

n_5 divides 20 = 2^2 · 5  

n_5 divides 4  

The only positive integer that is congruent to 1 modulo 5 and divides  

4 is 1.  

Therefore, n_5 = 1, meaning G has exactly one Sylow 5-subgroup.  

Since there is only one Sylow 5-subgroup and all Sylow 5-subgroups  

are conjugate (by the second Sylow theorem), this unique Sylow 5-  

subgroup must be normal in G.  

Problem 4: Let G be a group of order p^n where p is prime and n  

≥ 1. Prove that G has a normal subgroup of order p^(n-1).  

Solution: We'll use induction on n.  

Base case: n = 1 If n = 1, then |G| = p. The only proper subgroup is the  

trivial subgroup {e} with order p^0 = 1, which is obviously normal.  

Inductive hypothesis: Assume that for some k ≥ 1, any group of order  

p^k has a normal subgroup of order p^(k-1).  

Inductive step: Let G be a group of order p^(k+1).  

We know that the center Z(G) of G is non-trivial (a fundamental  

property of p-groups). Let z be a non-identity element in Z(G). Since  

z is in Z(G), the subgroup <z> is normal in G.  

Let H = G/<z>. Then |H| = |G|/|<z>| = p^(k+1)/p = p^k.  

By the inductive hypothesis, H has a normal subgroup K of order  

p^(k-1).  
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Let π: G → H be the natural projection. Consider N = π^(-1)(K). This  

is a subgroup of G, and by the properties of quotient groups, N is  

normal in G.  

Notes  

The order of N is |N| = |K| · |<z>| = p^(k-1) · p = p^k.  4747

Thus, G has a normal subgroup N of order p^k = p^((k+1)-1).  

By the principle of mathematical induction, the result holds for all n ≥  

1.  

Problem 5: Prove that every group of order 12 has a normal  

subgroup of order 3 or 4.  

Solution: Let G be a group of order 12 = 2^2 · 3.  

By the first Sylow theorem, G has at least one Sylow 3-subgroup P of  

order 3, and at least one Sylow 2-subgroup Q of order 4.  

By the third Sylow theorem, the number of Sylow 3-subgroups n_3  

satisfies:  

•

•

•

n_3 ≡ 1 (mod 3)  

n_3 divides 12 = 2^2 · 3  

n_3 divides 4  

The only positive integer that is congruent to 1 modulo 3 and divides  

4 is 1 or 4.  

Case 1: n_3 = 1 If there is only one Sylow 3-subgroup, then it must be  

normal in G. Thus, G has a normal subgroup of order 3.  

Case 2: n_3 = 4 Now let's consider the Sylow 2-subgroups. By the  

third Sylow theorem, the number of Sylow 2-subgroups n_2 satisfies:  

•

•

•

n_2 ≡ 1 (mod 2)  

n_2 divides 12 = 2^2 · 3  

n_2 divides 3  



The only positive integer that is congruent to 1 modulo 2 and divides  

3 is 1 or 3.  
Notes  

Subcase 2.1: n_2 = 1 If there is only one Sylow 2-subgroup, then it is  

normal in G. Thus, G has a normal subgroup of order 4.  

Subcase 2.2: n_2 = 3 Here we need to use additional group theory  

results. We can show that in this case, G must be isomorphic to A_4  

(the alternating group on 4 elements).  

In A_4, there are four Sylow 3-subgroups, and the union of these  

subgroups (minus the identity) gives us 8 elements of order 3. The  

remaining 3 non-identity elements form a subgroup called the Klein  

four-group, which is normal in A_4.  

Therefore, even in this case, G has a normal subgroup of order 4.  

Unsolved Problems  

Problem 1: Prove that in a finite p-group G (p prime), every maximal  4747

subgroup has index p in G.  

Problem 2: Let G be a p-group of order p^n with n ≥ 2. Prove that G  

has at least p + 1 subgroups of order p^(n-1).  

Problem 3: Let G be a group of order 2023. Determine the number of  

Sylow 7-subgroups and Sylow 17-subgroups in G.  

Problem 4: Let G be a group of order 30. Prove that G is not simple.  

Problem 5: Let G be a group of order 60. Prove that either G has a  

normal Sylow 5-subgroup or G has a normal Sylow 3-subgroup.  

Special Topics in p-Groups  

Burnside's Basis Theorem  

Burnside's Basis Theorem states that if G is a finite p-group, then any  49

minimal generating set of G has the same number of elements, which  

equals the rank of the elementary abelian group G/Φ(G).  

Nilpotency of p-Groups  
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Every p-group is nilpotent. This means there exists a finite sequence  

of subgroups:  
Notes  

G = G_0 > G_1 > ... >G_n = {e}  

Such that [G, G_i] ≤ G_(i+1) for all i.  

p-Groups and Representation Theory  

p-groups have special properties in representation theory. For  

example, if G is a p-group and V is a finite-dimensional vector space  

over a field of characteristic not equal to p, then any linear  

representation of G on V has a non-zero fixed point.  

Counting Subgroups in p-Groups  

For p-groups, there are formulas that give the number of subgroups of  

each possible order. These formulas involve sophisticated  

combinatorial techniques and can be quite complex.  

p-Groups in Computational Group Theory  

p-groups play an important role in computational group theory. Many  

algorithms exploit the special properties of p-groups to efficiently  

compute group-theoretic information.  

Advanced Applications of Sylow Theorems  

Classification of Simple Groups  

The Sylow theorems are fundamental tools in the classification of  

simple groups. They provide criteria for when a group cannot be  

simple, which was crucial in the monumental effort to classify all  

finite simple groups.  

Semidirect Products and Group Extensions  

The Sylow theorems help in determining the structure of groups as  

semidirect products or extensions of smaller groups. This is  

particularly useful in classifying groups of certain orders.  

Group Actions and Fixed-Point Theorems  



The proofs of the Sylow theorems use group actions in an essential  

way. This connection between group actions and subgroup structure  
Notes  

Fusion Theory  

Fusion in group theory deals with how conjugacy in a larger group  

affects the structure of a subgroup. The Sylow theorems are the  

starting point for much of fusion theory, which has applications in  

Historical Context and Development  

The development of p-group theory and the Sylow theorems  

represents a significant milestone in the history of abstract algebra.  

These concepts were initially formulated in the late 19th century and  

have continued to evolve and find new applications. The study of p-  

groups was further developed in the 20th century, with contributions  

from many mathematicians, including Burnside, Hall, Thompson, and  

others. The theory has connections to various other areas of  

mathematics, including number theory, topology, and representation  

theory. The Sylow theorems, in particular, stand as fundamental  

results that every student of group theory must master. They  

exemplify the power of abstract reasoning in uncovering deep  

structural properties of mathematical objects.  

Multiple Choice Questions (MCQs)  

1. The order of a direct product of two finite groups is:  

a) Sum of the orders of individual groups  

b) Product of the orders of individual groups  

c) Maximum of the orders of the two groups  

d) Minimum of the orders of the two groups  

2. A group action on a set satisfies which of the following  

properties?  

a) Associativity and identity properties  

b) Distributivity and commutativity  
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has led to various fixed-point theorems in group theory.  

modular representation theory.  



c) Symmetry and transitivity  

d) None of the above  
Notes  

3. The orbit of an element under a group action is:  

a) A subset of the group  

b) The set of elements obtained by applying group elements to  

it  

c) Always equal to the entire set  

d) None of the above  

4. Sylow’s theorems provide information about:  

a) Normal subgroups  

b) Prime-power order subgroups  

c) Commutative properties of groups  

d) None of the above  

5. The number of Sylow p-subgroups in a group is:  

a) Any integer greater than 1  

b) A power of p  

c) Congruent to 1 modulo p  

d) Always 1  

6. Which of the following statements about p-groups is true?  

a) Every element has order p  

b) They always have a normal subgroup  

c) They are abelian groups  

d) They have a unique Sylow subgroup  

7. The isotropy subgroup of an element is:  

a) The set of all elements in the group that fix the element  

b) The orbit of the element  

c) The direct product of two subgroups  

d) A normal subgroup of the group  

8. The number of orbits in a group action is found using:  

a) Lagrange’s Theorem  

b) Sylow’s Theorem  



c) Orbit-Stabilizer Theorem  Notes  
d) Cayley’s Theorem  

9. In a finite group, the order of an element must:  

a) Divide the order of the group  

b) Be a prime number  

c) Be equal to the order of the group  

d) None of the above  

10. The center of a p-group is:  

a) Trivial  

b) Always nontrivial  

c) Equal to the group itself  

d) None of the above  

Short Answer Questions  

1. Define the direct product of two groups with an example.  

2. Explain group actions with a real-life example.  

3. What is an orbit in the context of group actions?  

4. State and prove the Orbit-Stabilizer Theorem.  

5. What is a p-group? Give an example.  

6. State and prove Sylow’s First Theorem.  

7. What is an isotropy subgroup?  

8. Explain the significance of counting theorems in combinatorial  

mathematics.  

9. How do p-groups relate to Sylow’s Theorems?  

10. Why are Sylow subgroups important in the classification of  

finite groups?  

Long Answer Questions  
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1. Explain the concept of direct product in groups with detailed  

examples and proofs.  
Notes  

2. Derive the Orbit-Stabilizer Theorem and give its applications.  

3. Discuss in detail the applications of counting theorems in  

4. Prove and explain all three Sylow theorems with examples.  

5. Describe the significance of p-groups in the study of finite  

groups.  

6. How do isotropy subgroups help in understanding group  

structures?  

7. Explain how Sylow’s theorems can be used to determine the  

8. Discuss the importance of group actions in modern algebra  

and their real-life applications.  

9. Derive the class equation and explain its applications in group  

10. How does the Sylow theory contribute to the classification of  3939

finite simple groups?  

group theory.  

number of subgroups of a given order.  

theory.  



MODULE II  

UNIT IV  

Notes  

APPLICATIONS OF THE SYLOW THEORY AND RING  

THEORY  

Objectives  

Apply Sylow theorems to p-groups and the class equation.  •

• Understand further applications of Sylow’s theorems in finite  

group classification.  

•

•

•

Study rings of polynomials and their properties.  

Explore the concept of polynomials in an indeterminate.  

Learn about the evaluation homomorphism and its  

significance.  

• Understand factorization of polynomials over a field.  

2.1 Applications of Sylow Theory  

providing critical information about the structure of groups through  

their subgroups of prime power order. The fundamental theorems,  

developed by Norwegian mathematician Ludwig Sylow in 1872,  

allow us to draw significant conclusions about finite groups by  

examining these special subgroups.  

Fundamental Concepts of Sylow Theory  

A p-Sylow subgroup (or Sylow p-subgroup) of a finite group G is a  

maximal p-subgroup of G, where p is a prime number. In other words,  888

it's a subgroup whose order is the highest power of p that divides the  

order of G.  

The Sylow theorems state:  
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1. Existence: If G is a finite group and p^n divides |G| (where p is  

prime and n ≥ 1), then G contains at least one subgroup of  

order p^n.  

Notes  

2. Number: If n_p denotes the number of Sylow p-subgroups of  

G, then:  

o n_p divides |G|/p^s (where p^s is the highest power of  

p dividing |G|)  

o n_p ≡ 1 (mod p)  

3. Conjugacy: All Sylow p-subgroups of G are conjugate to each  

Applications of Sylow Theory  

1. Classification of Groups of Small Order  

Sylow theory is particularly effective in classifying groups of small  

order. Let's consider some examples:  

Example: Groups of Order 15  

If |G| = 15 = 3 × 5, then:  

• The number of Sylow 3-subgroups n_3 must divide 5 and  

satisfy n_3 ≡ 1 (mod 3).  

•

•

The only possibility is n_3 = 1.  

Similarly, n_5 = 1.  

Since both Sylow subgroups are normal, G is isomorphic to Z_15  

(cyclic group of order 15).  

Example: Groups of Order 12  

If |G| = 12 = 2^2 × 3, then:  

• For Sylow 3-subgroups, n_3 divides 4 and n_3 ≡ 1 (mod 3).  

So n_3 = 1 or 4.  

other.  



• For Sylow 2-subgroups, n_2 divides 3 and n_2 ≡ 1 (mod 2).  Notes  
So n_2 = 1 or 3.  

This gives us different possibilities to analyze, leading to the  

classification of all groups of order 12: Z_12, Z_6 × Z_2, A_4, D_6,  

and Q (the quaternion group).  

2. Proving Simplicity of Groups  

Sylow theory provides powerful tools for proving that certain groups  

are simple.  

Example: Simplicity of A_5  

To show that A_5 (the alternating group on 5 elements) is simple:  

•

•

|A_5| = 60 = 2^2 × 3 × 5  

By Sylow's theorems, n_5 divides 12 and n_5 ≡ 1 (mod 5), so  

n_5 = 6  

•

•

If N is a normal subgroup, it must contain either all or none of  

the Sylow 5-subgroups  

Similar analysis for Sylow 2-subgroups and Sylow 3-  

subgroups shows that any non-trivial normal subgroup must be  

A_5 itself  

3. Proving Non-Simplicity  

Sylow theory can also be used to prove that certain groups cannot be  

simple.  

Example: Non-Simplicity of Groups of Order 56  

If |G| = 56 = 2^3 × 7, then:  

•

•

•

n_7 divides 8 and n_7 ≡ 1 (mod 7)  

The only possibility is n_7 = 8  

Each Sylow 7-subgroup has 6 elements of order 7  
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•

•

•

Total number of elements of order 7 is 8 × 6 = 48  Notes  

This leaves 56 - 48 - 1 = 7 elements (excluding the identity)  

These 7 elements must form a normal subgroup of G, proving  

G is not simple  

4. Proving Group Properties  

Example: Groups of Order p^n q (p, q prime, n ≥ 1) Have Normal  

Subgroups  

For a group G with |G| = p^n × q where p, q are distinct primes:  

• The number of Sylow q-subgroups n_q divides p^n and n_q ≡  

1 (mod q)  

•

•

•

If n_q = 1, then the unique Sylow q-subgroup is normal  

If n_q> 1, then n_q = p^m for some 1 ≤ m ≤ n  

The number of elements in all Sylow q-subgroups combined is  

p^m(q-1) + 1  

•

•

This leaves p^n × q - [p^m(q-1) + 1] elements  

These remaining elements form a normal subgroup  

5. Burnside's p^aq^b Theorem  

One of the most important applications of Sylow theory is Burnside's  

theorem, which states that any group of order p^aq^b (where p and q  

are distinct primes) is solvable.  

The proof uses Sylow theory to establish that such groups must have  

Advanced Applications  

The Frobenius Groups  

normal subgroups, and builds from there to establish solvability.  



A Frobenius group is a transitive permutation group on a finite set  64

such that no non-identity element fixes more than one point and some  

non-identity element fixes exactly one point.  

Notes  

Sylow theory helps in analyzing the structure of Frobenius groups  

through their Sylow subgroups.  

Recognition Theorems  

Sylow theory is crucial in group recognition theorems, which identify  

groups based on specific properties. For example, any group of order  

168 satisfying certain conditions must be isomorphic to PSL(2,7).  

Transfer Theory  

The transfer homomorphism extends Sylow theory, providing a way  

to map a group G to an abelian quotient of a specific subgroup. This  

becomes powerful when combined with Sylow theory for analyzing  

the structure of finite groups.  

2.2 p-Groups and the Class Equation  

Definition and Basic Properties of p-Groups  

A p-group is a group in which every element has order p^k for some  

non-negative integer k, where p is a prime number. Equivalently, a  

finite group G is a p-group if and only if |G| = p^n for some positive  888

integer n.  

Key properties of p-groups include:  

2. If H is a proper subgroup of a finite p-group G, then H is  

3. The order of any maximal subgroup of a finite p-group G is  

|G|/p.  

4. Any finite p-group is nilpotent.  

The Class Equation  
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1. Every non-trivial p-group has a non-trivial center.  

properly contained in its normalizer.  



The class equation (also called the conjugacy class equation) is a  

fundamental tool in group theory, particularly useful for analyzing p-  

groups.  

Notes  

For a finite group G, the class equation is expressed as:  

|G| = |Z(G)| + ∑|G:C_G(x_i)|  

where:  

•

•

Z(G) is the center of G  

The sum runs over representatives x_i of non-central  

conjugacy classes  

• C_G(x_i) is the centralizer of x_i in G  

In other words, the order of the group equals the size of its center plus  3939

the sum of the sizes of all non-central conjugacy classes.  

Applications of the Class Equation to p-Groups  

1. Non-Trivial Center in p-Groups  

One of the most important applications of the class equation is  

Proof: Let G be a p-group with |G| = p^n> 1. From the class equation:  

|G| = |Z(G)| + ∑|G:C_G(x_i)|  

Each term |G:C_G(x_i)| is the size of the conjugacy class of x_i,  

which equals [G:C_G(x_i)]. Since x_i is not in the center, C_G(x_i) is  888

a proper subgroup of G, so [G:C_G(x_i)] > 1.  

For a p-group, any index greater than 1 must be divisible by p. Thus,  

each |G:C_G(x_i)| is divisible by p.  

So we have: |G| = |Z(G)| + (a sum of multiples of p)  

Since |G| = p^n is itself divisible by p, the only way this equation can  

hold is if |Z(G)| is also divisible by p. This means |Z(G)| ≥ p, so the  

center is non-trivial.  

proving that every non-trivial p-group has a non-trivial center.  



2. Structure of Groups of Order p^2  

The class equation helps us classify groups of order p^2.  

For any group G of order p^2:  

Notes  

•

•

Either |Z(G)| = p^2, which means G is abelian  

Or |Z(G)| = p, which means G has a non-trivial center  

From the class equation, if |Z(G)| = p, then G has p conjugacy classes,  

each containing p elements except for the conjugacy class of the  

identity. This structure information helps prove that there are only two  

isomorphism classes of groups of order p^2: Z_{p^2} and Z_p × Z_p.  

3. Nilpotency of p-Groups  

The class equation is instrumental in proving that all finite p-groups  

are nilpotent.  

Since every non-trivial p-group G has a non-trivial center Z(G), we  

can form the quotient group G/Z(G). This is again a p-group (of  

smaller order), so it also has a non-trivial center. Continuing this  

process, we get a sequence:  

G ⊃ Z(G) ⊃ Z_2(G) ⊃ ... ⊃Z_k(G) = G  

where Z_i(G) is the i-thcenter. This establishes a central series for G,  

proving it is nilpotent.  

4. Counting Conjugacy Classes  

The class equation allows us to count conjugacy classes in p-groups  

and relate this count to structural properties.  

If G is a p-group of order p^n, and G has k conjugacy classes, then:  

k ≡ |G| (mod p)  

This congruence relation comes from analyzing the class equation  

modulo p.  

5. Analyzing Normal Subgroups  
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For a p-group G, the class equation helps identify normal subgroups.  

If N is a normal subgroup of G, then N∩Z(G) ≠ {e} (unless N is  

trivial).  

Notes  

This means every normal subgroup of a p-group intersects the center  

non-trivially, a powerful structural insight derived from the class  

equation.  

Connection Between Sylow Theory and p-Groups  

Sylow theory and p-groups are deeply connected, as Sylow p-  

subgroups are themselves p-groups. The structural properties of p-  

groups (established using the class equation) inform our  

understanding of Sylow subgroups in general groups.  

Key connections include:  

1. Normalizers Grow in p-Groups: If H is a proper subgroup of a  

p-group G, then H is properly contained in its normalizer  

N_G(H). This property, established using the class equation, is  

crucial in proving the third Sylow theorem.  

2. Center-Focused Analysis: The non-trivial center of p-groups  

(established via the class equation) allows for inductive  

arguments in analyzing Sylow subgroups.  

which extends Sylow theory by providing homomorphisms  

that reveal information about the structure of a group based on  

its Sylow subgroups.  

Solved Problems  

Problem 1: Classify all groups of order 20  

Solution:  

Let G be a group of order 20 = 2^2 × 5.  

Step 1: Find the number of Sylow 5-subgroups.  

3. Transfer Theory: The class equation informs transfer theory,  



• By Sylow's theorems, the number of Sylow 5-subgroups (n_5)  Notes  
divides 4 and n_5 ≡ 1 (mod 5).  

•

•

The only possibility is n_5 = 1.  

Let P be the unique Sylow 5-subgroup. Since it's unique, P is  

normal in G.  

• P is isomorphic to Z_5 (cyclic group of order 5).  

Step 2: Find the number of Sylow 2-subgroups.  

• By Sylow's theorems, the number of Sylow 2-subgroups (n_2)  

divides 5 and n_2 ≡ 1 (mod 2).  

• The only possibility is n_2 = 1 or n_2 = 5.  

Case 1: n_2 = 1  

•

•

•

Let Q be the unique Sylow 2-subgroup of order 4.  

Q is normal in G.  

G is the direct product of P and Q (since they have coprime  

orders and are both normal).  

• Q can be either Z_4 or Z_2 × Z_2. a) If Q ≅ Z_4, then G ≅  

Z_4 × Z_5 ≅ Z_20. b) If Q ≅ Z_2 × Z_2, then G ≅ (Z_2 ×  

Z_2) × Z_5 ≅ Z_2 × Z_2 × Z_5.  

Case 2: n_2 = 5  

•

•

•

•

Let Q be a Sylow 2-subgroup of order 4.  

Since n_2 = 5, Q is not normal in G.  

G must have the structure of a semidirect product Z_5 ⋊ Q.  

Since Aut(Z_5) ≅ Z_4, and Q acts non-trivially on Z_5, we  

must have Q ≅ Z_4.  

• This gives us the dihedral group of order 20: D_10.  
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Therefore, there are three isomorphism classes of groups of order 20:  4646

1. Z_20 (cyclic group of order 20)  

Notes  

2. Z_2 × Z_2 × Z_5  

3. D_10 (dihedral group of order 20)  

Problem 2: Prove that a group of order 255 = 3 × 5 × 17 must be  

cyclic  

Solution:  

Let G be a group of order 255 = 3 × 5 × 17.  

Step 1: Find the number of Sylow 3-subgroups (n_3).  

• By Sylow's theorem, n_3 divides 85 (= 5 × 17) and n_3 ≡ 1  

(mod 3).  

•

•

The possible values for n_3 are 1, 5, 17, or 85.  

If n_3 = 5, then there are 5 subgroups of order 3, each with 2  

non-identity elements. This gives 10 elements of order 3.  

•

•

•

If n_3 = 17, this gives 34 elements of order 3.  

If n_3 = 85, this gives 170 elements of order 3.  

But n_3 can't be 5, 17, or 85 because the total order of G is  

255, and we would need room for elements of orders 5 and 17  

as well.  

• Therefore, n_3 = 1.  

Step 2: Find the number of Sylow 5-subgroups (n_5).  

• By Sylow's theorem, n_5 divides 51 (= 3 × 17) and n_5 ≡ 1  

(mod 5).  

• The possible values for n_5 are 1, 6, 11, 16, 21, 26, 31, 36, 41,  55

46, or 51.  



•

•

But n_5 ≡ 1 (mod 5) means n_5 can only be 1, 6, 11, 16, 21,  Notes  
26, 31, 36, 41, 46, or 51.  

The intersection of these constraints gives n_5 = 1.  

Step 3: Find the number of Sylow 17-subgroups (n_17).  

• By Sylow's theorem, n_17 divides 15 (= 3 × 5) and n_17 ≡ 1  

(mod 17).  

• The only value that satisfies both conditions is n_17 = 1.  

Step 4: Determine the structure of G.  

• Let P_3, P_5, and P_17 be the unique Sylow subgroups of  

•

•

Since each is unique, all three are normal in G.  

P_3 ≅ Z_3, P_5 ≅ Z_5, and P_17 ≅ Z_17 (since groups of  

prime order are cyclic).  

• G = P_3 × P_5 × P_17 ≅ Z_3 × Z_5 × Z_17 ≅ Z_255 (by the  

Chinese Remainder Theorem).  

Therefore, G must be isomorphic to Z_255, the cyclic group of order  

255.  

Problem 3: Use the class equation to prove that every p-group of  

order p^2 is abelian  

Solution:  

Let G be a p-group of order p^2.  

Step 1: Apply the class equation. The class equation states: |G| =  

|Z(G)| + ∑|G:C_G(x_i)|  

where Z(G) is the center of G, and the sum runs over representatives  

x_i of non-central conjugacy classes.  
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orders 3, 5, and 17 respectively.  



Step 2: Analyze possible values for |Z(G)|. Since G is a p-group, we  

know |Z(G)| > 1 (by a property of p-groups established using the class  

equation). |Z(G)| divides |G| = p^2, so |Z(G)| = p or |Z(G)| = p^2.  

Notes  

If |Z(G)| = p^2, then Z(G) = G, which means G is abelian, and we're  

done.  

Step 3: Consider the case |Z(G)| = p. In this case, the class equation  

becomes: p^2 = p + ∑|G:C_G(x_i)|  

Each index |G:C_G(x_i)| must be a divisor of |G| = p^2, so it equals  

either p or p^2.  

If |G:C_G(x_i)| = p^2, then C_G(x_i) = {e}, which means only the  

identity commutes with x_i. This is impossible in a group, as x_i  

always commutes with itself.  

Therefore, all |G:C_G(x_i)| = p.  

The class equation becomes: p^2 = p + kp  

where k is the number of non-central conjugacy classes.  

Solving for k: p^2 = p + kp p^2 - p = kp p(p-1) = kp k = p-1  

Step 4: Calculate the size of Z(G) from another perspective. If |Z(G)|  

= p, then G/Z(G) has order p^2/p = p.  

Any group of prime order is cyclic, so G/Z(G) ≅Z_p.  

Let's denote the elements of G/Z(G) as {Z(G), aZ(G), a^2Z(G), ...,  

a^(p-1)Z(G)} where a is some element of G not in Z(G).  

For any g ∈ G, there exists some j such that gZ(G) = a^jZ(G), which  

means g = a^jz for some z ∈ Z(G).  

Step 5: Show that G is abelian. For any two elements g, h ∈ G, we can  

write: g = a^jz_1 and h = a^kz_2 for some z_1, z_2 ∈ Z(G).  

Then: gh = (a^jz_1)(a^kz_2) = a^ja^kz_1z_2 = a^j+kz_1z_2  

and: hg = (a^kz_2)(a^jz_1) = a^ka^jz_2z_1 = a^k+jz_2z_1 =  

a^j+kz_1z_2 = gh  



Therefore, G is abelian.  Notes  

Problem 4: Determine all possible orders of a non-abelian group  

with exactly 5 conjugacy classes  

Solution:  

For any finite group G, the number of conjugacy classes equals the  

number of irreducible complex representations.  

From representation theory, if G has k conjugacy classes, then:  

∑(d_i^2) = |G|  

where d_i are the dimensions of the irreducible representations.  

Step 2: Analyze the constraints. If G has exactly 5 conjugacy classes,  

we need to find the possible dimensions d_i.  

The trivial representation always exists with d_1 = 1.  

If G is non-abelian, it must have at least one irreducible representation  

with dimension greater than 1.  

For a non-abelian group, the center Z(G) is in one-to-one  

correspondence with the 1-dimensional representations.  

Step 3: List possible dimension patterns. With 5 conjugacy classes, we  

need 5 irreducible representations. Let's list possible patterns of  

dimensions:  

1. (1, 1, 1, 1, n) where n > 1  

2. (1, 1, 1, m, n) where m, n > 1  

3. (1, 1, m, n, p) where m, n, p > 1  

Step 4: Examine pattern 1: (1, 1, 1, 1, n). If the dimensions are (1, 1,  

1, 1, n), then: 1^2 + 1^2 + 1^2 + 1^2 + n^2 = |G| 4 + n^2 = |G|  

Since G is non-abelian, its center has order 4 (corresponding to the  

four 1-dimensional representations).  
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Step 1: Establish a relationship between conjugacy classes and center.  



For any finite group, the order of the center divides the order of the  

group, so |G| = 4k for some integer k.  
Notes  

Substituting: 4 + n^2 = 4k n^2 = 4k - 4 n^2 = 4(k - 1)  

For n to be an integer, k - 1 must be a perfect square times a power of  

2.  

Let k - 1 = m^2 × 2^r where 2^r is the highest power of 2 dividing k -  

1.  

•

•

•

If r ≥ 2, then n^2 = 4m^2 × 2^r, which means n = 2m × 2^(r/2)  

is even.  

If r = 1, then n^2 = 4m^2 × 2, which means n = 2m × √2,  

If r = 0, then n^2 = 4m^2, which means n = 2m.  

So for pattern 1, |G| = 4k where k - 1 is a perfect square times a power  

of 4, or simply a perfect square.  

The smallest examples are:  

•

•

•

k = 2 gives |G| = 8 (the quaternion group or dihedral group  

D_4)  

k = 5 gives |G| = 20 (no non-abelian group of order 20 has 5  

conjugacy classes)  

k = 10 gives |G| = 40 (certain non-abelian groups of order 40)  

Step 5: Examine patterns 2 and 3. Similar analysis of patterns 2 and 3  

leads to other possible orders.  

For pattern 2: (1, 1, 1, m, n): 1^2 + 1^2 + 1^2 + m^2 + n^2 = |G| 3 +  

m^2 + n^2 = |G|  

For pattern 3: (1, 1, m, n, p): 1^2 + 1^2 + m^2 + n^2 + p^2 = |G| 2 +  

m^2 + n^2 + p^2 = |G|  

which is not an integer.  



Analysis of these patterns yields additional possible orders, including  

8, 16, 21, 24, 27, 32, and 40.  
Notes  

Therefore, the possible orders of a non-abelian group with exactly 5  

conjugacy classes include 8, 16, 21, 24, 27, 32, 40, and others.  

Problem 5: Prove that a finite p-group with exactly p^2 elements  

of order p must have order p^3  

Solution:  

Step 1: Set up what we know. Let G be a finite p-group with exactly  

p^2 elements of order p. Let's denote the order of G asp^n.  

Step 2: Use the structure of p-groups. In a p-group, every element has  

form a set that's not necessarily a subgroup.  

Step 3: Apply the class equation. The class equation gives us: |G| =  

|Z(G)| + ∑|G:C_G(x_i)|  

where Z(G) is the center and the sum runs over representatives of  

non-central conjugacy classes.  

Step 4: Consider the elements of order p in Z(G). In a p-group, Z(G)  

is non-trivial. Let |Z(G)| = p^m where m ≥ 1.  

The center Z(G) is an abelian p-group, so it can be written as a direct  

product of cyclic p-groups.  

If Z(G) contains k cyclic factors, then the number of elements of order  

p in Z(G) is (p^k - 1).  

Step 5: Find the possible structure for Z(G). Given that we have  

exactly p^2 elements of order p in G, and some of these are in Z(G),  

we need to determine the possible structures for Z(G).  

Case 1: If Z(G) is cyclic of order p^m, it contains exactly p-1  

elements of order p.  

Case 2: If Z(G) = Z_p × Z_p, it contains p^2-1 elements of order p.  
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order a power of p. The elements of order p, together with the identity,  



Case 3: If Z(G) has more cyclic factors or higher powers, it would  

contain more elements of order p.  
Notes  

Step 6: Analyze the non-central elements of order p. If there are  

exactly p^2 elements of order p in G, and Z(G) contains some of  

them, then the remaining elements of order p must occur in non-  

central conjugacy classes.  

For a non-central element x of order p, its conjugacy class has size  

|G:C_G(x)|. This size must be a power of p since G is a p-group.  

Step 7: Determine the structure of G. The only way to have exactly  

p^2 elements of order p is if:  

1. Z(G) = Z_p (containing p-1 elements of order p), and  

2. There is exactly one non-central conjugacy class of elements  

of order p, with size p(p-1).  

The total number of elements of order p is then: (p-1) + p(p-1) = p(p-  

1) + (p-1) = (p+1)(p-1) = p^2-1  

But we assumed G has p^2 elements of order p, which contradicts our  

calculation.  

The problem likely misstated the constraint. If G has exactly p^2-1  

elements of order p, then our analysis shows |G| = p^3.  

For a group of order p^3 with Z(G) = Z_p and one non-central  

conjugacy class of elements of order p of size p(p-1), the total number  

of elements of order p is (p-1) + p(p-1) = p^2-1.  

Therefore, a finite p-group with exactly p^2-1 elements of order p  

must have order p^3.  

Unsolved Problems  

Problem 1  

Prove that if G is a group of order 56 = 2^3 × 7, then G is not simple.  

Problem 2  



Let G be a group of order 351 = 3^3 × 13. Prove that G has a normal  

subgroup of order 27 or a normal subgroup of order 13.  
Notes  

Problem 3  

Use the class equation to prove that if G is a p-group of order p^n, and  

|Z(G)| = p, then G has a normal subgroup of order p^2.  

Problem 4  

Prove that any group of order 105 = 3 × 5 × 7 has a normal Sylow  

subgroup.  

Problem 5  

Let G be a p-group of order p^4. Prove that if G has more than p+1  

elements of order p, then G has a subgroup isomorphic to the  

elementary abelian group of order p^2 (i.e., Z_p × Z_p).  

2.3 Further Applications of Sylow's Theorems  

Sylow's theorems are powerful tools in group theory that allow us to  

analyze the structure of finite groups by examining their subgroups of  

prime power order. Having established the fundamental theorems, we  

can now explore various applications that demonstrate their utility in  

solving complex group-theoretical problems.  

The Structure of Groups of Specific Orders  

One of the most common applications of Sylow's theorems is  

Let's explore some important examples.  

Groups of Order pq  

Let's consider groups of order pq, where p and q are distinct primes  

with p > q.  

By Sylow's first theorem, a group G of order pq has a Sylow p-  

subgroup P of order p and a Sylow q-subgroup Q of order q. Since p >  

q, Sylow's third theorem tells us that the number of Sylow p-  

subgroups, denoted np, must satisfy:  
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determining the possible structures of groups with a specific order.  



•

•

np divides q (the other factor in the group order)  Notes  

np ≡ 1 (mod p)  

The only value of np that can satisfy both conditions is np = 1, since  

any other divisor of q would be greater than 1 but less than q, and  

cannot be congruent to 1 modulo p when p > q.  

normal in G. Similarly, let's determine nq:  

•

•

nq divides p  

nq ≡ 1 (mod q)  

Here, we have two possibilities:  

1. nq = 1, which means Q is normal in G  

2. nq = p, which means there are p distinct Sylow q-subgroups  

If nq = 1, then both P and Q are normal in G. Since P ∩ Q = {e} (as  

their orders are coprime) and |P|·|Q| = |G|, we have G = P × Q, which  

is isomorphic to the cyclic group Zpq.  

If nq = p, then Q is not normal in G. In this case, G is isomorphic to a  4646

semidirect product P ⋊ Q, specifically Zp⋊Zq, which is non-abelian.  

For nq = p to be possible, we need p ≡ 1 (mod q), meaning p = kq + 1  

for some integer k.  

Therefore:  

• If p ≡ 1 (mod q), there are exactly two groups of order pq up to  

isomorphism: Zpq and Zp⋊Zq  

• If p ≢ 1 (mod q), there is exactly one group of order pq up to  

isomorphism: Zpq  

Groups of Order p²q  

Now let's analyze groups of order p²q, where p and q are distinct  

primes.  

This means G has a unique Sylow p-subgroup P, which implies P is  



By Sylow's theorems:  Notes  

•

•

•

There exists a Sylow p-subgroup P of order p²  

There exists a Sylow q-subgroup Q of order q  

The number of Sylow p-subgroups np divides q and np ≡ 1  

(mod p)  

• The number of Sylow q-subgroups nq divides p² and nq ≡ 1  

(mod q)  

For np, the possibilities are np = 1 or np = q, but np ≡ 1 (mod p)  

means np = 1 is the only possibility when q < p. If q > p, we need to  

check if q ≡ 1 (mod p).  

For nq, the possibilities are nq = 1, nq = p, or nq = p². We need nq ≡ 1  

(mod q), so:  

•

•

If p ≢ 1 (mod q) and p² ≢ 1 (mod q), then nq = 1  

Otherwise, we need to determine if nq = p or nq = p² is  

possible  

When np = 1 and nq = 1, both P and Q are normal, leading to a direct  

product structure.  

The classification becomes more complex depending on the structure  

elementary abelian (Zp × Zp). Each case leads to different  

possibilities for the group structure.  

Simplicity and Sylow Subgroups  

Another important application of Sylow's theorems is determining  

whether a group is simple or not. Recall that a group is simple if it has  

no proper normal subgroups except the trivial subgroup.  

A Group of Order 60  

Let's determine if a group of order 60 = 2² × 3 × 5 can be simple.  

60  

of the Sylow p-subgroup P, which can be either cyclic (Zp²) or  



The numbers of Sylow subgroups are:  Notes  

•

•

•

n2 divides 15 and n2 ≡ 1 (mod 2), so n2 ∈ {1, 3, 5, 15}  

n3 divides 20 and n3 ≡ 1 (mod 3), so n3 ∈ {1, 4, 10}  

n5 divides 12 and n5 ≡ 1 (mod 5), so n5 ∈ {1, 6}  

If any of these are 1, then the corresponding Sylow subgroup is  

normal, and the group is not simple.  

For a group of order 60 to be simple, we need n2 > 1, n3 > 1, and n5 >  

1.  

Let's consider A5, the alternating group on 5 symbols. In A5:  

•

•

•

n2 = 5 (the Sylow 2-subgroups have order 4)  

n3 = 10 (the Sylow 3-subgroups have order 3)  

n5 = 6 (the Sylow 5-subgroups have order 5)  

Since none of these Sylow subgroups are normal, A5 is a candidate  

for being simple. In fact, A5 is the only simple group of order 60, and  4141

Burnside's pᵃqᵇ Theorem  

A powerful result derived from Sylow's theorems is Burnside's pᵃqᵇ  

theorem, which states that any group whose order is divisible by at  

most two distinct primes is solvable, hence not simple (unless it's of  

prime order).This means groups of order pᵃqᵇ, where p and q are  77777

primes and a, b are non-negative integers, are never simple if both a  

and b are positive.  

Automorphism Groups and Sylow Subgroups  

The automorphism group Aut(G) of a group G consists of all  

isomorphisms from G to itself. Sylow's theorems provide insights into  

the structure of Aut(G).  

this can be proven using more advanced techniques in group theory.  



For a p-group P (a group whose order is a power of a prime p), the  

automorphism group Aut(P) has interesting properties:  
Notes  

• The order of Aut(P) is divisible by p if P is not elementary  

abelian  

• There is a subgroup of Aut(P) consisting of automorphisms  

that fix the elements of the center of P modulo the commutator  

subgroup  

For Sylow p-subgroups in general, conjugation by elements of the  

normalizer of a Sylow p-subgroup gives rise to automorphisms of the  

Sylow p-subgroup, connecting the normalizer structure with the  

automorphism group.  

Frobenius Groups and Sylow's Theorems  

A Frobenius group is a group G with a proper subgroup H (called the  

Frobenius complement) such that H ∩ H^g = {e} for all g ∈ G - H,  

where H^g = g^(-1)Hg.  

Sylow's theorems help in analyzing the structure of Frobenius groups.  

For instance, if G is a Frobenius group with complement H, and P is a  

Sylow p-subgroup of H, then N_G(P) ⊆ H. This result helps in  

understanding the distribution of Sylow subgroups in Frobenius  

groups.  

Solved Problems on Sylow's Theorems  

Problem 1: Determine all groups of order 15 up to isomorphism.  

Solution: We have 15 = 3 × 5, where 3 and 5 are distinct primes.  

Step 1: Identify the Sylow subgroups.  

• By Sylow's first theorem, there exists a Sylow 3-subgroup P of  

order 3 and a Sylow 5-subgroup Q of order 5.  

Step 2: Determine the number of Sylow subgroups.  
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•

•

The number of Sylow 3-subgroups n3 must divide 5 and  Notes  
satisfy n3 ≡ 1 (mod 3)  

The possible values for n3 are 1 and 5, but only 1 satisfies n3  

≡ 1 (mod 3)  

•

•

So n3 = 1, which means the Sylow 3-subgroup is normal in G  

The number of Sylow 5-subgroups n5 must divide 3 and  

satisfy n5 ≡ 1 (mod 5)  

•

•

The possible values for n5 are 1 and 3, but since 3 ≢ 1 (mod  

5), we have n5 = 1  

So the Sylow 5-subgroup is also normal in G  

Step 3: Determine the group structure.  

• Both the Sylow 3-subgroup P and the Sylow 5-subgroup Q are  

normal in G  

•

•

•

P ∩ Q = {e} because gcd(3, 5) = 1  

|P|·|Q| = 3·5 = 15 = |G|  

Therefore, G = P × Q ≅ Z3 × Z5 ≅ Z15  

Thus, there is exactly one group of order 15 up to isomorphism,  

namely the cyclic group Z15.  

Problem 2: Prove that any group of order 20 has a normal  

subgroup of order 5 or a normal subgroup of order 4.  

Solution: We have 20 = 2² × 5, so a group G of order 20 has Sylow 2-  23232323

subgroups of order 2² = 4 and Sylow 5-subgroups of order 5.  4141

Step 1: Determine the possible numbers of Sylow subgroups.  

• The number of Sylow 2-subgroups n2 must divide 5 and  

satisfy n2 ≡ 1 (mod 2)  

• The possible values are n2 = 1 or n2 = 5  



•

•

The number of Sylow 5-subgroups n5 must divide 4 and  Notes  
satisfy n5 ≡ 1 (mod 5)  

The only possible value is n5 = 1 since no number dividing 4  

is congruent to 1 modulo 5 except 1  

Step 2: Analyze the cases.  

•

•

If n2 = 1, then the Sylow 2-subgroup is normal and has order 4  

If n5 = 1 (which must be true), then the Sylow 5-subgroup is  

normal and has order 5  

In either case, G has a normal subgroup of order 4 or a normal  

subgroup of order 5 (or both).  

Therefore, any group of order 20 has a normal subgroup of order 5,  

and it may also have a normal subgroup of order 4.  

Problem 3: Prove that no group of order 30 is simple.  

Solution: We have 30 = 2 × 3 × 5, so a group G of order 30 has Sylow  23232323

2-subgroups of order 2, Sylow 3-subgroups of order 3, and Sylow 5-  

subgroups of order 5.  

Step 1: Determine the possible numbers of Sylow subgroups.  

• The number of Sylow 2-subgroups n2 must divide 15 and  

satisfy n2 ≡ 1 (mod 2)  

•

•

The possible values are n2 = 1, 3, 5, or 15  

The number of Sylow 3-subgroups n3 must divide 10 and  

satisfy n3 ≡ 1 (mod 3)  

•

•

The possible values are n3 = 1 or 10  

The number of Sylow 5-subgroups n5 must divide 6 and  

satisfy n5 ≡ 1 (mod 5)  

• The possible values are n5 = 1 or 6  
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Step 2: Count elements in the Sylow subgroups.  Notes  

•

•

•

Each Sylow 2-subgroup has 1 element of order 1 and 1  

element of order 2  

Each Sylow 3-subgroup has 1 element of order 1 and 2  

elements of order 3  

Each Sylow 5-subgroup has 1 element of order 1 and 4  77777

elements of order 5  

Step 3: Use counting arguments to find a contradiction. Suppose G is  

simple. Then none of the Sylow subgroups are normal, so n2 > 1, n3 >  

1, and n5 > 1.  

If n5 = 6, there are 6 × 4 = 24 elements of order 5. If n3 = 10, there  

are 10 × 2 = 20 elements of order 3. The identity element accounts for  

1 more element.  

This gives at least 24 + 20 + 1 = 45 elements, which exceeds the order  

of G (30).  

Therefore, at least one of the Sylow subgroups must be normal, which  

means G is not simple.  

Problem 4: Classify all groups of order 12 up to isomorphism.  

Solution: We have 12 = 2² × 3, so a group G of order 12 has Sylow 2-  23232323

subgroups of order 4 and Sylow 3-subgroups of order 3.  

Step 1: Determine the possible numbers of Sylow subgroups.  

• The number of Sylow 2-subgroups n2 must divide 3 and  

satisfy n2 ≡ 1 (mod 2)  

•

•

The possible values are n2 = 1 or n2 = 3  77777

The number of Sylow 3-subgroups n3 must divide 4 and  

satisfy n3 ≡ 1 (mod 3)  

• The possible values are n3 = 1 or n3 = 4  



Step 2: Analyze the possible structures based on these values.  Notes  

Case 1: n2 = 1 and n3 = 1 Both Sylow subgroups are normal. Let P be  

the Sylow 2-subgroup and Q be the Sylow 3-subgroup.  

•

•

•

•

P ∩ Q = {e} since gcd(4, 3) = 1  

|P|·|Q| = 4·3 = 12 = |G|  

G = P × Q ≅ P × Z3  

P can be either Z4 or Z2 × Z2 So we get Z4 × Z3 ≅ Z12 or (Z2  

× Z2) × Z3 ≅ Z2 × Z2 × Z3 ≅ Z2 × Z6  

Case 2: n2 = 1 and n3 = 4 The Sylow 2-subgroup P is normal, and  

there are 4 Sylow 3-subgroups.  

•

•

If P ≅ Z4, we get A4 (the alternating group on 4 symbols)  

If P ≅ Z2 × Z2, we get D12 (the dihedral group of order 12)  

Case 3: n2 = 3 and n3 = 1 The Sylow 3-subgroup Q is normal, and  

there are 3 Sylow 2-subgroups. This gives us a semi-direct product  

structure.  

•

•

If the action of Q on P is trivial, we get P × Q  

If the action is non-trivial, we get a different group, which is a  

semi-direct product Z3 ⋊ Z4 or Z3 ⋊ (Z2 × Z2)  

Case 4: n2 = 3 and n3 = 4 This is not possible by a counting  

argument: 3 Sylow 2-subgroups contain 9 distinct elements, and 4  

Sylow 3-subgroups contain 8 distinct elements, plus the identity gives  

18 elements, which exceeds 12.  

Therefore, the groups of order 12 up to isomorphism are:  

1. Z12 (cyclic group)  

2. Z2 × Z6 (direct product)  

3. A4 (alternating group on 4 symbols)  
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4. D12 (dihedral group of order 12)  Notes  

5. Z3 ⋊ Z4 (semi-direct product)  

Problem 5: Show that a group of order 56 = 2³ × 7 has a normal  23232323

Sylow 7-subgroup.  

Solution: We have 56 = 2³ × 7, so a group G of order 56 has Sylow 2-  

subgroups of order 2³ = 8 and Sylow 7-subgroups of order 7.  

Step 1: Determine the number of Sylow 7-subgroups.  

• The number of Sylow 7-subgroups n7 must divide 8 and  

satisfy n7 ≡ 1 (mod 7)  

• The possible values are n7 = 1 or n7 = 8  

Step 2: Show that n7 = 8 is impossible. If n7 = 8, then there are 8  

distinct Sylow 7-subgroups. Each Sylow 7-subgroup has 6 elements  

Let's count the elements in these Sylow 7-subgroups:  

•

•

•

The identity element is in all Sylow 7-subgroups  

Each of the 8 Sylow 7-subgroups has 6 elements of order 7  

Different Sylow 7-subgroups intersect only at the identity (by  

a property of Sylow p-subgroups when p is the largest prime  

dividing |G|)  

So we have 1 + 8 × 6 = 1 + 48 = 49 distinct elements. But this leaves  

only 56 - 49 = 7 elements for the Sylow 2-subgroups, which is  

impossible since each Sylow 2-subgroup has 8 elements.  

Therefore, n7 = 1, which means there is a unique Sylow 7-subgroup,  

and it must be normal in G.  

Unsolved Problems on Sylow's Theorems  

1. Determine all groups of order 42 = 2 × 3 × 7 up to  

isomorphism.  

of order 7, plus the identity.  



2. Prove that any group of order 36 = 2² × 3² has a normal  

subgroup.  
Notes  

3. Show that a group of order 255 = 3 × 5 × 17 is not simple.  

4. Classify all groups of order 21 = 3 × 7 up to isomorphism.  

5. Prove that any group of order 100 = 2² × 5² has a normal  

Sylow subgroup.  
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UNIT V  

2.4 Introduction to Ring Theory  121212121212

Notes  

Definition and Basic Properties of Rings  

A ring is an algebraic structure that generalizes the familiar properties  

of integers with respect to addition and multiplication. Formally, a  

ring is a set R together with two binary operations, usually denoted as  

addition (+) and multiplication (·), satisfying the following axioms:  

1. (R, +) is an abelian group:  77777

o

o

Closure: For all a, b ∈ R, a + b ∈ R  

Associativity: For all a, b, c ∈ R, (a + b) + c = a + (b +  

c)  

o

o

o

Identity: There exists an element 0 ∈ R such that a + 0  

= 0 + a = a for all a ∈ R  

Inverse: For each a ∈ R, there exists -a ∈ R such that a  

+ (-a) = (-a) + a = 0  

Commutativity: For all a, b ∈ R, a + b = b + a  

2. Multiplication is associative:  

o For all a, b, c ∈ R, (a · b) · c = a · (b · c)  

3. Multiplication distributes over addition:  

o Left distributivity: For all a, b, c ∈ R, a · (b + c) = (a ·  

b) + (a · c)  

o Right distributivity: For all a, b, c ∈ R, (a + b) · c = (a ·  121212121212

c) + (b · c)  

Note that multiplication in a ring is not required to be commutative. A  

ring in which multiplication is commutative (a · b = b · a for all a, b ∈  77777

R) is called a commutative ring.  



Examples of Rings  Notes  

1. The integers Z with ordinary addition and multiplication form  

a commutative ring.  

2. The set of n × n matrices over a field F, denoted Mn(F), forms  

a non-commutative ring when n > 1.  

3. The set of polynomials with coefficients from a ring R,  

denoted R[x], forms a ring.  

4. The set of continuous functions from R to R forms a  121212121212 6363

commutative ring under pointwise addition and multiplication.  

5. The set Zn of integers modulo n forms a commutative ring.  

Units, Zero Divisors, and Integral Domains  121212121212

In a ring R, we define:  

• A unit is an element a ∈ R for which there exists an element b  

∈ R such that a · b = b · a = 1, where 1 is the multiplicative  

identity if it exists. The element b is called the multiplicative  

inverse of a and is denoted a^(-1).  

•

•

A zero divisor is a non-zero element a ∈ R for which there  

exists a non-zero element b ∈ R such that a · b = 0 or b · a = 0.  121212121212

An integral domain is a commutative ring with a multiplicative  

identity where there are no zero divisors.  

Example: In Z6, the element 2 is a zero divisor because 2 · 3 = 0. The  

units in Z6 are 1 and 5, as 1 · 1 = 1 and 5 · 5 = 25 ≡ 1 (mod 6).  

Subrings and Ideals  

A subring of a ring R is a subset S of R that forms a ring under the  6363 121212121212

same operations as R. For S to be a subring, it must:  

1. Be non-empty  

2. Be closed under addition  
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3. Be closed under negation  Notes  

4. Be closed under multiplication  

An ideal of a ring R is a subring I with the additional property that for  111111 4343

all r ∈ R and all a ∈ I, both r · a and a · r are in I. In other words, I  

"absorbs" multiplication by any element of R.  

For a commutative ring R, a subset I is an ideal if and only if:  

1. I is non-empty  

2. I is closed under addition  111111

3. For all a ∈ I and r ∈ R, r · a ∈ I  

Types of Ideals  

1. Trivial Ideals: The set {0} (containing only the additive  

identity) and the entire ring R are always ideals of R, called  

the trivial ideals.  

2. Principal Ideal: An ideal generated by a single element a ∈ R,  

denoted (a) or Ra, is called a principal ideal. In a commutative  

ring, (a) = {r · a | r ∈ R}.  

3. Prime Ideal: In a commutative ring, an ideal P is prime if  

4. Maximal Ideal: An ideal M is maximal if M ≠ R and there is  

no ideal I such that M ⊂ I ⊂ R.  

Ring Homomorphisms and Isomorphisms  

A ring homomorphism is a function φ: R → S between rings R and S  

that preserves the ring operations:  

1. φ(a + b) = φ(a) + φ(b) for all a, b ∈ R  

2. φ(a · b) = φ(a) · φ(b) for all a, b ∈ R  

whenever a · b ∈ P for a, b ∈ R, then either a ∈ P or b ∈ P.  



If φ is bijective, it is a ring isomorphism, and R and S are said to be  Notes  
isomorphic, denoted R ≅ S.  

The kernel of a ring homomorphism φ: R → S is the set of elements  

in R that map to the additive identity in S: Ker(φ) = {r ∈ R | φ(r) =  

0S}  

The kernel of a ring homomorphism is always an ideal of R.  

Quotient Rings  

Given a ring R and an ideal I of R, we can form the quotient ring R/I,  

whose elements are the cosets of I: R/I = {r + I | r ∈ R}  

The operations on R/I are defined as: (r + I) + (s + I) = (r + s) + I (r +  

I) · (s + I) = (r · s) + I  

The quotient ring R/I inherits many properties from R. For example, if  

R is commutative, then R/I is commutative.  

The First Isomorphism Theorem for Rings  404040

If φ: R → S is a ring homomorphism with kernel K, then: R/K  111111

≅Im(φ)  

where Im(φ) is the image of φ.  

Polynomial Rings  

Given a ring R, the polynomial ring R[x] consists of polynomials with  

coefficients from R. A typical element of R[x] has the form: f(x) = a0  

+ a1x + a2x² + ... + anx^n  

where a0, a1, ..., anare elements of R.  

Addition in R[x] is performed term by term, and multiplication  

follows the standard rule of multiplying polynomials.  

Properties of Polynomial Rings  

1. If R is a commutative ring, then R[x] is a commutative ring.  

2. If R is an integral domain, then R[x] is an integral domain.  
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3. The degree of a product of polynomials equals the sum of the  

degrees of the factors when R is an integral domain.  
Notes  

Irreducibility  

A polynomial f(x) ∈ R[x] is irreducible over R if it cannot be  

expressed as a product of two polynomials of lower degree in R[x].  

For example, x² + 1 is irreducible over R (the real numbers) but  

reducible over C (the complex numbers), where it can be factored as  

(x + i)(x - i).  

Fields  

A field is a commutative ring in which every non-zero element has a  

multiplicative inverse. In other words, a field is a commutative ring  

where the non-zero elements form a group under multiplication.  

Examples of fields include:  

1. The rational numbers Q  

2. The real numbers R  

3. The complex numbers C  

4. The finite field Zp when p is a prime number  

Field Extensions  

A field extension is a pair of fields E and F such that F is a subfield of  

The degree of the extension E/F, denoted [E:F], is the dimension of E  

Algebraic Elements and Extensions  

An element α ∈ E is algebraic over F if it is a root of a non-zero  

polynomial with coefficients in F. Otherwise, α is transcendental over  

E. We denote this as E/F.  

as a vector space over F.  
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An extension E/F is algebraic if every element of E is algebraic over  Notes  

Euclidean Domains, Principal Ideal Domains, and Unique  

Factorization Domains  

A Euclidean domain is an integral domain R with a function d: R -  

{0} → N (natural numbers) such that for any a, b ∈ R with b ≠ 0,  111111

there exist q, r ∈ R such that a = qb + r with either r = 0 or d(r) < d(b).  

A principal ideal domain (PID) is an integral domain in which every  

ideal is principal.  

A unique factorization domain (UFD) is an integral domain in which  

every non-zero non-unit element can be written as a product of  4343

irreducible elements, and this factorization is unique up to units and  

the order of factors.  

The relationship between these domains is: Euclidean Domain ⇒  404040

Principal Ideal Domain ⇒ Unique Factorization Domain  

Examples:  

• Z (integers) is a Euclidean domain, hence also a PID and a  

UFD.  

•

•

F[x] (polynomials over a field F) is a Euclidean domain.  

Z[x] (polynomials with integer coefficients) is a UFD but not a  

PID.  

Solved Problems on Ring Theory  

Problem 1: Determine whether Z[√-5] = {a + b√-5 | a, b ∈ Z} is a  

unique factorization domain.  

Solution: To determine whether Z[√-5] is a UFD, we need to check if  

factorizations into irreducibles are unique.  

Step 1: Consider the element 6 ∈Z[√-5]. We can factor 6 as 2 × 3.  
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Step 2: Consider the element 1 + √-5 and its conjugate 1 - √-5 in Z[√-  

5]. Their product is (1 + √-5)(1 - √-5) = 1 - (√-5)² = 1 - (-5) = 6.  
Notes  

Step 3: Check if 2, 3, 1 + √-5, and 1 - √-5 are irreducible in Z[√-5].  

Define the norm N(a + b√-5) = a² + 5b², which satisfies N(αβ) =  

N(α)N(β).  

•

•

•

•

N(2) = 4  

N(3) = 9  

N(1 + √-5) = 1 + 5 = 6  

N(1 - √-5) = 1 + 5 = 6  

If any of these elements were reducible, they could be expressed as a  

product of two elements with smaller norms. But none of the norms 4,  

9, or 6 can be expressed as a product of norms of elements in Z[√-5]  

other than 1 times themselves. Therefore, all four elements are  

irreducible.  

Step 4: Since 6 = 2 × 3 = (1 + √-5)(1 - √-5), we have two distinct  

factorizations of 6 into irreducibles.  

Therefore, Z[√-5] is not a unique factorization domain.  111111

Problem 2: Show that in a commutative ring, maximal ideals are  

prime.  

Solution: Let R be a commutative ring and M a maximal ideal of R.  

Step 1: Recall the definitions:  

• An ideal M is maximal if M ≠ R and there is no ideal I such  

that M ⊂ I ⊂ R.  

• An ideal P is prime if for all a, b ∈ R, ab ∈ P implies a ∈ P or b  

Step 2: To show M is prime, assume ab ∈ M for some a, b ∈ R.  

∈ P.  



Step 3: We need to show that either a ∈ M or b ∈ M. Let's use a proof  

by contradiction. Suppose a ∉ M and b ∉ M.  
Notes  

Step 4: Consider the ideal (M, a) generated by M and a: (M, a) = {m +  

ra | m ∈ M, r ∈ R}  

Since M is maximal and a ∉ M, we must have (M, a) = R. Thus, there  

exist m1 ∈ M and r1 ∈ R such that m1 + r1a = 1.  

Similarly, (M, b) = R, so there exist m2 ∈ M and r2 ∈ R such that m2  

+ r2b = 1.  

2.5 Rings of Polynomials  

Introduction to Polynomial Rings  

A polynomial ring is a fundamental algebraic structure that extends  

the concept of a ring to include polynomials with coefficients from  

another ring. Polynomials are expressions consisting of variables,  

coefficients, and operations of addition, subtraction, and  

multiplication.  

For a ring R, the polynomial ring R[x] consists of all polynomials  

with coefficients from R in the indeterminate x. These polynomials  

take the form:  

f(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ  

where a₀, a₁, a₂, ..., aₙ are elements of the ring R, and n is a non-  

negative integer. The element aₙ (if non-zero) is called the leading  111111

coefficient, and n is the degree of the polynomial, denoted by deg(f).  

Basic Properties of Polynomial Rings  

1. Ring Structure: R[x] forms a ring with the standard operations  

of polynomial addition and multiplication.  

2. Addition: For polynomials f(x) = a₀ + a₁x + ... + aₙxⁿ and g(x)  

= b₀ + b₁x + ... + bₘxᵐ:  

f(x) + g(x) = (a₀+b₀) + (a₁+b₁)x + ... + higher terms  
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Essentially, we add the coefficients of like terms.  

3. Multiplication: For the same polynomials:  

Notes  

f(x) × g(x) = c₀ + c₁x + c₂x² + ... + cₙ₊ₘxⁿ⁺ᵐ  

where cₖ = ∑ᵢ₌₀ᵏ aᵢbₖ₋ᵢ for each k = 0, 1, 2, ..., n+m.  

4. Degree Properties:  

o For non-zero polynomials f and g, deg(f·g) = deg(f) +  

deg(g)  

o For polynomials f and g, deg(f+g) ≤ max(deg(f),  

deg(g))  

5. Zero Polynomial: The polynomial 0 + 0x + 0x² + ... is called  

the zero polynomial and is denoted by 0. Its degree is  

conventionally defined as -∞.  

Integral Domains and Polynomial Rings  

If R is an integral domain (a ring with no zero divisors), then R[x] is  

also an integral domain. This means:  

• If f(x) and g(x) are non-zero polynomials in R[x], then their  

product f(x)·g(x) is also non-zero.  

• The leading coefficient of the product is the product of the  

leading coefficients of the factors.  

Units in Polynomial Rings  

A unit in a ring is an element that has a multiplicative inverse. In R[x]:  

• If R is an integral domain, the only units in R[x] are the  

constant polynomials that are units in R.  

• For example, in Z[x] (polynomials with integer coefficients),  

the only units are 1 and -1.  



• In Q[x] (polynomials with rational coefficients), any non-zero  

rational number forms a unit.  
Notes  

Irreducible Polynomials  

A non-constant polynomial f(x) in R[x] is irreducible over R if it  

cannot be factored as a product of two non-constant polynomials in  

R[x].  

Examples:  

•

•

•

x² + 1 is irreducible over R (the real numbers)  

x² + 1 is reducible over C (the complex numbers) as (x+i)(x-i)  

x² - 2 is irreducible over Q (the rational numbers)  

Polynomial Division  

If R is a field, then there's a division algorithm for polynomials in  

R[x]:  

For polynomials f(x) and g(x) ≠ 0 in R[x], there exist unique  

polynomials q(x) (quotient) and r(x) (remainder) such that:  

f(x) = g(x)·q(x) + r(x)  

where either r(x) = 0 or deg(r) <deg(g).  

This leads to the important result that R[x] is a Euclidean domain  

when R is a field, meaning we can find greatest common divisors  

using the Euclidean algorithm.  

Evaluating Polynomials  

For a polynomial f(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ in R[x] and an  

element r in R, the evaluation of f at r, denoted f(r), is:  

f(r) = a₀ + a₁r + a₂r² + ... + aₙrⁿ  

This is an element of R and is computed by substituting r for x in the  

polynomial.  

Polynomial Rings in Multiple Variables  
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The concept extends naturally to multiple variables. For example,  

R[x,y] represents the ring of polynomials in two variables x and y  

with coefficients from R.  

Notes  

A polynomial in R[x,y] takes the form:  

f(x,y) = ∑ᵢ₌₀ⁿ ∑ⱼ₌₀ᵐ aᵢⱼxⁱyʲ  

where aᵢⱼ are elements of R.  

Solved Examples  

Example 1: Addition and Multiplication in Z[x]  

Let f(x) = 2x³ + 3x² - 5x + 1 and g(x) = x² - 2x + 4 in Z[x].  

Calculate f(x) + g(x) and f(x) · g(x).  

Solution:  

For addition, we combine like terms: f(x) + g(x) = (2x³ + 3x² - 5x + 1)  

+ (x² - 2x + 4) = 2x³ + (3+1)x² + (-5-2)x + (1+4) = 2x³ + 4x² - 7x + 5  

For multiplication, we multiply each term of f(x) by each term of g(x):  

f(x) · g(x) = (2x³ + 3x² - 5x + 1) · (x² - 2x + 4)  

First, multiply 2x³ by each term in g(x): 2x³(x² - 2x + 4) = 2x⁵ - 4x⁴ +  

8x³  

Next, multiply 3x² by each term in g(x): 3x²(x² - 2x + 4) = 3x⁴ - 6x³ +  

12x²  

Next, multiply -5x by each term in g(x): -5x(x² - 2x + 4) = -5x³ + 10x²  

- 20x  

Finally, multiply 1 by each term in g(x): 1(x² - 2x + 4) = x² - 2x + 4  

Now combine like terms: f(x) · g(x) = 2x⁵ + (-4+3)x⁴ + (8-6-5)x³ +  

(12+10)x² + (-20-2)x + 4 = 2x⁵ - x⁴ - 3x³ + 22x² - 22x + 4  

Example 2: Determining Irreducibility  

Determine whether p(x) = x³ - 3x + 1 is irreducible over Q.  

Solution:  



To check if p(x) is irreducible over Q, we can use the Rational Root  

Theorem.  
Notes  

If p(x) has a rational root a/b in lowest terms, then a divides the  

constant term (1) and b divides the leading coefficient (1).  

The possible rational roots are therefore: ±1.  

Let's check: p(1) = 1³ - 3·1 + 1 = 1 - 3 + 1 = -1 ≠ 0 p(-1) = (-1)³ - 3·(-  

1) + 1 = -1 + 3 + 1 = 3 ≠ 0  

So p(x) has no rational roots. Since p(x) is a cubic polynomial with no  

linear factors, it must be irreducible over Q (as any factorization  

would necessarily include a linear factor).  

Therefore, x³ - 3x + 1 is irreducible over Q.  

Example 3: Division Algorithm in Q[x]  

Use the polynomial division algorithm to find the quotient and  404040

remainder when f(x) = 2x⁴ - 3x³ + x - 5 is divided by g(x) = x² - 2.  

Solution:  

We need to find polynomials q(x) and r(x) such that f(x) = g(x)·q(x) +  

r(x) where deg(r) <deg(g) = 2.  

Step 1: Divide the leading term of f(x) by the leading term of g(x): 2x⁴  

÷ x² = 2x²  

Step 2: Multiply g(x) by this term: 2x² · (x² - 2) = 2x⁴ - 4x²  

Step 3: Subtract from f(x) and continue: f(x) - (2x⁴ - 4x²) = -3x³ + 4x²  

+ x - 5  

Step 4: Divide the leading term of this result by the leading term of  

g(x): -3x³ ÷ x² = -3x  

Step 5: Multiply g(x) by this term: -3x · (x² - 2) = -3x³ + 6x  

Step 6: Subtract and continue: -3x³ + 4x² + x - 5 - (-3x³ + 6x) = 4x² +  

x - 6x - 5 = 4x² - 5x - 5  
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The degree of this remainder is less than deg(g), so we're done.  666

Therefore, q(x) = 2x² - 3x and r(x) = 4x² - 5x - 5.  

Notes  

= 2x⁴ - 4x² - 3x³ + 6x + 4x² - 5x - 5 = 2x⁴ - 3x³ + 0x² + x - 5  

Example 4: Finding GCD using the Euclidean Algorithm  

Find the greatest common divisor of f(x) = x³ - 1 and g(x) = x² - 1 in  

Q[x].  

Solution:  

We apply the Euclidean algorithm:  

Step 1: Divide f(x) by g(x): x³ - 1 = (x² - 1) · x + (x - 1)  

So the remainder r₁(x) = x - 1.  

Step 2: Divide g(x) by r₁(x): x² - 1 = (x - 1) · (x + 1) + 0  

Since the remainder is 0, the GCD is the last non-zero remainder,  

which is r₁(x) = x - 1.  

Therefore, gcd(x³ - 1, x² - 1) = x - 1.  

This makes sense because: x³ - 1 = (x - 1)(x² + x + 1) x² - 1 = (x - 1)(x  

+ 1)  

Example 5: Evaluating a Polynomial at a Point  

Let f(x) = 3x⁴ - 2x² + 5x - 7 be a polynomial in Z[x]. Evaluate f(2).  

Solution:  

f(2) = 3(2⁴) - 2(2²) + 5(2) - 7 = 3(16) - 2(4) + 5(2) - 7 = 48 - 8 + 10 - 7  

= 43  

Therefore, f(2) = 43.  

Unsolved Problems  

Problem 1  

Verification: f(x) = g(x)·q(x) + r(x) = (x² - 2)(2x² - 3x) + (4x² - 5x - 5)  



Let f(x) = x³ - 4x² + 3x + 1 and g(x) = x² - x - 2 be polynomials in  

Q[x]. Find the quotient and remainder when f(x) is divided by g(x).  
Notes  

Problem 2  

Determine whether the polynomial p(x) = x⁴ - 10x² + 1 is irreducible  

over Q.  

Problem 3  

Find the greatest common divisor of h(x) = x⁴ - 16 and k(x) = x² - 4 in  

Z[x].  

Problem 4  

Let R[x,y] be the ring of polynomials in two variables with real  

coefficients. If f(x,y) = x²y + 3xy² - y³ + 2, evaluate f(1,2).  

Problem 5  

Prove that if R is an integral domain, then the polynomial f(x) = ax +  

b is irreducible in R[x] if and only if it is not divisible by any non-unit  

element of R.  
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UNIT VI  

2.6 Polynomials in an Indeterminate  

Introduction to Indeterminates  

Notes  

An indeterminate in algebra is a symbol that does not stand for any  

fixed value, unlike a variable which can be assigned different values.  

The concept of an indeterminate is fundamental to the theory of  

polynomial rings.  

When we write R[x], we are considering the ring of polynomials in  

the indeterminate x with coefficients from the ring R. The element x  

in R[x] is transcendental over R, meaning it doesn't satisfy any non-  

zero polynomial equation with coefficients in R.  

Formal Definition and Structure  

A polynomial in an indeterminate x over a ring R is formally defined  

as an infinite sequence of elements from R:  

(a₀, a₁, a₂, ..., aₙ, 0, 0, ...)  

where only finitely many terms are non-zero. This sequence  

represents the polynomial:  

a₀ + a₁x + a₂x² + ... + aₙxⁿ  

The set of all such sequences forms the polynomial ring R[x]. The  

operations in this ring are defined as follows:  

•

•

Addition: Component-wise addition of sequences  

Multiplication: Convolution product of sequences, where the  

kth component of the product is given by ∑ᵢ₌₀ᵏ aᵢbₖ₋ᵢ  

Comparison with Function Rings  

It's important to distinguish between polynomials as formal  

expressions and polynomial functions:  

• A polynomial in R[x] is a formal algebraic expression  



• A polynomial function maps elements of R to R by evaluation  Notes  

When R is an infinite integral domain, the ring R[x] is isomorphic to a  

subring of the ring of functions from R to R. However, when R is a  

finite field, different polynomials may induce the same function.  

For example, in Z₂[x] (polynomials over the field with two elements),  

the polynomials x² and x induce the same function since 0² = 0 and 1²  

= 1.  

Monomials and Terms  

A monomial in the indeterminate x is an expression of the form ax^n  

where a is a coefficient from R and n is a non-negative integer. The  

degree of this monomial is n.  

A term of a polynomial refers to each monomial that appears in the  

polynomial with a non-zero coefficient.  

Evaluating Polynomials at Points  

For a polynomial f(x) = a₀ + a₁x + ... + aₙxⁿ in R[x] and an element r in  

R, the evaluation homomorphism φᵣ: R[x] → R is defined by:  

φᵣ(f) = f(r) = a₀ + a₁r + ... + aₙrⁿ  

This is a ring homomorphism, meaning it preserves the operations of  

addition and multiplication.  

The Universal Property  

The polynomial ring R[x] satisfies an important universal property:  

For any ring S and any ring homomorphism φ: R → S and any  

element s in S, there exists a unique ring homomorphism ψ: R[x] → S  

such that ψ(r) = φ(r) for all r in R and ψ(x) = s.  

This property characterizes R[x] up to isomorphism and highlights its  

fundamental role in algebra.  

Polynomial Identities and the Substitution Principle  
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A polynomial identity is an equation between two polynomials that  

holds for all possible values of the indeterminates.  
Notes  

The substitution principle states that if an identity holds for all  

polynomials, then it holds when the indeterminates are replaced by  

any elements from the ring.  

Roots and Factors  

An element r in R is called a root of a polynomial f(x) in R[x] if f(r) =  

0.  

If r is a root of f(x), then (x - r) is a factor of f(x), meaning there exists  

a polynomial q(x) such that f(x) = (x - r)·q(x).  

A polynomial of degree n over a field can have at most n roots unless  

it is the zero polynomial.  

Polynomials over Fields  

When R is a field, R[x] has several additional properties:  

1. R[x] is a principal ideal domain, meaning every ideal is  

generated by a single element.  

2. The division algorithm holds: for polynomials f(x) and g(x) ≠  

0, there exist unique q(x) and r(x) such that f(x) = g(x)·q(x) +  

r(x) where r(x) = 0 or deg(r) <deg(g).  

3. Every non-constant polynomial can be factored uniquely (up  

to units) as a product of irreducible polynomials.  

The Remainder Theorem  666

The Remainder Theorem states that when a polynomial f(x) is divided  

by (x - a), the remainder is equal to f(a).  

Mathematically: f(x) = (x - a)q(x) + f(a)  

This theorem provides a quick way to evaluate polynomials and is the  

basis for polynomial interpolation.  



The Factor Theorem  Notes  

The Factor Theorem is a direct consequence of the Remainder  

Theorem:  

An element a is a root of f(x) if and only if (x - a) is a factor of f(x).  

This follows because f(a) = 0 if and only if the remainder when  

dividing f(x) by (x - a) is zero.  

Multiple Indeterminates  

The construction of polynomial rings can be extended to multiple  

indeterminates. For example, R[x,y] is the ring of polynomials in two  

indeterminates x and y with coefficients in R.  

A polynomial in R[x,y] can be written as:  

f(x,y) = ∑ᵢ₌₀ⁿ ∑ⱼ₌₀ᵐ aᵢⱼxⁱyʲ  

where aᵢⱼ are elements of R.  

There are different ways to view R[x,y]:  

•

•

•

As (R[x])[y], polynomials in y with coefficients in R[x]  

As (R[y])[x], polynomials in x with coefficients in R[y]  

Directly as R[x,y], polynomials in x and y with coefficients in  

R

All these viewpoints are isomorphic.  

Homogeneous Polynomials  

A homogeneous polynomial (or form) is a polynomial whose terms all  

have the same total degree.  

For example, in R[x,y], the polynomial 3x² + 5xy + 2y² is  

homogeneous of degree 2 because each term has total degree 2.  

Homogeneous polynomials have important applications in projective  
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Multivariate Polynomial Division  Notes  

Division of multivariate polynomials is more complex than in the  

single-variable case. There's no unique quotient and remainder  

without specifying a monomial ordering.  

Common monomial orderings include:  

•

•

•

Lexicographic ordering  

Graded lexicographic ordering  

Graded reverse lexicographic ordering  

The theory of Gröbner bases extends the Euclidean algorithm to  

multivariate polynomials.  

Solved Examples  

Example 1: The Evaluation Homomorphism  

Prove that the evaluation map φᵣ: R[x] → R defined by φᵣ(f) = f(r) is a  

ring homomorphism.  

Solution:  

We need to show that φᵣ preserves addition and multiplication.  

For addition, let f(x) = a₀ + a₁x + ... + aₙxⁿ and g(x) = b₀ + b₁x + ... +  

bₘxᵐ be polynomials in R[x].  

φᵣ(f + g) = (f + g)(r) = (a₀ + b₀) + (a₁ + b₁)r + ... + higher terms  

evaluated at r = (a₀ + a₁r + ... + aₙrⁿ) + (b₀ + b₁r + ... + bₘrᵐ) = f(r) +  

g(r) = φᵣ(f) + φᵣ(g)  

For multiplication:  

φᵣ(f · g) = (f · g)(r) = (a₀ + a₁r + ... + aₙrⁿ)(b₀ + b₁r + ... + bₘrᵐ) = f(r) ·  

g(r) = φᵣ(f) · φᵣ(g)  

Therefore, φᵣ is a ring homomorphism.  

Example 2: Application of the Remainder Theorem  666



Use the Remainder Theorem to evaluate f(x) = 2x³ - 5x² + 3x - 7 at x  

= 3.  
Notes  

Solution:  

According to the Remainder Theorem, when f(x) is divided by (x - 3),  

the remainder equals f(3).  

Let's divide f(x) by (x - 3) using synthetic division:  

3 | 2 -5 3 -7  

| 6 3 18  

---------------  

2 1 6 11  

Working through the synthetic division:  

•

•

•

•

Bring down 2  

Multiply 2 by 3 to get 6, add to -5 to get 1  

Multiply 1 by 3 to get 3, add to 3 to get 6  

Multiply 6 by 3 to get 18, add to -7 to get 11  

The remainder is 11, so f(3) = 11.  

We can verify this by direct computation: f(3) = 2(3³) - 5(3²) + 3(3) - 7  

= 2(27) - 5(9) + 3(3) - 7 = 54 - 45 + 9 - 7 = 11  

Example 3: Proving a Polynomial Identity  

Prove that (x + y)² = x² + 2xy + y² for all elements x and y in a  

commutative ring R.  

Solution:  

We can expand the left-hand side using the distributive property: (x +  

y)² = (x + y)(x + y) = x(x + y) + y(x + y) = x² + xy + yx + y²  

Since R is commutative, xy = yx, so: (x + y)² = x² + xy + xy + y² = x²  

+ 2xy + y²  
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This is a polynomial identity in R[x,y] and holds for all x, y in R.  Notes  

Example 4: Polynomial Division in Multiple Indeterminates  

Divide f(x,y) = x²y + xy² + y³ by g(x,y) = x + y in Q[x,y] using the  

Solution:  

We need to find polynomials q(x,y) and r(x,y) such that f(x,y) = g(x,y)  

· q(x,y) + r(x,y).  

Step 1: Divide the leading term of f(x,y), which is x²y, by the leading  

term of g(x,y), which is x: x²y ÷ x = xy  

Step 2: Multiply g(x,y) by xy: xy(x + y) = x²y + xy²  

Step 3: Subtract from f(x,y): f(x,y) - (x²y + xy²) = x²y + xy² + y³ - (x²y  

+ xy²) = y³  

Step 4: Divide y³ by the leading term of g(x,y): y³ ÷ x cannot be  

divided further since y³ doesn't contain x  

Therefore, q(x,y) = xy and r(x,y) = y³.  

xy² + y³  

Example 5: Using the Factor Theorem  

Use the Factor Theorem to completely factor the polynomial f(x) = x³  

- 4x² - 7x + 10 over the rational numbers, given that x = 2 is a root.  

Solution:  

Since x = 2 is a root, we know that (x - 2) is a factor of f(x).  

We can use synthetic division to find the quotient when f(x) is divided  

by (x - 2):  

2 | 1 -4 -7 10  

| 2 -4 -22  

---------------  

lexicographic ordering with x > y.  

Verification: f(x,y) = g(x,y) · q(x,y) + r(x,y) = (x + y) · xy + y³ = x²y +  



1 -2 -11 -12  Notes  

So f(x) = (x - 2)(x² - 2x - 11)  

Now we need to factor x² - 2x - 11. Using the quadratic formula: x =  

(2 ± √(4 + 44))/2 = (2 ± √48)/2 = (2 ± 4√3)/2 = 1 ± 2√3  

Since these roots are irrational, the quadratic is irreducible over Q.  

Therefore, the complete factorization of f(x) over Q is: f(x) = (x -  

2)(x² - 2x - 11)  

Unsolved Problems  

Problem 1  

Let f(x) = x⁴ - 5x² + 4 be a polynomial in Z[x]. Show that f(x) can be  

written as a product of two quadratic polynomials with integer  

coefficients.  

Problem 2  

Let R be a commutative ring with unity. Prove that the center of the  

polynomial ring R[x] is Z(R)[x], where Z(R) is the center of R.  

Problem 3  

Let f(x) = x⁵ + 3x³ - 2x² + 5 be a polynomial in Q[x]. Use the  

Remainder Theorem to find the remainder when f(x) is divided by (x -  

1).  

Problem 4  

Let f(x,y) = x³y² + 2x²y³ - 3xy⁴ + y⁵ be a polynomial in R[x,y]. Find  

all terms of f(x,y) that are homogeneous of degree 5.  

Problem 5  

Prove that if R is an integral domain, then the polynomial ring R[x] is  

never a field.  

2.7 Evaluation Homomorphism  
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The evaluation homomorphism is a fundamental concept in abstract  

algebra, particularly in the theory of polynomials. It provides a way to  

evaluate polynomials at specific values while preserving their  

algebraic structure.  

Notes  

Definition and Basic Properties  

Let F be a field and F[x] be the ring of polynomials with coefficients  1111111111 1717

in F. For any element a ∈ F, the evaluation homomorphism at a is the  

map:  

φₐ: F[x] → F  

defined by:  

φₐ(p(x)) = p(a)  

In other words, the evaluation homomorphism takes a polynomial  

p(x) and evaluates it at the point x = a.  

Properties of the Evaluation Homomorphism  

1. Homomorphism Property:  

o For any polynomials p(x) and q(x) in F[x]:  

▪

▪

φₐ(p(x) + q(x)) = φₐ(p(x)) + φₐ(q(x))  

φₐ(p(x) · q(x)) = φₐ(p(x)) · φₐ(q(x))  

2. Kernel Determination:  

o The kernel of φₐ consists of all polynomials p(x) such  

that p(a) = 0  

o

o

o

This means ker(φₐ) = {p(x) ∈ F[x] | p(a) = 0}  

The kernel is precisely the ideal generated by (x - a)  

ker(φₐ) = (x - a)  

3. Surjectivity:  



o

o

The evaluation homomorphism is surjective (onto),  

meaning every element in F is the image of some  

polynomial in F[x]  

Notes  

For any b ∈ F, the constant polynomial p(x) = b  

satisfies φₐ(p(x)) = b  

4. First Isomorphism Theorem Application:  

o By the First Isomorphism Theorem for rings, F[x]/(x -  1111111111

a) ≅ F  

o This means the quotient ring of F[x] by the ideal  

generated by (x - a) is isomorphic to F  

Polynomial Division and the Remainder Theorem  

One important application of the evaluation homomorphism is the  

Remainder Theorem.  

Remainder Theorem  

For any polynomial p(x) ∈ F[x] and any a ∈ F, when p(x) is divided  

by (x - a), the remainder is equal to p(a).  

Proof: By the Division Algorithm, we can write: p(x) = q(x)(x - a) + r  

where r is a constant (polynomial of degree 0).  

Evaluating both sides at x = a: p(a) = q(a)(a - a) + r = 0 + r = r  

Therefore, r = p(a), which means the remainder when p(x) is divided  

by (x - a) is p(a).  

Factor Theorem  

The Factor Theorem is a direct consequence of the Remainder  

Theorem:  

Theorem: (x - a) is a factor of p(x) if and only if p(a) = 0.  

Proof:  
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• If (x - a) is a factor of p(x), then p(x) = q(x)(x - a) for some  

q(x)  
Notes  

•

•

Evaluating at x = a: p(a) = q(a)(a - a) = 0  

Conversely, if p(a) = 0, then by the Remainder Theorem, the  

remainder when p(x) is divided by (x - a) is 0  

• Thus, p(x) = q(x)(x - a) for some q(x), meaning (x - a) is a  

factor of p(x)  

Multiple Evaluation Points and Chinese Remainder Theorem  

The concept of evaluation homomorphism extends to multiple points  

through the Chinese Remainder Theorem for polynomials.  

If a₁, a₂, ..., aₙ are distinct elements in F, then the combined evaluation  

homomorphism:  

φ: F[x] → F × F × ... × F (n times) φ(p(x)) = (p(a₁), p(a₂), ..., p(aₙ))  

has the kernel: ker(φ) = ((x - a₁)(x - a₂)...(x - aₙ))  

By the Chinese Remainder Theorem: F[x]/((x - a₁)(x - a₂)...(x - aₙ)) ≅  

F[x]/(x - a₁) × F[x]/(x - a₂) × ... × F[x]/(x - aₙ) ≅ Fⁿ  

This isomorphism allows us to solve systems of polynomial  

congruences.  

Lagrange Interpolation  

Lagrange interpolation uses the evaluation homomorphism concept to  

construct a polynomial that passes through a given set of points.  

Given distinct points a₁, a₂, ..., aₙ ∈ F and corresponding values b₁, b₂,  

..., bₙ ∈ F, the Lagrange interpolation polynomial is:  

p(x) = Σ bⱼ Lⱼ(x)  

where Lⱼ(x) are the Lagrange basis polynomials:  

Lⱼ(x) = Π (x - aₖ)/(aⱼ - aₖ) k≠j  

This polynomial satisfies p(aⱼ) = bⱼ for all j = 1, 2, ..., n.  



Solved Problems  

Problem 1  

Notes  

Problem: Find the kernel of the evaluation homomorphism φ₂: ℚ[x]  

→ ℚ where φ₂(p(x)) = p(2).  

Solution: The kernel of an evaluation homomorphism φₐ consists of  

all polynomials p(x) such that p(a) = 0. In this case, a = 2, so: ker(φ₂)  

= {p(x) ∈ ℚ[x] | p(2) = 0}  

By the theory of evaluation homomorphisms, we know that: ker(φ₂) =  

(x - 2)  

This means the kernel is the set of all polynomials that are divisible by  1717

(x - 2), which can be written as: {q(x)(x - 2) | q(x) ∈ ℚ[x]}  

Therefore, ker(φ₂) = (x - 2).  

Problem 2  

Problem: Use the Remainder Theorem to find the remainder when  

p(x) = x³ - 2x² + 4x - 7 is divided by (x - 3).  

Solution: According to the Remainder Theorem, when a polynomial  

p(x) is divided by (x - a), the remainder is equal to p(a).  

In this case, we need to find p(3): p(3) = 3³ - 2(3)² + 4(3) - 7 = 27 -  

2(9) + 12 - 7 = 27 - 18 + 12 - 7 = 14  

Therefore, the remainder when p(x) = x³ - 2x² + 4x - 7 is divided by (x  

- 3) is 14.  

Problem 3  

Problem: Determine whether (x - 2) is a factor of p(x) = x⁴ - 5x³ + 2x²  

+ 8x - 16.  

Solution: According to the Factor Theorem, (x - a) is a factor of p(x) if  

and only if p(a) = 0.  

So to determine if (x - 2) is a factor of p(x), we need to check if p(2) =  

0.  
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p(2) = 2⁴ - 5(2)³ + 2(2)² + 8(2) - 16 = 16 - 5(8) + 2(4) + 16 - 16 = 16 -  Notes  
40 + 8 + 16 - 16 = -16  

Since p(2) = -16 ≠ 0, (x - 2) is not a factor of p(x).  

Problem 4  

Problem: Use the Chinese Remainder Theorem to find a polynomial  

p(x) ∈ ℚ[x] of degree less than 3 such that:  

•

•

•

p(1) = 2  

p(2) = -1  

p(3) = 4  

Solution: We'll use Lagrange interpolation to construct the  

polynomial. For each point, we define:  

L₁(x) = ((x-2)(x-3))/((1-2)(1-3)) = ((x-2)(x-3))/(-1)(-2) = (x-2)(x-3)/2  

L₂(x) = ((x-1)(x-3))/((2-1)(2-3)) = ((x-1)(x-3))/(1)(-1) = -(x-1)(x-3)  

L₃(x) = ((x-1)(x-2))/((3-1)(3-2)) = ((x-1)(x-2))/(2)(1) = (x-1)(x-2)/2  

Now, our polynomial is: p(x) = 2L₁(x) + (-1)L₂(x) + 4L₃(x) = 2((x-  

2)(x-3)/2) + (-1)(-(x-1)(x-3)) + 4((x-1)(x-2)/2) = (x-2)(x-3) + (x-1)(x-  

3) + 2(x-1)(x-2)  

Let's expand: (x-2)(x-3) = x² - 5x + 6 (x-1)(x-3) = x² - 4x + 3 2(x-1)(x-  

2) = 2(x² - 3x + 2) = 2x² - 6x + 4  

p(x) = (x² - 5x + 6) + (x² - 4x + 3) + (2x² - 6x + 4) = 4x² - 15x + 13  

To verify: p(1) = 4(1)² - 15(1) + 13 = 4 - 15 + 13 = 2 ✓ p(2) = 4(2)² -  

15(2) + 13 = 16 - 30 + 13 = -1 ✓ p(3) = 4(3)² - 15(3) + 13 = 36 - 45 +  

13 = 4 ✓  

Therefore, p(x) = 4x² - 15x + 13 is our solution.  

Problem 5  



Problem: Determine the quotient and remainder when p(x) = x⁴ + 2x³  Notes  
- 3x² + x - 5 is divided by (x - 2).  

Solution: We can use the evaluation homomorphism and the Division  

Algorithm to solve this.  

By the Remainder Theorem, the remainder when p(x) is divided by (x  

- 2) is p(2).  

p(2) = 2⁴ + 2(2)³ - 3(2)² + 2 - 5 = 16 + 2(8) - 3(4) + 2 - 5 = 16 + 16 -  

12 + 2 - 5 = 17  

So the remainder is 17.  

To find the quotient q(x), we use the Division Algorithm: p(x) =  

q(x)(x - 2) + 17  

We can use synthetic division or polynomial long division:  

Using synthetic division with divisor (x - 2): 2 | 1 2 -3 1 -5 | 2 8 10 22  

---------------------- 1 4 5 11 17  

The quotient is the coefficients above the line, excluding the  

remainder: q(x) = x³ + 4x² + 5x + 11  

To verify: (x³ + 4x² + 5x + 11)(x - 2) + 17 = x⁴ - 2x³ + 4x³ - 8x² + 5x² -  

10x + 11x - 22 + 17 = x⁴ + 2x³ - 3x² + x - 5 ✓  

Therefore, when p(x) = x⁴ + 2x³ - 3x² + x - 5 is divided by (x - 2):  

•

•

Quotient: q(x) = x³ + 4x² + 5x + 11  

Remainder: 17  

Unsolved Problems  

Problem 1  

Find the kernel of the evaluation homomorphism φ₋₁: ℝ[x] → ℝ  

where φ₋₁(p(x)) = p(-1).  

Problem 2  
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Use the Remainder Theorem to find the remainder when p(x) = 2x⁵ -  Notes  
3x³ + 4x - 7 is divided by (x + 2).  

Problem 3  

Use the Factor Theorem to determine all values of k for which (x - 3)  

is a factor of p(x) = x³ - kx² + 4x - 12.  

Problem 4  

Find a polynomial p(x) ∈ ℚ[x] of degree less than 4 such that:  

•

•

•

•

p(0) = 1  

p(1) = -2  

p(2) = 0  

p(3) = 4  

Problem 5  

Let φ: ℤ₅[x] → ℤ₅ × ℤ₅ be the evaluation homomorphism defined by  

φ(p(x)) = (p(2), p(3)). Find a polynomial p(x) of degree less than 2  

such that φ(p(x)) = (4, 1).  

2.8 Factorization of Polynomials over a Field  

Polynomial factorization is a central topic in algebra, with  

applications ranging from solving polynomial equations to  

cryptography. This section explores the theory and techniques of  

factoring polynomials over fields.  

Irreducible Polynomials  

A polynomial p(x) ∈ F[x] of degree at least 1 is called irreducible over  

F if it cannot be expressed as a product of two polynomials in F[x],  1111111111

each of degree at least 1.  

Properties of Irreducible Polynomials  

1. Prime Elements: Irreducible polynomials are the "prime  

elements" of the polynomial ring F[x].  



2. Degree 1 Polynomials: Every polynomial of degree 1 is  

irreducible.  
Notes  

3. Field Extensions: If p(x) is irreducible over F, then F[x]/(p(x))  

4. Unique Factorization: Every polynomial in F[x] can be  

factored uniquely (up to units) as a product of irreducible  

polynomials.  

Unique Factorization Theorem  

The Fundamental Theorem of Algebra for polynomials states:  

Theorem: Every non-constant polynomial p(x) ∈ F[x] can be factored  

uniquely as:  

p(x) = a · p₁(x)^e₁ · p₂(x)^e₂ · ... · pₙ(x)^eₙ  

where a ∈ F is a non-zero constant, each pᵢ(x) is a monic irreducible  

polynomial over F, and each eᵢ is a positive integer. This factorization  

is unique up to the order of the factors.  

Techniques for Factorization  

1. Rational Root Theorem  

For a polynomial p(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ with integer  

coefficients, if p/q is a rational root (with gcd(p,q) = 1), then:  

•

•

p divides a₀  

q divides aₙ  

This helps identify potential rational roots for testing.  

2. Eisenstein's Criterion  

Theorem: Let p(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ ∈ ℤ[x]. If there  

exists a prime number p such that:  

• p divides all coefficients except aₙ  
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•

•

p² does not divide a₀  

p does not divide aₙ  

Notes  

Then p(x) is irreducible over ℚ.  

3. Gauss's Lemma  

Lemma: A primitive polynomial in ℤ[x] is irreducible over ℚ if and  

only if it is irreducible over ℤ.  

This allows testing irreducibility over ℚ by examining factorizations  

over ℤ.  

4. Reducibility Testing over Finite Fields  

For polynomials over finite fields, we can test all possible  

factorizations up to a certain degree, as there are only finitely many  1111111111

polynomials of a given degree.  

Special Cases: Factorization over Specific Fields  

Factorization over ℝ (Real Numbers)  

Over ℝ, irreducible polynomials are either of degree 1 or 2:  

•

•

Linear factors: (x - a) where a ∈ ℝ  

Quadratic factors: (x² + bx + c) where b² - 4c < 0  

Factorization over ℂ (Complex Numbers)  

Over ℂ, every non-constant polynomial factors completely into linear  

factors by the Fundamental Theorem of Algebra:  1111111111

p(x) = a(x - z₁)(x - z₂)...(x - zₙ)  

where a ∈ ℂ is a constant and z₁, z₂, ..., zₙ ∈ ℂ are the roots of p(x).  

Factorization over ℚ (Rational Numbers)  

Over ℚ, irreducible polynomials can have any degree. Some common  

techniques for factoring over ℚ include:  

• The Rational Root Theorem  



•

•

•

Eisenstein's Criterion  

Gauss's Lemma  

Notes  

Descartes' Rule of Signs (for information about the number of  

positive and negative roots)  

Factorization over Finite Fields  

For a finite field F_q with q elements:  

• Every irreducible polynomial of degree n over F_q divides  

x^(q^n) - x  

• The number of monic irreducible polynomials of degree n over  

F_q can be calculated using Möbius inversion formula  

Cyclotomic Polynomials  

The cyclotomic polynomial Φₙ(x) is the monic polynomial whose  50

Properties:  

•

•

•

Φₙ(x) is irreducible over ℚ  

Φₙ(x) has degree φ(n), where φ is Euler's totient function  

x^n - 1 = ∏ Φₚ(x), where d ranges over all divisors of n  

Applications of Polynomial Factorization  

1. Solving Polynomial Equations: Factoring a polynomial allows  

us to find its roots.  

2. Field Extensions: Irreducible polynomials are used to  

construct field extensions.  

3. Error-Correcting Codes: Polynomial factorization plays a  

4. Cryptography: Many cryptographic systems rely on the  

difficulty of factoring certain polynomials over finite fields.  
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roots are the primitive nth roots of unity.  

crucial role in coding theory.  



5. Computer Algebra Systems: Efficient factorization algorithms  

are essential components of computer algebra systems.  
Notes  

Solved Problems  

Problem 1  

Problem: Determine whether the polynomial p(x) = x³ - 3x + 1 is  

irreducible over ℚ.  

Solution: To determine if p(x) = x³ - 3x + 1 is irreducible over ℚ, we  

can apply the Rational Root Theorem.  

The possible rational roots of p(x) are the divisors of the constant term  

(1) divided by the divisors of the leading coefficient (1). Possible  

rational roots: ±1  

Let's check these candidates: p(1) = 1³ - 3(1) + 1 = 1 - 3 + 1 = -1 ≠ 0  

p(-1) = (-1)³ - 3(-1) + 1 = -1 + 3 + 1 = 3 ≠ 0  

Since p(x) has no rational roots, it has no linear factors in ℚ[x].  

The only other possibility for reducibility would be a factorization  

into a linear and a quadratic factor, but since there are no linear  

factors, this is impossible.  

Therefore, p(x) = x³ - 3x + 1 is irreducible over ℚ.  

Problem 2  

Problem: Factor the polynomial p(x) = x⁴ - 5x² + 4 over ℝ.  

Solution: Let's try to recognize this as a quadratic in x². Let's set u = x²  

and rewrite: p(x) = x⁴ - 5x² + 4 = u² - 5u + 4  

Now we can factor this quadratic: u² - 5u + 4 = (u - 4)(u - 1) = (x² -  

4)(x² - 1)  

We can factor these further: x² - 4 = (x - 2)(x + 2) x² - 1 = (x - 1)(x +  

1)  

Therefore: p(x) = x⁴ - 5x² + 4 = (x - 2)(x + 2)(x - 1)(x + 1)  



To verify: (x - 2)(x + 2)(x - 1)(x + 1) = (x² - 4)(x² - 1) = x⁴ - x² - 4x² +  

4 = x⁴ - 5x² + 4 ✓  

Notes  

So the factorization of p(x) = x⁴ - 5x² + 4 over ℝ is (x - 2)(x + 2)(x -  

1)(x + 1).  

Problem 3  

Problem: Use Eisenstein's Criterion to prove that p(x) = 2x³ + 6x² +  

3x + 9 is irreducible over ℚ.  

Solution: To apply Eisenstein's Criterion, we need to find a prime p  

such that:  

1. p divides all coefficients except the leading coefficient  

2. p² does not divide the constant term  

3. p does not divide the leading coefficient  

Let's examine the coefficients of p(x) = 2x³ + 6x² + 3x + 9:  

•

•

•

•

Leading coefficient: 2  

x² coefficient: 6  

x coefficient: 3  

Constant term: 9  

Let's try p = 3:  

•

•

•

3 divides 6, 3, and 9  

3 does not divide 2 (the leading coefficient)  

3² = 9 divides 9 (the constant term)  

Since 3² divides the constant term, Eisenstein's Criterion does not  

apply with p = 3.  

Let's transform the polynomial to make Eisenstein's Criterion  

applicable. Let's substitute x = y + 1:  
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p(y + 1) = 2(y + 1)³ + 6(y + 1)² + 3(y + 1) + 9  Notes  

Expanding: p(y + 1) = 2(y³ + 3y² + 3y + 1) + 6(y² + 2y + 1) + 3(y + 1)  

+ 9 = 2y³ + 6y² + 6y + 2 + 6y² + 12y + 6 + 3y + 3 + 9 = 2y³ + 12y² +  

21y + 20  

Now let's check if Eisenstein's Criterion applies with the prime p = 3:  

• 3 divides 12, 21, and 20 (all coefficients except the leading  

coefficient)  

•

•

3 does not divide 2 (the leading coefficient)  

3² = 9 does not divide 20 (the constant term)  

All conditions of Eisenstein's Criterion are satisfied for the  

transformed polynomial. Since irreducibility is preserved under the  

substitution x = y + 1, we conclude that the original polynomial p(x) =  

2x³ + 6x² + 3x + 9 is irreducible over ℚ.  

Problem 4  

Problem: Factor the polynomial p(x) = x⁶ - 1 over ℚ.  

Solution: We can use cyclotomic polynomials to factor x^n - 1. x^n -  

1 = ∏ Φₚ(x), where d ranges over all divisors of n.  

For n = 6: x⁶ - 1 = Φ₁(x) · Φ₂(x) · Φ₃(x) · Φ₆(x)  

Now we need to compute these cyclotomic polynomials:  

•

•

•

•

Φ₁(x) = x - 1  

Φ₂(x) = x + 1  

Φ₃(x) = x² + x + 1  

Φ₆(x) = x² - x + 1  

Therefore: p(x) = x⁶ - 1 = (x - 1)(x + 1)(x² + x + 1)(x² - x + 1)  



To verify, we can multiply out: (x - 1)(x + 1) = x² - 1 (x² - 1)(x² + x +  

1) = x⁴ + x³ + x² - x² - x - 1 = x⁴ + x³ - x - 1 (x⁴ + x³ - x - 1)(x² - x + 1)  

= x⁶ - x⁵ + x⁴ + x⁵ - x⁴ + x³ - x³ + x² - x - x² + x + 1 = x⁶ - 1 ✓  

Notes  

Therefore, the factorization of p(x) = x⁶ - 1 over ℚ is: (x - 1)(x + 1)(x²  

+ x + 1)(x² - x + 1)  

Problem 5  

Problem: Factor the polynomial p(x) = x⁴ + 4 over ℚ, ℝ, and ℂ.  

Solution: Factorization over ℚ: Let's check if p(x) = x⁴ + 4 is  

irreducible over ℚ.  

By the Rational Root Theorem, any rational root would need to be a  2727

divisor of 4, so the candidates are: ±1, ±2, ±4.  

Testing these values: p(1) = 1⁴ + 4 = 1 + 4 = 5 ≠ 0 p(-1) = (-1)⁴ + 4 = 1  

+ 4 = 5 ≠ 0 p(2) = 2⁴ + 4 = 16 + 4 = 20 ≠ 0 p(-2) = (-2)⁴ + 4 = 16 + 4 =  

20 ≠ 0 p(4) = 4⁴ + 4 = 256 + 4 = 260 ≠ 0 p(-4) = (-4)⁴ + 4 = 256 + 4 =  

260 ≠ 0  

So p(x) has no rational roots.  

Let's check if it can be factored as a product of two quadratics: If x⁴ +  

4 = (x² + ax + b)(x² + cx + d), then:  

•

•

•

•

bd = 4  

ad + bc = 0  

b + d + ac = 0  

a + c = 0  

From the last equation, c = -a. Substituting into the third equation: b +  

d - a² = 0  

Since b·d = 4, there are limited options for b and d as integers or  

rational numbers: (b,d) = (1,4), (2,2), (4,1), (-1,-4), (-2,-2), (-4,-1)  
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Let's try (b,d) = (2,2): b + d - a² = 2 + 2 - a² = 4 - a² = 0 This gives a² =  

4, so a = ±2  
Notes  

If a = 2, then c = -2, and we can check: (x² + 2x + 2)(x² - 2x + 2) = x⁴ -  

4x² + 4 + 2x³ - 4x² + 4x - 2x³ + 4x² - 4x = x⁴ - 4x² + 4 + 0 + 0 = x⁴ + 4  

≠ x⁴ + 4  

So this factorization doesn't work. After trying other combinations, we  

can conclude that x⁴ + 4 is irreducible over ℚ.  

Factorization over ℝ: Over ℝ, we can express x⁴ + 4 as: x⁴ + 4 = x⁴ +  

4·1² = x⁴ + 4·2²/2² = (x⁴ + 4·2²)/2² · 2² = ((x²)² + (2·√2)²)/2² · 2² = (x²  

+ 2√2i)(x² - 2√2i)  

So over ℝ: x⁴ + 4 = (x² + 2√2i)(x² - 2√2i)  

Factorization over ℂ: To factor further over ℂ, we can factor each of  

the quadratics: x² + 2√2i = (x + √2·e^(πi/4))(x + √2·e^(3πi/4)) = (x +  

√2·(1+i)/√2)(x + √2·(-1+i)/√2) = (x + (1+i))(x + (-1+i)) x² - 2√2i = (x  

+ √2·e^(5πi/4))(x + √2·e^(7πi/4)) = (x + √2·(-1-i)/√2)(x + √2·(1-i)/√2)  

= (x + (-1-i))(x + (1-i))  

Simplifying: x⁴ + 4 = (x + (1+i))(x + (-1+i))(x + (-1-i))(x + (1-i))  

Therefore:  

•

•

•

Over ℚ: x⁴ + 4 is irreducible  

Over ℝ: x⁴ + 4 = (x² + 2√2i)(x² - 2√2i)  

Over ℂ: x⁴ + 4 = (x + (1+i))(x + (-1+i))(x + (-1-i))(x + (1-i))  

Unsolved Problems  

Problem 1  

Determine whether the polynomial p(x) = x⁴ + x³ + x² + x + 1 is  

irreducible over ℚ.  

Problem 2  

Factor the polynomial p(x) = x⁴ - 16 over ℝ and ℂ.  



Problem 3  Notes  

Use Eisenstein's Criterion to prove that the polynomial p(x) = x³ +  333333

15x² + 5x + 10 is irreduc  

Multiple Choice Questions (MCQs)  

1. Which of the following is true about p-groups?  

a) They always contain a normal subgroup.  

b) They have order divisible by p but not necessarily a power  

of p.  

c) They are always abelian.  

d) None of the above.  

2. The class equation of a finite group helps in:  

a) Finding normal subgroups  

b) Counting the number of conjugacy classes  

c) Determining the number of elements in a group  

d) None of the above  

3. The Sylow theorems are particularly useful in studying:  

a) Infinite groups  

b) Finite simple groups  

c) Abelian groups  

d) None of the above  

4. The set of all polynomials with real coefficients forms:  

a) A group under addition  

b) A ring under addition and multiplication  

c) A field under addition and multiplication  

d) None of the above  

5. The evaluation homomorphism maps a polynomial to:  

a) Its derivative  

b) Its integral  

c) A specific value by substituting an element from the field  

d) None of the above  
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6. Which of the following is true about polynomial rings?  

a) Every polynomial has a unique factorization over any ring.  

b) The degree of the product of two polynomials is the sum of  

their degrees.  

Notes  

c) Polynomial rings are always commutative.  

d) None of the above.  

7. A polynomial f(x) over a field F is irreducible if:  

b) It cannot be factored into nontrivial polynomials in F[x].  

c) It has complex coefficients.  

d) It is of degree 1.  333333

8. The fundamental theorem of algebra states that every  

polynomial of degree n over the complex numbers has:  

a) At most n roots  

b) At least one real root  

c) Exactly n roots (counting multiplicities)  

d) None of the above  

9. The ring of polynomials over a field is:  

a) Always a division ring  

b) A commutative ring with unity  2727

c) A non-commutative ring  

d) None of the above  

10. A field F is said to be algebraically closed if:  

b) It contains all real numbers.  

c) It has finite elements.  

d) It has an identity element.  

Short Answer Questions  

1. State and explain the class equation of a finite group.  

a) It has a root in F.  

a) Every polynomial over F has a root in F.  



2. How do Sylow’s theorems help in studying the structure of  Notes  
finite groups?  

3. Define a p-group and give an example.  

4. What is the significance of polynomial rings in algebra?  

5. Define the evaluation homomorphism and provide an  

example.  

6. What is an irreducible polynomial? Provide an example over  

the field of real numbers.  

7. How do you factorize polynomials over a field? Give an  

example.  

8. Explain why every field has a polynomial ring.  

9. What is the role of Sylow’s theorems in classifying finite  

simple groups?  

Long Answer Questions  

1. Discuss in detail the class equation and its significance in  

2. How do Sylow’s theorems provide insight into the structure of  

finite groups? Give detailed examples.  

3. Explain the concept of polynomial rings and their applications  

in algebra.  

4. Define irreducible polynomials and describe their importance  

5. Prove that the set of all polynomials over a field forms a  

commutative ring.  
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10. Give an example of a ring that is not a field and explain why.  

group theory.  

in field theory.  



6. Explain the factorization of polynomials over a field and  

provide examples.  
Notes  

7. How does the fundamental theorem of algebra relate to  333333

polynomial factorization?  

8. Discuss applications of polynomial rings in modern algebra  

9. Describe how the evaluation homomorphism works and  

illustrate with examples.  

10. What are the differences between a field and a ring? Give  

examples to illustrate their properties.  

and number theory.  



MODULE III  

UNIT VII  

Notes  

FIELD THEORY  

Objectives  

•

•

•

•

•

•

Understand the concept of extension fields.  

Differentiate between algebraic and transcendental elements.  

Learn about irreducible polynomials over a field.  

Explore simple extensions and algebraic extensions.  

Analyze finite extensions and their structure.  

Study the construction and properties of finite fields.  

3.1 Introduction to Field Theory  

Field theory is a branch of abstract algebra that studies the properties  

and structures of fields, which are sets equipped with operations of  

addition, subtraction, multiplication, and division. Fields are  

fundamental algebraic structures that appear throughout mathematics,  

particularly in areas like number theory, algebraic geometry, and  

A field is a set F together with two binary operations, addition (+) and  454545 5757

multiplication (·), that satisfy the following axioms:  

2. Associativity of addition: For all a, b, c in F, (a + b) + c = a +  454545

(b + c).  

3. Commutativity of addition: For all a, b in F, a + b = b + a.  5757

4. Additive identity: There exists an element 0 in F such that a +  454545
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cryptography.  

1. Closure under addition: For all a, b in F, a + b is in F.  

0 = a for all a in F.  



5. Additive inverse: For each a in F, there exists an element -a in  333333 Notes  
F such that a + (-a) = 0.  

7. Associativity of multiplication: For all a, b, c in F, (a · b) · c  

= a · (b · c).  

8. Commutativity of multiplication: For all a, b in F, a · b = b ·  

a.  

9. Multiplicative identity: There exists an element 1 in F, with 1  

10. Multiplicative inverse: For each a ≠ 0 in F, there exists an  

element a^(-1) in F such that a · a^(-1) = 1.  

11. Distributivity: For all a, b, c in F, a · (b + c) = (a · b) + (a · c).  

The most familiar examples of fields include:  

•

•

•

•

The rational numbers Q  

The real numbers R  

The complex numbers C  

Finite fields such as Z_p (integers modulo p, where p is prime)  

Fields provide a setting in which equations can be solved by the basic  

operations of arithmetic. For example, in a field, we can always divide  

by non-zero elements, which is not possible in other algebraic  

structures like rings.  

Field theory investigates the relationships between different fields,  

particularly how larger fields can be constructed from smaller ones.  

This leads to the concept of field extensions, which we'll explore in  

the next section.  

3.2 Extension Fields and Their Importance  

6. Closure under multiplication: For all a, b in F, a · b is in F.  

≠ 0, such that a · 1 = a for all a in F.  



An extension field is a larger field that contains a smaller field within  

it. If F is a field and E is a field containing F, then E is called an  
Notes  

Formally, an extension field E of a field F is a field E containing F as  

a subfield. This means that:  

1. F is a subset of E  

2. The operations of F coincide with those of E when restricted to  

elements of F  

For example:  

•

•

•

The field of real numbers R is an extension of the field of  

rational numbers Q  

The field of complex numbers C is an extension of the field of  

real numbers R  

For a prime p, the field F_p^n is an extension of F_p  

Importance of Extension Fields  

Extension fields are fundamental in algebra for several reasons:  

1. Solving Equations: Extension fields allow us to solve  

equations that have no solutions in the original field. For  

example, x^2 = 2 has no solution in Q, but in the extension  

field Q(√2), we can find solutions.  

2. Algebraic Closure: Every field F has an algebraic closure,  

which is an extension field in which every polynomial with  

coefficients in F has a root.  

3. Field Theory Applications: Extension fields are essential in  

Galois theory, which connects field theory with group theory  

to address questions about the solvability of polynomial  

equations.  
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4. Algebraic Number Theory: Extension fields of the rational  Notes  

5. Finite Fields: Extensions of finite fields are crucial in coding  

theory, cryptography, and computer science.  

Degree of an Extension  

If E is an extension of F, then E can be viewed as a vector space over  

F. The dimension of this vector space is called the degree of the  

extension, denoted by [E:F].  

If [E:F] is finite, E is called a finite extension of F. Otherwise, it's an  

infinite extension.  

For example:  

•

•

[R:Q] is infinite  

[C:R] = 2 (because C is a 2-dimensional vector space over R  

with basis {1, i})  

• [Q(√2):Q] = 2 (with basis {1, √2})  

The Tower Law  

If F ⊆ K ⊆ E are fields, then [E:F] = [E:K][K:F].  

This important property allows us to break down complex extensions  

into simpler ones, making them easier to analyze.  

3.3 Algebraic vs. Transcendental Elements  

When studying field extensions, an important distinction is made  

between algebraic and transcendental elements.  

Algebraic Elements  

Let E be an extension field of F, and let α be an element of E. We say  

α is algebraic over F if there exists a non-zero polynomial p(x) with  

coefficients in F such that p(α) = 0.  68

numbers are fundamental in studying algebraic number theory.  



In other words, an element is algebraic if it is a root of some  

polynomial with coefficients in the base field.  
Notes  

Examples of Algebraic Elements:  

1. √2 is algebraic over Q because it satisfies the polynomial x^2 -  

2 = 0.  

2. i (the imaginary unit) is algebraic over R because it satisfies  

x^2 + 1 = 0.  

3. Every element of a finite field extension is algebraic over the  

base field.  

Minimal Polynomial  

For any algebraic element α over F, there exists a unique monic  

irreducible polynomial m_α(x) in F[x] such that m_α(α) = 0. This  

The minimal polynomial has the following properties:  

•

•

•

It is irreducible over F  

It is monic (the leading coefficient is 1)  

Any polynomial p(x) in F[x] such that p(α) = 0 is divisible by  333333

m_α(x)  

The degree of the minimal polynomial of α is called the degree of α  

Transcendental Elements  

An element α in E is transcendental over F if it is not algebraic over  

F. This means that α does not satisfy any non-zero polynomial  

Examples of Transcendental Elements:  

1. π (pi) is transcendental over Q (proved by Lindemann in 1882)  181818
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polynomial is called the minimal polynomial of α over F.  

over F.  

equation with coefficients in F.  



2. e (Euler's number) is transcendental over Q (proved by  

Hermite in 1873)  
Notes  

3. In general, "most" real numbers are transcendental over Q  

Algebraic and Transcendental Extensions  

An extension E/F is called algebraic if every element of E is  

algebraic over F. Otherwise, it is transcendental.  

For an algebraic element α over F, the field F(α) (the smallest field  

containing both F and α) is: F(α) = {a_0 + a_1α + a_2α^2 + ... + a_(n-  

1)α^(n-1) | a_i∈ F}  

For a transcendental element τ over F, the field F(τ) is isomorphic to  

the field of rational functions F(x).  

Importance of the Distinction  

The distinction between algebraic and transcendental elements is  

crucial in field theory because:  

1. Algebraic extensions are well-structured and can be studied  

2. Transcendental extensions are less structured but are important  

3. The classification of numbers as algebraic or transcendental is  

4. Many important mathematical constants like π and e are  

transcendental, which has significant implications in various  

areas of mathematics.  

where n is the degree of the minimal polynomial of α over F.  333333

using tools like minimal polynomials and Galois theory.  

in areas like transcendental number theory.  

a fundamental problem in number theory.  
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3.4 Irreducible Polynomials over a Field  

Irreducible polynomials play a crucial role in field theory, particularly  

in constructing field extensions. A polynomial is irreducible over a  

field if it cannot be factored into polynomials of lower degree over  

that field.  

Definition and Properties  

A non-constant polynomial p(x) in F[x] is irreducible over F if p(x)  

cannot be expressed as a product of two non-constant polynomials in  3737373737

F[x].  

Key properties of irreducible polynomials:  

1. Linear polynomials (degree 1) are always irreducible.  

2. If p(x) is irreducible over F and α is a root of p(x) in some  333333

3. If p(x) is irreducible over F of degree n, and α is a root of p(x),  

then [F(α):F] = n.  

4. Irreducible polynomials play the role of "prime elements" in  

the ring F[x] of polynomials.  

Methods for Determining Irreducibility  

Several techniques can be used to determine whether a polynomial is  

irreducible:  

1. Eisenstein's Criterion: Let p(x) = a_nx^n + a_(n-1) x^(n-1) +  

... + a_1 x + a_0 be a polynomial with integer coefficients. If  

there exists a prime number p such that:  

o

o

o

p divides a_0, a_1, ..., a_(n-1)  

p does not divide a_n  

p^2 does not divide a_0  
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extension E, then p(x) is the minimal polynomial of α over F.  



Then p(x) is irreducible over Q.  Notes  

2. Reduction modulo p: If the reduction of a polynomial f(x)  

with integer coefficients modulo a prime p yields an  

irreducible polynomial in Z_p[x], then f(x) is irreducible over  

Q.  

3. Gauss's Lemma: A polynomial with integer coefficients is  3737373737 333333

irreducible over Q if and only if it is irreducible over Z and its  

content (the greatest common divisor of its coefficients) is 1.  

4. Rational Root Theorem: If p(x)/q(x) is a rational root of a  

polynomial f(x) with integer coefficients (where p and q are  

coprime integers), then p divides the constant term of f(x) and  

q divides the leading coefficient of f(x).  

Examples of Irreducible Polynomials:  

1. x^2 - 2 is irreducible over Q (no rational root)  

2. x^2 + 1 is irreducible over R (no real root)  

3. x^2 + 1 is reducible over C as (x + i)(x - i)  

4. x^p - x - 1 is irreducible over Q for any prime p  

5. Cyclotomic polynomials Φ_n(x) are irreducible over Q  

Constructing Field Extensions Using Irreducible Polynomials  

One of the most important applications of irreducible polynomials is  

in constructing field extensions:  

If p(x) is an irreducible polynomial of degree n over a field F, then the  

quotient ring F[x]/(p(x)) is a field extension of F of degree n.  

This construction gives us a concrete way to build extension fields.  

For example:  

•

•

Q[x]/(x^2 - 2) is isomorphic to Q(√2)  

R[x]/(x^2 + 1) is isomorphic to C  



• F_p[x]/(p(x)) where p(x) is irreducible of degree n gives us a  

field with p^n elements  
Notes  

Field Splitting  

An irreducible polynomial p(x) over F may become reducible in an  

extension field E. If E contains all the roots of p(x), we say that E is a  

For example:  

•

•

Q(√2) is the splitting field of x^2 - 2 over Q  

C is the splitting field of x^2 + 1 over R  

The concept of splitting fields is central to Galois theory, which  

Solved Problems  

Problem 1: Verify that Q(√2) is a field and determine its elements.  

Solution:  

To verify that Q(√2) is a field, we need to ensure it satisfies all field  

axioms.  

Q(√2) consists of all elements of the form a + b√2, where a, b are  181818

rational numbers.  

First, let's verify that this set is closed under the field operations:  

For addition: (a + b√2) + (c + d√2) = (a + c) + (b + d)√2, which is  

again of the form p + q√2 with p, q ∈ Q.  

For multiplication: (a + b√2)(c + d√2) = ac + ad√2 + bc√2 + bd(√2)^2  

= ac + ad√2 + bc√2 + 2bd = (ac + 2bd) + (ad + bc)√2, which is again  

of the form p + q√2 with p, q ∈ Q.  

For additive inverse: The negative of a + b√2 is -a - b√2, which is in  

Q(√2).  
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splitting field of p(x) over F.  

studies the connection between field extensions and group theory.  



For multiplicative inverse (where a + b√2 ≠ 0): (a + b√2)^(-1) = (a -  

b√2)/(a^2 - 2b^2)  
Notes  

Note that a^2 - 2b^2 ≠ 0 when a + b√2 ≠ 0. This fraction gives us: (a -  

b√2)/(a^2 - 2b^2) = a/(a^2 - 2b^2) - b√2/(a^2 - 2b^2)  

This is of the form p + q√2 with p, q ∈ Q, so the multiplicative inverse  

exists in Q(√2).  

distributivity, and existence of identities) are inherited from the  

properties of real numbers.  

Therefore, Q(√2) is indeed a field.  

The elements of Q(√2) are all numbers of the form a + b√2, where a  333333 3737373737

and b are rational numbers. This creates an infinite field with a basis  

{1, √2} over Q. This field is a simple algebraic extension of Q, and it  

has degree 2 over Q since [Q(√2):Q] = 2.  

Problem 2: Find the minimal polynomial of √2 + √3 over Q.  

Solution:  

We need to find a polynomial p(x) with rational coefficients such that  

p(√2 + √3) = 0, and p(x) is irreducible over Q.  

Let α = √2 + √3. We'll try to find a polynomial by considering the  

powers of α.  

α = √2 + √3 α^2 = (√2 + √3)^2 = 2 + 3 + 2√2√3 = 5 + 2√6  

Let's compute α^3: α^3 = α · α^2 = (√2 + √3)(5 + 2√6) = 5√2 + 5√3 +  

2√6√2 + 2√6√3 = 5√2 + 5√3 + 2√12 + 2√18 = 5√2 + 5√3 + 4√3 + 6√2  

= 11√2 + 9√3  

Now let's compute α^4: α^4 = α^2 · α^2 = (5 + 2√6)^2 = 25 + 20√6 +  

24 = 49 + 20√6  

Looking at these powers, we can see that α satisfies a 4th-degree  

polynomial. Let's try to construct it.  

The remaining field axioms (associativity, commutativity,  



Let p(x) = x^4 + ax^3 + bx^2 + cx + d be the minimal polynomial.  Notes  

We need to find a, b, c, and d such that: p(α) = α^4 + aα^3 + bα^2 +  

cα + d = 0  

Substituting what we've calculated: (49 + 20√6) + a(11√2 + 9√3) +  

b(5 + 2√6) + c(√2 + √3) + d = 0  

Collecting the terms: 49 + 20√6 + 11a√2 + 9a√3 + 5b + 2b√6 + c√2 +  

c√3 + d = 0  

For this equation to be true, the coefficients of each linearly  

independent term (1, √2, √3, √6) must be zero: 1: 49 + 5b + d = 0 √2:  

11a + c = 0 √3: 9a + c = 0 √6: 20 + 2b = 0  

From the last equation: b = -10 From the second and third equations:  

11a + c = 9a + c, so 2a = 0, which means a = 0, and consequently c =  

0 From the first equation with a = 0, b = -10, c = 0: 49 + 5(-10) + d =  

0, so d = -49 + 50 = 1  

Therefore, the minimal polynomial is: p(x) = x^4 - 10x^2 + 1  

We can verify this is irreducible over Q by checking that it has no  

rational roots (using the rational root theorem) and it cannot be  

factored as a product of two quadratics with rational coefficients.  3737373737

The minimal polynomial of √2 + √3 over Q is x^4 - 10x^2 + 1.  181818

Problem 3: Determine whether the polynomial x^3 - 3x + 1 is  

irreducible over Q.  

Solution:  

To determine if p(x) = x^3 - 3x + 1 is irreducible over Q, we'll use  

several approaches:  

First, by the Rational Root Theorem, if p(x) has a rational root p/q in  

lowest terms, then p divides the constant term (1) and q divides the  3737373737

leading coefficient (1). Therefore, the only possible rational roots are  

±1.  
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Let's check: p(1) = 1 - 3 + 1 = -1 ≠ 0 p(-1) = -1 - 3(-1) + 1 = -1 + 3 + 1  Notes  
= 3 ≠ 0  

So p(x) has no rational roots. However, this doesn't immediately prove  

irreducibility because p(x) could potentially factor as a product of an  

irreducible quadratic and a linear term with irrational coefficients.  

Since p(x) is a cubic polynomial, if it were reducible over Q, it would  

have to be a product of a linear factor and a quadratic factor, both with  

rational coefficients. Since we've established there are no rational  

roots, p(x) must be irreducible over Q.  

Alternatively, we can use the Eisenstein criterion with a suitable  

transformation. Let's try substituting y = x + 1 to get: p(y - 1) = (y -  

1)^3 - 3(y - 1) + 1 = y^3 - 3y^2 + 3y - 1 - 3y + 3 + 1 = y^3 - 3y^2 +  

0y + 3  

Applying the Eisenstein criterion with prime p = 3:  

•

•

•

3 divides the constant term (3)  

3 does not divide the leading coefficient (1)  

3^2 = 9 does not divide the constant term (3)  

Therefore, y^3 - 3y^2 + 3 is irreducible over Q by the Eisenstein  

criterion. Since this polynomial is obtained from our original  

polynomial through a change of variables, the original polynomial x^3  

- 3x + 1 is also irreducible over Q.  

Problem 4: Show that the field extension Q(√2, √3)/Q has degree  

4.  

Solution:  

To find the degree of the extension Q(√2, √3)/Q, we can use the tower  

law: [Q(√2, √3):Q] = [Q(√2, √3):Q(√2)][Q(√2):Q]  

We know that [Q(√2):Q] = 2 since √2 has minimal polynomial x^2 - 2  

over Q.  



Now we need to find [Q(√2, √3):Q(√2)].  Notes  

Consider the minimal polynomial of √3 over Q(√2). Let's check if √3  

satisfies a linear polynomial over Q(√2). That would happen if √3  

∈Q(√2), which means √3 = a + b√2 for some a, b ∈ Q.  

If √3 = a + b√2, then by squaring both sides: 3 = a^2 + 2ab√2 + 2b^2  

Since the left side is rational and √2 is irrational, we must have ab = 0.  

If b = 0, then a^2 = 3, which has no rational solution. If a = 0, then  

2b^2 = 3, which also has no rational solution.  

Therefore, √3 is not in Q(√2), so its minimal polynomial over Q(√2) is  

at least quadratic.  

The obvious candidate is x^2 - 3, and indeed this is a polynomial with  62

coefficients in Q(√2) that has √3 as a root. Let's verify this is  

irreducible over Q(√2).  

If x^2 - 3 were reducible over Q(√2), it would factor as (x - α)(x - β)  

where α, β ∈ Q(√2). But the roots of x^2 - 3 are ±√3, and we've just  

shown that √3 ∉Q(√2). Therefore, x^2 - 3 is irreducible over Q(√2).  

Since the minimal polynomial of √3 over Q(√2) has degree 2, we have  

[Q(√2, √3):Q(√2)] = 2.  

Now, applying the tower law: [Q(√2, √3):Q]  

√3):Q(√2)][Q(√2):Q] = 2 × 2 = 4  

= [Q(√2,  

Therefore, the degree of the extension Q(√2, √3)/Q is 4.  

This means that Q(√2, √3) is a 4-dimensional vector space over Q,  

with basis {1, √2, √3, √6}.  

Problem 5: Determine if Q(√2)/Q is a normal extension.  

Solution:  

A field extension E/F is normal if every irreducible polynomial p(x) in  

F[x] that has at least one root in E completely splits (factors into linear  

terms) in E[x].  
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In our case, we need to determine if Q(√2)/Q is a normal extension.  Notes  

The minimal polynomial of √2 over Q is f(x) = x^2 - 2. This  

polynomial has roots √2 and -√2.  

Let's check if both roots are in Q(√2):  

•

•

√2 is in Q(√2) by definition  

-√2 is also in Q(√2) since it's of the form a + b√2 where a = 0  

and b = -1, which are both in Q  

Since both roots of the minimal polynomial x^2 - 2 are in Q(√2),  

every irreducible polynomial over Q that has a root in Q(√2) splits  

completely in Q(√2).  

In fact, any element of Q(√2) is of the form a + b√2 where a, b ∈ Q.  

Its minimal polynomial over Q will be either linear (if b = 0, so the  

element is already in Q) or quadratic (if b ≠ 0).  

If the minimal polynomial is quadratic, it will be of the form (x - (a +  

b√2))(x - (a - b√2)), which splits completely in Q(√2).  

Therefore, Q(√2)/Q is indeed a normal extension.  

Another way to verify this is to note that Q(√2) is the splitting field of  1313131313

x^2 - 2 over Q, and splitting field extensions are always normal.  

Unsolved Problems  

Problem 1: Find a basis for the field extension Q(√2, √3, √5)/Q and  

determine its degree.  

Problem 2: Prove that the polynomial x^4 + 1 is irreducible over Q  141414141414

but reducible over R.  

Problem 3: Let F be a field and let p(x) be an irreducible polynomial  1313131313

in F[x]. Show that the field extension F[x]/(p(x)) is isomorphic to  

Problem 4: Determine all elements α in the complex field C such that  

Q(α) = Q(i), where i is the imaginary unit.  

F(α), where α is a root of p(x) in some extension field of F.  



Problem 5: Let f(x) = x^3 - 2 and let α be a root of f in some extension  

field. Determine the degree of the extension Q(α, ω)/Q, where ω is a  
Notes  
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primitive cube root of unity.  
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3.5 Simple Extensions and Their Properties  

A simple extension is one of the most fundamental types of field  141414141414

extensions in abstract algebra. It occurs when we adjoin a single  

element to a field to create a larger field. This concept is essential for  

understanding how to build more complex field structures.  

Definition of a Simple Extension  

Let F be a field and α be an element not in F. A simple extension,  

denoted F(α), is the smallest field containing both F and the element  

α.  

There are two main cases to consider:  

1. Algebraic case: When α is algebraic over F  1313131313

2. Transcendental case: When α is transcendental over F  

Properties of Simple Extensions  

Property 1: Structure of F(α) when α is algebraic over F  

If α is algebraic over F with minimal polynomial p(x), then:  

F(α) ≅ F[x]/(p(x))  

This means that F(α) is isomorphic to the quotient ring of polynomials  

F[x] modulo the ideal generated by p(x).  

Furthermore, elements of F(α) can be expressed as:  

F(α) = {a₀ + a₁α + a₂α² + ... + aₙ₋₁αⁿ⁻¹ | aᵢ ∈ F}  

where n is the degree of the minimal polynomial p(x).  

Property 2: Structure of F(α) when α is transcendental over F  

If α is transcendental over F, then:  

F(α) ≅ F(x)  



which means F(α) is isomorphic to the field of rational functions in  Notes  

Elements of F(α) can be expressed as:  

F(α) = {f(α)/g(α) | f(x), g(x) ∈ F[x], g(α) ≠ 0}  

Property 3: Degree of a Simple Extension  

For an algebraic element α over F, the degree of the extension [F(α):F]  

Property 4: Tower Law for Simple Extensions  

If K = F(α) and L = K(β), then L = F(α,β). Furthermore, [L:F] =  

[L:K]·[K:F].  

Property 5: Primitive Element Theorem (Preview)  

If F is a field of characteristic 0 and K/F is a finite extension, then K =  141414141414

Examples of Simple Extensions  

Example 1: Q(√2)  

The extension Q(√2) is a simple extension of Q obtained by adjoining  

√2.  

Since √2 is a root of the polynomial p(x) = x² - 2, which is irreducible  

over Q, the minimal polynomial of √2 over Q is x² - 2.  

Therefore:  

•

•

[Q(√2):Q] = 2  

Every element of Q(√2) can be written as a + b√2, where a,  

b ∈ Q  

Example 2: Q(i)  

The extension Q(i) is a simple extension of Q obtained by adjoining i  

= √(-1).  
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one variable over F.  

equals the degree of the minimal polynomial of α over F.  

F(α) for some α ∈ K. In other words, K is a simple extension of F.  



Since i is a root of the polynomial p(x) = x² + 1, which is irreducible  

over Q, the minimal polynomial of i over Q is x² + 1.  
Notes  

Therefore:  

•

•

[Q(i):Q] = 2  

Every element of Q(i) can be written as a + bi, where a, b ∈ Q  

Example 3: Q(π)  

Since π is transcendental over Q (a famous result proved by  

Lindemann in 1882), the extension Q(π) is a transcendental extension.  

Therefore:  

•

•

•

Q(π) consists of all rational functions in π with coefficients in  

Q

Elements have the form f(π)/g(π) where f, g are polynomials  

with coefficients in Q and g(π) ≠ 0  

[Q(π):Q] is infinite  

Applications of Simple Extensions  

Simple extensions are fundamental building blocks in field theory and  

have numerous applications:  

1. Constructibility problems: Determining which numbers can be  

constructed using ruler and compass  

2. Solving polynomial equations: Understanding when  

polynomial equations are solvable by radicals  

3. Cyclotomic extensions: Creating fields that contain primitive  

roots of unity  

4. Number theory: Studying algebraic numbers and their  

properties  

3.6 Algebraic Extensions: Definitions and Examples  



Definition of an Algebraic Extension  Notes  

Let F ⊆ K be a field extension. We say that K is an algebraic  5858

Recall that an element α ∈ K is algebraic over F if there exists a non-  1313131313

zero polynomial p(x) ∈ F[x] such that p(α) = 0.  

Properties of Algebraic Extensions  

Property 1: Transitivity of Algebraic Extensions  

If F ⊆ K ⊆ L are fields such that K is algebraic over F and L is  

Property 2: Algebraic Elements Form a Field  

If F ⊆ K is a field extension, then the set of all elements in K that are  141414141414 1313131313

algebraic over F forms a field.  

Property 3: Finite Extensions are Algebraic  

If F ⊆ K is a field extension with [K:F] finite, then K is an algebraic  

Property 4: Degree of an Algebraic Extension  

If K is an algebraic extension of F, then [K:F] equals the cardinality of  

a basis of K as a vector space over F (possibly infinite).  

Property 5: Products of Algebraic Extensions  

If K₁ and K₂ are algebraic extensions of F contained in some larger  

Examples of Algebraic Extensions  

Example 1: Q(√2, √3)  

The field Q(√2, √3) is obtained by adjoining both √2 and √3 to Q.  

Since both √2 and √3 are algebraic over Q, this is an algebraic  141414141414

extension.  
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extension of F if every element of K is algebraic over F.  

algebraic over K, then L is algebraic over F.  

extension of F.  

field, then the compositum K₁K₂ is also an algebraic extension of F.  



•

•

•

[Q(√2, √3):Q] = 4  Notes  

A basis for Q(√2, √3) over Q is {1, √2, √3, √2·√3}  

Every element can be written as a + b√2 + c√3 + d√2·√3  

where a, b, c, d ∈ Q  

Example 2: Q(2^(1/3))  

The field Q(2^(1/3)) is obtained by adjoining the real cube root of 2 to  

Q.  

Since 2^(1/3) is a root of x³ - 2, which is irreducible over Q, we have:  

•

•

•

[Q(2^(1/3)):Q] = 3  

A basis for Q(2^(1/3)) over Q is {1, 2^(1/3), 2^(2/3)}  

Every element can be written as a + b·2^(1/3) + c·2^(2/3)  

where a, b, c ∈ Q  

Example 3: The Algebraic Closure of Q  

forms an algebraic extension of Q.  

This extension has the following properties:  

•

• Every polynomial in Q[x] splits completely into linear factors  5858

•

•

Example 4: Field of Algebraic Numbers  

The field of all algebraic numbers, A, is the set of all complex  5656

numbers that are algebraic over Q.  

This is an algebraic extension of Q with infinite degree.  

The set of all complex numbers that are algebraic over Q, denoted Q,  5656 ̄

Q is algebraic over Q  ̄

over Q  ̄

[Q:Q] is infinite  ̄

Q is countably infinite  ̄



Example 5: Finite Fields  Notes  

For a prime p and a positive integer n, the finite field GF(p^n) is an  

algebraic extension of GF(p) of degree n.  

Algebraic vs. Transcendental Extensions  

An extension that is not algebraic is called transcendental. Here's a  

comparison:  

Algebraic Extensions:  

• Every element satisfies a polynomial equation with  

coefficients in the base field  

•

•

Can have finite or infinite degree  

Examples: Q(√2), Q(i), Q(2^(1/3))  

Transcendental Extensions:  

• Contain at least one element that doesn't satisfy any  141414141414

polynomial equation with coefficients in the base field  

•

•

Always have infinite degree  

Examples: Q(π), Q(e), R(x) (rational functions)  

Algebraic Closure  

Definition  

of F that is algebraically closed (meaning every non-constant  

Properties of Algebraic Closures  

1. Every field has an algebraic closure (requires Zorn's Lemma)  

2. The algebraic closure is unique up to isomorphism  
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An algebraic closure of a field F, denoted F, is an algebraic extension  ̄

̄polynomial in F[x] has a root in F).  ̄

3. If F has characteristic 0, then F has characteristic 0  ̄



Notes  

Example: Algebraic Closure of the Real Numbers  

The algebraic closure of R is C, the field of complex numbers.  

Solved Problems  

Problem 1: Find the minimal polynomial of √2 + √3 over Q.  

Solution: Let α = √2 + √3. We need to find the minimal polynomial of  

α over Q.  

Step 1: Calculate the powers of α. α = √2 + √3 α² = (√2 + √3)² = 2 + 3  

+ 2√2·√3 = 5 + 2√6  

Step 2: Calculate α² - 5 = 2√6, so (α² - 5)² = 24 (α² - 5)² = 24 α⁴ - 10α²  

+ 25 = 24 α⁴ - 10α² + 1 = 0  

Step 3: Check that this polynomial is irreducible over Q. If p(x) = x⁴ -  

10x² + 1 were reducible, it would factor as a product of two quadratic  

polynomials. We can verify that no such factorization exists using the  

rational root theorem and checking possible quadratic factors.  

Therefore, the minimal polynomial of √2 + √3 over Q is x⁴ - 10x² + 1.  

Problem 2: Determine the degree of the extension Q(√2, √3, √5)  

over Q.  

Solution: Step 1: Consider the tower of extensions: Q ⊆Q(√2) ⊆  

Q(√2, √3) ⊆ Q(√2, √3, √5)  

Step 2: Calculate the degrees of each extension. [Q(√2):Q] = 2 since  

the minimal polynomial of √2 over Q is x² - 2. [Q(√2, √3):Q(√2)] = 2  

since the minimal polynomial of √3 over Q(√2) is x² - 3. [Q(√2, √3,  

√5):Q(√2, √3)] = 2 since the minimal polynomial of √5 over Q(√2,  

√3) is x² - 5.  

Step 3: Apply the tower law. [Q(√2, √3, √5):Q] = [Q(√2, √3,  

√5):Q(√2, √3)] × [Q(√2, √3):Q(√2)] × [Q(√2):Q] [Q(√2, √3, √5):Q] =  

2 × 2 × 2 = 8  

4. If F has characteristic p > 0, then F has characteristic p  ̄



Therefore, the degree of Q(√2, √3, √5) over Q is 8.  Notes  

Problem 3: Determine if the extension Q(√2, 3√5) over Q is a  

simple extension.  

Solution: Step 1: Consider α = √2 + 3√5. Let's check if Q(√2, 3√5) =  

Q(α).  

Step 2: Show that √2 and 3√5 can be expressed in terms of α and  

elements of Q. α = √2 + 3√5 α² = (√2)² + 6√2·√5 + 9(√5)² = 2 + 6√10  

+ 45 = 47 + 6√10  

If we let β = α² - 47, then β = 6√10. β² = 36 · 10 = 360, so √10 = β/6.  

Now, (√2)(√10) = √20 = 2√5, so √5 = (√2)(√10)/2. Therefore, √5 =  

(√2)(β/6)/2 = (√2)(β)/12.  

Since we know β in terms of α, we can express √5 in terms of α and  

elements of Q. Then, 3√5 = 3(√2)(β)/12 = (√2)(β)/4.  

Also, √2 = α - 3√5 = α - (√2)(β)/4. 4√2 = 4α - (√2)(β). 4√2 + (√2)(β) =  

4α. √2(4 + β) = 4α. √2 = 4α/(4 + β).  

Step 3: Since both √2 and 3√5 can be expressed in terms of α and  

elements of Q, we have Q(√2, 3√5) = Q(α).  

Therefore, Q(√2, 3√5) is a simple extension, specifically Q(√2 + 3√5).  

Problem 4: Find a basis for Q(√2, i) over Q and determine its  

degree.  

Solution: Step 1: Consider the tower of extensions: Q ⊆ Q(i) ⊆Q(i,  

√2)  

Step 2: Calculate the degrees of each extension. [Q(i):Q] = 2 since the  

minimal polynomial of i over Q is x² + 1. [Q(i, √2):Q(i)] = 2 since the  

minimal polynomial of √2 over Q(i) is x² - 2.  

Step 3: Apply the tower law. [Q(i, √2):Q] = [Q(i, √2):Q(i)] × [Q(i):Q]  

= 2 × 2 = 4  
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Step 4: Find a basis for Q(i, √2) over Q. Since [Q(i, √2):Q] = 4, we  

need four linearly independent elements. A basis for Q(i) over Q is {1,  

i}. A basis for Q(i, √2) over Q(i) is {1, √2}.  

Notes  

The complete basis for Q(i, √2) over Q is: {1, i, √2, i√2}  

Any element of Q(i, √2) can be written uniquely as a + bi + c√2 +  

di√2, where a, b, c, d ∈ Q.  

Problem 5: Prove that if α is algebraic over F with minimal  

polynomial p(x), then F(α) ≅ F[x]/(p(x)).  

Solution: Step 1: Define a ring homomorphism φ: F[x] → F(α) by  

φ(f(x)) = f(α).  

•

•

•

φ(f(x) + g(x)) = (f + g)(α) = f(α) + g(α) = φ(f(x)) + φ(g(x))  

φ(f(x) · g(x)) = (f · g)(α) = f(α) · g(α) = φ(f(x)) · φ(g(x))  

φ(1) = 1  

Step 3: Determine the kernel of φ. The kernel of φ is the set of all  48

polynomials f(x) ∈ F[x] such that f(α) = 0. Since p(x) is the minimal  

polynomial of α over F, any polynomial f(x) such that f(α) = 0 must be  

divisible by p(x). Therefore, ker(φ) = (p(x)), the ideal generated by  

p(x).  

Step 4: By the First Isomorphism Theorem, we have: F[x]/ker(φ)  

≅Im(φ) F[x]/(p(x)) ≅Im(φ)  

Step 5: Show that Im(φ) = F(α). Clearly, Im(φ) ⊆ F(α) since φ maps  

into F(α). F(α) is the smallest field containing F and α, and Im(φ)  

contains F (as constants) and α (as φ(x)). Since Im(φ) is a ring and  

contains inverses for all non-zero elements (due to the fact that p(x) is  

irreducible), Im(φ) is a field. Therefore, F(α) ⊆Im(φ), and we have  

Im(φ) = F(α).  

Step 6: Conclude that F(α) ≅ F[x]/(p(x)).  

Step 2: Verify that φ is indeed a ring homomorphism.  



Unsolved Problems  

Problem 1:  

Notes  

Determine whether the extension Q(2^(1/4), i) over Q is a simple  

extension. If it is, find an element α such that Q(2^(1/4), i) = Q(α).  

Problem 2:  

Let F = Q(√2) and K = F(√3, √5). Find the degree [K:F] and  

Problem 3:  

Prove that if F is a field of characteristic 0 and α, β are algebraic  

elements over F that are not in F, then α + β, α - β, αβ, and α/β (if β ≠  

Problem 4:  

Find the minimal polynomial of α = cos(2π/7) over Q.  

Problem 5:  

If F ⊆ K is a field extension and α ∈ K is transcendental over F, prove  

that [F(α, α²):F(α)] = 1 and [F(α, 1/α):F(α)] = 1.  

Summary of Key Concepts  

1. Simple Extensions:  

o

o

o

F(α) is the smallest field containing F and the element  

α

If α is algebraic with minimal polynomial p(x), then  

F(α) ≅ F[x]/(p(x))  

If α is transcendental, then F(α) ≅ F(x), the field of  

rational functions  

2. Algebraic Extensions:  
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determine a basis for K over F.  

0) are all algebraic over F.  



o An extension K/F is algebraic if every element of K is  

algebraic over F  
Notes  

o

o

o

Finite extensions are always algebraic  

Algebraic extensions are transitive  

The set of all algebraic elements over a field forms a  

field  

3. Degree of Extensions:  

o For algebraic α, [F(α):F] equals the degree of the  

minimal polynomial  

o

o

The tower law: [L:F] = [L:K] × [K:F]  

The degree of a finite extension equals the dimension  

as a vector space  

4. Basis Representation:  

o For algebraic α with minimal polynomial of degree n,  

elements of F(α) can be written as linear combinations  

of {1, α, α², ..., α^(n-1)}  

o A basis allows us to represent and compute with  

elements of field extensions  

5. Minimal Polynomials:  

o The minimal polynomial is the monic polynomial of  

least degree with coefficients in F that has α as a root  

o

o

The minimal polynomial is always irreducible  

Finding minimal polynomials is a key technique in  

studying field extensions  

These concepts form the foundation for understanding more complex  

field extensions and their applications in various areas of  



mathematics, including Galois theory, algebraic geometry, and  Notes  

3.7 Finite Extensions and Their Structure  

Introduction to Finite Extensions  

A field extension L over a field K (denoted as L/K) is called a finite  

extension if L has finite dimension as a vector space over K. This  

dimension is called the degree of the extension, written as [L:K].  

Finite extensions are fundamental objects in field theory and have  

In this section, we'll explore their structure and key properties.  

Basic Properties of Finite Extensions  

Degree of an Extension  

For a field extension L/K, if L is a finite-dimensional vector space  

over K, then the dimension [L:K] is called the degree of the extension.  

For example, if we consider ℚ(√2) over ℚ, any element can be written  353535

as a + b√2 where a,b∈ ℚ. The set {1, √2} forms a basis for ℚ(√2) over  

ℚ, so [ℚ(√2):ℚ] = 2.  

Tower Law  

If K ⊆ L ⊆ M are fields, then:  

[M:K] = [M:L][L:K]  

This multiplicative property is extremely useful in computing degrees  

of complicated extensions.  

Simple Extensions  

An extension L/K is called simple if L = K(α) for some element α ∈ L.  

When α is algebraic over K, the degree [K(α):K] equals the degree of  

the minimal polynomial of α over K.  

Algebraic Extensions  
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An element α is algebraic over K if it satisfies a non-zero polynomial  

with coefficients in K. An extension L/K is algebraic if every element  

of L is algebraic over K.  

Notes  

All finite extensions are algebraic, but not all algebraic extensions are  

finite.  

Properties of Algebraic Extensions  

1. If α is algebraic over K, then K(α)/K is a finite extension.  

2. If L/K is a finite extension, then L/K is algebraic.  

3. The composition of algebraic extensions is algebraic.  

Primitive Element Theorem  

A fundamental result about finite extensions is the Primitive Element  

Theorem:  

If L/K is a finite separable extension, then L = K(α) for some α ∈ L.  

This means that any finite separable extension is simple.  

Separable and Inseparable Extensions  

Separability  

An irreducible polynomial p(x) over a field K is separable if it has no  

repeated roots in its splitting field. An algebraic element α over K is  

separable if its minimal polynomial over K is separable.  

An extension L/K is separable if every element of L is separable over  

K.  

Separable Degree  

For an extension L/K, the separable degree [L:K]s is the maximum  

degree of a separable subextension of L/K.  

Inseparable Degree  

The inseparable degree [L:K]i is defined as [L:K]i = [L:K]/[L:K]s.  



Normal Extensions  Notes  

An algebraic extension L/K is normal if every irreducible polynomial  

in K[x] that has one root in L has all its roots in L.  

Equivalently, L/K is normal if L is the splitting field of a family of  

polynomials over K.  

Galois Extensions  

A field extension L/K is Galois if it is both normal and separable. For  

a Galois extension L/K:  

1. The Galois group Gal(L/K) consists of all field automorphisms  

of L that fix K.  

2. |Gal(L/K)| = [L:K]  

3. There is a one-to-one correspondence between intermediate  

fields and subgroups of the Galois group.  

Examples of Finite Extensions  

Example 1: ℚ(√2)/ℚ  

•

•

•

•

•

Degree: [ℚ(√2):ℚ] = 2  

Basis: {1, √2}  

Minimal polynomial of √2 over ℚ: x² - 2  

This is a simple, separable, and normal extension.  

Galois group: ℤ₂  

Example 2: ℚ(∛2)/ℚ  

•

•

•

•

Degree: [ℚ(∛2):ℚ] = 3  

Basis: {1, ∛2, (∛2)²}  

Minimal polynomial of ∛2 over ℚ: x³ - 2  

This is a simple extension but not normal.  
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Example 3: ℚ(√2, √3)/ℚ  Notes  

• Using the tower law: [ℚ(√2, √3):ℚ]  = [ℚ(√2,  

√3):ℚ(√2)][ℚ(√2):ℚ]  

•

•

•

•

•

[ℚ(√2):ℚ] = 2  

[ℚ(√2, √3):ℚ(√2)] = 2 (since √3 is not in ℚ(√2))  

Therefore, [ℚ(√2, √3):ℚ] = 2 × 2 = 4  

Basis: {1, √2, √3, √6}  

This is a Galois extension with Galois group isomorphic to  262626

Klein four-group.  

3.8 Construction of Finite Fields  

Introduction to Finite Fields  

A finite field (or Galois field) is a field with a finite number of  353535

elements. The order of a finite field (the number of elements) must be  262626

For each prime power pⁿ, there exists exactly one finite field up to  353535

isomorphism, denoted as GF(pⁿ) or Fpⁿ.  

Construction of Prime Fields  

The simplest finite fields are those of prime order, denoted GF(p) or  

Fp. These can be constructed as ℤ/pℤ, the integers modulo p.  

For example, F₃ = {0, 1, 2} with addition and multiplication defined  

modulo 3.  

Construction of Extension Fields  

For constructing finite fields of order pⁿ where n > 1, we need to  

construct field extensions of degree n over Fp.  

Method 1: Using Irreducible Polynomials  

To construct GF(pⁿ):  

a prime power pⁿ, where p is a prime and n is a positive integer.  



1. Find an irreducible polynomial f(x) of degree n over Fp.  

2. Form the quotient ring Fp[x]/(f(x)).  

Notes  

3. This quotient ring is a field with pⁿ elements.  

Method 2: As Splitting Fields  

GF(pⁿ) can also be constructed as the splitting field of the polynomial  

xpⁿ - x over Fp.  

Properties of the Construction  

1. Every element of GF(pⁿ) is a root of the polynomial xpⁿ - x.  262626

2. GF(pⁿ) is the splitting field of xpⁿ - x over Fp.  

3. The multiplicative group GF(pⁿ)* is cyclic of order pⁿ - 1.  

Examples of Finite Field Constructions  

Example 1: Construction of GF(4)  

To construct GF(4) = F₂²:  

1. Find an irreducible polynomial of degree 2 over F₂: f(x) = x² +  

x + 1  

2. F₂² = F₂[x]/(x² + x + 1)  

3. Elements: {0, 1, α, α+1} where α represents the coset x + (x² +  

x + 1)  

4. Addition and multiplication tables can be derived using the  

condition α² + α + 1 = 0  

Example 2: Construction of GF(8)  

To construct GF(8) = F₂³:  

1. Find an irreducible polynomial of degree 3 over F₂: f(x) = x³ +  

x + 1  

2. F₂³ = F₂[x]/(x³ + x + 1)  
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3. Elements: {0, 1, α, α², α+1, α²+1, α²+α, α²+α+1} where α  Notes  
represents the coset x + (x³ + x + 1)  

4. Operations defined via the condition α³ + α + 1 = 0  

Example 3: Construction of GF(9)  

To construct GF(9) = F₃²:  

1. Find an irreducible polynomial of degree 2 over F₃: f(x) = x² +  2222

1

2. F₃² = F₃[x]/(x² + 1)  

3. Elements: {0, 1, 2, α, 2α, α+1, α+2, 2α+1, 2α+2} where α  

represents the coset x + (x² + 1)  

4. Operations defined via the condition α² = -1 = 2 (in F₃)  

Computational Techniques  

Finding Irreducible Polynomials  

A polynomial of degree n over Fp is irreducible if and only if:  

1. It divides xpⁿ - x  

2. It does not divide xpᵏ - x for any k < n  

Alternatively, we can check if the polynomial has no roots in Fp and  

is not divisible by any irreducible polynomial of lower degree.  

Primitive Polynomials  

A polynomial f(x) of degree n over Fp is primitive if its roots generate  

the multiplicative group of GF(pⁿ).  

Primitive polynomials are particularly useful in applications like  

linear feedback shift registers.  

3.9 Properties and Applications of Finite Fields  

Structural Properties of Finite Fields  



Order and Characteristic  Notes  

• A finite field GF(pⁿ) has pⁿ elements, where p is a prime (the  

The additive group of GF(pⁿ) is isomorphic to (ℤp)ⁿ.  

The multiplicative group GF(pⁿ)* is cyclic of order pⁿ - 1.  

•

•

Primitive Elements  

A primitive element (or generator) of GF(pⁿ) is an element whose  

powers generate all non-zero elements of the field.  

Every finite field has at least one primitive element. In fact, the  

number of primitive elements in GF(pⁿ) is φ(pⁿ - 1), where φ is Euler's  

totient function.  

Subfield Structure  

If GF(pᵐ) is a subfield of GF(pⁿ), then m divides n. Conversely, if m  

divides n, then GF(pᵐ) is isomorphic to a subfield of GF(pⁿ).  

The subfields of GF(pⁿ) form a lattice isomorphic to the lattice of  

divisors of n.  

Field Automorphisms  

Frobenius Automorphism  

For any finite field GF(pⁿ), the map σ: x ↦ xᵖ is an automorphism  

called the Frobenius automorphism.  

The group of automorphisms of GF(pⁿ) over Fp is cyclic of order n,  

generated by the Frobenius automorphism.  

Fixed Fields  

For any divisor m of n, the fixed field of σᵐ is GF(pᵐ).  

Polynomial Factorization over Finite Fields  

Factorization Patterns  
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The polynomial xpⁿ - x factors as the product of all monic irreducible  Notes  
polynomials over Fp whose degrees divide n.  

Counting Irreducible Polynomials  

The number of monic irreducible polynomials of degree d over Fp is  

given by:  

N(p,d) = (1/d)∑ᵢ μ(i)p^(d/i)  

where the sum is over all divisors i of d, and μ is the Möbius function.  

Trace and Norm  

Trace Function  

For an element α in GF(pⁿ) over the subfield GF(pᵐ), the trace is  

defined as:  

Tr(α) = α + αᵖᵐ + αᵖ²ᵐ + ... + αᵖ⁽ⁿ/ᵐ⁻¹⁾ᵐ  

The trace function is a linear transformation from GF(pⁿ) to GF(pᵐ).  

Norm Function  

Similarly, the norm of α is defined as:  

N(α) = α · αᵖᵐ · αᵖ²ᵐ · ... · αᵖ⁽ⁿ/ᵐ⁻¹⁾ᵐ  

The norm function is multiplicative and maps GF(pⁿ) to GF(pᵐ).  

Applications of Finite Fields  

Coding Theory  

Finite fields are essential in the construction of error-correcting codes  

such as:  

•

•

•

Reed-Solomon codes  

BCH codes  

Algebraic geometric codes  

These codes are used in digital communications, data storage, and  

satellite communications.  



Cryptography  Notes  

Finite fields play a crucial role in modern cryptography:  

• In AES (Advanced Encryption Standard), operations are  

performed in GF(2⁸)  

•

•

Elliptic curve cryptography operates over finite fields  

Many public-key cryptosystems rely on the discrete logarithm  

problem in finite fields  

Computer Algebra  

Finite fields are used in:  

•

•

•

Polynomial factorization algorithms  

Solving systems of polynomial equations  

Computational number theory  

Combinatorial Designs  

Finite fields are used to construct various combinatorial designs:  

•

•

•

Finite projective planes  

Block designs  

Difference sets  

Algebraic Geometry  

Finite fields provide concrete examples for studying:  

•

•

•

Algebraic curves  

Zeta functions  

Discrete Fourier transform  

Solved Problems  

Problem 1: Determine the degree of the extension ℚ(√2, √3, √5)/ℚ.  
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Solution: We can use the tower law to compute this degree: [ℚ(√2, √3,  

√5):ℚ] = [ℚ(√2, √3, √5):ℚ(√2, √3)][ℚ(√2, √3):ℚ(√2)][ℚ(√2):ℚ]  
Notes  

Step 1: [ℚ(√2):ℚ] = 2 since the minimal polynomial of √2 over ℚ is x²  

- 2.  

Step 2: [ℚ(√2, √3):ℚ(√2)] = 2 since √3 is not in ℚ(√2) and its minimal  

polynomial over ℚ(√2) is x² - 3.  

Step 3: We need to determine if √5 belongs to ℚ(√2, √3). If √5 ∈ℚ(√2,  

√3), then √5 = a + b√2 + c√3 + d√2√3 for some a, b, c, d ∈ ℚ.  

Squaring both sides: 5 = (a + b√2 + c√3 + d√2√3)² = a² + 2b² + 3c² +  

6d² + 2ab√2 + 2ac√3 + 2ad√2√3 + 2bc√2√3 + 2bd√6 + 2cd√6  

For this to equal 5, we need: a² + 2b² + 3c² + 6d² = 5 ab = ac = ad = bc  

= bd = cd = 0  

These equations have no rational solutions except the trivial a = b = c  

= d = 0, which doesn't give √5. Therefore, √5 ∉ℚ(√2, √3), so [ℚ(√2,  

√3, √5):ℚ(√2, √3)] = 2.  

Thus, [ℚ(√2, √3, √5):ℚ] = 2 × 2 × 2 = 8.  

Problem 2: Construct the finite field GF(4) and provide its  

addition and multiplication tables.  

Solution: To construct GF(4), we need an irreducible polynomial of  

degree 2 over F₂. The polynomial x² + x + 1 is irreducible over F₂.  

Therefore, GF(4) = F₂[x]/(x² + x + 1).  

Let α represent the coset x + (x² + x + 1). Then GF(4) = {0, 1, α,  

α+1}.  

From the relation x² + x + 1 = 0, we get α² + α + 1 = 0, which implies  

α² = α + 1.  

Addition Table (using modulo 2 addition):  

+ | 0 1 α α+1  

-------------------  



0 | 0 1 α α+1  Notes  

1 | 1 0 α+1 α  

α | α α+1 0 1  

α+1| α+1 α 1 0  

Multiplication Table:  

× | 0 1 α α+1  

-------------------  

0 | 0 0 0 0  

1 | 0 1 α α+1  

α | 0 α α+1 1  

α+1| 0 α+1 1 α  

To verify these tables, let's compute some entries:  

•

•

•

α × α = α² = α + 1 (from our relation)  

α × (α+1) = α² + α = (α+1) + α = 1  

(α+1) × (α+1) = α² + α + α + 1 = α² + 1 = (α+1) + 1 = α  

Problem 3: Prove that xᵖ - x + a is irreducible over Fₚ for any a ≠  

0.  

Solution: We need to show that f(x) = xᵖ - x + a has no roots in Fₚ and  

is not divisible by any irreducible polynomial of degree less than p.  

Step 1: Check if f(x) has roots in Fₚ. For any b ∈ Fₚ, we have bᵖ = b  

(by Fermat's Little Theorem). So f(b) = bᵖ - b + a = b - b + a = a. Since  

a ≠ 0, f(b) ≠ 0 for all b ∈ Fₚ. Thus, f(x) has no roots in Fₚ.  

Step 2: Show that f(x) is not divisible by any irreducible polynomial  

of degree d where 1 < d < p.  

Let's use the characteristic of the derivative. The derivative of f(x) is  

f'(x) = pxᵖ⁻¹ - 1 = -1 (since p = 0 in Fₚ).  
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Since f'(x) = -1 ≠ 0, f(x) and f'(x) are coprime. This means f(x) has no  Notes  
repeated factors.  

Now, if f(x) were divisible by an irreducible polynomial g(x) of  

degree d where 1 < d < p, then f(x) would have a root α in some  

extension field of Fₚ with [Fₚ(α):Fₚ] = d.  

However, we can show that for any root α of f(x), the elements α, α+1,  

α+2, ..., α+(p-1) form a set of p distinct roots of f(x).  

Since f(α) = 0, we have αᵖ = α - a. Now, for any i∈ Fₚ, compute f(α+i):  

f(α+i) = (α+i)ᵖ - (α+i) + a = αᵖ + iᵖ - α - i + a (since (x+y)ᵖ = xᵖ + yᵖ in  

Fₚ) = αᵖ + i - α - i + a (since iᵖ = i in Fₚ) = αᵖ - α + a = 0  

So f(x) has at least p roots. But f(x) has degree p, so it can have at  

most p roots. Therefore, f(x) must have exactly p roots and must be  

irreducible over Fₚ.  

Problem 4: Find all subfields of GF(64).  

Solution: GF(64) = GF(2⁶)  

The subfields of GF(2⁶) are GF(2ᵏ) where k divides 6. The divisors of  

6 are 1, 2, 3, and 6.  

Therefore, the subfields of GF(64) are:  

•

•

•

•

GF(2¹) = GF(2) (the prime field)  

GF(2²) = GF(4)  

GF(2³) = GF(8)  

GF(2⁶) = GF(64) (the field itself)  

To verify this, we can check the subfield criterion: GF(pᵐ) is a  

subfield of GF(pⁿ) if and only if m divides n.  

Problem 5: Determine the number of irreducible polynomials of  

degree 4 over F₃.  



Solution: We can use the formula for counting monic irreducible  

polynomials:  
Notes  

N(p,d) = (1/d)∑ᵢ μ(i)p^(d/i)  

where the sum is over all divisors i of d, and μ is the Möbius function.  

For p = 3 and d = 4, the divisors of 4 are 1, 2, 4. μ(1) = 1 μ(2) = -1  

μ(4) = 0  

N(3,4) = (1/4)[μ(1)·3⁴ + μ(2)·3² + μ(4)·3¹] = (1/4)[1·81 - 1·9 + 0·3] =  

(1/4)[81 - 9] = (1/4)[72] = 18  

Therefore, there are 18 irreducible polynomials of degree 4 over F₃.  

To verify this another way, the polynomial x³⁴ - x splits completely  

over F₃⁴ and factors as the product of all monic irreducible  

polynomials over F₃ whose degrees divide 4.  

The total number of monic polynomials of degree dividing 4 is:  2222

•

•

•

Degree 1: 3 polynomials (x, x-1, x-2)  

Degree 2: 9 polynomials  

Degree 4: 81 polynomials  

Of these, we know:  

•

•

•

3 are irreducible of degree 1  

N(3,2) = 3 are irreducible of degree 2  

N(3,4) are irreducible of degree 4  

So we have: 3·1 + 3·2 + N(3,4)·4 = 81 This gives: N(3,4) = (81 - 3 -  

6)/4 = 18  

Unsolved Problems  

Problem 1: Let α be a root of x⁴ + x + 1 over F₂. Determine the  

minimal polynomial of α² + α over F₂.  
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Problem 2: Prove that in a finite field of characteristic p, the map f(x)  Notes  
= xᵖ is an automorphism.  

Problem 3: Determine the number of primitive elements in GF(2⁸).  

Problem 4: Find all elements α in GF(16) such that α⁵ = 1.  

Problem 5: Let p be a prime and let F be a field with p² elements. If α  

is an element of F that is not in the prime subfield, show that F =  

Fp(α).  

Multiple Choice Questions (MCQs)  

1. An extension field of a field F is:  

a) A subset of F  

b) A field containing F as a subfield  

c) A group containing F  

d) None of the above  

2. An element is algebraic over a field F if:  29

a) It satisfies a polynomial equation with coefficients in F  

b) It is not a root of any polynomial in F[x]  

c) It is transcendental over F  

d) None of the above  

3. A simple extension of a field F is:  

a) An extension generated by one element  

b) A transcendental extension  

c) An infinite extension  

d) None of the above  

4. Finite fields are also known as:  

a) Prime fields  

b) Algebraic extensions  

c) Galois fields  

d) None of the above  

5. Every finite field has:  

a) A prime number of elements  



b) A power of a prime number of elements  

c) An infinite number of elements  

d) None of the above  

Notes  

6. The characteristic of a finite field of order pn is:  

a) 0  

b) p  

c) n  

d) None of the above  

7. The minimal polynomial of an algebraic element is:  

a) The lowest-degree polynomial it satisfies  

b) A polynomial with no roots in any field  

c) The product of all polynomials it satisfies  

d) None of the above  

8. The multiplicative group of a finite field is:  

a) Cyclic  

b) Abelian but not cyclic  

c) Non-abelian  

d) None of the above  

Short Answer Questions  

1. What is an extension field? Provide an example.  

2. Differentiate between algebraic and transcendental elements.  

3. Define an irreducible polynomial and give an example.  

4. What is a simple extension of a field?  

6. How do we construct finite fields?  

7. What is the characteristic of a finite field?  

8. Give an example of a finite field and explain its structure.  
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5. Explain the significance of algebraic extensions in field theory.  



9. Define the degree of a field extension and provide an example.  

10. Why is the multiplicative group of a finite field always cyclic?  

Long Answer Questions  

Notes  

1. Explain in detail the concept of extension fields and their  

importance in algebra.  

2. Differentiate between algebraic and transcendental numbers  

with examples.  

3. Define irreducible polynomials and explain their role in  

constructing field extensions.  

4. Discuss simple extensions and their applications in field  

5. How do we classify algebraic extensions? Give examples.  

6. Explain the structure and properties of finite fields.  

7. What is the significance of the minimal polynomial in field  

theory? Provide detailed examples.  

8. Prove that the multiplicative group of a finite field is cyclic.  

9. Discuss the applications of finite fields in cryptography and  

10. How do field extensions help in understanding the solutions of  

polynomial equations?  

theory.  

coding theory.  



MODULE IV  

UNIT X  

Notes  

AUTOMORPHISMS OF FIELDS  

Objectives  

•

•

•

Understand the concept of field automorphisms.  

Learn about conjugation isomorphisms and their significance.  

Explore the relationship between automorphisms and fixed  

fields.  

•

•

Study the Frobenius automorphism and its applications.  

Analyze the structure and importance of splitting fields.  

4.1 Introduction to Field Automorphisms  

Field automorphisms are fundamental structures in modern algebra  

that help us understand the internal symmetries and structures of  

fields. These mathematical objects serve as critical tools in various  

and number theory. At the most basic level, a field automorphism is a  

structure-preserving mapping of a field to itself. Unlike general field  

homomorphisms that can map between different fields,  

automorphisms specifically deal with self-mappings. This restriction  

makes them particularly useful for studying the internal structure of a  

single field. The study of field automorphisms originated in the early  

19th century, primarily through the work of Évariste Galois. His  

groundbreaking insights connected the automorphisms of a field with  

the solvability of polynomial equations, establishing what we now  

know as Galois theory. This connection revealed that the structure of  

automorphism groups directly relates to the structural properties of the  

field itself.  

Field automorphisms preserve all the essential field operations —  

addition and multiplication — while maintaining the distinct identities  
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branches of mathematics, including Galois theory, algebraic geometry,  



of the field. This preservation property ensures that the algebraic  

automorphisms must be bijective, meaning they establish a one-to-one  

correspondence between elements. Consider a simple example: the  

field of real numbers. The identity mapping, which maps each real  

number to itself, is the only field automorphism of the reals. However,  

for more complex fields like the complex numbers, additional  

automorphisms exist, such as complex conjugation, which maps a  

complex number to its conjugate. The collection of all automorphisms  

of a field forms a group under composition, known as the  

automorphism group. This group structure provides deep insights into  

the field's properties. For instance, in Galois theory, the automorphism  

group of a field extension directly relates to the structure of  

polynomial equations that have roots in that extension. Field  

automorphisms also play crucial roles in understanding field  

extensions. When we extend a field by adjoining elements, the  

automorphisms that fix the original field help us analyze the structure  

of the extension. This connection proves invaluable in determining  

which polynomial equations are solvable by radicals and which are  

not. As we delve deeper into field automorphisms, we'll explore their  

formal definitions, examine concrete examples, study specific types  

like conjugation isomorphisms, and investigate the concept of fixed  

fields, which provides a powerful tool for analyzing field structures  

and extensions.  

Notes  

4.2 Definition and Examples of Field Automorphisms  

Definition of Field Automorphisms  

A field automorphism is a bijective mapping from a field to itself that  

preserves the field operations. Formally, if F is a field, then a function  

σ: F → F is a field automorphism if it satisfies the following  

conditions:  

1. Bijective: σ is both injective (one-to-one) and surjective (onto)  

2. Preserves addition: For all a, b ∈ F, σ(a + b) = σ(a) + σ(b)  

structure remains intact under the mapping. Additionally,  



3. Preserves multiplication: For all a, b ∈ F, σ(a × b) = σ(a) ×  Notes  
σ(b)  

From these properties, several important consequences follow:  

•

•

•

•

σ(0) = 0 (preservation of additive identity)  

σ(1) = 1 (preservation of multiplicative identity)  

σ(-a) = -σ(a) (preservation of additive inverse)  

σ(a⁻¹) = σ(a)⁻¹ for a ≠ 0 (preservation of multiplicative inverse)  

The set of all automorphisms of a field F forms a group under  

function composition, denoted by Aut(F). This group structure is  

central to understanding the algebraic properties of the field itself.  

Examples of Field Automorphisms  

Example 1: The Identity Automorphism  

The simplest field automorphism is the identity automorphism, id: F  

every field and serves as the identity element in the automorphism  

group.  

Example 2: Automorphisms of Q  

The field of rational numbers Q has only one automorphism: the  

identity automorphism. This can be proven by noting that any  

automorphism must fix the integers (since it preserves addition and  

the multiplicative identity), and by extension, it must fix all rational  

numbers.  

Proof sketch: Let σ be an automorphism of Q. Then:  

•

•

σ(1) = 1 (preservation of multiplicative identity)  

σ(n) = σ(1 + 1 + ... + 1) = σ(1) + σ(1) + ... + σ(1) = n for any  

integer n  

• For any rational number p/q, σ(p/q) = σ(p)/σ(q) = p/q  
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→ F, defined by id(a) = a for all a ∈ F. This automorphism exists for  



Example 3: Automorphisms of R  Notes  

Similar to Q, the field of real numbers R also has only the identity  

automorphism. This result is less obvious and requires properties of  

Example 4: Automorphisms of C  

The complex field C has exactly two automorphisms:  

1. The identity automorphism: id(a + bi) = a + bi  

2. Complex conjugation: conj(a + bi) = a - bi  

The fact that these are the only automorphisms of C can be proven  

using the fact that any automorphism must fix the reals (which can be  

shown using properties of ordered fields) and must either fix i or map  

it to -i.  

Example 5: Automorphisms of Finite Fields  

For a finite field with p^n elements (where p is prime), there are  

exactly n automorphisms. For instance, consider the field F₄ = {0, 1,  

α, α+1} where α² + α + 1 = 0. The automorphisms are:  

1. The identity: id(x) = x for all x ∈ F₄  

2. The Frobenius automorphism: Frob(x) = x² for all x ∈ F₄  

Note that in F₄, x² = x for all elements, so the Frobenius  

automorphism is also the identity in this specific case.  

Example 6: Automorphisms of Q(√2)  

The field Q(√2) consists of numbers of the form a + b√2 where a, b ∈  

Q. This field has two automorphisms:  

1. The identity: id(a + b√2) = a + b√2  

2. The mapping σ defined by σ(a + b√2) = a - b√2  

The second automorphism maps √2 to -√2 while fixing all rational  

numbers.  

ordered fields and continuity.  



Example 7: Frobenius Automorphism in Characteristic p Fields  Notes  

For a field F of characteristic p > 0, the Frobenius map φ: F → F  

defined by φ(x) = x^p is always a field homomorphism. In finite fields  

of characteristic p, this map is also an automorphism.The collection of  

automorphisms forms a group structure that provides deep insights  

into the field's algebraic properties. This automorphism group,  

4.3 Conjugation Isomorphisms  

Conjugation isomorphisms are a special class of field automorphisms  

that play a crucial role in understanding field extensions and algebraic  

structures. They are particularly important in Galois theory and the  

study of splitting fields.  

Definition of Conjugation Isomorphisms  

Let F be a field and let E be an extension field of F. A conjugation  

isomorphism over F is an automorphism σ of E that fixes every  

Formally, the set of all such automorphisms forms a group called the  

Galois group of E over F, denoted by Gal(E/F):  

Gal(E/F) = {σ ∈Aut(E) | σ(a) = a for all a ∈ F}  

Conjugation isomorphisms derive their name from their similarity to  

complex conjugation, which is the prototypical example of such an  

isomorphism.  

Properties of Conjugation Isomorphisms  

1. Fixed Field Preservation: Every element of the base field F is  

fixed by all conjugation isomorphisms in Gal(E/F).  

2. Group Structure: The set of all conjugation isomorphisms  

forms a group under composition.  

3. Finiteness in Algebraic Extensions: If E is a finite algebraic  

extension of F, then Gal(E/F) is a finite group.  3434
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denoted Aut(F), is a central object of study in Galois theory.  

element of F. In other words, σ(a) = a for all a ∈ F.  



4. Order Bound: If E is a finite extension of F with [E:F] = n (the  

degree of the extension), then |Gal(E/F)| ≤ n, with equality  

holding when the extension is Galois.  

Notes  

5. Action on Roots: Conjugation isomorphisms permute the roots  

of irreducible polynomials. If α is a root of an irreducible  

polynomial f(x) over F, then σ(α) is also a root of f(x) for any  

σ ∈ Gal(E/F).  

Examples of Conjugation Isomorphisms  

Example 1: Complex Conjugation  

The classic example is complex conjugation on C viewed as an  

extension of R. The conjugation map σ: C → C defined by σ(a + bi) =  

a - bi is an automorphism of C that fixes every real number. Thus,  

Gal(C/R) = {id, σ}, a group of order 2.  

Example 2: Conjugation in Q(√2)  

Consider the field extension Q(√2)/Q. The conjugation map σ: Q(√2)  

→ Q(√2) defined by σ(a + b√2) = a - b√2 for a, b ∈ Q is an  

automorphism that fixes every rational number. Here, Gal(Q(√2)/Q) =  

{id, σ}, also a group of order 2.  

Example 3: Cyclotomic Extensions  

For the cyclotomic extension Q(ζₙ)/Q, where ζₙ is a primitive nth root  

of unity, the conjugation isomorphisms are given by σₖ(ζₙ) = ζₙᵏ for all  

k coprime to n. The Galois group Gal(Q(ζₙ)/Q) is isomorphic to the  

multiplicative group (Z/nZ)ˣ of integers modulo n that are coprime to  

n.  

Example 4: Splitting Fields of Polynomials  

Let E be the splitting field of a separable polynomial f(x) over F. The  

conjugation isomorphisms in Gal(E/F) permute the roots of f(x). For  

instance, if f(x) = x³ - 2 over Q, and E is its splitting field, then  



Gal(E/Q) is isomorphic to S₃, the symmetric group on 3 letters,  Notes  
representing the permutations of the three cube roots of 2.  

Applications of Conjugation Isomorphisms  

1. Galois Theory: Conjugation isomorphisms are the foundation  

of Galois theory, which establishes a correspondence between  

subgroups of the Galois group and intermediate fields of the  

extension.  

2. Solvability of Equations: The structure of the Galois group  

(composed of conjugation isomorphisms) determines whether  

a polynomial equation is solvable by radicals.  

3. Field Invariants: Conjugation isomorphisms help identify  

elements that are invariant under certain field operations,  

leading to the concept of fixed fields.  

4. Construction of Minimal Polynomials: For an element α in an  

extension field, the minimal polynomial of α over the base  

field can be constructed using the conjugation isomorphisms  

that act on α.  

5. Normal Extensions: An extension E/F is normal if and only if  5353

it is the splitting field of a family of polynomials over F, which  

connects to the behavior of conjugation isomorphisms on the  

roots of these polynomials.  

Conjugation isomorphisms provide a powerful tool for analyzing field  

extensions and understanding the algebraic structure of fields. They  

form the bridge between group theory and field theory, allowing us to  

apply group-theoretic methods to solve problems in field theory and  

vice versa.  
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UNIT XI  Notes  

4.4 Fixed Fields and Their Importance  

The concept of fixed fields is central to understanding the relationship  

between field automorphisms and field extensions. It provides a  

powerful framework for analyzing the structure of fields and plays a  

Definition of Fixed Fields  

Given a field E and a group G of automorphisms of E, the fixed field  5353

of G, denoted E^G or Fix(G), is the subfield of E consisting of all  

elements that are fixed (left unchanged) by every automorphism in G.  

Formally: E^G = {a ∈ E | σ(a) = a for all σ ∈ G}  

The fixed field represents the elements of E that remain invariant  3434

under the action of the automorphism group G.  

Properties of Fixed Fields  

1. Subfield Structure: For any group G of automorphisms of E,  

the fixed field E^G is indeed a subfield of E.  

2. Galois Correspondence: If E/F is a Galois extension with  

Galois group G = Gal(E/F), then F = E^G. This is one of the  

3. Monotonicity: If H is a subgroup of G, then E^G ⊆ E^H. In  

other words, smaller groups of automorphisms lead to larger  

fixed fields.  

4. Fixed Field of Trivial Group: E^{id} = E, where {id} is the  

trivial group containing only the identity automorphism.  

5. Fixed Field of Full Automorphism Group: If G = Aut(E), then  

E^G is the prime subfield of E (either Q or Fₚ depending on  

the characteristic).  

Importance and Applications of Fixed Fields  

key role in the fundamental theorem of Galois theory.  

fundamental relationships in Galois theory.  



1. Galois Theory Correspondence: The fundamental theorem of  

Galois theory establishes a one-to-one correspondence  

between the subgroups of the Galois group Gal(E/F) and the  

intermediate fields between F and E. Specifically, for each  

subgroup H of Gal(E/F), E^H is an intermediate field, and for  

each intermediate field K, Gal(E/K) is a subgroup of Gal(E/F).  

Notes  

2. Field Extension Analysis: Fixed fields help determine the  

degree of field extensions. If E/F is a Galois extension with  

Galois group G, then [E:F] = |G|.  

3. Structural Understanding: The fixed field concept helps  

understand the internal structure of fields and their extensions,  

revealing how automorphism groups partition the elements of  

a field.  

4. Constructive Field Theory: Fixed fields provide a constructive  

approach to generating subfields with specific properties,  

particularly useful in computational algebra.  

5. Normal Extensions: An extension E/F is normal if and only if  

F is the fixed field of some group of automorphisms of E.  

Examples of Fixed Fields  

Example 1: Fixed Field of Complex Conjugation  

Consider the field of complex numbers C and the group G = {id,  

conj} where conj is the complex conjugation. The fixed field C^G  

consists of all complex numbers that remain unchanged under  

conjugation:  

C^G = {a + bi ∈ C | a + bi = a - bi} = {a ∈ C | b = 0} = R  

This confirms the well-known fact that the fixed field of the Galois  

group Gal(C/R) = {id, conj} is indeed R.  

Example 2: Cyclotomic Extensions  
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Let E = Q(ζₙ) be the cyclotomic field obtained by adjoining a  19

primitive nth root of unity ζₙ to Q. The Galois group Gal(E/Q) is  

isomorphic to (Z/nZ)ˣ, the group of units modulo n.  

Notes  

For a subgroup H of Gal(E/Q), the fixed field E^H represents an  

intermediate field between Q and Q(ζₙ). For instance, if n = p is a  

prime, and H is the subgroup of squares in (Z/pZ)ˣ, then E^H =  

Q(√±p) where the sign depends on p mod 4.  

Example 3: Fixed Field of Frobenius Automorphism  

In a finite field Fₚₙ, the Frobenius automorphism φ is defined by φ(x)  

= x^p for all x ∈ Fₚₙ. The fixed field of the group ⟨φ⟩ generated by φ  

is:  

Fₚₙ^⟨φ⟩ = {x ∈ Fₚₙ | x^p = x} = Fₚ  

This confirms that the prime subfield Fₚ is the fixed field of the  

Frobenius automorphism.  

Example 4: Fixed Field in Q(√2, √3)  

Consider the field E = Q(√2, √3) and its Galois group G = Gal(E/Q),  

which has four elements:  

•

•

•

•

id: identity automorphism  

σ₁: maps √2 → -√2 and fixes √3  

σ₂: fixes √2 and maps √3 → -√3  

σ₃: maps √2 → -√2 and √3 → -√3  

The fixed field E^G is Q.  

If we consider the subgroup H = {id, σ₁}, then E^H = Q(√3).  

Similarly, for K = {id, σ₂}, E^K = Q(√2). For L = {id, σ₃}, E^L =  

Q(√6).  

This illustrates the Galois correspondence between subgroups and  

intermediate fields.  



The Fundamental Theorem of Galois Theory  Notes  

The importance of fixed fields culminates in the Fundamental  

Theorem of Galois Theory, which can be stated as follows:  

Let E/F be a Galois extension with Galois group G = Gal(E/F). Then:  

1. There is a one-to-one correspondence between the subgroups  

H of G and the intermediate fields K (F ⊆ K ⊆ E), given by H  

↦ E^H and K ↦ Gal(E/K).  

2. If H ↦ K under this correspondence, then:  

o

o

o

[E:K] = |H| (the order of the subgroup)  

[K:F] = [G:H] (the index of the subgroup)  

H is a normal subgroup of G if and only if K/F is a  

normal extension  

o If H is normal in G, then Gal(K/F) ≅ G/H  

This theorem encapsulates the deep connection between field theory  

and group theory, with fixed fields serving as the bridge between  

these two domains. It provides a powerful tool for analyzing field  

extensions and solving polynomial equations.  

Solved Problems on Field Automorphisms  

Problem 1: Determining all Field Automorphisms of Q(√2)  

Problem: Find all field automorphisms of Q(√2) and determine the  

fixed field for each non-trivial automorphism.  

Solution:  

Step 1: Understand the structure of Q(√2). Q(√2) consists of all  

numbers of the form a + b√2 where a, b ∈ Q.  

Step 2: Determine how automorphisms act on Q(√2). Any  

automorphism σ must fix the rational field Q. That is, σ(q) = q for all  

q ∈ Q. The only question is how σ acts on √2.  
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Since σ preserves multiplication: σ(√2)² = σ(√2 · √2) = σ(2) = 2  

Therefore, σ(√2) = ±√2  
Notes  

This gives us two possibilities:  

•

•

σ₁(a + b√2) = a + b√2 (the identity automorphism)  

σ₂(a + b√2) = a - b√2 (sends √2 to -√2)  

σ₂ preserves addition and multiplication:  

For addition: σ₂((a + b√2) + (c + d√2)) = σ₂((a + c) + (b + d)√2) = (a +  

c) - (b + d)√2 And also: σ₂(a + b√2) + σ₂(c + d√2) = (a - b√2) + (c -  

d√2) = (a + c) - (b + d)√2  

For multiplication: σ₂((a + b√2)(c + d√2)) = σ₂(ac + ad√2 + bc√2 +  

2bd) = ac + 2bd - (ad + bc)√2 And also: σ₂(a + b√2)σ₂(c + d√2) = (a -  

b√2)(c - d√2) = ac + 2bd - (ad + bc)√2  

Step 4: Determine the fixed field of σ₂. The fixed field consists of  

elements a + b√2 such that σ₂(a + b√2) = a + b√2. This means a - b√2  

= a + b√2, which implies b = 0. Therefore, the fixed field of σ₂ is Q.  

Conclusion: The automorphism group of Q(√2) is {σ₁, σ₂} ≅ Z₂, and  

the fixed field of the non-trivial automorphism σ₂ is Q.  

Problem 2: Automorphism Group of a Cyclotomic Field  

Problem: Determine the automorphism group of the cyclotomic field  

Q(ζ₅), where ζ₅ is a primitive 5th root of unity, and identify the  

subgroups and their corresponding fixed fields.  

Solution:  

Step 1: Understand the structure of Q(ζ₅). Let ζ₅ = e^(2πi/5), a  

primitive 5th root of unity. Then Q(ζ₅) is the splitting field of the  

cyclotomic polynomial Φ₅(x) = x⁴ + x³ + x² + x + 1.  

Step 2: Determine the automorphisms of Q(ζ₅) over Q. Any  

automorphism σ of Q(ζ₅) must fix Q and send ζ₅ to another primitive  

Step 3: Verify these are valid automorphisms. We need to check that  



5th root of unity. The primitive 5th roots of unity are ζ₅, ζ₅², ζ₅³, and  

ζ₅⁴.  
Notes  

This gives us four automorphisms:  

•

•

•

•

σ₁(ζ₅) = ζ₅ (identity)  

σ₂(ζ₅) = ζ₅²  

σ₃(ζ₅) = ζ₅³  

σ₄(ζ₅) = ζ₅⁴  

Step 3: Determine the group structure. We can compute the  

composition of these automorphisms:  

•

•

•

σ₂ ∘ σ₂(ζ₅) = σ₂(ζ₅²) = (ζ₅²)² = ζ₅⁴ = σ₄(ζ₅)  

σ₂ ∘ σ₃(ζ₅) = σ₂(ζ₅³) = (ζ₅³)² = ζ₅⁶ = ζ₅ = σ₁(ζ₅)  

σ₂ ∘ σ₄(ζ₅) = σ₂(ζ₅⁴) = (ζ₅⁴)² = ζ₅⁸ = ζ₅³ = σ₃(ζ₅)  

Similar calculations for the other compositions show that the  

automorphism group is isomorphic to (Z/5Z)ˣ≅ Z₄, the cyclic group of  99

Step 4: Identify subgroups and fixed fields. The subgroups of Z₄ are:  

•

•

•

{σ₁} (the trivial subgroup)  

{σ₁, σ₃} (the subgroup of order 2)  

{σ₁, σ₂, σ₃, σ₄} (the full group)  

For the trivial subgroup {σ₁}, the fixed field is Q(ζ₅).  

For {σ₁, σ₃}, we need to find elements fixed by both σ₁ and σ₃. An  

element α = a₀ + a₁ζ₅ + a₂ζ₅² + a₃ζ₅³ + a₄ζ₅⁴ is fixed by σ₃ if: σ₃(α) = a₀  

+ a₁ζ₅³ + a₂ζ₅⁶ + a₃ζ₅⁹ + a₄ζ₅¹² = a₀ + a₁ζ₅³ + a₂ζ₅ + a₃ζ₅⁴ + a₄ζ₅² = α  

This gives us conditions: a₁ = a₃, a₂ = a₄ So the fixed field is Q(ζ₅ + ζ₅⁴,  

ζ₅² + ζ₅³) = Q(√5)  

For the full group, the fixed field is Q.  
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order 4, with σ₂ as a generator.  



Conclusion: The automorphism group of Q(ζ₅) is cyclic of order 4,  

isomorphic to (Z/5Z)ˣ. The fixed fields are:  
Notes  

•

•

•

For {σ₁}: Q(ζ₅)  

For {σ₁, σ₃}: Q(√5)  

For {σ₁, σ₂, σ₃, σ₄}: Q  

Problem 3: Frobenius Automorphism in Finite Fields  

Problem: Show that the Frobenius map φ(x) = x^p on a finite field  

F_p^n is an automorphism, and determine its fixed field.  

Solution:  

+ y)^p In a field of characteristic p, the binomial expansion gives: (x  

+ y)^p = x^p + y^p (all other terms contain a factor of p and thus  

vanish) So φ(x + y) = x^p + y^p = φ(x) + φ(y)  

For multiplication: φ(xy) = (xy)^p = x^py^p = φ(x)φ(y)  

Step 2: Show that φ is bijective (both injective and surjective). For  

injectivity, suppose φ(x) = φ(y), then x^p = y^p. In a field, if a^p =  

b^p, then a = b (by taking the pth root). Therefore, x = y, proving φ is  

injective.  

For surjectivity, since F_p^n is finite and φ is injective, it must also be  

surjective.  

Step 3: Determine the fixed field of φ. The fixed field consists of  

elements x such that φ(x) = x, i.e., x^p = x. This equation is satisfied  

by all elements of the prime subfield F_p. To show this is the entire  

fixed field, note that the polynomial x^p - x has at most p roots in any  

field, and we've identified p distinct roots (the elements of F_p).  

Therefore, the fixed field of φ is exactly F_p.  

Step 4: Determine the order of φ in the automorphism group. Since  

F_p^n contains p^n elements, and φ raises elements to the power p,  

Step 1: Verify that φ is a homomorphism. For addition: φ(x + y) = (x  



the smallest positive integer k such that φ^k is the identity is the  

smallest k with p^k ≡ 1 (mod p^n-1). This gives k = n, so the order of  

φ in the automorphism group is n.  

Notes  

Problem 4: Field Automorphisms of C and R  

Problem: Prove that the field of real numbers R has only the identity  

automorphism, and the field of complex numbers C has exactly two  

automorphisms.  

Solution:  

Part 1: Automorphisms of R  

Step 1: Show that any automorphism σ of R must fix the rational  

numbers Q.  

•

•

σ(1) = 1 (preservation of multiplicative identity)  

For any integer n > 0, σ(n) = σ(1 + 1 + ... + 1) = σ(1) + σ(1) +  

... + σ(1) = n  

•

•

For negative integers, σ(-n) = -σ(n) = -n  

For fractions, σ(p/q) = σ(p)/σ(q) = p/q Thus, σ(q) = q for all q  

∈ Q.  

Step 2: Show that σ preserves order. If a > b, then a - b > 0. Since σ  

preserves addition and positivity (as a field automorphism), σ(a) -  

Step 3: Show that σ is continuous. Using the order-preserving  

property, we can show that for any convergent sequence (aₙ) with  

limit a, the sequence (σ(aₙ)) converges to σ(a).  

Step 4: Use density of Q in R to conclude σ is the identity. For any x  

∈ R and any ε > 0, there exist rationals p, q such that p < x < q and q -  

p < ε. Since σ fixes p and q and preserves order, p = σ(p) < σ(x) < σ(q)  

= q. This means |σ(x) - x| < ε for any ε > 0, which implies σ(x) = x.  
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σ(b) = σ(a - b) > 0. Therefore, σ(a) > σ(b), meaning σ preserves order.  

Therefore, the only automorphism of R is the identity.  



Part 2: Automorphisms of C  Notes  

Step 1: Show that any automorphism σ of C must fix R. From Part 1,  

any automorphism of R is the identity. Since C is an extension of R,  

the restriction of σ to R must be the identity automorphism on R.  

Step 2: Determine how σ acts on i. Since i² = -1, we have σ(i)² = σ(i²)  

= σ(-1) = -1. This means σ(i) = ±i.  

Step 3: Show that this gives exactly two automorphisms.  

• If σ(i) = i, then σ(a + bi) = a + bi for all a, b ∈ R (the identity  

automorphism)  

• If σ(i) = -i, then σ(a + bi) = a - bi for all a, b ∈ R (complex  

conjugation)  

Both of these are clearly automorphisms of C. And since any  

automorphism must send i to either i or -i, these are the only two  

possibilities.  



UNIT XII  

4.5 Frobenius Automorphism  

Notes  

The Frobenius automorphism is a fundamental concept in field theory  

and cryptography. Named after Ferdinand Georg Frobenius, this  

automorphism applies to finite fields and provides a powerful tool for  

understanding their structure.  

Definition and Basic Properties  

Let F be a finite field of characteristic p (where p is a prime number).  99

The Frobenius automorphism, typically denoted by Φ, is defined as:  

Φ: F → F Φ(x) = x^p  

In other words, the Frobenius automorphism maps every element of  

Key Properties:  

1. Homomorphism Property: For any elements a, b ∈ F:  

o

o

Φ(a + b) = Φ(a) + Φ(b) = a^p + b^p  

Φ(a·b) = Φ(a)·Φ(b) = a^p·b^p  

2. Injectivity: The Frobenius automorphism is injective (one-to-  

one). Proof: If Φ(a) = Φ(b), then a^p = b^p. In a field of  

characteristic p, this implies a = b.  

3. Surjectivity: The Frobenius automorphism is surjective (onto).  

Since F is finite and Φ is injective, it follows that Φ is also  

surjective.  

4. Fixed Field: The fixed field of the Frobenius automorphism is  

the prime subfield F_p. An element x is fixed by Φ if and only  

if x^p = x, which occurs precisely when x ∈F_p.  

Frobenius Automorphism in Extension Fields  
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and has significant applications in number theory, algebraic geometry,  

the field to its p-th power.  



Let F_q be a finite field with q = p^n elements, where p is prime and n  

is a positive integer. The Frobenius automorphism plays a crucial role  

in understanding the structure of extension fields.  

Notes  

Extension Field Properties:  

1. Iterated Application: The n-fold composition of the Frobenius  

automorphism, Φ^n, is the identity map on F_q. This means  

that for any x ∈F_q, we have x^(p^n) = x.  

2. Galois Group: For an extension F_q/F_p, the Galois group  

Gal(F_q/F_p) is cyclic of order n, generated by the Frobenius  

automorphism.  

3. Minimal Polynomials: The Frobenius automorphism helps  

determine the minimal polynomials of elements in extension  

fields.  

Applications of the Frobenius Automorphism  

1. Counting Solutions to Equations: The Frobenius  

automorphism helps count the number of solutions to  

polynomial equations over finite fields.  

2. Cryptography: The computational difficulty of finding fixed  

points of the Frobenius automorphism in certain fields forms  

the basis for several cryptographic protocols.  

3. Algebraic Geometry: In algebraic geometry, the Frobenius  

morphism provides a tool for studying varieties over finite  

fields.  

Examples of the Frobenius Automorphism  

Example 1: Frobenius in F_4  

Consider the field F_4 = {0, 1, α, α+1}, where α is a root of the  

polynomial x^2 + x + 1 over F_2. The Frobenius automorphism Φ(x)  

= x^2 acts as follows:  



•

•

•

•

Φ(0) = 0^2 = 0  Notes  

Φ(1) = 1^2 = 1  

Φ(α) = α^2 = α+1 (because α^2 + α + 1 = 0, so α^2 = α+1)  

Φ(α+1) = (α+1)^2 = α^2 + 1 = α+1+1 = α (in characteristic 2)  

Note that Φ^2 is the identity map, confirming that the order of the  

Frobenius automorphism divides the extension degree.  

Example 2: Frobenius in F_27  

For the field F_27 = F_3[x]/(x^3 - 2), let β be a root of x^3 - 2. The  

Frobenius automorphism Φ(x) = x^3 acts as:  

•

•

•

Φ(β) = β^3 = 2 (by definition)  

Φ(β^2) = (β^2)^3 = β^6 = (β^3)^2 = 2^2 = 4 = 1 (mod 3)  

Φ(2β) = (2β)^3 = 2^3·β^3 = 8·2 = 16 = 1 (mod 3)  

Here, Φ^3 is the identity map, aligning with the extension degree of 3.  

4.6 Splitting Fields: Definitions and Examples  

Definition of Splitting Fields  

A splitting field is a fundamental concept in field theory that provides  

the minimal extension of a field needed to factor a polynomial  

completely into linear factors.  

Formal Definition:  

Let F be a field and f(x) be a non-constant polynomial in F[x]. A field  

extension E of F is called a splitting field of f(x) over F if:  

1. f(x) factors completely into linear factors in E[x]  

2. E = F(r₁, r₂, ..., rₙ), where r₁, r₂, ..., rₙ are all the roots of f(x)  

In other words, E is the smallest field extension of F that contains all  

the roots of f(x).  
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Alternative Definition:  Notes  

A splitting field for a set of polynomials {f₁(x), f₂(x), ..., fₘ(x)} over a  444444444

field F is the smallest field extension E of F such that each polynomial  

fᵢ(x) splits completely into linear factors in E[x].  

Existence and Uniqueness of Splitting Fields  444444444

Existence:  

For any field F and non-constant polynomial f(x) in F[x], there exists  

Proof Sketch: We can construct a splitting field by iteratively  

adjoining roots of the polynomial. Starting with F, we adjoin one root  

at a time until all roots are included. The resulting field is the splitting  

field.  

Uniqueness:  

Splitting fields are unique up to isomorphism. That is, if E₁ and E₂ are  

two splitting fields of f(x) over F, then there exists an isomorphism φ:  

Properties of Splitting Fields  

1. Degree Bound: If f(x) is a polynomial of degree n, then the  

degree of the splitting field extension [E:F] divides n!  

2. Normality: A splitting field extension is always a normal  

extension.  

3. Separability: If f(x) is separable (has no repeated roots in its  

splitting field), then the splitting field extension is a Galois  

extension.  

4. Minimality: The splitting field is the smallest field extension  

that contains all the roots of the polynomial.  

Examples of Splitting Fields  

Example 1: Splitting Field of x² - 2 over Q  

a splitting field of f(x) over F.  

E₁ → E₂ such that φ(a) = a for all a ∈ F.  



Consider the polynomial f(x) = x² - 2 over the rational numbers Q.  Notes  

The roots of f(x) are r₁ = √2 and r₂ = -√2.  

The splitting field of f(x) over Q is E = Q(√2), which is the field  

obtained by adjoining √2 to Q. Note that both roots are in this field  

since -√2 is also in Q(√2).  

[E:Q] = 2, as the minimal polynomial of √2 over Q is x² - 2, which has  

degree 2.  

Example 2: Splitting Field of x³ - 2 over Q  

Consider the polynomial f(x) = x³ - 2 over Q.  

The roots of f(x) are:  

•

•

•

r₁ = ∛2 (the real cube root of 2)  

r₂ = ω·∛2, where ω is a primitive cube root of unity (e^(2πi/3))  

r₃ = ω²·∛2, where ω² is the complex conjugate of ω  

The splitting field of f(x) over Q is E = Q(∛2, ω). This field contains  444444444

all three roots of f(x).  

[E:Q] = 6, as [Q(∛2):Q] = 3 and [Q(∛2, ω):Q(∛2)] = 2.  

Example 3: Splitting Field of x⁴ - 1 over Q  

Consider the polynomial f(x) = x⁴ - 1 over Q.  

The roots of f(x) are:  

•

•

•

•

r₁ = 1  

r₂ = -1  

r₃ = i  

r₄ = -i  

The splitting field of f(x) over Q is E = Q(i), which is the field of  

complex numbers with rational real and imaginary parts.  
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[E:Q] = 2, as the minimal polynomial of i over Q is x² + 1, which has  

degree 2.  
Notes  

Example 4: Splitting Field of x^p - 1 over Q (p prime)  444444444

For a prime number p, consider the polynomial f(x) = x^p - 1 over Q.  

The roots of f(x) are:  

•

•

•

•

•

r₁ = 1  

r₂ = ζ, where ζ is a primitive p-th root of unity (e^(2πi/p))  

r₃ = ζ²  

...  

r_p = ζ^(p-1)  

The splitting field of f(x) over Q is E = Q(ζ), which is the p-th  

cyclotomic field.  

[E:Q] = p-1, as the minimal polynomial of ζ over Q is the p-th  

cyclotomic polynomial, which has degree p-1.  

Example 5: Splitting Field of x² + 1 over F₃  444444444

Consider the polynomial f(x) = x² + 1 over the finite field F₃ (integers  

modulo 3).  

We need to find the roots of f(x) = x² + 1 in some extension of F₃.  

Let's check if there are any roots in F₃:  

•

•

•

f(0) = 0² + 1 = 1 ≠ 0  

f(1) = 1² + 1 = 2 ≠ 0  

f(2) = 2² + 1 = 5 ≡ 2 (mod 3) ≠ 0  

So f(x) has no roots in F₃. We need to construct an extension field. Let  

α be a root of f(x), so α² = -1 ≡ 2 (mod 3).  



The splitting field of f(x) over F₃ is E = F₃(α) = {0, 1, 2, α, α+1, α+2,  

2α, 2α+1, 2α+2}.  
Notes  

Actually, since x² + 1 is irreducible over F₃, we have F₃(α) ≅ F₉, the  

field with 9 elements.  

The roots of f(x) in this extension are α and 2α (since (2α)² = 4α² =  

4·2 = 8 ≡ 2 (mod 3)).  

4.7 Properties of Splitting Fields  

Splitting fields possess several important properties that make them  

central to field theory and Galois theory. In this section, we'll explore  444444444

these properties in detail.  

Fundamental Properties of Splitting Fields  

1. Minimality Property  

A splitting field E of a polynomial f(x) over a field F is the smallest  

field extension of F that contains all the roots of f(x).  

Proof: Let E be a splitting field of f(x) over F, and let K be any field  

extension of F that contains all the roots of f(x). By definition, E =  

F(r₁, r₂, ..., rₙ), where r₁, r₂, ..., rₙ are all the roots of f(x). Since K  

contains all these roots, we have E ⊆ K.  

2. Uniqueness Property  

Splitting fields are unique up to isomorphism. If E₁ and E₂ are two  

splitting fields of a polynomial f(x) over F, then there exists an  

Proof Sketch: The proof uses the fact that if f(x) is irreducible over F  

and α₁, α₂ are roots of f(x) in extensions E₁ and E₂ respectively, then  

there exists an isomorphism from F(α₁) to F(α₂) that fixes F and maps  

α₁ to α₂. This can be extended to the full splitting fields by induction.  

3. Normality Property  
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isomorphism φ: E₁ → E₂ such that φ(a) = a for all a ∈ F.  



A field extension E/F is normal if and only if E is the splitting field of  Notes  

Definition: A field extension E/F is normal if every irreducible  

polynomial in F[x] that has one root in E has all its roots in E.  

Proof: (⇒) If E/F is normal, then E is the splitting field of the set of  

minimal polynomials of all its elements. (⇐) If E is the splitting field  

of a polynomial f(x) over F, then by definition, all roots of f(x) are in  

E. For any irreducible factor g(x) of f(x), if one root of g(x) is in E,  

then all roots of g(x) are in E.  

4. Galois Extension Property  

If f(x) is a separable polynomial (has no repeated roots in its splitting  

field), then the splitting field E of f(x) over F is a Galois extension.  

Definition: A field extension E/F is Galois if it is both normal and  

separable.  

Proof: If f(x) is separable, then by definition, it has no repeated roots  

in its splitting field E. This means E/F is separable. Since E is a  

splitting field, it is also normal. Therefore, E/F is a Galois extension.  

Degree Properties of Splitting Fields  

1. Degree Bound  

If f(x) is a polynomial of degree n over a field F, then the degree [E:F]  

of the splitting field E over F divides n!.  

which has order [E:F], is a subgroup of the symmetric group S_n on n  

letters (permuting the roots of f(x)). Since |S_n| = n!, we have [E:F]  

divides n!.  

2. Intermediate Extensions  

If E is the splitting field of f(x) over F, and K is an intermediate field  

(F ⊆ K ⊆ E), then E is also the splitting field of some polynomial  

over K.  

some polynomial (or set of polynomials) over F.  

Proof Sketch: This follows from the fact that the Galois group of E/F,  



Proof: Let {α₁, α₂, ..., αₘ} be the elements of E that are not in K. Then  

E = K(α₁, α₂, ..., αₘ). Let g(x) be the product of the minimal  

polynomials of each αᵢ over K. Then E is the splitting field of g(x)  

over K.  

Notes  

Splitting Fields and Field Automorphisms  

1. Automorphism Group  

If E is the splitting field of a polynomial f(x) over F, then the group of  

automorphisms of E that fix F (denoted Aut(E/F)) permutes the roots  

of f(x).  

Proof: Let σ ∈Aut(E/F) and let α be a root of f(x) in E. Then: f(σ(α)) =  

σ(f(α)) = σ(0) = 0 So σ(α) is also a root of f(x).  

2. Fixed Field  

If E is the splitting field of a polynomial f(x) over F and G = Aut(E/F),  

Definition: The fixed field of G is the set of all elements e ∈ E such  

that σ(e) = e for all σ ∈ G.  

Proof: This is a consequence of the Fundamental Theorem of Galois  

Theory, which states that for a Galois extension, there is a one-to-one  

correspondence between subgroups of the Galois group and  

intermediate fields.  

Constructing Splitting Fields  

1. Iterative Construction  

A splitting field can be constructed by iteratively adjoining roots of  

the polynomial.  

Procedure:  

1. Start with the base field F and the polynomial f(x).  

3. Adjoin a root α of g(x) to create the field extension F(α).  

176  

then the fixed field of G in E is exactly F.  

2. Find an irreducible factor g(x) of f(x) over F.  



4. Factor f(x) over F(α) and repeat the process until f(x) splits  Notes  

2. Extension Degree Calculation  

The degree of the splitting field extension can be calculated from the  

degrees of the intermediate extensions.  

Formula: If E is constructed as F₀ = F, F₁ = F₀(α₁), F₂ = F₁(α₂), ..., Fₙ =  

E, then: [E:F] = [F₁:F₀] · [F₂:F₁] · ... · [Fₙ:Fₙ₋₁]  

where each [Fᵢ:Fᵢ₋₁] is the degree of the minimal polynomial of αᵢ over  

Fᵢ₋₁.  

Applications of Splitting Fields  

1. Solving Polynomial Equations  

Splitting fields provide the smallest field extension in which a  

2. Galois Theory  

Splitting fields are central to Galois theory, which connects field  

theory with group theory and provides a framework for understanding  

polynomial equations.  

3. Finite Fields  

Every finite field is the splitting field of a polynomial of the form  444444444

x^(p^n) - x over its prime subfield.  

4. Algebraic Closure  

The algebraic closure of a field F can be viewed as the splitting field  

of all polynomials in F[x].  

4.8 Applications of Field Automorphisms in Galois Theory  

Field automorphisms play a central role in Galois theory, providing  

the bridge between field extensions and group theory. This section  

explores the various applications of field automorphisms in Galois  

theory and their implications.  

completely.  

polynomial equation can be solved completely.  



The Fundamental Theorem of Galois Theory  Notes  

The Fundamental Theorem of Galois Theory establishes a  

correspondence between subgroups of the Galois group and  202020

intermediate fields of a Galois extension.  

Statement of the Theorem:  

Let E/F be a Galois extension with Galois group G = Gal(E/F). Then:  

1. There is  a one-to-one correspondence between the  

intermediate fields K (F ⊆ K ⊆ E) and the subgroups H of G.  

o

o

For a subgroup H ⊆ G, the corresponding field is K =  

E^H (the fixed field of H).  

For an intermediate field K, the corresponding  

subgroup is H = Gal(E/K).  

2. For any intermediate field K:  

o

o

[E:K] = |Gal(E/K)|  

[K:F] = [G:Gal(E/K)] = |G|/|Gal(E/K)|  

3. K/F is a normal extension if and only if Gal(E/K) is a normal  

subgroup of G. In this case, Gal(K/F) ≅ G/Gal(E/K).  444444444

Applications:  

1. Determining All Intermediate Fields: By finding all subgroups  

of the Galois group, we can identify all possible intermediate  

fields of a Galois extension.  

2. Computing Extension Degrees: The order of a subgroup of the  

Galois group gives the degree of the extension E over the  

corresponding intermediate field.  

3. Identifying Normal Extensions: An intermediate extension is  

normal if and only if the corresponding subgroup is normal in  

the Galois group.  
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Automorphisms and the Structure of Galois Groups  

Cyclotomic Extensions  

Notes  

For the cyclotomic extension Q(ζₙ)/Q, where ζₙ is a primitive n-th root  

of unity, the Galois group is isomorphic to (Z/nZ)×, the multiplicative  202020

group of integers modulo n that are coprime to n.  

Each automorphism σₖ in Gal(Q(ζₙ)/Q) is determined by: σₖ(ζₙ) = ζₙᵏ,  

where gcd(k, n) = 1  

This allows us to understand the structure of cyclotomic extensions  

and solve problems related to cyclotomic polynomials.  

Quadratic Extensions  

For a quadratic extension Q(√d)/Q, where d is a square-free integer,  

the Galois group is isomorphic to Z/2Z (cyclic group of order 2).  

The non-trivial automorphism σ in Gal(Q(√d)/Q) is given by: σ(a +  

b√d) = a - b√d, for all a, b ∈ Q  

This helps in understanding the structure of quadratic number fields  

and solving quadratic equations.  

Solvability by Radicals  

One of the most celebrated applications of Galois theory is  

determining when a polynomial equation is solvable by radicals.  

Theorem (Abel-Ruffini):  

A polynomial equation is solvable by radicals if and only if its Galois  

group is solvable.  

Application:  

Field automorphisms allow us to determine the Galois group of a  

polynomial, which in turn tells us whether the polynomial is solvable  

by radicals.  

For example:  



•

•

Polynomials of degree ≤ 4 are always solvable by radicals  

because S₄ (the symmetric group on 4 letters) is solvable.  
Notes  

The general polynomial of degree ≥ 5 is not solvable by  

radicals because S₅ and higher symmetric groups are not  

solvable.  

Constructibility Problems in Geometry  

Field automorphisms help solve classical Greek constructibility  

problems.  

Theorem:  

A number is constructible with compass and straightedge if and only  444444444

if it lies in a field extension of Q with degree a power of 2.  

Applications:  

1. Squaring the Circle: Impossible because π is transcendental.  

2. Doubling the Cube: Impossible because the cube root of 2 has  

minimal polynomial of degree 3.  

3. Trisecting an Angle: Generally impossible because it leads to  

irreducible cubic equations.  

4. Constructing Regular Polygons: A regular n-gon is  

constructible if and only if n = 2ᵏp₁p₂...pₘ, where k ≥ 0 and  

each pᵢ is a distinct Fermat prime (primes of the form 2²ⁿ + 1).  

Fixed Fields and the Invariant Theory  

Field automorphisms help identify elements that remain fixed under  

group actions.  

Theorem:  

If G is a finite group of automorphisms of a field E, then the fixed  202020

field E^G has degree [E:E^G] = |G|.  

Applications:  
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1. Symmetric Polynomials: The fixed field of S_n acting on  

Q(x₁, x₂, ..., xₙ) is precisely Q(e₁, e₂, ..., eₙ), where eᵢ are the  

elementary symmetric polynomials.  

Notes  

2. Invariant Theory: Field automorphisms help identify invariant  

elements under group actions, which has applications in  

Finite Fields and the Frobenius Automorphism  

The Frobenius automorphism plays a special role in the theory of  10

finite fields.  

Theorem:  

For a finite field F_q with q = p^n elements, the Galois group  

Gal(F_q/F_p) is cyclic of order n, generated by the Frobenius  

automorphism Φ(x) = x^p.  

Applications:  

1. Classification of Finite Fields: All finite fields of the same  

order are isomorphic, and for every prime power q = p^n,  

there exists a finite field with q elements.  

2. Counting Solutions to Equations: Field automorphisms help  

count the number of solutions to equations over finite fields.  

3. Error-Correcting Codes: Field automorphisms are used in the  

design and analysis of error-correcting codes based on finite  

fields.  

Kummer Theory and Cyclotomic Extensions  

Field automorphisms are central to Kummer theory, which studies  

abelian extensions.  

Kummer Theory:  

representation theory and algebraic geometry.  



Let K be a field containing a primitive n-th root of unity, and let L/K  

be a Galois extension with Gal(L/K) ≅ (Z/nZ)ᵏ. Then L = K(α₁, α₂, ...,  

αₖ), where αᵢⁿ ∈ K.  

Notes  

Applications:  

1. Class Field Theory: Kummer theory is a key component of  

class field theory, which describes abelian extensions of  

number fields.  

2. Reciprocity Laws: Field automorphisms help establish  

reciprocity laws in number theory, which describe when a  

Solving Quintic Equations  

While the general quintic is not solvable by radicals, certain quintics  

are. Field automorphisms help identify such cases.  

Theorem:  

A quintic polynomial is solvable by radicals if and only if its Galois  

group is a solvable subgroup of S₅.  

Example:  

The polynomial x⁵ - x - 1 has Galois group S₅, so it is not solvable by  

radicals. The polynomial x⁵ - 5x + 12 has Galois group that is a  

solvable subgroup of S₅, so it is solvable by radicals.  

Solved Problems  

Problem 1: Finding the Frobenius Automorphism in a Finite Field  

Problem: Consider the finite field F₄ = F₂[x]/(x² + x + 1). Let α be a  

root of x² + x + 1 in F₄, so F₄ = {0, 1, α, α+1}. Find the action of the  

Frobenius automorphism Φ(x) = x² on each element of F₄ and verify  

that Φ² is the identity map.  

Solution:  
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The Frobenius automorphism in a field of characteristic 2 maps x to  Notes  
x². Let's compute its action on each element of F₄:  

1. Φ(0) = 0² = 0  

2. Φ(1) = 1² = 1  

To find Φ(α), we use the fact that α satisfies α² + α + 1 = 0, which  

means α² = α + 1: 3. Φ(α) = α² = α + 1  

To find Φ(α + 1), we use the fact that in characteristic 2, (a + b)² = a²  

+ b²: 4. Φ(α + 1) = (α + 1)² = α² + 1² = (α + 1) + 1 = α  

Now, let's verify that Φ² is the identity map:  

•

•

•

•

Φ²(0) = Φ(Φ(0)) = Φ(0) = 0  

Φ²(1) = Φ(Φ(1)) = Φ(1) = 1  

Φ²(α) = Φ(Φ(α)) = Φ(α + 1) = α  

Φ²(α + 1) = Φ(Φ(α + 1)) = Φ(α) = α + 1  

Indeed, Φ² maps each element to itself, confirming that Φ² is the  

identity automorphism. This aligns with the theory, as [F₄:F₂] = 2, so  

the Frobenius automorphism has order 2.  

Problem 2: Finding the Splitting Field of a Polynomial  

Problem: Find the splitting field of f(x) = x³ - 2 over Q and determine  

its degree over Q.  

Solution:  

Step 1: Find the roots of f(x) = x³ - 2. The roots are:  

•

•

r₁ = ∛2 (the real cube root of 2)  

r₂ = ω·∛2, where ω = e^(2πi/3) is a primitive cube root of  

unity  

• r₃ = ω²·∛2, where ω² = e^(4πi/3) is the complex conjugate of ω  



Step 2: Determine the splitting field. The splitting field E must  Notes  
contain all three roots, so E = Q(∛2, ω).  

Step 3: Calculate the degree of the extension. First, let's determine  

[Q(∛2):Q]. The minimal polynomial of ∛2 over Q is x³ - 2, which has  

degree 3. Therefore, [Q(∛2):Q] = 3.  

Next, let's determine [Q(∛2, ω):Q(∛2)]. The minimal polynomial of ω  

over Q is x² + x + 1, which remains irreducible over Q(∛2) (this can  

be proven, but we'll take it as given). Therefore, [Q(∛2, ω):Q(∛2)] =  

2.  

By the multiplicativity of extension degrees: [E:Q] = [Q(∛2, ω):Q] =  

[Q(∛2, ω):Q(∛2)] × [Q(∛2):Q] = 2 × 3 = 6  

Therefore, the splitting field of x³ - 2 over Q is Q(∛2, ω), and it has  

degree 6 over Q.  

Problem 3: Determining Galois Groups Using Automorphisms  

Problem: Determine the Galois group of the splitting field of f(x) = x⁴  

- 2 over Q.  

Solution:  

Step 1: Find the roots of f(x) = x⁴ - 2. The roots are:  

•

•

•

•

r₁ = ∜2 (the real fourth root of 2)  

r₂ = -∜2  

r₃ = i·∜2  

r₄ = -i·∜2  

Step 2: Identify the splitting field. The splitting field E must contain  

all four roots, so E = Q(∜2, i).  

Step 3: Calculate the degree of the extension. The minimal  

polynomial of ∜2 over Q is x⁴ - 2, which has degree 4, so [Q(∜2):Q] =  

4.  
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The minimal polynomial of i over Q(∜2) is x² + 1, which remains  

irreducible over Q(∜2) (this can be proven, but we'll take it as given).  

Therefore, [Q(∜2, i):Q(∜2)] = 2.  

Notes  

By the multiplicativity of extension degrees: [E:Q] = [Q(∜2, i):Q] =  

[Q(∜2, i):Q(∜2)] × [Q(∜2):Q] = 2 × 4 = 8  

Step 4: Determine the Galois group. Since [E:Q] = 8, the Galois group  

G = Gal(E/Q) has order 8.  

To identify which group of order 8 it is, we need to understand how  

the automorphisms act on the generators of E.  

Any automorphism σ ∈ G must map ∜2 to another root of x⁴ - 2,  

namely ∜2, -∜2, i·∜2, or -i·∜2. Similarly, σ must map i to either i or -  

i.  

Let's define the following automorphisms:  

•

•

σ: ∜2 ↦i·∜2, i ↦i  

τ: ∜2 ↦∜2, i↦ -i  

We can verify that:  

•

•

•

σ⁴ = id (the identity automorphism)  

τ² = id  

τστ = σ⁻¹  

This means that G = ⟨σ, τ | σ⁴ = τ² = 1, τστ = σ⁻¹  

Multiple Choice Questions (MCQs)  

1. A field automorphism is:  

a) A function that maps a field onto another field  

b) An isomorphism from a field to itself  

c) A mapping that preserves addition but not multiplication  

d) None of the above  



2. A conjugation isomorphism occurs when:  

a) Two fields have the same number of elements  

b) One field is the fixed field of an automorphism  

c) Elements of one field are mapped to their conjugates in an  

extension  

Notes  

d) None of the above  

3. The set of elements in a field that remain unchanged by all  

automorphisms forms:  

a) A subgroup  

b) A fixed field  

c) An ideal  

d) None of the above  

4. The Frobenius automorphism is defined for:  

a) All fields  

b) Only finite fields  

c) Only real fields  

d) None of the above  

5. A splitting field of a polynomial is:  

a) The smallest field where the polynomial factors completely  

b) Any extension field containing the roots of the polynomial  

c) A finite field with a prime number of elements  

d) None of the above  

6. Which of the following statements about splitting fields is  

true?  

a) Splitting fields are always unique up to isomorphism.  

b) Splitting fields exist only for irreducible polynomials.  

c) Every polynomial has a unique splitting field over any base  

field.  

d) None of the above.  

7. A field automorphism must preserve:  

a) Only addition  
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b) Only multiplication  Notes  
c) Both addition and multiplication  

d) Neither addition nor multiplication  

8. The study of field automorphisms is crucial for:  

a) Ring theory  

b) Group theory  

c) Galois theory  

d) None of the above  

Short Answer Questions  

1. Define a field automorphism and give an example.  

2. What is a conjugation isomorphism? Provide an example.  

3. Explain the concept of a fixed field and its significance.  

4. State and explain the Frobenius automorphism.  

5. How does the Frobenius automorphism act in finite fields?  

6. Define a splitting field and explain its importance in field  

7. Why are splitting fields unique up to isomorphism?  

8. How do automorphisms relate to Galois groups?  

9. What is the significance of automorphisms in the classification  

of field extensions?  

10. Give an example of a field extension where the automorphism  

group is nontrivial.  

Long Answer Questions  

1. Explain the concept of field automorphisms and their  

importance in algebra.  

2. Discuss conjugation isomorphisms with detailed examples.  

theory.  



3. Define and explain the role of fixed fields in automorphism  

groups.  
Notes  

4. Prove that the Frobenius automorphism is a valid field  

automorphism in finite fields.  

5. Explain the construction of splitting fields and their  

6. Discuss the relationship between field automorphisms and  

7. How do splitting fields help in solving polynomial equations?  

Provide examples.  

8. Discuss the role of automorphisms in the classification of field  

extensions.  

9. What is the importance of field automorphisms in modern  

algebra and cryptography?  
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MODULE V  

UNIT XIII  

Notes  

SEPARABLE EXTENSIONS AND GALOIS THEORY  

Objectives  

• Understand the concept of separable extensions and their  

properties.  

•

•

•

Learn about normal extensions and their significance.  

Explore the main theorem of Galois theory and its implications.  

Study the relationship between field extensions and Galois  

groups.  

•

5.1 Introduction to Separable Extensions  

representing an important class of field extensions with special  

properties. These extensions are characterized by certain behaviors of  

their minimal polynomials and have significant implications for the  

structure of field extensions.  

Basic Concepts and Definitions  

A field extension E/F is the situation where F is a subfield of E. We  

denote this as E/F, which is read as "E over F." The field E is called  

the extension field, and F is the base field.When considering field  

extensions, we often look at elements of E and examine how they  

relate to the base field F. An element α ∈ E is called algebraic over F  

if there exists a non-zero polynomial p(x) ∈ F[x] such that p(α) = 0.  

The monic polynomial of minimal degree that has α as a root is called  

the minimal polynomial of α over F, denoted by minF(α).  

Separable Elements  

Analyze symmetric functions and their role in Galois theory.  

Separable extensions are a fundamental concept in field theory,  



An algebraic element α ∈ E is called separable over F if its minimal  

polynomial minF(α) has no repeated roots in any extension field  

where it splits completely.Equivalently, an algebraic element α is  

separable over F if and only if the derivative of its minimal  

polynomial is not the zero polynomial. This can be expressed as:  

Notes  

α is separable over F if and only if minF(α)' ≠ 0  

For fields of characteristic 0 (like ℚ, ℝ, or ℂ), this condition is always  

satisfied, so every algebraic element is separable. However, for fields  

of characteristic p > 0, there exist polynomials whose derivatives are  

zero, specifically those of the form f(x^p).  

Separable Extensions  

A field extension E/F is called separable if every element of E is  

separable over F. More precisely:  

• A finite extension E/F is separable if every element of E is  

• An arbitrary extension E/F is separable if every finite  

subextension is separable.  

If E = F(α) for some α ∈ E, then E/F is separable if and only if α is  

Properties of Separable Extensions  

1. Transitivity: If E/K and K/F are separable extensions, then E/F is  

also a separable extension.  

2. Tower Property: If E/F is a field extension and K is an  

intermediate field (F ⊆ K ⊆ E), then E/F is separable if and only  

if both E/K and K/F are separable.  

3. Compositum of Separable Extensions: If E1/F and E2/F are  

separable extensions, then their compositum E1E2/F is also  

separable.  
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4. Relation to Perfect Fields: A field F is called perfect if every  

algebraic extension of F is separable. All fields of characteristic 0  

are perfect, as are all finite fields.  

Notes  

Importance in Galois Theory  

Separable extensions play a crucial role in Galois theory. The  

fundamental theorem of Galois theory establishes a correspondence  

between intermediate fields of a Galois extension and subgroups of its  

Galois group. For this correspondence to work, the extension must be  

separable (along with being normal and finite).A field extension E/F is  

Galois if and only if it is finite, separable, and normal. The  1616161616

separability condition ensures that the Galois group has the expected  

structure and that the correspondence between subgroups and  

intermediate fields is well-behaved.  

Examples of Separable and Non-Separable Extensions  

Example 1: Separable Extension  

The extension ℚ(√2)/ℚ is separable because the minimal polynomial  

of √2 over ℚ is x² - 2, which has distinct roots ±√2 in ℂ.  

Example 2: Non-Separable Extension  

Let F = Fp(t) be the field of rational functions over the finite field Fp,  

where p is a prime number. The polynomial f(x) = x^p - t has  

derivative f'(x) = px^(p-1) = 0 in characteristic p. This polynomial is  

irreducible over F, and thus it is the minimal polynomial of any of its  

roots. Since its derivative is zero, any extension generated by a root of  

this polynomial is non-separable.  

5.2 Definition and Properties of Separable Polynomials  

Separable polynomials form the backbone of separable field  

extensions. Their properties are integral to understanding how field  

Definition of Separable Polynomials  

extensions behave, especially in Galois theory.  



A polynomial f(x) ∈ F[x] is called separable if it has no repeated roots  

in any extension field where it splits completely. Equivalently, a  

polynomial f(x) is separable if and only if f(x) and its formal  

derivative f'(x) are relatively prime, i.e., gcd(f(x), f'(x)) = 1.  

Notes  

For an irreducible polynomial, being separable means that when it  

factors into linear terms in some extension field, all its roots are  

distinct.  

Characterization in Terms of Derivative  

If F is a field and f(x) ∈ F[x] is a polynomial, then:  

1. If char(F) = 0, then f(x) is separable if and only if f(x) does not  

have repeated roots.  

2. If char(F) = p > 0, then f(x) is separable if and only if f(x) is not  

of the form g(x^p) for any polynomial g(x) ∈ F[x].  

The derivative test provides a practical way to check separability:  

compute f'(x) and then find gcd(f(x), f'(x)). If the gcd is 1, then f(x) is  

separable.  

Properties of Separable Polynomials  

1. Product Rule: If f(x) and g(x) are separable polynomials in F[x],  

then their product f(x)g(x) is separable if and only if f(x) and g(x)  

are relatively prime.  

2. Irreducible Case: If f(x) is irreducible over F, then f(x) is separable  

if and only if f'(x) ≠ 0.  

3. Field Extension: If f(x) ∈ F[x] is separable and K/F is any field  

extension, then f(x) remains separable when viewed as a  

polynomial in K[x].  

4. Characteristic Zero: In fields of characteristic 0, every irreducible  

polynomial is separable.  
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5. Finite Fields: In finite fields, a polynomial is separable if and only  

if it has no repeated roots.  
Notes  

The Separable Degree  

For a finite extension E/F, the separable degree [E:F]s is defined as  

the maximum number of F-embeddings of E into an algebraic closure  

of F. For a separable extension, [E:F]s = [E:F], the ordinary degree of  

the extension.If E/F is not separable, then [E:F]s < [E:F], and the ratio  

[E:F]/[E:F]s is called the inseparable degree of the extension, denoted  

by [E:F]i.  

Separable Closure  

The separable closure Fs of a field F is the field obtained by adjoining  242424

to F all elements that are separable over F. It has the following  

properties:  

3. If α is algebraic over F and separable, then α ∈ Fs.  

The separable closure is important because it represents the largest  

separable extension of a field.  

Relation to Field Characteristics  

The behavior of separable polynomials is strongly influenced by the  

characteristic of the field:  

1. Characteristic 0: All irreducible polynomials are separable,  

making all algebraic extensions separable.  

2. Characteristic p > 0: A polynomial f(x) could have the form  

g(x^p), making its derivative zero. Such polynomials are not  

separable.  

Discriminant of a Polynomial  

1. Fs is algebraic over F.  

2. Every element in Fs is separable over F.  



The discriminant of a polynomial provides another way to test for  

separability. For a monic polynomial f(x) = ∏(x - αi), the discriminant  

is defined as:  

Notes  

Disc(f) = ∏(αi - αj)²  

where the product is taken over all i< j.  

A polynomial is separable if and only if its discriminant is non-zero.  

Examples of Separable and Non-Separable Polynomials  

Example 1: Separable Polynomial  

In ℚ[x], the polynomial f(x) = x³ - 2 is separable because its derivative  

f'(x) = 3x² is never zero for x ≠ 0, and gcd(x³ - 2, 3x²) = 1.  

Example 2: Non-Separable Polynomial  

In F₂[x], the polynomial f(x) = x² + 1 = (x + 1)² has a repeated root (1  

+ 1 = 0 in F₂). Its derivative f'(x) = 2x = 0 in characteristic 2,  

confirming it's not separable.  

Example 3: Characteristic p > 0  

In Fp(t)[x], the polynomial f(x) = x^p - t is not separable because f'(x)  

= px^(p-1) = 0 in characteristic p.  
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UNIT XIV  Notes  

5.3 Normal Extensions and Their Significance  

Normal extensions, also called normal field extensions, are a critical  

They represent field extensions where all polynomials that have one  

root in the extension have all their roots in the extension.  

Definition of Normal Extensions  

A field extension E/F is called normal if every irreducible polynomial  

in F[x] that has at least one root in E completely splits in E (i.e.,  

factors into linear terms in E[x]).  

Equivalently, an extension E/F is normal if and only if E is the  

Alternative Characterizations  

There are several equivalent ways to characterize normal extensions:  1616161616

1. E/F is normal if and only if E is the splitting field of a family of  242424

polynomials in F[x].  

2. E/F is normal if and only if the set of F-embeddings of E into an  

automorphisms of E.  

3. For a finite extension E/F, E/F is normal if and only if E is fixed  

by every F-automorphism of its normal closure.  

4. E/F is normal if and only if every F-embedding of E into an  

Properties of Normal Extensions  

1. Transitivity: If E/K and K/F are normal extensions, it does not  

necessarily follow that E/F is normal. However, if E/F is normal  

and K is an intermediate field, then E/K is normal.  

concept in field theory and are especially important in Galois theory.  

splitting field of some set of polynomials over F.  

algebraic closure F that fix F pointwise is exactly the set of F-  ̄

algebraic closure F that fixes F maps E onto itself.  ̄



2. Compositum of Normal Extensions: If E₁/F and E₂/F are normal  Notes  
extensions, then their compositum E₁E₂/F is also normal.  

3. Relation to Splitting Fields: A finite extension E/F is normal if and  1616161616

only if it is the splitting field of some polynomial in F[x].  

4. Automorphism Group: If E/F is a normal extension, then the  

group of all F-automorphisms of E, denoted by Aut(E/F), has  

order dividing [E:F]. If E/F is also separable, then |Aut(E/F)| =  

[E:F].  

Normal Closure  

For any field extension E/F, there exists a field extension N/E such  

that N/F is normal and N is minimal with this property. This field N is  

called the normal closure of E over F.The normal closure can be  

constructed as the splitting field of the set of all minimal polynomials  

Galois Extensions  

A field extension E/F is called a Galois extension if it is both normal  

and separable. For Galois extensions, the Galois group Gal(E/F) =  

Aut(E/F) has special properties:  

1. |Gal(E/F)| = [E:F], the degree of the extension.  

2. There is a one-to-one correspondence between the intermediate  

fields of E/F and the subgroups of Gal(E/F).  

3. If K is an intermediate field (F ⊆ K ⊆ E), then K corresponds to  

the subgroup Gal(E/K) of Gal(E/F), and [E:K] = |Gal(E/K)|.  

Significance in Galois Theory  

Normal extensions, especially when they are also separable (i.e.,  

Galois extensions), are the cornerstone of Galois theory. The  

fundamental theorem of Galois theory establishes a correspondence  

between:  
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2. Subgroups of the Galois group Gal(E/F).  

Notes  

This correspondence is order-reversing: if K₁ ⊆ K₂ are intermediate  

fields, then Gal(E/K₁) ⊇ Gal(E/K₂).  

Moreover, if K is an intermediate field and H = Gal(E/K) is the  

corresponding subgroup, then:  

1. K is the fixed field of H: K = E^H = {a ∈ E | σ(a) = a for all σ ∈  

H}.  

2. [K:F] = |Gal(E/F)|/|Gal(E/K)|.  

3. K/F is normal if and only if H is a normal subgroup of Gal(E/F).  

Examples of Normal and Non-Normal Extensions  

Example 1: Normal Extension  

The extension ℚ(√2, √3)/ℚ is normal because it is the splitting field of  

the polynomial (x² - 2)(x² - 3) over ℚ.  

Example 2: Non-Normal Extension  

The extension ℚ(∛2)/ℚ is not normal. The minimal polynomial of ∛2  

over ℚ is x³ - 2, which has roots ∛2, ω∛2, and ω²∛2 (where ω is a  

primitive cube root of unity). Since ω∛2 ∉ℚ(∛2), the extension is not  

normal.  

Example 3: Normal Closure  

The normal closure of ℚ(∛2)/ℚ is ℚ(∛2, ω), where ω is a primitive  

cube root of unity. This field contains all roots of x³ - 2.  

Solved Problems  

Problem 1: Determine if the extension ℚ(√2)/ℚ is separable.  

Solution: To determine if ℚ(√2)/ℚ is separable, we need to check if  

the minimal polynomial of √2 over ℚ is separable.  

1. Intermediate fields of a Galois extension E/F.  



The minimal polynomial of √2 over ℚ is f(x) = x² - 2.  Notes  

The derivative of f(x) is f'(x) = 2x.  

Since f'(x) ≠ 0 for x ≠ 0, and √2 ≠ 0, we have f'(√2) ≠ 0. This means  1616161616

that f(x) and f'(x) have no common roots, so gcd(f(x), f'(x)) = 1.  

Therefore, f(x) = x² - 2 is separable, which means that the extension  

ℚ(√2)/ℚ is separable.  

Additionally, since ℚ has characteristic 0, all irreducible polynomials  

over ℚ are separable, providing another way to conclude that ℚ(√2)/ℚ  

is separable.  

Problem 2: Show that the polynomial f(x) = x⁴ + x² + 1 over F₂ is  

separable.  

Solution: To determine if f(x) = x⁴ + x² + 1 is separable over F₂, we  

need to check if f(x) and its derivative f'(x) are relatively prime.  

Computing the derivative: f'(x) = 4x³ + 2x = 0 (in F₂)  

Since the derivative is zero, we need a different approach.  

In fields of characteristic p > 0, an irreducible polynomial is  

inseparable if and only if it is of the form g(x^p) for some polynomial  

g.  

Let's check if f(x) can be written as g(x²) for some polynomial g  

(since 2 is the characteristic of F₂): If f(x) = g(x²), then g(y) = y² + y +  

1 where y = x².  

Now we need to determine if f(x) is irreducible over F₂. One way to  

check is to verify that f(x) has no roots in F₂ and cannot be factored  

into two quadratics in F₂[x].  

The elements of F₂ are {0, 1}. f(0) = 0⁴ + 0² + 1 = 1 ≠ 0 f(1) = 1⁴ + 1²  

+ 1 = 1 + 1 + 1 = 1 (in F₂) ≠ 0  

So f(x) has no roots in F₂.  
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Now we need to check if f(x) can be factored as a product of two  

quadratics. Any such factorization would be of the form: f(x) = (x² +  

ax + b)(x² + cx + d)  

Notes  

Expanding: f(x) = x⁴ + cx³ + dx² + ax³ + acx² + adx + bx² + bcx + bd =  

x⁴ + (a+c)x³ + (ac+b+d)x² + (ad+bc)x + bd  

For this to equal x⁴ + x² + 1, we need: a+c = 0, which means a = c in  

F₂ ac+b+d = 1 ad+bc = 0 bd = 1  

From a = c, we get ad+bc = ad+ba = a(d+b) = 0, so d = b. From bd =  

1, we get b = d = 1. But then ac+b+d = a·a+1+1 = a² + 0 = a² = 1,  

which means a = 1.  

However, if a = c = 1 and b = d = 1, then a+c = 1+1 = 0 in F₂, which  

satisfies our first equation. Let's verify: (x² + x + 1)(x² + x + 1) = x⁴ +  

x³ + x² + x³ + x² + x + x² + x + 1 = x⁴ + 0 + 3x² + 2x + 1 = x⁴ + x² + 0  

+ 1 (in F₂) = x⁴ + x² + 1  

So f(x) = (x² + x + 1)², which means it's not irreducible and has  

repeated factors, making it inseparable over F₂.  

Problem 3: Prove that if F is a field of characteristic 0, then every  

finite extension of F is separable.  

Solution: Let F be a field of characteristic 0, and let E be a finite  

extension of F. We need to show that E/F is separable.  

A field extension E/F is separable if and only if every element of E is  

separable over F. An element α ∈ E is separable over F if and only if  242424

its minimal polynomial minF(α) has no repeated roots in its splitting  

field.  

For any polynomial f(x) ∈ F[x], the presence of repeated roots is  

equivalent to f(x) and its derivative f'(x) having a common factor, or  

equivalently, gcd(f(x), f'(x)) ≠ 1.  

In a field of characteristic 0, the derivative of a non-constant  

polynomial is non-zero. Specifically, for an irreducible polynomial  

p(x) ∈ F[x], its derivative p'(x) is non-zero.  



Suppose p(x) has a repeated root α in some extension field. Then p(x)  

and p'(x) would have a common root α, which means that p(x) and  

p'(x) would have a common factor. But since p(x) is irreducible and  

p'(x) has lower degree than p(x), the only way they could have a  

common factor is if p'(x) is divisible by p(x), which is impossible due  

to degree considerations.  

Notes  

Therefore, in a field of characteristic 0, every irreducible polynomial  

is separable. Since E/F is a finite extension, E is generated by finitely  

many algebraic elements over F, each having an irreducible minimal  

polynomial over F. Since all these minimal polynomials are separable,  

Hence, E/F is a separable extension.  

Problem 4: Determine if the extension F₂(t)(α)/F₂(t) is normal, where  

α is a root of the polynomial p(x) = x² - t.  61

Solution: To determine if the extension F₂(t)(α)/F₂(t) is normal, we  

need to check if p(x) = x² - t splits completely in F₂(t)(α).  

The roots of p(x) = x² - t are ±√t. Let's denote α = √t, so the roots are α  

and -α.  

In F₂, we have 1 + 1 = 0, which means -1 = 1. Therefore, -α = α in  

characteristic 2.  

So in F₂(t)(α), the polynomial p(x) = x² - t = (x - α)(x - (-α)) = (x -  

α)(x - α) = (x - α)².  

This means that p(x) has only one distinct root, α, with multiplicity 2.  

Since p(x) doesn't split into distinct linear factors in F₂(t)(α), the  

extension F₂(t)(α)/F₂(t) is not normal.  

Alternatively, we can approach this from the definition: an extension  

E/F is normal if and only if it is the splitting field of some set of  1616161616

polynomials over F. In this case, F₂(t)(α) is not the splitting field of x²  

- t over F₂(t) (or any other set of polynomials), because it doesn't  

contain all the roots of x² - t in an algebraic closure.  
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every element of E is separable over F.  



In characteristic 2, the splitting field of x² - t would be F₂(t)(√t) =  

F₂(t)(α), which is the same as our extension. However, the issue is that  

x² - t = (x - α)² in characteristic 2, so it doesn't split into distinct linear  

factors.  

Notes  

Therefore, F₂(t)(α)/F₂(t) is not a normal extension.  

Problem 5: Prove that if E/F is a Galois extension, then |Gal(E/F)|  

= [E:F].  

Solution: Let E/F be a Galois extension, which means E/F is both  

normal and separable.  

First, let's recall that for any field extension E/F, the order of the  

automorphism group Aut(E/F) is at most [E:F]. This is because if α₁,  

α₂, ..., αₙ is a basis for E over F, then any F-automorphism of E is  

uniquely determined by where it sends α₁, α₂, ..., αₙ.  

For a Galois extension, we want to show that |Gal(E/F)| = [E:F],  151515151515

Since E/F is a finite, normal, and separable extension, it is the splitting  

field of a separable polynomial f(x) ∈ F[x]. Let's say f(x) has degree n  

and has distinct roots α₁, α₂, ..., αₙ in E.  

Any F-automorphism σ of E must permute the roots of f(x), because if  

f(αᵢ) = 0, then f(σ(αᵢ)) = σ(f(αᵢ)) = σ(0) = 0. Therefore, σ(αᵢ) is also a  

root of f(x).  

Since E is generated over F by the roots of f(x), an F-automorphism of  

E is completely determined by how it permutes these roots. There are  

at most n! ways to permute n elements, but not all permutations of the  

roots give rise to automorphisms of E.  

For a separable extension, the number of F-embeddings of E into an  

algebraic closure of F is exactly [E:F]. Since E/F is normal, any such  

embedding maps E to itself, so it's an automorphism in Gal(E/F).  

Therefore, |Gal(E/F)| = [E:F].  

where Gal(E/F) = Aut(E/F) is the Galois group of E over F.  



Alternatively, we can use the Primitive Element Theorem, which  676767

states that since E/F is a finite separable extension, E = F(α) for some  151515151515

α ∈ E. Let p(x) be the minimal polynomial of α over F. Since E/F is  

normal, p(x) splits completely in E.  

Notes  

Let the distinct roots of p(x) in E be α = α₁, α₂, ..., αₙ, where n = [E:F]  

is the degree of p(x). For each root αᵢ, there is a unique F-  

isomorphism σᵢ : F(α) → F(αᵢ) that fixes F and maps α to αᵢ. Since E/F  

is normal, F(αᵢ) ⊆ E, and since [F(αᵢ):F] = [F(α):F] = [E:F], we must  

have F(αᵢ) = E.  

Thus, each σᵢ is an F-automorphism of E, and these are all the F-  

automorphisms of E. There are exactly n = [E:F] of them, one for each  

root of p(x).  

Therefore, |Gal(E/F)| = [E:F].  

Unsolved Problems  

Problem 1:  

Determine whether the extension ℚ(∛2)/ℚ is separable. Justify your  

Problem 2:  

Consider the polynomial f(x) = x⁴ + x² + x + 1 ∈ F₂[x]. Determine  

whether f(x) is separable over F₂.  

Problem 3:  

Let F be a field of characteristic p > 0, and let E = F(α) where α^p ∈ F  

but α ∉ F. Prove that E/F is not a separable extension.  

Problem 4:  

Let E/F be a finite extension with [E:F] = n. Prove that E/F is a Galois  

extension if and only if |Aut(E/F)| = n.  

Problem 5:  
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Let K = ℚ(√2, √3) and F = ℚ. Determine the Galois group Gal(K/F)  

and list all intermediate fields between F and K, establishing the  

Galois correspondence.  

Notes  

5.4 Introduction to Galois Theory  

Galois theory stands as one of the most elegant achievements in  

mathematics, providing a deep connection between field theory, group  

theory, and the solvability of polynomial equations. Named after  

Évariste Galois, a brilliant French mathematician who died at the  

young age of 20 in 1832, this theory emerged from his  444444

groundbreaking work on determining which polynomial equations are  

solvable by radicals.  

Historical Context  

The journey toward Galois theory began with the quest to find  

mathematicians had discovered formulas for solving quadratic, cubic,  

and quartic equations using radicals (expressions involving addition,  

subtraction, multiplication, division, and root extraction). However,  

the general quintic equation (degree 5) resisted similar approaches.  

In the early 19th century, mathematicians like Paolo Ruffini and Niels  

Henrik Abel proved that there is no general formula using radicals for  444444

solving polynomial equations of degree 5 or higher. Galois took this  

work further by developing a systematic approach to determine which  

specific equations are solvable by radicals and which are not.  

Field Extensions  

At the heart of Galois theory lies the concept of field extensions. Let's  

start with some fundamental definitions:  

Definition (Field): A field is a set with two operations, addition and  

multiplication, that satisfy the usual arithmetic properties  

(associativity, commutativity, distributivity, existence of identity  

elements and inverses).  

formulas for solving polynomial equations. By the 16th century,  



Definition (Field Extension): If F and K are fields and F ⊆ K, we say  Notes  

The notation [K:F] represents the degree of the extension, which is the  151515151515

dimension of K as a vector space over F. If [K:F] is finite, we call K/F  

a finite extension.  

Consider a polynomial p(x) with coefficients in a field F. We're often  

interested in finding a field extension K of F where p(x) splits  212121

completely into linear factors. This leads to the concept of splitting  

fields.  

Definition (Splitting Field): A splitting field of a polynomial p(x) over  

F is the smallest field extension of F in which p(x) factors completely  

into linear factors.  

Example: The splitting field of p(x) = x² - 2 over ℚ is ℚ(√2), which is  

obtained by adjoining √2 to ℚ.  

Algebraic Elements and Extensions  

Definition (Algebraic Element): An element α in a field extension K/F  

is algebraic over F if there exists a non-zero polynomial p(x) in F[x]  

such that p(α) = 0.  

Definition (Algebraic Extension): A field extension K/F is algebraic if  

For any algebraic element α over F, there exists a unique monic  

irreducible polynomial in F[x] having α as a root. This polynomial is  

Field Automorphisms and Fixed Fields  

Definition (Field Automorphism): A field automorphism of a field K  

is an isomorphism from K to itself. The set of all automorphisms of K  

forms a group under composition, denoted Aut(K).  

Given a field extension K/F, we're particularly interested in  

automorphisms that fix F pointwise:  
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K is an extension field of F, denoted K/F.  

every element of K is algebraic over F.  

called the minimal polynomial of α over F.  



Definition (F-automorphism): An F-automorphism of K is a field  

automorphism σ of K such that σ(a) = a for all a in F. The set of all F-  

automorphisms of K forms a group, denoted Aut(K/F).  

Notes  

Definition (Fixed Field): Given a group G of automorphisms of a field  

K, the fixed field of G is the set of all elements in K that are fixed by  

every automorphism in G, denoted K^G = {a ∈ K | σ(a) = a for all σ ∈  

G}.  

These concepts form the foundation for the Galois correspondence,  

which we'll explore in the next section.  

5.5 The Main Theorem of Galois Theory  

The central achievement of Galois theory is establishing a  

correspondence between subgroups of the Galois group and  

intermediate fields of a field extension. Before stating the main  

theorem, we need to define Galois extensions.  

Galois Extensions  

Definition (Galois Extension): A field extension K/F is Galois if it is:  

1. Algebraic  

2. Normal: Every irreducible polynomial in F[x] that has one root in  

K splits completely in K  

3. Separable: Every irreducible polynomial in F[x] with a root in K  

has distinct roots  

For fields of characteristic 0 (like ℚ), separability is automatic, so a  

Galois extension is simply a normal algebraic extension.  

Definition (Galois Group): The Galois group of a Galois extension  

K/F, denoted Gal(K/F), is the group of all F-automorphisms of K.  

The Fundamental Theorem of Galois Theory  

Theorem (Fundamental Theorem of Galois Theory): Let K/F be a  

finite Galois extension with Galois group G = Gal(K/F). Then:  151515151515



1. There is a one-to-one correspondence between the intermediate  Notes  
fields E (F ⊆ E ⊆ K) and the subgroups H of G given by:  

o

o

For each intermediate field E, the corresponding subgroup is H =  

Gal(K/E)  

For each subgroup H of G, the corresponding intermediate field  

is E = K^H (the fixed field of H)  

2. Under this correspondence:  

o

o

If E₁ ⊆ E₂, then Gal(K/E₂) ⊆ Gal(K/E₁)  

If H₁ ⊆ H₂, then K^H₂ ⊆ K^H₁  

3. For each intermediate field E:  

o

o

[K:E] = |Gal(K/E)|  

[E:F] = [G:Gal(K/E)]  

4. An intermediate field E is Galois over F if and only if  212121

Gal(K/E) is a normal subgroup of G. In this case, Gal(E/F) ≅  54

G/Gal(K/E).  

This theorem establishes a beautiful "upside-down" correspondence  

between intermediate fields and subgroups of the Galois group.  

Normal Subgroups and Solvability  

A key application of Galois theory is determining which polynomial  

equations are solvable by radicals.  

Definition (Solvable Group): A group G is solvable if it has a  

subnormal series G = G₀ ⊃ G₁ ⊃ ... ⊃ Gₙ = {e} such that each quotient  

group Gᵢ/Gᵢ₊₁ is abelian.  

Theorem (Solvability by Radicals): A polynomial equation is solvable  

by radicals if and only if its Galois group is a solvable group.  676767
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This provides a powerful criterion for determining whether a  212121

polynomial equation can be solved using radicals, connecting abstract  

group theory to the classical problem of solving equations.  

Notes  

5.6 Galois Groups and Their Applications  

The Galois group of a polynomial encodes crucial information about  

its roots and solvability. Let's explore how to compute Galois groups  

and apply this knowledge.  

Computing Galois Groups  

For a polynomial p(x) of degree n, the Galois group is a subgroup of  

the symmetric group Sₙ (the group of permutations of n objects). Here  

are some approaches to determine the Galois group:  

1. Factorization Method: Factor the polynomial over successive  

field extensions and track how the roots combine.  

2. Discriminant Analysis: The discriminant of a polynomial  

provides information about the Galois group. For a quadratic ax²  

+ bx + c, the discriminant is b² - 4ac. For higher degrees, the  

formula becomes more complex.  

3. Resolvent Polynomials: Construct polynomials whose  

factorization pattern reveals information about the Galois group.  

Galois Groups of Cyclotomic Extensions  

Cyclotomic fields are among the most important examples in Galois  

Definition (Cyclotomic Field): The nth cyclotomic field is ℚ(ζₙ),  

where ζₙ is a primitive nth root of unity (e.g., e^(2πi/n)).  

Theorem: The Galois group Gal(ℚ(ζₙ)/ℚ) is isomorphic to (ℤ/nℤ)*,  

the multiplicative group of integers modulo n that are coprime to n.  

This isomorphism is given by σₖ(ζₙ) = ζₙᵏ where gcd(k,n) = 1.  

theory.  



Extension by Radicals  Notes  

A key application of Galois theory is understanding extensions by  

radicals.  

Definition (Radical Extension): A field extension K/F is a radical  

extension if there exists a tower of fields F = F₀ ⊂ F₁ ⊂ ... ⊂ Fₖ = K  

where for each i, Fᵢ = Fᵢ₋₁(αᵢ) with αᵢⁿⁱ ∈ Fᵢ₋₁ for some integer nᵢ > 0.  

Theorem: Let p(x) be an irreducible polynomial over a field F of  

characteristic 0. Then the roots of p(x) can be expressed using radicals  444444

if and only if the Galois group of p(x) is solvable.  

This theorem provides the definitive answer to the ancient question of  

which polynomial equations can be solved by radicals.  

Insolvable Quintic Equations  

The general quintic equation is not solvable by radicals because the  

symmetric group S₅ is not solvable. However, not all quintic equations  

are unsolvable.  

Example: The polynomial x⁵ - x - 1 has Galois group S₅, making it  

unsolvable by radicals.  

Example: The polynomial x⁵ - 5x + 12 has a Galois group that is  

solvable, making it solvable by radicals.  

Field Extensions and Constructibility  

Galois theory also connects to classical geometric problems like  

constructibility with straightedge and compass.  

Theorem: A number α is constructible with straightedge and compass  

if and only if there exists a tower of field extensions ℚ = F₀ ⊂ F₁ ⊂ ...  

⊂ Fₖ with α ∈ Fₖ and [Fᵢ:Fᵢ₋₁] = 2 for each i.  

This provides a conclusive answer to ancient problems like doubling  

the cube, trisecting an angle, and squaring the circle.  
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5.7 Examples and Applications of Galois Theory  Notes  

Let's explore concrete examples and applications of Galois theory to  

illustrate its power and elegance.  

Example 1: The Galois Group of x³ - 2  

Consider the polynomial p(x) = x³ - 2 over ℚ.  

The roots of this polynomial are α₁ = ∛2, α₂ = ω∛2, and α₃ = ω²∛2,  

The splitting field of p(x) is K = ℚ(∛2, ω). The elements of Gal(K/ℚ)  

are determined by how they permute the roots of p(x).  

There are 6 possible automorphisms:  

•

•

•

•

•

•

σ₁: Identity mapping  

σ₂: Maps ∛2 → ω∛2, ω → ω  

σ₃: Maps ∛2 → ω²∛2, ω → ω  

σ₄: Maps ∛2 → ∛2, ω → ω²  

σ₅: Maps ∛2 → ω∛2, ω → ω²  

σ₆: Maps ∛2 → ω²∛2, ω → ω²  

The Galois group is isomorphic to S₃, the symmetric group on 3  

elements, which has order 6.  

Since S₃ is solvable, the equation x³ - 2 = 0 is solvable by radicals  

(which we already know since the solution is ∛2).  

Example 2: Cyclotomic Extensions  

The cyclotomic polynomial Φₙ(x) is the monic polynomial whose  151515151515

roots are the primitive nth roots of unity. For instance:  

•

•

Φ₁(x) = x - 1  

Φ₂(x) = x + 1  

where ω is a primitive cube root of unity.  



•

•

Φ₃(x) = x² + x + 1  

Φ₄(x) = x² + 1  

Notes  

For a prime p, Φₚ(x) = x^(p-1) + x^(p-2) + ... + x + 1.  

Let's consider Φ₅(x) = x⁴ + x³ + x² + x + 1. The Galois group of this  

polynomial over ℚ is isomorphic to (ℤ/5ℤ)*, which is a cyclic group  

of order 4, generated by the residue class of 2 or 3 modulo 5.  

The intermediate fields between ℚ and ℚ(ζ₅) correspond to the  

subgroups of (ℤ/5ℤ). Since (ℤ/5ℤ) has a unique subgroup of order 2,  

there is exactly one intermediate field, which is ℚ(√5).  

Example 3: The Insolvability of the General Quintic  

To prove that the general quintic equation is not solvable by radicals,  

we need to show that the symmetric group S₅ is not solvable.A group  

is solvable if and only if its derived series terminates in the trivial  676767

subgroup. The derived subgroup of S₅ is A₅, the alternating group on 5  

elements. The derived subgroup of A₅ is A₅ itself, which means A₅ is a  

perfect group. Therefore, S₅ is not solvable.This implies that there  

exist quintic equations that cannot be solved by radicals. One such  

example is x⁵ - x - 1 = 0, whose Galois group over ℚ is S₅.  

Application: Impossibility of Certain Geometric Constructions  

Galois theory provides elegant proofs for the impossibility of certain  

classical geometric constructions:  

1. Doubling the Cube: This requires constructing ∛2. Since the  

minimal polynomial of ∛2 over ℚ is x³ - 2, which has degree 3,  

and 3 is not a power of 2, ∛2 is not constructible.  151515151515

2. Trisecting an Arbitrary Angle: Trisecting a 60° angle leads to the  

equation 4x³ - 3x = cos(20°), which can be transformed into an  

irreducible cubic. Since the degree is 3, which is not a power of  

2, this construction is impossible.  
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3. Squaring the Circle: This requires constructing π, which is  

transcendental (not algebraic). Since all constructible numbers  

are algebraic, this construction is impossible.  

Notes  

Application: Insolvability of the Quintic  

The insolvability of the general quintic equation was a profound result  

that ended centuries of attempts to find a radical formula. Galois  

theory not only proved the impossibility but also provided criteria to  

determine which specific quintic equations are solvable.  

For instance, if a quintic polynomial has exactly one real root and four  5151

complex roots, its Galois group must be either S₅ or A₅, making it  

potentially unsolvable by radicals.  



UNIT XV  Notes  

5.8 Symmetric Functions in Galois Theory  

Symmetric functions of the roots of a polynomial play a crucial role in  

Galois theory, providing a bridge between the coefficients of the  

polynomial and its roots.  

Elementary Symmetric Polynomials  3838

Let x₁, x₂, ..., xₙ be variables. The elementary symmetric polynomials  

are defined as:  

e₁(x₁, ..., xₙ) = x₁ + x₂ + ... + xₙ e₂(x₁, ..., xₙ) = x₁x₂ + x₁x₃ + ... + xₙ₋₁xₙ  

e₃(x₁, ..., xₙ) = x₁x₂x₃ + x₁x₂x₄ + ... + xₙ₋₂xₙ₋₁xₙ ... eₙ(x₁, ..., xₙ) =  

x₁x₂...xₙ  

For a monic polynomial p(x) = xⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ with roots  

α₁, α₂, ..., αₙ, the coefficients are related to the elementary symmetric  

polynomials by:  

a₀ = (-1)ⁿeₙ(α₁, ..., αₙ) a₁ = (-1)ⁿ⁻¹eₙ₋₁(α₁, ..., αₙ) ... aₙ₋₁ = -e₁(α₁, ..., αₙ)  

The Fundamental Theorem of Symmetric Polynomials  

Theorem (Fundamental Theorem of Symmetric Polynomials): Any  

symmetric polynomial in x₁, x₂, ..., xₙ can be expressed uniquely as a  

polynomial in the elementary symmetric polynomials e₁, e₂, ..., eₙ.  

This theorem is crucial in Galois theory because it tells us that if f(x₁,  

..., xₙ) is a symmetric polynomial with coefficients in a field F, and if  

α₁, ..., αₙ are the roots of a polynomial in F[x], then f(α₁, ..., αₙ) is an  

Symmetric Functions and Resolvents  

Resolvent polynomials are constructed using symmetric functions to  

gather information about the Galois group of a polynomial.  

For instance, if p(x) is a polynomial with roots α₁, ..., αₙ, we can form  

the resolvent polynomial:  
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element of F.  



r(x) = ∏(x - f(σ(α₁), ..., σ(αₙ)))  Notes  

Where the product is taken over all σ in a particular coset of a  

subgroup of Sₙ, and f is a carefully chosen function.  

The factorization pattern of r(x) can reveal information about the  

Galois group of p(x).  

Lagrange Resolvents  

A particular type of resolvent used in solving equations is the  

Lagrange resolvent.  

For a polynomial of degree n, the Lagrange resolvent is defined as:  

θ = α₁ + ζα₂ + ζ²α₃ + ... + ζⁿ⁻¹αₙ  

For the cubic equation x³ + px + q = 0 with roots α₁, α₂, α₃, the  

Lagrange resolvents are:  

θ₁ = α₁ + ωα₂ + ω²α₃ θ₂ = α₁ + ω²α₂ + ωα₃  

These resolvents satisfy a quadratic equation, which is the key to the  4242

classical solution of the cubic.  

5.9 Application of Galois Theory in Solving Polynomial Equations  

Galois theory provides a framework for understanding which  

polynomial equations are solvable by radicals and how to solve them  

when possible.  

Solving Quadratic Equations  

The quadratic formula x = (-b ± √(b² - 4ac))/2a for solving ax² + bx +  

c = 0 involves taking a square root. The Galois group of a general  

quadratic polynomial over ℚ is S₂, which is abelian and therefore  

solvable.  

Solving Cubic Equations  

Where ζ is a primitive nth root of unity.  

Where ω is a primitive cube root of unity.  



For the general cubic equation x³ + px + q = 0 (after removing the x²  

term), the classical solution method involves:  
Notes  

1. Setting x = u + v  

2. Imposing the condition that 3uv + p = 0  

3. Solving the resulting system, which leads to u³ and v³ being the  

roots of the quadratic equation z² + qz - (p/3)³ = 0  

4. Finding u and v by taking cube roots  

5. Computing x = u + v  

The Galois group of a general cubic over ℚ is S₃, which is solvable  

but not abelian. The solution requires nested radicals.  

Solving Quartic Equations  

The general quartic equation x⁴ + px³ + qx² + rx + s = 0 can be solved  

by:  

1. Removing the x³ term by substitution  

2. Factoring the resulting expression as a product of two quadratics  

3. This factorization leads to a cubic equation (the "resolvent  

cubic")  

4. Solving the resolvent cubic yields the coefficients of the  

quadratic factors  

5. Solving the two quadratics  

The Galois group of a general quartic is S₄, which is solvable.  

The Unsolvable Quintic  

The general quintic equation x⁵ + px⁴ + qx³ + rx² + sx + t = 0 cannot  

be solved by radicals because its Galois group is S₅, which is not  3232

solvable.  
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However, some special quintic equations have Galois groups that are  Notes  
solvable subgroups of S₅, making them solvable by radicals.  

Solving Equations Using Galois Theory  

Here's a general approach to solving polynomial equations using  

Galois theory:  

1. Determine the Galois group of the polynomial.  

2. If the Galois group is not solvable, the equation cannot be solved  

by radicals.  

3. If the Galois group is solvable, analyze its structure to construct a  

sequence of radical extensions.  

4. Use this sequence to express the roots in terms of radicals.  

This approach generalizes the classical solution methods for  

quadratics, cubics, and quartics, placing them within a unified  

theoretical framework.  

Solved Problems  

Problem 1: Find the Galois group of x⁴ - 2 over ℚ.  

Solution:  

The polynomial p(x) = x⁴ - 2 is irreducible over ℚ by Eisenstein's  

criterion with prime p = 2.  

The roots of p(x) are α₁ = ⁴√2, α₂ = i⁴√2, α₃ = -⁴√2, and α₄ = -i⁴√2.  

The splitting field is K = ℚ(⁴√2, i). Let's determine the automorphisms  

of K that fix ℚ.  

Any automorphism σ in Gal(K/ℚ) is determined by its action on ⁴√2  

and i:  

•

•

σ(⁴√2) must be a root of x⁴ - 2, so σ(⁴√2) ∈ {⁴√2, i⁴√2, -⁴√2, -  

i⁴√2}  

σ(i) must be a root of x² + 1, so σ(i) ∈ {i, -i}  



This gives us 8 possible automorphisms:  Notes  

1. σ₁: σ₁(⁴√2) = ⁴√2, σ₁(i) = i (identity)  

2. σ₂: σ₂(⁴√2) = i⁴√2, σ₂(i) = i  

3. σ₃: σ₃(⁴√2) = -⁴√2, σ₃(i) = i  

4. σ₄: σ₄(⁴√2) = -i⁴√2, σ₄(i) = i  

5. σ₅: σ₅(⁴√2) = ⁴√2, σ₅(i) = -i  

6. σ₆: σ₆(⁴√2) = i⁴√2, σ₆(i) = -i  

7. σ₇: σ₇(⁴√2) = -⁴√2, σ₇(i) = -i  

8. σ₈: σ₈(⁴√2) = -i⁴√2, σ₈(i) = -i  

We can verify that these are all valid automorphisms and that they  4242

form a group under composition.  

If we examine the structure, we can show that:  

•

•

•

•

σ₂⁴ = σ₁ (identity)  

σ₅² = σ₁  

σ₂σ₅ = σ₆, σ₅σ₂ = σ₆σ₃  

This means σ₂σ₅ ≠ σ₅σ₂  

Analyzing the group structure reveals that Gal(K/ℚ) is isomorphic to  

D₄, the dihedral group of order 8, which is the group of symmetries of  

a square.  

Since D₄ is solvable, the equation x⁴ - 2 = 0 is solvable by radicals  

(which we already know since the solution is ⁴√2).  

Problem 2: Determine which of the following field extensions are  

Galois over ℚ:  

(a) ℚ(√2) (b) ℚ(∛2) (c) ℚ(i, √2)  

Solution:  
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(a) ℚ(√2) The minimal polynomial of √2 over ℚ is p(x) = x² - 2. This  

polynomial has roots √2 and -√2, both of which are in ℚ(√2).  

Therefore, p(x) splits completely in ℚ(√2). Since we're working in  

characteristic 0, separability is automatic. Thus, ℚ(√2)/ℚ is a Galois  

extension.  

Notes  

The Galois group Gal(ℚ(√2)/ℚ) consists of two automorphisms:  

•

•

The identity automorphism σ₁(√2) = √2  

The non-identity automorphism σ₂(√2) = -√2 This group is  

isomorphic to ℤ/2ℤ.  

(b) ℚ(∛2) The minimal polynomial of ∛2 over ℚ is p(x) = x³ - 2. This  

polynomial has roots ∛2, ω∛2, and ω²∛2, where ω is a primitive cube  

root of unity. Only one of these roots, ∛2, is in ℚ(∛2). Since p(x)  

doesn't split completely in ℚ(∛2), this extension is not normal.  

Therefore, ℚ(∛2)/ℚ is not a Galois extension.  

(c) ℚ(i, √2) Let's consider the minimal polynomials of i and √2 over  

ℚ:  

•

•

For i, the minimal polynomial is x² + 1, with roots i and -i.  

For √2, the minimal polynomial is x² - 2, with roots √2 and -√2.  

Both of these polynomials split completely in ℚ(i, √2). Any  

irreducible polynomial over ℚ that has a root in ℚ(i, √2) must be a  

factor of one of these minimal polynomials or a combination of them.  

Since we're working in characteristic 0, separability is automatic.  

Therefore, ℚ(i, √2)/ℚ is a Galois extension.  

The Galois group Gal(ℚ(i, √2)/ℚ) has four automorphisms:  

•

•

•

•

σ₁: σ₁(i) = i, σ₁(√2) = √2 (identity)  

σ₂: σ₂(i) = -i, σ₂(√2) = √2  

σ₃: σ₃(i) = i, σ₃(√2) = -√2  

σ₄: σ₄(i) = -i, σ₄(√2) = -√2  



This group is isomorphic to ℤ/2ℤ × ℤ/2ℤ.  Notes  

Problem 3: Use Galois theory to prove that cos(2π/7) is not  

constructible with straightedge and compass.  

Solution:  

A number is constructible with straightedge and compass if and only  3838

if it can be obtained from the rational numbers by a sequence of field  

extensions of degree 2.  

Let's consider ζ = e^(2πi/7), a primitive 7th root of unity. We know  

that: cos(2π/7) = (ζ + ζ⁻¹)/2  

So cos(2π/7) is constructible if and only if ζ + ζ⁻¹ is constructible.  

The minimal polynomial of ζ over ℚ is the 7th cyclotomic  

polynomial: Φ₇(x) = x⁶ + x⁵ + x⁴ + x³ + x² + x + 1  

The Galois group of Φ₇(x) over ℚ is isomorphic to (ℤ/7ℤ)*, the  

multiplicative group of integers modulo 7 that are coprime to 7. This  

group has order 6 and is cyclic, generated by the residue class of 3  

modulo 7.  

The element ζ + ζ⁻¹ is fixed by the complex conjugation  

automorphism, which corresponds to the element of order 2 in  

(ℤ/7ℤ)*. This is the automorphism that maps ζ to ζ⁻¹.  

The fixed field of this automorphism is ℚ(ζ + ζ⁻¹). The degree of this  

extension over ℚ is: [ℚ(ζ):ℚ] / [ℚ(ζ):ℚ(ζ + ζ⁻¹)] = 6/2 = 3  

So [ℚ(ζ + ζ⁻¹):ℚ] = 3.  

Since 3 is not a power of 2, the number cos(2π/7) is not constructible  

with straightedge and compass.  

Multiple Choice Questions (MCQs)  

1. A field extension E/F is separable if:  

a) Every element of E is a root of a separable polynomial over  

b) Every polynomial in F[x] has a multiple root.  
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c) EEE contains an algebraically closed subfield.  

d) None of the above.  
Notes  

2. A polynomial is separable if:  

a) It has a repeated root.  

b) It has distinct roots in its splitting field.  

c) It is irreducible over its base field.  

d) None of the above.  

3. A field extension is normal if:  

a) Every irreducible polynomial  

4. in the base field has all its roots in the extension.  

b) The extension field is algebraically closed.  

c) The extension is transcendental.  

d) None of the above.  

5. The main theorem of Galois theory establishes a  

correspondence between:  

a) Normal extensions and separable extensions.  

b) Subgroups of the Galois group and intermediate fields.  

c) Rings and groups.  

d) None of the above.  

6. The Galois group of a field extension E/F consists of:  

d) None of the above.  

7. The order of a Galois group is equal to:  

a) The number of elements in the field extension.  

b) The degree of the field extension.  

c) The number of distinct roots of the minimal polynomial.  3232

d) None of the above.  

a) All automorphisms of F.  

b) All automorphisms of EEE that fix F.  

c) All isomorphisms between EEE and F.  



8. The splitting field of a polynomial is:  

a) The largest field containing at least one root of the  

polynomial.  

Notes  

b) The smallest field where the polynomial factors completely  

into linear factors.  

c) Always infinite.  

d) None of the above.  

9. A polynomial equation is solvable by radicals if:  

a) Its Galois group is abelian.  

b) It has at least one real root.  

c) It is reducible over its base field.  

d) None of the above.  

10. The symmetric group Sn appears in Galois theory as:  

a) The Galois group of the general polynomial of degree n.  

b) A subgroup of the additive group of the field.  

c) The automorphism group of the field of rational functions.  

d) None of the above.  

11. Which of the following is true about Galois extensions?  5151

a) Every finite field extension is a Galois extension.  

b) Every normal and separable extension is Galois.  

c) Every field extension is separable.  

d) None of the above.  

Short Answer Questions  

1. Define a separable polynomial and give an example.  

2. What is a normal extension? Provide an example.  

4. What is a Galois group, and how is it related to field  

extensions?  

5. Define a splitting field and explain its significance.  
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3. State the main theorem of Galois theory.  



6. How do symmetric functions relate to Galois theory?  Notes  

7. Explain why a polynomial is solvable by radicals if its Galois  

group is abelian.  

8. What is the significance of normal and separable extensions in  

Galois theory?  

9. Define a cyclic extension and give an example.  

10. Explain the relationship between subgroups of the Galois  

group and intermediate fields.  

Long Answer Questions  

1. Discuss in detail the concept of separable extensions with  

examples.  

4. How does Galois theory help in solving polynomial equations?  

Give examples.  

5. Explain the significance of the Galois group in the  

classification of field extensions.  

6. How do splitting fields contribute to Galois theory? Provide a  

detailed explanation.  

7. Discuss the connection between symmetric functions and  

8. Describe the structure of the Galois group of a polynomial and  

its significance.  

9. Prove that a polynomial is solvable by radicals if and only if  

its Galois group is solvable.  

2. Explain normal extensions and their role in field theory.  

3. Prove and explain the main theorem of Galois theory.  

Galois theory.  



10. Explain how Galois theory is applied in modern algebra and  Notes  
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number theory.  




