

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name Dr. Balendra Garg

 Title Advanced JAVA Programming

 Paper/Submission ID 4140151

 Submitted by plagcheck@matsuniversity.ac.in

 Submission Date 2025-07-28 15:09:36

 Total Pages, Total Words 287, 68667

 Document type e-Book

 Similarity 5 %
1 10 20 30 40 50 60 70 80 90

Sources Type
Student
Paper
0.17%

Journal/
Publicatio
n 1.62%

Internet
3.2%

Report Content

Words <
14,

1.57%

Ref/Bib
0.64%

Quotes
8.6%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

 Source: Excluded < 14 Words Excluded Journals & publishers Yes

 Excluded Source 0 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

5 56 A

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

1 pdfcookie.com <1 Internet Data

2 www.guru99.com <1 Internet Data

3 pdfcookie.com <1 Internet Data

4 baou.edu.in <1 Publication

5 lms.matsuniversityonline.com <1 Publication

6 www.tutorialspoint.com <1 Internet Data

7 pdfcookie.com <1 Internet Data

8 pdfcookie.com <1 Internet Data

9 www.tutorialspoint.com <1 Internet Data

10 egyankosh.ac.in <1 Publication

11 DECONBE SCHEME FOR SECURE CHANNEL KEY

MANAGEMENT IN FOG COMPUTING BY 18081D0502 YR 2020,

JNTUH

 <1 Student Paper

12 lms.matsuniversityonline.com <1 Publication

13 ndl.ethernet.edu.et <1 Publication

https://pdfcookie.com/documents/developing-java-enterprise-applications-eyv87dq05dl1
https://www.guru99.com/jsp-example.html
https://pdfcookie.com/documents/spring-tutorial-9mlx0x346pl7
https://baou.edu.in/assets/pdf/MSCIT_303_slm.pdf
https://lms.matsuniversityonline.com/pluginfile.php/501/mod_resource/content/2/preservation%2C%20conservation%20of%20museum%20and%20archeological.pdf
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://pdfcookie.com/documents/spring-tutorial-9mlx0x346pl7
https://pdfcookie.com/documents/spring-tutorial-9mlx0x346pl7
https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm
https://egyankosh.ac.in/bitstream/123456789/78754/1/Unit-4.pdf
https://lms.matsuniversityonline.com/pluginfile.php/501/mod_resource/content/2/preservation%2C%20conservation%20of%20museum%20and%20archeological.pdf
http://ndl.ethernet.edu.et/bitstream/123456789/2239/1/11pdf.pdf

14 pdfcoffee.com <1 Internet Data

15 pdfcookie.com <1 Internet Data

16 www.geeksforgeeks.org <1 Internet Data

17 index-of.es <1 Publication

18 qdoc.tips <1 Internet Data

19 www.slideshare.net <1 Internet Data

20 vyrushield.com <1 Internet Data

21 qdoc.tips <1 Internet Data

22 pdfcookie.com <1 Internet Data

23 www.studypool.com <1 Internet Data

24 www.aalimec.ac.in <1 Publication

25 www.susqu.edu <1 Publication

26 docplayer.net <1 Internet Data

27 medium.com <1 Internet Data

28 pdfcookie.com <1 Internet Data

29 www.freepatentsonline.com <1 Internet Data

30 www2.cs.duke.edu <1 Internet Data

31 moam.info <1 Internet Data

32 Submitted to U-Next Learning on 2025-06-28 09-13 4002670 <1 Student Paper

https://pdfcoffee.com/chatbotdocx-pdf-free.html
https://pdfcookie.com/documents/design-pattern-tutorial-eg27em9kn3l0
https://www.geeksforgeeks.org/packages-in-java/?ref=lbp
http://index-of.es/Programming/Java/O'Reilly%20-%20Java%20Reference%20Library.pdf
https://qdoc.tips/praktikum-rekayasa-software-berbasis-komponen-pdf-free.html
https://www.slideshare.net/JawharAli/training-report-on-web-developing
http://vyrushield.com/bc2vkfwu/fusion-360-rotate-polygon-around-center.html
https://qdoc.tips/spring-framework-tutorial-by-tutorialspointcom-pdf-free.html
https://pdfcookie.com/documents/developing-java-enterprise-applications-eyv87dq05dl1
https://www.studypool.com/questions/144245/business-website-analysis
https://www.aalimec.ac.in/wp-content/uploads/2020/01/CS8651-Internet-Programming_watermark.pdf
https://www.susqu.edu/live/files/722-2223sucoursecatalogpdf
https://www.docplayer.net/7717630-Jboss-as-administration-console-user-guide-by-shelly-mcgowan-and-ian-springer.html
https://medium.com/@shreyansh_10191/what-is-jdbc-java-database-connectivity-9785b2ce0004
https://pdfcookie.com/documents/algaworks-ebook-mvc-com-servlets-jsp-e-jstl-20141010-k2p86pdq3xl9
https://www.freepatentsonline.com/y2010/0281240.html
https://www2.cs.duke.edu/acm-docs/java/openjdk/java/lang/class-use/Object.html
https://moam.info/acta-polytechnica-scandinavica_5c5ee82e097c474b038b45d3.html

33 index-of.es <1 Publication

34 index-of.es <1 Publication

35 pdfcookie.com <1 Internet Data

36 eluminoustechnologies.com <1 Internet Data

37 index-of.es <1 Publication

38 moam.info <1 Internet Data

39 docs.oracle.com <1 Internet Data

40 docplayer.gr <1 Internet Data

41 theanarchistlibrary.org <1 Internet Data

42 arxiv.org <1 Publication

43 www.class-hotesse.fr <1 Internet Data

44 www.theserverside.com <1 Internet Data

45 Perceptions of Climate Variability and PestDisease Incidence on Crops

and Ada by Willia-2012
 <1 Publication

46 www.geeksforgeeks.org <1 Internet Data

48 www.readbag.com <1 Internet Data

49 REPOSITORY - Submitted to New Horizon College of Engineering on

2025-01-03 14-28 2933727
 <1 Student Paper

50 Thesis Submitted to Shodhganga Repository <1 Publication

51 www.simplilearn.com <1 Internet Data

52 index-of.es <1 Publication

http://index-of.es/Java/spring-framework-reference.pdf
http://index-of.es/Programming/Java/O'Reilly%20-%20Java%20Swing.pdf
https://pdfcookie.com/documents/conceitos-de-computaao-com-javanodrmpdf-rvr7dx8z142o
https://eluminoustechnologies.com/blog/web-application-development-processes/
http://index-of.es/OS/Apress.Beginning.Ubuntu.Server.Administration.From.Novice.To.Professional.RETAiL.eBOOk-sUppLeX.pdf
https://moam.info/component-and-service-technology-families-ukufi_5c1b283e097c47bc718b4602.html
https://docs.oracle.com/cd/E13218_01/wlp/docs81/sp3/mobile/mobileuserguide/userguide.html
https://www.docplayer.gr/47461444-Antikeimenostrefis-programmatismos.html
https://theanarchistlibrary.org/library/uri-gordon-anarchism-and-political-theory-contemporary-problems
https://arxiv.org/pdf/2003.09312
http://www.class-hotesse.fr/fzkx8t/msal-js.html
https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/Java-File-Upload-Servlet-Ajax-Example
https://dx.doi.org/10.1111/j.2153-9561.2012.01064.x
https://dx.doi.org/10.1111/j.2153-9561.2012.01064.x
https://www.geeksforgeeks.org/separation-of-concerns-soc/
http://www.readbag.com/coursesreservlets-course-materials-pdf-java-05-java-oop-more
https://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/124477/12/12_chapter%202.pdf
https://www.simplilearn.com/tutorials/sql-tutorial/difference-between-sql-and-mysql
http://index-of.es/z0ro-Repository-3/Cisco-Press/Cisco%20Press%20-%20Internetworking%20Technologies%20Handbook,%204th%20Ed%20.pdf

53 pdfcookie.com <1 Internet Data

54 repository.poltekkes-kaltim.ac.id <1 Publication

55 www.ncbi.nlm.nih.gov <1 Internet Data

56 Defining Operational Concepts using SysML System Definition from the

Human Pers by Jorgensen-2011
 <1 Publication

58 Web-ECoTEC an optimization tool for the ECoTEC assessment

methodology by Elian-2011
 <1 Publication

https://pdfcookie.com/documents/promax-manual-g27ozx37z0v0
https://repository.poltekkes-kaltim.ac.id/685/1/medical-surgical-nursing.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057454/
https://dx.doi.org/10.1002/j.2334-5837.2011.tb01307.x
https://dx.doi.org/10.1002/j.2334-5837.2011.tb01307.x
https://dx.doi.org/10.1016/j.sbspro.2011.11.123
https://dx.doi.org/10.1016/j.sbspro.2011.11.123

Master of Computer Applications
MCA-201

Advanced Java Programming

Course Introduction
Module 1

1
2

Object-oriented programming concepts and implementations

Unit 1: OOPS Concepts and implementation

Unit 2: Package Concepts and Implementation

Unit 3: Managing Errors and Exceptions

Unit 4: Multithreading

3
34
63
68
74 Module 2

JavaFX technology

Unit 5: Introduction to JavaFX, Features, Architecture & Application

Unit 6: Java 2D Shapes, Colors, Text

Unit 7: FX Effects

75
91
106
110
115
122

Unit 8: JavaFX Transformation

Unit 9: FX Animation

Module 3
Servlet technology

Unit 10: J2EE Introduction and Architecture

Unit 11: Java Servlet

123
142
145
210

Unit 12: Servlet Life Cycle

Module 4
JSP Technology

Unit 13: Introduction, Need and Benefit of JSP, Life Cycle of JSP

Unit 14: JSP Scripting Elements

Unit 15: Implicit Object

211
214
226
247 Module 5

Spring and Spring Boot Framework

Unit 16: Introduction to Spring Initializing and Writing Spring application 248
Unit 17: Dependency Injection 254

258
279

Unit 18: Developing web applications

References

COURSE DEVELOPMENT EXPERT COMMITTEE
555

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

COURSE COORDINATOR

Chhattisgarh

COURSE PREPARATION

Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-14-2

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

Dr. Balendra Garg, Associate Professor, School of Information Technology, MATS University, Raipur,

Dr. Balendra Garg, Associate Professor and Mr. Sanjay Behara, Assistant Professor, School of

form, by mimeograph or any other means, without permission in writing from MATS University,

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Acknowledgement
The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

COURSE INTRODUCTION

Java is a powerful, object-oriented programming language widely used
for developing robust, scalable, and secure applications. This course
provides a comprehensive understanding of object-oriented
programming concepts, JavaFX for building graphical user interfaces,
and advanced web development technologies such as Servlets, JSP, and
the Spring Framework. Students will gain both theoretical knowledge 25

and hands-on experience in designing and developing modern Java
applications.

Module 1: Object-Oriented Programming Concepts and
Implementations
Object-oriented programming (OOP) enhances code
reusability, scalability, and maintainability. This Unit
introduces key OOP concepts such as encapsulation,
inheritance, polymorphism, and abstraction. Students will learn
how to implement OOP principles in Java, utilizing classes,
objects, and design patterns for efficient software development.
Module 2: JavaFX Technology
JavaFX is a modern Java framework for developing rich
graphical user interfaces (GUIs). This Unit explores JavaFX
components, event handling, layout management, and styling
using CSS. Students will learn how to create interactive desktop
applications with advanced UI controls and multimedia
integration.
Module 3: Servlet Technology
Servlets are essential for developing dynamic web applications
in Java. This Unit covers the fundamentals of Servlet
technology, HTTP request/response handling, session
management, and database connectivity using JDBC. Students
will learn how to create server-side applications that handle
web-based interactions efficiently.
Module 4: JSP Technology
JavaServer Pages (JSP) enable the development of dynamic
web pages by integrating Java with HTML. This Unit
introduces JSP scripting elements, directives, custom tags, and

1

expression language (EL). Students will gain experience in
developing interactive and data-driven web applications using
JSP and Servlets.
Module 5: Spring and Spring Boot Framework
Spring is a powerful Java framework for building enterprise
applications, while Spring Boot simplifies application
development with pre-configured setups. This Unit explores
Spring Core concepts, dependency injection, Spring MVC, and
RESTful API development using Spring Boot. Students will
learn how to build scalable and efficient Java applications using
industry-standard frameworks.

1

MODULE 1

CONCEPTS AND IMPLEMENTATIONS

LEARNING OUTCOMES
• To understand the fundamental concepts of Object-Oriented

Programming (OOP).
• To explore the implementation of OOP principles in Java.
• To analyze package concepts and their implementation.
• To study error handling and exception management.
• To understand multithreading concepts and network

programming.
• To explore Java Database Connectivity (JDBC) and its

architecture

2

OBJECT-ORIENTED PROGRAMMING

Notes Unit 1: Object Oriented Programming Concepts
and Implementation

OOPS Concepts and Implementation
Object-Oriented Programming (OOP) is a paradigm that has made its
way to becoming the most powerful paradigm in the software
development arena, changing the very notions of how programmers
see the world, how they design, and execute the systems. OOP
essentially reflects the way in which we view the real world, consisting
of a group of individual objects, each with its properties and functions,
and among them making meaningful relationships. Java, which first
came into the world in the mid-1990's, has had the reputation as being
one of the leading standard-bearers for object-oriented principles,
supporting a rich, platform-independent environment which embraces
the object-oriented paradigm. While procedural programming is based
on functions or the sequence of operations, OOP focuses on objects
and methods rather than functions, making them modular. This
paradigm transformation cemented OOP as the preeminent approach
for designing large, intricate software solutions across a wide array of
sectors, whether enterprise applications, web services, mobile devices,
or embedded systems.

Figure 1.: OOPs Pillars
[Source: https://www.colab.research.google.com/

The beauty of OOP in Java is that it’s organized around six core
concepts, namely classes, objects, encapsulation, inheritance,
polymorphism and abstraction. However, these principles operate in
concert to form a coherent framework that allows developers to model
the entities and relations of the real world in their code. Thus, classes
are templates that outline both features (attributes) and functionalities

3
MATS Centre for Distance and Online Education, MATS University

555

Notes (methods) of objects, whilst objects are actual manifestations of these
classes, encapsulating their details and bringing them to life in your
code. In encapsulation, a protective barrier is set around the object, and
the data is restricted from outside access and modification. Inheritance
defines the relationships between the base classes and the derived
classes. A derived class can also access the members of the base classes.
Polymorphism adds a layer of flexibility as an object can use different
behavior based on its context, even when derived from common
interfaces. With abstraction, developers can override complexity,
working only on properties that are relevant, while hiding behind
implementation. These principles form the bedrock on which Java's
approach to software development is built, providing developers with a
robust arsenal for crafting clean, efficient, and maintainable code. This
in-depth resource goes into each of the core OOP principles in detail,
explaining the theory behind them and how you can apply them in
practice in Java. We will explore how these principles manifest in
coding practices through step-wise explanation, examples and
applications. When developers understand these principles, they can
exploit the full power of Java object orientation and create applications
that are not only functional, but also robust, flexible and scalable. This
guide is a good fit for you if you are either brand new to programming
wanting to get started with object oriented programming using basics
of Java or you are a seasoned developer wanting to learn the
philosophical point behind the syntax of Java and how Java implements
object orientation as a the main paradigm of programming, and what
makes it one of the oldest and well built and most used programming
languages in the software development industry.
Classes and Objects:

Figure 2: Classes and Objects
[Source: https://in.pinterest.com/

4
MATS Centre for Distance and Online Education, MATS University

555

Notes
Java is an object-oriented programming language and classes and 4949

objects are the building blocks of the object-oriented programming in
Java and the framework on which the whole paradigm is based on. Java
class: A class in Java is a blueprint or template that defines the
properties (attributes) and behaviors (methods) that are common to a
particular type of entity It summarizes the core attributes that
characterize what an object is and the actions that specify what an
object can do. View a class as an abstract thing—it's the idea of
something. For example, a Car class, will have attributes like color,
make, model, and year as well as methods like accelerate(), brake(), and
turn(). Note that the class itself does not represent any specific car; it
describes the structure that all cars in the program will adhere to. On
Java, a class is specified with the Keyword, course, myClass and any
code that contains area ideas, constructors, and method definitions. This
organized way of defining a class allows developers to process strong
units that truly represent real-world objects.
Classes exist as concepts that define the nature and behavior of objects,
while objects are specific occurrences of classes, actual
implementations of those ideas. Java implements an object creation
concept named instantiation where an object is created with the new
keyword followed by calling the constructor method. This action
reserves memory space for the object, sets the fields, and returns a
reference to the newly created instance. All fields in the object state
independently of all objects in the same class So with one Car Object
we might call accelerate () to increase its speed, but another Car Object
stays at 0. This allows objects to model separate entities that can
collaborate with one another in the program. Classes are the blueprints
for objects; they define the properties and methods that the instantiated
objects will have, while objects are the actual entity that is created
based on those blueprints — the things we work with in the program.
This interplay between classes and objects is what allows Java
developers to write modular, organized code that accurately reflects
complex systems. By implementing proper OOP principles,
programmers are able to group together properties and methods,
allowing for the code designed to easily be reused and maintained. Say
for example, in a banking application, the classes could be: Account,
Customer, Transaction, Branch. Classes would represent different

5
MATS Centre for Distance and Online Education, MATS University

Notes entities, such as bank accounts, customers, transactions, and branches,
and they would define both the properties and behaviors associated
with these entities. This allows you to think of the program as a
collection of interacting entities instead of a series of operations, more
naturally matching how we approach thinking about systems in the real
world. Moreover, the class-object model promotes teamwork across
different teams of developers by defining clear boundaries as well as
interfaces between various elements in a system. However, as long as
team members follow the contract, they can work on different classes
independently, which can provide significant speedups during
development of large-scale applications. This clever interplay of
classes and objects grants Java nimbleness and versatility by offering
a well-defined framework for creating complex software systems that
can grow and evolve over time.

// Example of a class definition in Java
public class Car {

// Attributes (fields)
private String make;
private String model;
private int year;
private String color;
private double speed;

// Constructor
public Car(String make, String model, int year, String color) {

this.make = make;
this.model = model;
this.year = year;
this.color = color;
this.speed = 0.0;

}

// Behaviors (methods)
public void accelerate(double amount) {

speed += amount;
System.out.println("Car accelerating. Current speed: " + speed +

" mph");

6
MATS Centre for Distance and Online Education, MATS University

Notes }

public void brake(double amount) {
if (speed >= amount) {

speed -= amount;
} else {

speed = 0;
}
System.out.println("Car braking. Current speed: " + speed + "

mph");
}

public void turn(String direction) {
System.out.println("Car turning " + direction);

}

// Accessor methods (getters)
public String getMake() {

return make;
}

public String getModel() {
return model;

}

return year;
}

public String getColor() {
return color;

}

public double getSpeed() {
return speed;

}

// Object creation and usage example

7
MATS Centre for Distance and Online Education, MATS University

public int getYear() {

Notes public static void main(String[] args) {
// Creating objects (instances of the Car class)
Car myCar = new Car("Toyota", "Camry", 2023, "Red");
Car friendsCar = new Car("Honda", "Civic", 2022, "Blue");

// Using object methods
System.out.println("My car is a " + myCar.getColor() + " " +

" " + myCar.getModel());

myCar.accelerate(30);
myCar.turn("right");
myCar.brake(10);

System.out.println("Friend's car is a " + friendsCar.getColor() + "
" +

" " + friendsCar.getModel());

friendsCar.accelerate(45);
friendsCar.turn("left");
friendsCar.brake(15);

}
}
Output:
My car is a Red 2023 Toyota Camry
Car accelerating. Current speed: 30.0 mph
Car turning right
Car braking. Current speed: 20.0 mph
Friend's car is a Blue 2022 Honda Civic
Car accelerating. Current speed: 45.0 mph
Car turning left
Car braking. Current speed: 30.0 mph

Explanation of output:

2. myCar.accelerate(30); → increases speed to 30.0 and prints
current speed.

8
MATS Centre for Distance and Online Education, MATS University

myCar.getYear() + " " + myCar.getMake() +

friendsCar.getYear() + " " + friendsCar.getMake() +

1. System.out.println("My car is a ...") → prints info about myCar.

Notes 3. myCar.turn("right"); → prints turning right.
4. myCar.brake(10); → reduces speed to 20.0 and prints current

speed.
5. System.out.println("Friend's car is a ...") → prints info about

6. friendsCar.accelerate(45); → increases speed to 45.0 and prints
current speed.

7. friendsCar.turn("left"); → prints turning left.
8. friendsCar.brake(15); → reduces speed to 30.0 and prints

current speed.

Encapsulation:

Figure 3 : Encapsulation
Source: https://www.simplilearn.com/

Encapsulation is one of the four core principles of Object-Oriented
Programming and signifies the concept of encapsulation where objects
hide information and provide controlled access to its internal state. In
its simplest form, of encapsulation is bundling attributes (data) and the
methods that affect those data into a single entity (class) and restricting
access to the internal constituents of that entity. This mechanism acts
as a wall between the object with a hidden value and code running
outside it, the latter running any interference with an external code
trying to meddle with an object's hidden variable. Java encapsulation is
mainly achieved using access modifiers, which are keywords that
determine the visibility or accessibility of a class member (private,
protected, and public). Private modifier allows code from other classes
to access the field only if it is defined in the same class, which makes

9
MATS Centre for Distance and Online Education, MATS University

friendsCar.

Notes it an essential tool for encapsulation. This protects the object's 4949

characters from being accessed by external code directly, and keeps the
object's data valid without invalidating its state in its fucking life. Java
developers can create more portable and reusable software components
through effective encapsulation by separating an object's
implementation from its interface.

Default encapulation is very simple in Java, for achiving default
encapulation we use encapsulation like if you need we declare class
attributes as private and provides public methods (getters and setters).
This strategy has some major benefits in software development. First,
it gives the class designer the ability to enforce validation right in the
setter methods, making sure that attributes can only be assigned valid
values. For example, a setter method for an employee's salary might
check that the new salary value is positive and in a reasonable range
before making the change. Second, encapsulation allows internal
implementation details to change, without having to change any code
that uses this class. The public interface may be the same while
changing the internal representation of the attribute from some simple
primitive type (string, integer, etc.) to a complex object, thereby
allowing keeping the backward compatibility. Third, encapsulation
allows for additional logic to be attached to the reading or writing of
properties — think of logging a change, notification of observers, or
maintaining consistency between related properties. While the contract
enforced by this controlled access pattern ensures that systems are more
easily predictable and maintainable over time.

Encapsulation also serves as a guiding principle for software design,
ensuring loose coupling and separation of concerns. Encapsulation
minimizes inter-component dependencies by hiding implementation
details and presenting only necessary interfaces. This modularity
allows different classes to evolve separately so long as they adhere to
their contractually specified interfaces, which also allows for parallel
development and incremental modification of large codebases.
Encapsulation also enables defensive programming practices by
minimizing the exposure of attributes—once they can only be changed
through cleanly defined methods, the places where bugs might creep in
are limited and hence can be easily located. Encapsulation also

10
MATS Centre for Distance and Online Education, MATS University

Notes implements the principle of least privilege in software design, which
ensures information is accessible only on a need-to-know basis.
Limiting access rights reduces the risk of security vulnerabilities and
side effects in complicated systems. By providing such a wide variety
of advantages, encapsulation become a core principle of Java
programming, empowering developers to build software that is not
merely functional, but also secure, maintainable, and adaptable to
changing needs.

// Example of encapsulation in Java
public class BankAccount {

// Private attributes - hidden from outside access
private String accountNumber;
private String accountHolderName;
private double balance;
private String accountType;
private boolean isActive;

// Constructor
public BankAccount(String accountNumber, String

accountHolderName, double initialDeposit, String accountType) {
this.accountNumber = accountNumber;
this.accountHolderName = accountHolderName;
this.balance = initialDeposit;
this.accountType = accountType;
this.isActive = true;

}

// Getter methods - controlled access to private attributes
public String getAccountNumber() {

// Return masked account number for security
return "XXXX-XXXX-" +

accountNumber.substring(accountNumber.length() - 4);
}

public String getAccountHolderName() {
return accountHolderName;

}

11
MATS Centre for Distance and Online Education, MATS University

Notes
public double getBalance() {

return balance;
}

public String getAccountType() {
return accountType;

}

public boolean isActive() {
return isActive;

}

// Setter methods - controlled modification with validation
public void setAccountHolderName(String accountHolderName) {

if (accountHolderName != null &&
!accountHolderName.trim().isEmpty()) {

this.accountHolderName = accountHolderName;
} else {

throw new IllegalArgumentException("Account holder name
cannot be empty");

}
}

// No setter for account number - it should not be changed after
creation

public void setAccountType(String accountType) {
if (accountType != null && (accountType.equals("Checking") ||

accountType.equals("Savings") ||
accountType.equals("Investment"))) {

this.accountType = accountType;
} else {

throw new IllegalArgumentException("Invalid account type.
Must be Checking, Savings, or Investment");

}
}

12
MATS Centre for Distance and Online Education, MATS University

Notes public void setActive(boolean isActive) {
this.isActive = isActive;

}

// Business methods that modify the private attributes in a
controlled way

public void deposit(double amount) {
if (!isActive) {

throw new IllegalStateException("Cannot deposit to inactive
account");

}

if (amount <= 0) {
throw new IllegalArgumentException("Deposit amount must

be positive");
}

balance += amount;
System.out.println("Deposited: $" + amount + ". New balance:

$" + balance);
}

public void withdraw(double amount) {
if (!isActive) {

throw new IllegalStateException("Cannot withdraw from
inactive account");

}

if (amount <= 0) {
throw new IllegalArgumentException("Withdrawal amount

must be positive");
}

if (amount > balance) {
throw new IllegalStateException("Insufficient funds");

}

balance -= amount;

13
MATS Centre for Distance and Online Education, MATS University

Notes System.out.println("Withdrawn: $" + amount + ". New balance:
$" + balance);

}

// Example usage
public static void main(String[] args) {

BankAccount account = new BankAccount("1234567890",
"John Doe", 1000.0, "Checking");

// Access attributes through getters
System.out.println("Account: " + account.getAccountNumber());
System.out.println("Holder: " +

account.getAccountHolderName());
System.out.println("Balance: $" + account.getBalance());
System.out.println("Type: " + account.getAccountType());

// Modify attributes through setters and business methods
account.setAccountHolderName("John A. Doe");
account.deposit(500);
account.withdraw(200);

// This would throw an exception:
// account.balance = -1000; // Compilation error: balance is

private

// Using methods with validation
try {

account.withdraw(2000); // Will throw exception for
insufficient funds

} catch (IllegalStateException e) {
System.out.println("Error: " + e.getMessage());

}
}

}

If you compile and run your BankAccount program, you will see:

14
MATS Centre for Distance and Online Education, MATS University

Notes Output:
Account: XXXX-XXXX-7890
Holder: John Doe
Balance: $1000.0
Type: Checking
Deposited: $500.0. New balance: $1500.0
Withdrawn: $200.0. New balance: $1300.0
Error: Insufficient funds

Explaination:
1. First four println statements:

o getAccountNumber() masks all but the last 4 digits ⇒
XXXX-XXXX-7890

o

o

o

getAccountHolderName() ⇒ John Doe
getBalance() ⇒ 1000.0
getAccountType() ⇒ Checking

2. account.setAccountHolderName("John A. Doe");
✔ Changes the name internally but does not print anything.

3. account.deposit(500);
✔ Adds $500 ⇒ balance becomes $1500 ⇒ prints:
Deposited: $500.0. New balance: $1500.0

4. account.withdraw(200);
✔ Subtracts $200 ⇒ balance becomes $1300 ⇒ prints:
Withdrawn: $200.0. New balance: $1300.0

5. account.withdraw(2000); inside try block
Triggers Insufficient funds exception ⇒ caught by catch block
⇒ prints:
Error: Insufficient funds

Note:
Directly modifying balance from outside would cause a compilation
error because balance is private.

encapsulation in action.

15
MATS Centre for Distance and Online Education, MATS University

You can only interact through the provided methods—this is

Notes Inheritance:

Figure 4: Types of Inheritance
[Source: https://www.acte.in/]

One of the fundamental building blocks of object-oriented
programming in Java is inheritance, which allows developers create a
relationship between classes that follows the same "is-a" relationship
found in real-world taxonomies. This is a potent process, enabling
developers to create a new class (the subclass or derived class) that
extends an existing class (the superclass or base class) to inherit its
characteristics, and functionality, while providing new or altered
functionality where required. The extends keyword in Java is used to
implement inheritance, forming a parent-child relationship between
classes, where the child class automatically inherits all the visible
members (fields and methods) from its parent class. This relationship
defines inheritance of common attributes and behaviors, which, due to
dynamic polymorphism, can be defined only once, in a parent class,

could provide common attributes such as speed, color, and weight,
along with methods to start, stop, and rate fuel consumption. Language
classes like Car, Motorcycle, and Truck can inherit these common
properties, but they can also introduce their own specific properties,
like the number of doors for the car or the capacity of a truck. This
simple hierarchy eliminates code duplication, but also creates a natural
organization that follows the conceptual relationships between different
types of entities.

16
MATS Centre for Distance and Online Education, MATS University

and reused in multiple child classes. An example of a Vehicle class

Notes
The inheritance model of Java has some unique features that helps the
developers design their class hierarchies. Because Java only supports
single inheritance for classes — that is, it only allows a class to extend
one superclass — this helps avoid the complexities and ambiguities
associated with multiple inheritance. Java, for instance, compensates
for this limitation with interfaces, permitting a class to form a contract
with multiple interfaces, effectively creating a sort of multiple
inheritance of behavior. Second, the super keyword in Java refers to
the superclass, allowing subclasses to access inherited methods and call
superclass constructors. This ensures that the inherited fields are
initialized appropriately, and it also enables subclasses to build upon
and broaden the behaviors specified in their parent class. 3. Java's
model of inheritance provides the concept of method overriding, where
a subclass implements a specialized version of a method defined in its
superclass. The purpose of the @Override annotation is to inform the
compiler that the annotated method is being overridden from its
superclass, allowing it to check whether the method signature matches
an inherited method and providing an error in case of method

Inheritance in Java, however, is a philosophical approach to the design
of programs that centers on the concepts of generalization and
specialization, beyond the technical side. With inheritance, developers
can formulate abstract base classes that encapsulate the core properties
of a concept, and then derive specialized subclasses that adapt and add
to this concept for common scenarios. This maps very nicely to how
we humans experience and group our knowledge, making for more
sensible and natural object-oriented designs. There are things like
polymorphic behavior, where a collection of objects of various
subclass types can be handled uniformly via their common superclass
type, enabling greater flexibility and extensibility in software systems.
The point is that if you have a class with a method that takes a Shape,
you can call that method with any Circle, Rectangle, or Triangle
subclassed object, since they all inherit—from some other class
(directly or indirectly) from Shape. This polymorphic feature allows
programmers to write code that works with existing types and future
derivatives without needing to change the code, providing an ideal case
of the open-closed principle in software design. Moreover, inheritance

17
MATS Centre for Distance and Online Education, MATS University

overloading. You are vertical after October twenty twenty-three.

Notes enables incremental development and testing, as base classes can be
implemented and validated prior to the addition of derived classes.
Inheritance continues to be a vital concept within the Java
programming language, allowing developers to create software
architectures that are both structurally sound and responsive to
changing needs by providing its various advantages.

// Example of inheritance in Java
// Base class (superclass)

// Common attributes for all vehicles
protected String brand;
protected String model;
protected int year;
protected double speed;
protected double fuelCapacity;
protected double fuelLevel;

// Constructor

fuelCapacity) {
this.brand = brand;
this.model = model;
this.year = year;
this.speed = 0;
this.fuelCapacity = fuelCapacity;
this.fuelLevel = fuelCapacity / 2; // Start with half tank

}

// Common behaviors for all vehicles
public void start() {

}

public void stop() {
speed = 0;

}

18
MATS Centre for Distance and Online Education, MATS University

public class Vehicle {

public Vehicle(String brand, String model, int year, double

System.out.println("Vehicle starting...");

System.out.println("Vehicle stopped.");

Notes
public void accelerate(double amount) {

if (fuelLevel > 0) {
speed += amount;
consumeFuel(amount * 0.1); // Simple fuel consumption

model

speed + " mph");
} else {

System.out.println("Cannot accelerate. Out of fuel.");
}

}

public void refuel(double amount) {
if (fuelLevel + amount <= fuelCapacity) {

fuelLevel += amount;
} else {

fuelLevel = fuelCapacity;
}
System.out.println("Refueled. Current fuel level: " + fuelLevel +

" gallons");
}

protected void consumeFuel(double amount) {
fuelLevel = Math.max(0, fuelLevel - amount);
if (fuelLevel == 0) {

}
}

// Getters
public String getBrand() { return brand; }
public String getModel() { return model; }

public double getSpeed() { return speed; }
public double getFuelLevel() { return fuelLevel; }

@Override

19
MATS Centre for Distance and Online Education, MATS University

System.out.println("Vehicle accelerating. Current speed: " +

System.out.println("Warning: Vehicle out of fuel!");

public int getYear() { return year; }

Notes public String toString() {
return year + " " + brand + " " + model;

}
}

// Derived class (subclass)

// Additional attributes specific to cars
private int numberOfDoors;
private boolean hasConvertibleTop;
private boolean isTrunkOpen;

// Constructor that calls the superclass constructor
public Car(String brand, String model, int year, double

fuelCapacity, int numberOfDoors, boolean hasConvertibleTop) {
super(brand, model, year, fuelCapacity); // Call to superclass

constructor
this.numberOfDoors = numberOfDoors;
this.hasConvertibleTop = hasConvertibleTop;
this.isTrunkOpen = false;

}

@Override
public void start() {

System.out.println("Car engine starting... Vroom!");
super.start(); // Call the superclass version of the method

}

// Additional behaviors specific to cars
public void openTrunk() {

isTrunkOpen = true;
System.out.println("Car trunk opened.");

}

public void closeTrunk() {
isTrunkOpen = false;
System.out.println("Car trunk closed.");

20
MATS Centre for Distance and Online Education, MATS University

public class Car extends Vehicle {

// Override the start method from Vehicle

Notes }

public void toggleConvertibleTop() {
if (hasConvertibleTop) {

System.out.println(hasConvertibleTop ? "Convertible top
opened." : "Convertible top closed.");

} else {
System.out.println("This car doesn't have a convertible top.");

}
}

@Override
public String toString() {

return super.toString() + " (Car, " + numberOfDoors + "-door" +
(hasConvertibleTop ? ", Convertible" : "") + ")";

}

// Getters for car-specific attributes
public int getNumberOfDoors() { return numberOfDoors; }
public boolean hasConvertibleTop() { return hasConvertibleTop; }
public boolean isTrunkOpen() { return isTrunkOpen; }

}

// Another derived class showing inheritance

// Additional attributes specific to motorcycles
private boolean hasSideCar;
private String engineType;

// Constructor
public Motorcycle(String brand, String model, int year, double

fuelCapacity, boolean hasSideCar, String engineType) {
super(brand, model, year, fuelCapacity);
this.hasSideCar = hasSideCar;
this.engineType = engineType;

}

21
MATS Centre for Distance and Online Education, MATS University

// Override the toString method from Vehicle

public class Motorcycle extends Vehicle {

Notes // Override the start method
@Override
public void start() {

System.out.println("Motorcycle engine starting... Rumble!");
super.start();

}

// Override the accelerate method for different fuel consumption
@Override
public void accelerate(double amount) {

if (fuelLevel > 0) {
speed += amount * 1.5; // Motorcycles accelerate faster
consumeFuel(amount * 0.05); // Motorcycles use less fuel
System.out.println("Motorcycle accelerating. Current speed: "

+ speed + " mph");
} else {

System.out.println("Cannot accelerate. Out of fuel.");
}

}

// Additional methods specific to motorcycles
public void performWheelie() {

if (speed > 15) {
System.out.println("Performing a wheelie! Be careful!");

} else {
System.out.println("Speed too low for a wheelie.");

}
}

// Override toString
@Override
public String toString() {

return super.toString() + " (Motorcycle, " + engineType + "
engine" +

(hasSideCar ? " with sidecar" : "") + ")";
}

// Getters

22
MATS Centre for Distance and Online Education, MATS University

Notes public boolean hasSideCar() { return hasSideCar; }
public String getEngineType() { return engineType; }

}

// Example usage
public class InheritanceDemo {

public static void main(String[] args) {
// Create objects of different vehicle types

2023, 15.0);
Car sedan = new Car("Toyota", "Camry", 2023, 14.5, 4, false);
Car convertible = new Car("Mazda", "MX-5", 2023, 11.9, 2,

true);
Motorcycle sportBike = new Motorcycle("Honda",

"CBR600RR", 2023, 4.5, false, "4-cylinder");

// Demonstrate inheritance by using common methods

System.out.println("\n--- Sedan ---");
System.out.println(sedan);
sedan.start();
sedan.accelerate(35);
sedan.openTrunk();
sedan.closeTrunk();
sedan.stop();

System.out.println("\n--- Convertible ---");
System.out.println(convertible);
convertible.start();
convertible.accelerate(40);
convertible.toggleConvertibleTop();
convertible.stop();

23
MATS Centre for Distance and Online Education, MATS University

Vehicle genericVehicle = new Vehicle("Generic", "Transporter",

System.out.println("\n--- Generic Vehicle ---");
System.out.println(genericVehicle);
genericVehicle.start();
genericVehicle.accelerate(30);
genericVehicle.stop();

Notes System.out.println("\n--- Sport Bike ---");
System.out.println(sportBike);
sportBike.start();
sportBike.accelerate(50);
sportBike.performWheelie();
sportBike.stop();

// Demonstrate polymorphism (will be covered in more detail in
the polymorphism section)

System.out.println("\n--- Polymorphic Behavior ---");

sportBike};

System.out.println("Processing: " + v);
v.start();
v.accelerate(25);
v.stop();
System.out.println();

}
}

}

Output:

2023 Generic Transporter

--- Sedan ---
2023 Toyota Camry (Car, 4-door)
Car engine starting... Vroom!

Car trunk opened.
Car trunk closed.

24
MATS Centre for Distance and Online Education, MATS University

Vehicle[] vehicles = {genericVehicle, sedan, convertible,

for (Vehicle v : vehicles) {

--- Generic Vehicle ---

Vehicle starting...
Vehicle accelerating. Current speed: 30.0 mph
Vehicle stopped.

Vehicle starting...
Vehicle accelerating. Current speed: 35.0 mph

Notes

--- Convertible ---
2023 Mazda MX-5 (Car, 2-door, Convertible)
Car engine starting... Vroom!

Convertible top opened.

--- Sport Bike ---
2023 Honda CBR600RR (Motorcycle, 4-cylinder engine)
Motorcycle engine starting... Rumble!

Motorcycle accelerating. Current speed: 75.0 mph
Performing a wheelie! Be careful!

--- Polymorphic Behavior ---
Processing: 2023 Generic Transporter

Processing: 2023 Toyota Camry (Car, 4-door)
Car engine starting... Vroom!

Processing: 2023 Mazda MX-5 (Car, 2-door, Convertible)
Car engine starting... Vroom!

Processing: 2023 Honda CBR600RR (Motorcycle, 4-cylinder engine)
Motorcycle engine starting... Rumble!

25
MATS Centre for Distance and Online Education, MATS University

Vehicle stopped.

Vehicle starting...
Vehicle accelerating. Current speed: 40.0 mph

Vehicle stopped.

Vehicle starting...

Vehicle stopped.

Vehicle starting...
Vehicle accelerating. Current speed: 25.0 mph
Vehicle stopped.

Vehicle starting...
Vehicle accelerating. Current speed: 60.0 mph
Vehicle stopped.

Vehicle starting...
Vehicle accelerating. Current speed: 65.0 mph
Vehicle stopped.

Notes
Motorcycle accelerating. Current speed: 112.5 mph
Performing a wheelie! Be careful!

Explainatio:
•

•

•

toString() overrides provide readable descriptions (year
brand model …).
Each start() method prints a message, with subclasses adding
their own output before calling super.start().
accelerate() prints updated speeds and consumes fuel:

o

o

• Car-specific methods (openTrunk, toggleConvertibleTop) print
their actions.

•

•

performWheelie() in Motorcycle checks speed before printing.

dynamically for each subclass.

dynamically for each subclass.

Polymorphism: When something may illustrate the measure of one
thing, polymorphism, from the Greek words significance "many
forms," is viewed as a standout amongst the most influential concepts
in object-situated programming you can have diverse items at different
circumstances to a similar interface in different ways.

Polymorphism in Java is mainly achieved through method overriding
and method overloading, providing a flexibility towards writing a more

26
MATS Centre for Distance and Online Education, MATS University

Vehicle starting...

Vehicle stopped.

Vehicle accelerates normally.
Motorcycle accelerates 1.5× faster.

The polymorphism loop (Vehicle[]) calls overridden methods

The polymorphism loop (Vehicle[]) calls overridden methods

Notes elegant and extensible code flow. In simpler terms, when the subclass
has the same method as its super class, we call this method as method
overriding and thus subclass method will be called while invoking the
method on a class object. This dynamic method dispatch, also referred
to as runtime polymorphism, is based on the actual type of the object
rather than the reference type. Example: If we have a superclass
reference pointing to a subclass object and call a method we would
expect from the superclass to be called Java would automatically
invoke the one overridden from the subclass. Method overloading,
however, is an example of compile-time polymorphism, because it
defines multiple methods with the same name but different argument
lists to exist in the same class. The Java compiler decides which version
of the method should be execute based on number of arguments, types
of arguments and order of arguments passed. In combination, but with
the aid of such mechanisms, Java developers can implement code that
operates on objects at increasing levels of abstraction whereby they are
manipulated through common interfaces while their specific
implementations can still vary, which provides the user reusability of
code blocks and simplifies the evolution of the system. 46

Polymorphism in Java, which would be the basis of this article, in
practical terms, is only deriving from the interplay of the concepts of
inheritance and interfaces. Case in point, through inheritance,
subclasses can override any methods declared in their superclasses,
allowing you to provide specialized behavior while preserving the
method signature. It allows code in the client to communicate with
objects using superclass reference variables, treating heterogeneous
cases of object types uniformly, according to common inheritance. An
example would be a drawing application that creates a Shape
superclass with Circle, Rectangle and Triangle subclasses. Client code
on a Shape reference doesn't need to know its subtype, it can just call
draw(), and each subclass knows its rendering logic, override draw().
So interfaces take this polymorphic capability to the next level by
defining contracts that different classes must implement. A class can
implement many interfaces, where methods of the interface describe
different aspects of its behavior, enabling objects to be treated
polymorphically based on their abilities rather than their inheritance
lineage. For example, unrelated classes such as ElectricCar, SolarPanel,

27
MATS Centre for Distance and Online Education, MATS University

Notes and Smartphone might all implement a common Rechargeable interface
which would allow them to be processed in a consistent way by healing
systems. This late binding that is made possible by showing this
interface-based polymorphic behaviour enables us to develop systems
with high degree of flexibility since new types can just be added
without the need of making any changes to existing code.

This goes beyond its technical application: polymorphism is a way of
thinking about software, a philosophy of design that's focused around
abstraction and behavior-oriented design. Polymorphism, by
emphasizing that it is what objects do and not what objects are that
matters, encourages developers to design systems around behavior and
capabilities, leading to more flexible, loosely coupled architectures.
This also enables the open-closed principle, which states that software
entities should be open to extension but closed to modification, also
allowing systems to evolve in a way that new implementations can be
registered, rather than modifying existing code. When implemented
correctly, polymorphism also supports the strategy pattern and other
behavioral design patterns where an algorithm is chosen based on
context at runtime. As an example, a navigation system could
implement a different pathfinder algorithm (all implementing the same
RouteStrategy interface) depending on whether the user prefers the
fastest, the most scenic, or the most fuel-efficient route. Such a dynamic
behavior makes the applications more responsive and aware of the
context. Moreover, polymorphism leads to more intentional code as
methods can retain the same name in different implementations,
aligning themselves with the conceptual idea rather than the
implementation.

// Example of polymorphism in Java
// Base interface defining a common behavior
public interface Shape {

double calculateArea();
double calculatePerimeter();
void draw();
String getType();

}

28
MATS Centre for Distance and Online Education, MATS University

Notes // Concrete implementation of Shape: Circle 4848

public class Circle implements Shape {
private double radius;

public Circle(double radius) { 1515

this.radius = radius;
}

@Override
public double calculateArea() {

return Math.PI * radius * radius;
}

@Override
public double calculatePerimeter() {

return 2 * Math.PI * radius;
}

@Override
public void draw() {

System.out.println("Drawing a circle with radius " + radius);
// Imagine more complex drawing logic here

}

@Override
public String getType() {

return "Circle";
}

// Circle-specific method
public double getDiameter() {

return 2 * radius;
}

}

// Concrete implementation of Shape: Rectangle 4848

public class Rectangle implements Shape {
private double length;

29
MATS Centre for Distance and Online Education, MATS University

Notes private double width;

public Rectangle(double length, double width) {
this.length = length;
this.width = width;

}

@Override
public double calculateArea() {

return length * width;
}

@Override
public double calculatePerimeter() { 1515

return 2 * (length + width);
}

@Override
public void draw() {

System.out.println("Drawing a rectangle with length " + length +
" and width " + width);

// Imagine more complex drawing logic here
}

@Override
public String getType() {

return "Rectangle";
}

// Rectangle-specific method
public boolean isSquare() {

return length == width;
}

}

// Concrete implementation of Shape: Triangle
public class Triangle implements Shape {

private double sideA;

30
MATS Centre for Distance and Online Education, MATS University

Notes private double sideB;
private double sideC;

public Triangle(double sideA, double sideB, double sideC) {

if (sideA + sideB <= sideC || sideA + sideC <= sideB || sideB +
sideC <= sideA) {

throw new IllegalArgumentException("The sides do not form
a valid triangle");

}

this.sideA = sideA;
this.sideB = sideB;
this.sideC = sideC;

}

@Override
public double calculateArea() {

// Heron's formula
double s = (sideA + sideB + sideC) / 2;
return Math.sqrt(s * (s - sideA) * (s - sideB) * (s - sideC));

}

@Override
public double calculatePerimeter() {

return sideA + sideB + sideC;
}

@Override
public void draw() {

System.out.println("Drawing a triangle with sides " + sideA + ",
" + sideB + ", and " + sideC);

// Imagine more complex drawing logic here
}

@Override
public String getType() {

return "Triangle";

31
MATS Centre for Distance and Online Education, MATS University

// Validate that the sides can form a triangle

Notes }

// Triangle-specific method
public boolean isEquilateral() {

return sideA == sideB && sideB == sideC;
}

}

// Demo class to show polymorphism
public class PolymorphismDemo {

public static void main(String[] args) {
// Polymorphic collection
Shape[] shapes = {

new Circle(5),
new Rectangle(4, 6),
new Triangle(3, 4, 5),
new Rectangle(5, 5),
new Circle(2.5)

};

// Process shapes in a polymorphic way
for (Shape shape : shapes) {

System.out.println("\nShape Type: " + shape.getType());
shape.draw();
System.out.println("Area: " + shape.calculateArea());
System.out.println("Perimeter: " +

shape.calculatePerimeter());
}

}
}

Code demonstration:
• Shape interface defines a common contract (calculateArea,

calculatePerimeter, draw, getType).
• Circle, Rectangle, Triangle each implement Shape and

override methods with their own logic.

32
MATS Centre for Distance and Online Education, MATS University

Notes • A polymorphic array of Shape allows you to call the same
methods on different shapes without knowing their concrete
types at compile time.

• Each shape responds with its own implementation (runtime
polymorphism).

Output from PolymorphismDemo:
Shape Type: Circle
Drawing a circle with radius 5.0
Area: 78.53981633974483
Perimeter: 31.41592653589793

Shape Type: Rectangle
Drawing a rectangle with length 4.0 and width 6.0
Area: 24.0
Perimeter: 20.0

Shape Type: Triangle
Drawing a triangle with sides 3.0, 4.0, and 5.0
Area: 6.0
Perimeter: 12.0

Shape Type: Rectangle
Drawing a rectangle with length 5.0 and width 5.0
Area: 25.0
Perimeter: 20.0

Shape Type: Circle
Drawing a circle with radius 2.5
Area: 19.634954084936208
Perimeter: 15.707963267948966

33
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Package Concepts and Implementation

Package Concepts and Implementation
The Java language has a great mechanism the packages for systematic
programming. In Java, a package is a namespace that organizes a set
of related classes, interfaces, and sub-packages. The package concept
is the one of the fundamental concepts of Java that helps rich developers
to organize their largescale applications by grouping related
components.

Packages have several roles in the Java ecosystem: They help prevent
naming conflicts and control access to classes and their members, as
well as allow for grouping of related code into logical units. As an
object-oriented language, Java uses packages to allow one to group
classes in a logical manner and promotes modular programming
approaches that help with code maintainability, reuse, and scalability
— all of which are essential in the development of enterprise-grade
applications. The core API itself is organized into packages, and the
Java platform itself is based on packages (e.g., java. lang, java. util, and
java. io — each containing classes for specific functionality. I
recommend this tutorial for those interested in learning how to use
packages when developing software in Java. As applications scale in
size and complexity this organization only becomes more important.
Moreover, packages form the basis for the access control mechanism

34
MATS Centre for Distance and Online Education, MATS University

Notes in Java’s security model. This Unit delves into the theoretical
constructs of Java packages, analyzes the implementation aspects, and
offers practical advice for utilizing packages efficiently in Java
development. We will take a closer look at the syntax to define 2323

packages, access permissions for package members, compilation and
execution of the code organized in packages, and good practices to
design packages. Therefore, by applying concepts of Java packages
and using them, a developer can have a more maintainable, secured,
and professional structure of code so that with the increasing
complexity of the application, one can scale accordingly.
The Purpose of Packages: Java follow on packages which address
certain issues faced in software development. Allowing packages, one
of the main advantages to packages are that they provide a method for
grouping sets of classes and interfaces together, which apply some
structure to the code that is hierarchical and reflects the logical structure
of an application. Plus, this organizational aspect becomes more and
more invaluable as projects increase in scope and complexity. If we did
not have packages, all classes would be in one single namespace —
which makes working in a codebase really difficult, as well as
increasing the chances of naming conflicts. For an enterprise
application with hundreds or thousands of classes, organizing them
into logical packages makes the codebase navigable and
comprehendible. Namespace management is another key purpose of
packages. Packages: Java uses packages to create a unique namespace
for each Java class name to avoid name collisions. Double
UsageDevelopers working in parallel on different components of an
application can both introduce a class called Configuration. If these are
in different packages (e.g. com. company. ui. Configuration and com.
company. database. As their fully qualified names differ, they can
coexist without conflict (e.g., if you have a class called
App\Configuration, then you can have a class called
Some\Other\Configuration). They also allow access control via Java's
access modifiers. The default access level in Java, also known as
"package-private", limits access to classes and members of the same
package. This allows developers to encapsulate implementation details,
only exposing what is necessary to the outside world while keeping
internal workings. This encapsulation is a core tenet of object-oriented
design that packaging helps enforce. Furthermore, the packages

35
MATS Centre for Distance and Online Education, MATS University

Notes facilitate Java application deployment and distribution via JAR (Java
Archive) files. A JAR file can have several packages and the packages’
structure is retained in the jar archive. That greatly simplifies the
sharing of Java libraries and applications as standalone packages. So
packages are also a part of java security model. The Loosely Couple
Package: The Java security manager enforces security policies based
on package boundaries, determining what classes from different
packages are permitted to perform which operations. Packages recast
this level of organization to give more than single applications. Now
the conventional reversed domain names (like com. company. (for
each organization) and (for each project) enables global unique naming
of packages from different organizations and different projects, which
eases importing any code from any place.
Historical Context and Evolution: In this article, we will cover the
core concepts of Java packages and their evolution — from static
imports to the new modular system that was introduced with Java 9.
When Sun Microsystems shipped Java tools in 1995, packages were
already one of the language’s built-in features, illustrating the
language designers’ understanding that structuring code would be key
to building scalable applications. To begin with, a simple notion of
packages was used for basic namespace management and access
control. Before Java 2, the standard library was smaller, limited to the
key package’s java. lang, java. util, and java. io. The Java standard
library went through some dramatic expansion as Java matured up
through versions 1.1, 1.2 (Java 2) and beyond, and packages quickly
became critical for organizing the increasingly broad API. Enterprise
Applications and the java: namespace with the advent of the Java 2
Platform, Enterprise Edition (J2EE, later Jakarta EE), the associative
relationship between packages and namespaces became even stronger.
The complexity of Java applications increased drastically around this
time, as J2EE applications could now be large and could require
multiple teams to work on different components. Packages gave you
the necessary structure to manage such complexity. Java packages
took a big leap forward with the addition of the Java Package Manager
(JPM) and subsequently in Java 9 with the addition Project Jigsaw (Java
Module System). This had ameliorated shortcoming of the original
package system in areas of dependency management and at a higher
level of encapsulation than packages. While packages offered

36
MATS Centre for Distance and Online Education, MATS University

Notes namespace management and rudimentary access control, they did not
support declarative dependencies or robust encapsulation boundaries,
a capability introduced in Java 9. In particular, while Java 9 modules
build on the existing notion of packages to enable explicit declaration
of dependencies and better encapsulation with in a module, they also
build on the idea of a module being a discrete unit with its own metadata
that control its usage patterns. However, packages are still essential to
the organization of Java code. The module system is an addition rather
than a replacement to packages, as modules contain packages which in
turn contain classes. By learning about the history of packages,
developers can better appreciate their place in the history of Java's
evolution and their best practices for their use in writing modern Java
applications. For all this evolution, the essential syntax and semantics
of packages have remained curiously stable throughout this series,
meaning code written for early versions of the language will be
compatible with contemporary Java environments. Backward
compatibility: As new features and capabilities have been added to the
language and platform; backward compatibility has been ensured as a
faithful promise of Java’s design philosophy.
Package Declaration and Naming Conventions
The syntax used for declaring packages in Java is simple, as it sets up
the namespace for the classes and interfaces that the package contains.
These classes and interfaces in a Java source file belong to the specified
package and must always be the first non-comment statement in the
Java source file. Essentially, usage of a package declaration would
look something like this: package packageName; here packageName
should follow the naming conventions of Java. If a class does have an
explicit package declaration, it belongs to the default package, an
unnamed package that has neither of the organizational and access
control benefits that named packages provide. For instance, birth a
class to belong to a package called "utilities", the first line of the source
file may read as follows: package utilities; The package name
generally used in Java is hierarchical in nature and compulsory
providing some forms of global uniqueness within the code area as it is
related to the organization structure. Names for packages are based on
reversed domain names, followed by disambiguating identifiers that
further constrain the scope. For example, giving a utility class by a
company with the domain "example. A package which contains a class

37
MATS Centre for Distance and Online Education, MATS University

Notes from a com. example. utilities; It can be extended, in the logical level,
to represent project name, modules and specific functionality: package
com. example. projectname. module. feature The package declaration
establishes a direct correspondence between the package name and the
directory structure that the Java source files are organized. For the
package declaration package com. example. the corresponding source
file has to be placed in the directory needs to match package structure:
/com/example/utilities/ It is worth noting that package names must also 55

match the actual directory structure of the source files, and this is
enforced at the Java compiler level and is critical to having meaningful
package semantics.
Package Naming Conventions and Standards: The Java™ naming
conventions for packages have grown from the needs of development
of large software. The reverse domain name convention is the most
widely followed convention that prefix package names.

By following this pattern, as recommended by Oracle in the Java
Language Specification, we contribute to global package name
uniqueness across organizations/project. The default format starts with
the reverse domain name of the organization creating the code,
followed by a more specific identifier: package com. organization.
project. module. For instance, a data access component in an
accounting application developed by Example Corporation may utilize
the package name: package com. example. accounting. data; This
convention has various benefits. The first significant advantage is that
it virtually removes package name collision risk across code developed
by separate organizations. Second, it dismisses an artificial
hierarchical tree structure that doesn’t carry organizational and project
boundaries. Third, it builds on the current state of how domain names

38
MATS Centre for Distance and Online Education, MATS University

Notes are managed all over the world, where an entire domain is already
unique. However, organizations often have their own internal
conventions to outline more detail on how packages should be named,
and their own general framework of package naming might land into
several specific packages. Common patterns are:
1) The organizations department or division is specified after the
domain: package com. example. engineering. project;
2) Including year or version in package version for major releases:
package com. example. project. v2023;
(3) Separating API and implementation packages: package com.
example. project. api; and package com.
example. project. internal; Package names should always be written in
lowercase letters, following a convention that separates them from class
names (which use camelCase with an initial uppercase letter). This
convention allows developers to quickly identify which is a package
and which is a class in the code. Singular nouns are usually used for
packages containing utility classes or classes with similar functionality:
package com. example. utility; or package com. example. widget; For
packages denoting a subsystem or feature, plural nouns or descriptive
terms are often used: package com. example. services; or package com.
example. dataaccess The Java Development Kit (JDK) itself has
standard packages, which follow certain naming conventions. The Java
Core API packages start with the prefix java. (Such as java. lang, java.
util, java. io), and extension APIs start with “javax. (Such as javax.
swing, javax. crypto). Finally, as you may already know, with the
module system introduced in Java 9 and later, some of these packages
have been moved to the jdk. prefix. It turns out that the vast majority of
third-party libraries and frameworks follow the convention of using
their website for projects or organization that is reversed domain name.
Directory Structure and Package Mapping: Java's convention
requires package names to correspond to the structure of its directories
strictly. This mapping is an integral part of Java's package
implementation, and it has an impact on how the source files are
structured, built, and executed. For a class defined within particular
package, the Java compiler expects the.Adaptive unique solitary. java
file to be situated within a directory structure that reflects the package
hierarchy. Imagine a class defined in the package com. example.
utilities: package com. example. utilities: public class StringUtils {... }

39
MATS Centre for Distance and Online Education, MATS University

Notes The Java source file StringUtils. java should be in a folder structure
corresponding to : /com/example/utilities/StringUtils. This physical
organization has some implications for Java development. To start
with, it imposes a convention over the way source files are structured
to mirror the logical structure of the application. Second, it allows the
Java compiler and the runtime to find classes quickly. Thus, the
package name provides the mechanism for the Java compiler/JVM to
locate the class file that has been saved in the file system whenever it
needs to find a class. The pairing of package names and directory
structure is not just relevant for source files, it is also applicable to
compiled class files. In the process of compiling a Java source file, the
. class files are stored in a directory structure corresponding to the
package name (relative to the output directory specified during
compilation) To give an example, the StringUtils getting compiled. So,
such a path in /StringUtils. class under the /com/example/utilities/ path
in the output dir. The JVM uses this mapping during classloading to
search for classes at runtime, which is fundamental in Java's classpath
mechanism. The classpath is the list of all the directories and JAR files
where the JVM looks up classes. Within these, the JVM looks up
specific classes using the package structure. Proper organization of
projects in Java, and reasons for common compilation time and runtim
time errors related to missing classes, requires an understanding of this
mapping. Development tools and build systems such as Maven and
Gradle complement all this directory management by automating it to
a great extent, and are built upon conventions that associate source
directories with package structures. For example, the standard Maven
directory layout puts Java source files in src/main/java, with package
directories below. Along with that, having the source files physically
organized by package structure also aids version control and
collaboration. PRaying, a practice commonly used for working on
multiple packages in one app. Integrated development environments
(IDEs) such as Eclipse, IntelliJ IDEA and NetBeans usually take care
of package-to-directory mapping for you. These tools generate the right
directory structure on package creation and track the correct
organization as files are renamed or moved.
The Default Package and Its Limitations: Java allows you to define
a class without a package declared, and that puts your class in the
default package. However, while this method may seem to offer a

40
MATS Centre for Distance and Online Education, MATS University

Notes convenient way to implement code for smaller or simpler programs, it
is riddled with severe limitations and generally discouraged for
professional-level Java development. In the absence of a package
declaration, the class belongs to the default package: public class
SimpleClass {... } Only classes in the default package or the same
directory can access classes in the default package. They can not be
imported by classes of named packages, making it pretty hard to reuse
them. According to the Java Language Specification, it is strongly
discouraged to use the default package in production code. As soon as
projects move away from the simple examples, the limitations of the
default package become evident. To begin with, classes in the default
package cannot be imported by classes in named packages. If you try
to import a class from the default package, you will get a compiler error
that the package does not exist. Classes in the default package are thus
effectively invisible to most of the codebase in a typical Java
application. Second, some Java features and frameworks, such as
reflection and the JEE framework, rely heavily on packages and will
not work as expected with the default package. Package scanning is
relied upon for auto-configuration and dependency injection in many
of today's Java frameworks such as Spring, Hibernate and Jakarta EE
components. Many of these scanning methods do not cover classes in
the default package. Third, working in the default package introduces
potential name collisions as a project scales. As there is no namespace
separation through packages, classes need to have unique names
globally with respect to the default package, which becomes more
cumbersome to manage as more and more classes are added. Fourth,
the default package makes access control convoluted. The absence of
named packages means that the code cannot make use of package-
private access, which is an important encapsulation mechanism in
Java. The fifth, Java Module System, which comes in Java 9, does not
work at the same time with the default package. Modules have to
specifically declare what packages they export and require, which you
cannot do with the default package. The default package is mostly for
very simple programs (like the ones beginners writing Java or some
quick test programs). In these situations, the downsides might be less
than the ease of being able to drop package declarations. A single class
in a small program or a small utility such as a “Hello World” program
can usually get away with using the default package. But once a

41
MATS Centre for Distance and Online Education, MATS University

Notes program gets larger than these simple examples, appropriate grouping
into packages becomes necessary. Most Java IDE's and build tools will
encourage you to use named packages from the very beginning, often
requiring a package structure based on the name of the project when a
new project is created. Following this advice helps you some good
practices from the start, and saves you from refactoring code from the
default package into proper package location.

How to Create Package in Eclipse IDE?
In Eclipse IDE, there are the following steps to create a package in java.
They are as follows:
1. Right-click on the ‘src’ folder as shown in the below screenshot.

2. Go to New option and then click on package.
3. A window dialog box will appear where you have to enter the 5353 5353

package name according to the naming convention and click on Finish
button. Once the package is created, a package folder will be created in
your file system where you can create classes and interfaces.

Predefined Packages in Java (Built-in Packages)
Predefined packages in Java are those which are developed by the Sun
Microsystem. They are also called built-in packages. These packages
consist of a large number of predefined classes, interfaces, and methods
that are used by the programmer to perform any task in his programs.

Java APIs contains the following predefined packages, as shown in the
below figure:

42
MATS Centre for Distance and Online Education, MATS University

Notes

Java Core Packages:
1. Java.lang: The ‘lang’ stands for language. The Java language
package consists of Java classes and interfaces that form the core of the
Java language and the JVM. It is a fundamental package that is useful
for writing and executing all Java programs. Examples are classes,
objects, string, thread, predefined data types, etc. It is imported
automatically into the Java programs.
2. Java.io: The ‘io’ stands for input and output. It provides a set of I/O 2323

streams that are used to read and write data to files. A stream represents
a flow of data from one place to another place.
3. Java util: The ‘util’ stands for utility. It contains a collection of
useful utility classes and related interfaces that implement data
structures like LinkedList, Dictionary, HashTable, stack, vector,
calender, data utility, etc.
4. Java.net: The ‘net’ stands for network. It contains networking
classes and interfaces for networking operations. The programming
related to the client-server can be done by using this package.
Window Toolkit and Applet:
1. Java.awt: The ‘awt’ stands for abstract window toolkit. The
Abstract window toolkit package contains GUI (Graphical User
Interface) elements, such as buttons, lists, menus, and text areas.
Programmers can develop programs with colorful screens, paintings,
and images, etc using this package.
2. Java.awt.image: It contains classes and interfaces for creating
images and colors.
3. Java.applet: It is used for creating applets. Applets are programs 58

that are executed from the server into the client machine on a network.
4. Java.text: This package contains two important classes, such as
DateFormat and NumberFormat. The class DateFormat is used to
format dates and times. The NumberFormat is used to format numeric
values.

43
MATS Centre for Distance and Online Education, MATS University

5. Java.sql: SQL stands for the structured query language. This
package is used in a Java program to connect databases like Oracle or
Sybase and retrieve the data from them.

Notes

Java Package Development from Java 8 Onwards
1. Java predefined supports a group of packages that contains a group
of classes and interfaces. These classes and interfaces consist of a group
of methods.
For example, Java language contains a package called java.lang which
contains string class, StringBuffer class, StringBuilder class, all
wrapper classes, runnable interface, etc. String class contains a number
of methods such as length(), toUpperCase(), toLowerCase() etc.
2. Java contains 14 main predefined packages. These 14 predefined
packages contain nearly 150 sub-packages that consist of a minimum
of 7 thousand classes. These 7 thousand classes contain approx 7 lakhs
methods.
3. Up to Java 1.7 version contains 13 predefined packages. From Java
1.8 version onwards, one new package is introduced called java.time.
4. Java 9 introduced several new packages, such as:

•
5353

•
•
•
•

java.lang.module
java.util.spi, jdk.jshell
java.util.concurrent.Flow

jdk.incubator.httpclient.
5. Java 10 introduced relatively few changes compared to Java 9 and
did not include any major new packages.
6. Java 11 introduced java.net.http that provides a new HTTP client that
supports HTTP/2 and WebSocket.
7. Java 12 and 13 versions did not include any packages.
8. Java 14 had introduced a new package named jdk.jfr.consumer.
9. Java 15 and onwards version did not introduce any new packages.

How to See List of Predefined Packages in Java?
Follow the following steps to see the list of predefined packages in
Java.
1. Go to programs files and open them.
2. Now go to Java folder and open it. You will see two folders such as
JDK and JRE.
3. Go to JDK folder, extract the src folder. After extracting it, go to Java
folder. Here, you will see 14 predefined packages folders such as
applet, awt, beans, io, lang, math, net, nio, rmi, security, sql, text, time,
and util.
4. Now you open lang package and scroll down. You can see classes
like String, StringBuffer, StringBuilder, Thread, etc.

44
MATS Centre for Distance and Online Education, MATS University

java.lang.invoke.VarHandle

Java Packages Example Program
Let us take a simple example program where we will create a user-
defined package in a systematic manner.
Example 1:

Notes

// Save as Example.java

// Step 1: Declare package name by reversing domain name, project
name 'java', and module name is core java.

package com.scientecheasy.java.corejava;

// Step 2: Declare class name.
public class Example 1616

{
public static void main(String[] args)
{

System.out.println("How to create a Java package");
}

}

How to Compile Package in Java?
If you are not using any Eclipse IDE, you follow the syntax given
below:
javac -d directory javafilename // syntax to compile the application
In the above syntax,
1. javac means Java compiler.
2. -d means directory. It creates the folder structure.
3. .(dot) means the current directory. It places the folder structure in the
current working directory. For example:
javac -d.Example.java // Here, Example.java is the file name.
So in this way, you must compile application if the application contains
a package statement. After the compilation, you can see the folder
structure in your system like this:
com
|---> scientecheasy

|------> java
|------> corejava

|------> Example.class

How to Run Java Package Program?
You have to use the fully qualified name to execute Java code. The fully
qualified name means class name with a complete package structure.
Use the below syntax to run Java code.
Syntax:
java completePackageName.className
Now run the above Java code. To Run:
java com.scientecheasy.java.corejava.Example

Output:
How to create a Java package

45
MATS Centre for Distance and Online Education, MATS University

How to Import Package in Java Notes
There are three approaches to import one package into another
package in Java.

1. import package.*;
2. import package.classname;
3. Using fully qualified name.

Let’s understand each approach one by one with the help of an example.

Using package.*
An import is a keyword that is used to make the classes and interfaces 1616

of other packages accessible to the current package. If we use
package.*, all the classes and interfaces of this package can be accessed
(imported) from outside the packages. Let’s understand it by a simple
example program.
Example 2:
// Create a package.
package com.scientecheasy.calculate;

// Create a class with a public access modifier.
// If you use a default access modifier, it cannot be accessible due to
default, which is accessible within the same package.
public class Sum
{
// Declare instance variables.

int a = 20;
int b = 30;

// Declare method.
public void cal()
{

int s = a + b;
System.out.println("Sum: " +s);

}
}
// Create another package.
package com.maths.calculator;

// Importing the entire package into the current package.
import com.scientecheasy.calculate.*;

class SumTest
{
public static void main(String[] args)
{

// Create an object of class and call the method using reference variable
s.

Sum s = new Sum();
s.cal();

}
}
Output:

46
MATS Centre for Distance and Online Education, MATS University

Sum: 50 Notes

Using packageName.className
If you import packageName.className, you can only access the
declared class of this package. Let’s understand it through an example
program.
Suppose scientecheasy has information about the Dhanbad city and
TCS needs this information. We will declare two modules: Dhanbad
and TCS. TCS is using Dhanbad class, but both have different package
names. Whenever you are using a class of another package, you must
import the package first of all.
Example 3:
// Declare complete package statement.
package com.scientecheasy.state.cityinfo;
public class Dhanbad
{

public void stateInfo()
{

System.out.println("Dhanbad is one of the major cities of Jharkhand");
}
public void cityInfo()
{

System.out.println("Dhanbad is the coal capital of India.");
}

}
// Declare complete package statement for TCS.

package com.tcs.state.requiredinfo;

// Import the package with class name.
import com.scientecheasy.state.cityinfo.dhanbad;
class Tcs
{
public static void main(String[] args)
{

Dhanbad d = new Dhanbad();
d.stateinfo();
d.cityinfo();

}
}

Output:
Dhanbad is the first major city of Jharkhand.
Dhanbad city is called coal capital city of India.

Using the fully qualified name
If you use the fully qualified name, there is no need to use an import
statement, but in this case, only the declared class of this package can
be accessible. It is generally used when two packages have the same
class name.

47
MATS Centre for Distance and Online Education, MATS University

Let’s take a scenario to understand the above concept. Consider the
below figure.

Notes

In the com package, there are two sub-packages “scien” and “tech”.
The sub-package “scien” contains two class files A.java and B.java.
Whereas the sub-package tech contains three class files: C.java, D.java,
and A.java.
Question. How will you call m1 of class A of sub-package scien and
m2 of class A of sub-package tech from class B of sub-package scien?
Let’s take an example program in which we will use the first approach
to call the following requirement.
Example 4:
package com.scien;
import com.tech.A;
class B
{

void m3()
{

System.out.println("Hello Java");
}

public static void main(String[] args)
{

A a = new A();
a.m1();

A a1 = new A();
a1.m2;

B b = new B();
b.m3();

}
}

48
MATS Centre for Distance and Online Education, MATS University

Will the above code compile?
1. No: because the statement A a = new A(); does not say anything

Notes

about class A from which sub-packages (scien or tech) it is referring.
2. No: because the statement A a1 = new A(); is also not saying
anything about class A of which sub-packages (scien or tech) it is
referring.
3. No: because a.m1() and a1.m2() will get confused to call the method
of which package’s class. Here, the compiler will be also confused.
In this case, the import is not working. So, we remove the import
statement and use the fully qualified name.
package com.scien;
class B
{

void m3()
{

System.out.println("Hello Java");
}

public static void main(String[] args)
{

A a = new A(); // keep as it is because it is from the same package
"scien".

a.m1();

com.tech.A a1 = new com.tech.A(); // It will direct go to tech package
and call the method m2.

a1.m2;

B b = new B();
b.m3();

}
}

Output:
Hi
Hello
Hello Java

Suppose you are not using public with m2() method in the above 1717

program, then it will give error ” The method m2() from the type A is
not visible” because it is a default and default access modifier cannot
be accessed from outside the package.

Key Points to Remember:
1. While importing another package, package declaration must be the
first statement and followed by package import.
2. A class can have only one package statement, but it can be more than
one import package statement.
3. import can be written multiple times after the package statement and
before the class statement.
4. You must declare the package with root folder name (no sub folder
name) and the last file name must be class name with a semicolon.

49
MATS Centre for Distance and Online Education, MATS University

5. When you import, it does mean that memory is allocated. It just gives
the path to reach the file.

Notes

6. import com.scientecheasy.state.cityinfo.dhanbad; is always better
than import com.scientecheasy.state.cityinfo.*;.

Importing Packages and Classes
This can be simplified using the import statement—which is followed
by the package and the class, allowing developers to use the class
without needing to provide the full path every time. The import
statement tells the compiler which classes or whole packages to
provide with their simple names. In Java, there are basically two
types of import statements: single-type imports and on-demand
(wildcard) imports. Single-Type Imports: A single-type import
imports exactly one class or interface: import java. util. ArrayList;
This import allows the code to use the ArrayList class simply, rather
than by fully qualified name: ArrayList list = new ArrayList (); instead
of java. util. The java. util. import ArrayList (); An on-demand (or
wildcard-style) import makes all public types in a package accessible
by their simple names: import java. util. *; using this, the code can use
any public class from the java. util package as a simple name. Import
Statements These must occur after the package declaration (optional)
and before any class or interface declaration. Using multiple import
statements, we can import classes from different packages:

• Import Statements: In Java, there are multiple import
statements that allow you to tailor the access according to your
code organization and requirements. Grasping these
differences lets developers create cleaner, more manageable
code while steering clear of frequent mistakes. The simplest
form is the single type import, which imports exactly one class,
interface, enum, or annotation: import java. util. ArrayList; This
style is accurate and clearly indicates which kinds are being
used in a source file. It is usually recommended when a person
needs only some types of one specific package. Wildcard
imports (also known as on-demand imports) use an asterisk
syntax to import all public types in a package: import java. util.
; This style is useful when there are many types from the same

where multiple packages have classes with the same name.
Static Imports The static import statement, which made its entry

50
MATS Centre for Distance and Online Education, MATS University

package in a source file. Yet, it may cause naming conflicts

Notes in Java 5, enables importing static members (fields and
methods) of a class: import static java. lang. Math. PI; import
static java. lang. Math. sqrt; One can use static members directly 1717

with static imports, without qualifying them with the name of
the class: double circumference = 2 * PI * radius; double
hypotenuse = sqrt(aa + b*b); On-demand static imports are also
supported, making all the static members of a class available:
import static java. lang. Math. * The first import statement
declares that all public static members of the Math class can be
used without qualification. Java 5 also added support for
importing enum constants, which are static members of an
enum type: import static com. example. Status. This allows for
the use of enum constants directly without the enum type prefix
-- if (status == ACTIVE) {... } instead of if (status == Status.
ACTIVE) { ... } It's been possible since Java 7 to use single
static imports to import a specific nested static class:import
static javax. swing. SwingConstants. CENTER; This lets us
refer to the nested class by its simple name: int alignment =
CENTER; instead of int alignment = SwingConstants.
CENTER; Java includes support for importing annotations,
which are a special kind of interface you can implement in your
classes: import java. lang. annotation. Retention; Static import
of annotation members is also supported: `import static java.
lang. annotation. RetentionPolicy. RUNTIME; Based on my
literary background, I can say that since every import can have
a custom path, the only factor to drive your choice would be
code readability, possibility of name conflicts and project
conventions. Single-type imports give the best clarity but cause
a lot of import statements in files that are using many different
types. The first option imports on-demand as well, which
minimizes the number of import lines, but does not reveal what
kinds of imports are actually used in the code. (One convention
followed by many is that there should be a single-type import
per import statement for clarity, except when importing lots of
types from the same package (e.g., when using many classes
from java. util or javax. swing).

• Import Resolution and Name Conflicts: Java's import
mechanism has specific rules for how Java will resolve class

51
MATS Centre for Distance and Online Education, MATS University

Notes names, and understanding these rules is critical to avoid and
troubleshoot name conflicts. Given a class name found in
source, the Java compiler tries to resolve it to a fully qualified
class name through a sequence of steps. Initially, the compiler
looks up whether the class name indicates a class in the current
package. Such a class is used and has no further resolution. If
no match is found in the current package, the compiler checks
for single-type import statements that match the class name. If

if there is ambiguity, for example if two different single-type
imports match the same simple name (one from each of two
different packages), then a compilation error will result. If no
matching single-type import is found, the compiler then looks
at the on-demand imports for a potential match. If only one on-
demand import contains a matching class, then that class is
used. However, if multiple on-demand imports have classes
with a matching name, a compilation error is generated because
it is ambiguous. Last but not least if no class is found by any
import the compiler will look in the java. lang package will be
implicitly imported. Class not found issue and if it is still not
found then we have a compile time error. In which cases is
there a possibility of name conflict? One common case is when
two packages include classes of the same name, and both
packages are imported using on-demand imports: `java

import java.util.*;
import java.awt.*;
// Both packages contain a List class
List list; // Ambiguous - which List class to use?
``` When such conflicts occur, the compiler generates an error  
indicating the ambiguity. To resolve this type of conflict, developers  
can use a single-type import to explicitly specify which class to use:  
```java  
import java.util.*;
import java.awt.*;
import java.util.List; // Explicitly choose java.util.List
List list; // Now refers to java.util.List

52
MATS Centre for Distance and Online Education, MATS University

a single matching import is found, that class will be used. Now,

Notes ``` Alternatively, the fully qualified name can be used directly in the
code without an import: ```java
java.util.List list; // Explicitly use java.util.List without an import
``` Another type of conflict occurs when a class in the current package  
has the same name as a class being imported. In such cases, the local  
class takes precedence over the imported class, following Java's name  
resolution rules. This can lead to subtle bugs if a developer is unaware  
of the local class and expects an import to bring in an external class  
with the same name. Static import conflicts can also occur when static  
members with the same name are imported from different classes:  
```java  
import static java.lang.Math.max;
import static java.util.Collections.max; // Conflict with Math.max
``` To resolve such conflicts, either avoid the static import and use the  
class name qualifier, or use the fully qualified name for the static  
method: ```java  
int larger = Math.max(a, b);  

• Managing Imports Effectively: However, well manage  
import statement is a task of keeping java fine and bharat.  
Modern IDEs include tools to handle many import management  
processes automatically, yet a basic understanding of the  
principles involved is still useful information for Java  
developers to know. A vital choice you make in import  
management is whether to use single-type or on-demand  
(wildcard) imports. However, most Java Style guides,  
including Google Java Style Guide and Oracle Code  
Conventions for the Java Programming Language suggest using  
single-type imports to provide clarity and explicitness. Single-  
type imports makes it immediately clear what exact classes  
from external packages are being used in a source file. This  
whole transparency helps a lot when debugging things or if  
multiple team members are working on the same codebase.  
However, on-demand imports may be suitable for some cases.  
If a source file uses a lot of classes from the same package (e.g.  
many classes from java. util or javax. If you have to use the  
whole swing, importing each class individually can get tedious  
and you can make the import section long. In this scenario, even  

53  
MATS Centre for Distance and Online Education, MATS University  

List<Integer> maxValue = Collections.max(numbers);  



Notes  though there is still some duplication in what gets defined  
(though in most cases, you would significantly reduce clutter  
because on-demand import is local only) it should generally be  
clear what part of the library you are working with (to this end,  
the initial library should group its functionality separately or  
logically). All modern Java IDEs have the capability to handle  
imports automatically. Such features usually consist of:  

1. Importing classes on-demand  
2. Sorting and Removing unused imports  
3. Convert between single-type and on-demand imports based on  

configurable thresholds  
4. Import conflicts resolution by suggesting specific single-type  

imports in the case of ambiguity.  
Most IDEs also have a way of configuring import management  
policies so that they are consistent with the conventions used  
by a team. Touching on this specifically, all of IDEs nowadays  
like Eclipse or IntelliJ IDEA or NetBeans let you set up these  
thresholds (like “use wildcard imports when importing more  
than N classes from the same package”) Teams must define  
import management conventions and set up their IDEs  
accordingly so that all the project code has the same style.  
Besides IDE automation, here are several best practices that can  
help maintain clean and effective imports: 1) Clean up unused  
imports — they add noise and can lead to confusion about what  
external classes are actually used; 2) Group imports logically  
(which usually means separating standard Java packages, third-  
party libraries, and internal project packages); 3) Avoid static  
imports that are not strictly needed — these handle potential  
conflicts with members of the same name and keep clarity of  
the code; 4) Avoid importing classes of the same name (e.g:  
List or Map) from different packages, as it may lead to conflicts.  
For large projects, build tools such as Maven and Gradle can  
have rules set (using plugins such as Checkstyle or PMD) to  
ensure import conventions are followed. Such tools (and rules)  
can check as part of the build process whether imports are  
organized correctly, regardless of which developer is working  
on which IDE. For example, if you are working with legacy  
code that may not be using the best practices for top-level  

54  
MATS Centre for Distance and Online Education, MATS University  



Notes  imports but you are not willing to change large parts of the  
codebase just to clarify import style, consider refactoring import  
statements in the process of modifying files for other reasons.  
This gradual approach reduces the likelihood of bugs while still  
allowing code quality to improve over time.  

Access Control and Package Visibility  
Packages are used by Java's access control mechanism to specify the  
visibility and accessibility of classes, interfaces, and their members.  
Since you may also design the javax package and you are controlled the  
access modifiers in there, it’s important to understand how these access  
modifiers are interacting with package boundaries. Java has four  
access modifiers: public, protected, default (also known as package-  
private) and private. You declare a class, interface, or member with  
one of these levels to specify which part of the code can access it. The  
most permissive for public access, which is a public class or member is  
accessible from any other class in the Java program, without reference  3232

to package boundaries.  

Protected access means accessible from subclasses (any package) and  
any classes in the same package. When no access modifier is given,  
the access provided is called default access; classes within the same  
package can access it. The most restrictive, private access, restricts  
access to just the declaring class itself. This facility revolves around  
packages, which establishes a default access boundary. Default access  
classes are only visible to other classes in the same package, which  
formed a natural unit of encapsulation. Classes with default access (no  
modifier) can only be accessed by classes in the same package. This  
package-level visibility allows developers to keep implementation  
details private while allowing them to be available to classes that are  
closely related and need to work together. The containment offered by  

55  
MATS Centre for Distance and Online Education, MATS University  



Notes  packages aids in the information hiding principle, which permits  
developers to change the implementation details inside a package  
without impacting code in other packages relying upon the public  
interfaces alone.  

• Package-Private Access: The default access level in Java —  
sometimes called "package-private" — is a primitive  
encapsulation boundary defined in terms of package  
membership. However, if you declare a class, interface, or  
member without an explicit access modifier, it is accessible only  
to other classes in the same package. This provides a natural  
module boundary that adheres to the principle of information  
hiding while still allowing cooperation between related classes.  
Package access (sometimes called package-private access) is  
indicated by the absence of an access modifier: class Package  
Private Class { package int packagePrivateField; void  
packagePrivateMethod() {... } } Here both class and members  
are package-private - accessible to other classes in the same  
package but invisible to classes in different packages. So what  56

does this use case package-private access in the context of Java  
application design serve? The former offers a degree of  
encapsulation between public and private access. So for the first  
point, package-private members give you an intermediate  
visibility scope between public and private classes that you can  
align with natural component boundaries, as opposed to class  
boundaries, with the visibility model. It enables related classes  
within a package to cooperate while keeping the internal details  
hidden from the rest of the application. Second, package-  
private access facilitates engineering the implementation of the  
Java platform itself. Espect to not be visible for any application  
code a direct cascade Anyone else explaining is a potential  
poison Gateway (as opposed to the intent of the feature is a 3rd  
party library) — used only in descendant descendants, without  
public Methods An alternative package-private as you could  
potentially inadvertently X between essentially which goes over  
and either as you would consider. For instance, classes in the  
java. The util package might use package-private methods to  
communicate with one another while keeping a clean public  
API for applications. Third, package-private access makes unit  

56  
MATS Centre for Distance and Online Education, MATS University  



Notes  testing easier: test classes in the same package can access  
package-private members of the classes under test. This allows  
for extensive testing without the need for developers to expose  
the details of implementation just for the sake of testing. The  
most common pattern is to locate test classes in the same  
package as the classes they are testing, usually in a parallel  
directory structure below the test source root. Let's say you have  
the following code and two classes in the same package that  
need to collaborate closely:  

```java // File: com/example/banking/Account.java package  
com.example.banking;
class Account { int accountNumber; double balance;
void updateBalance(double amount) {

balance += amount;
}
}
// File: com/example/banking/Transaction.java package
com.example.banking;
public class Transaction { public void process(Account account, 40

double amount) { // Can access package-private members of Account
account.updateBalance(amount); } }

• Protected Access Across Packages: The protected access
modifier in Java introduces a relationship between inheritance
and package membership that requires careful consideration in
application design. A protected member (field, method, or
nested class) is accessible within its own package, similar to
default (package-private) access. Additionally, protected
members are accessible from subclasses of the declaring class,
regardless of the package in which those subclasses are defined.
This extension of visibility across package boundaries for
inheritance relationships makes protected access more complex
than other access levels. The basic syntax for declaring
protected members is:

```java  
protected int protectedField;  
protected void protectedMethod() { ... }  
protected class ProtectedNestedClass { ... }  

57  
MATS Centre for Distance and Online Education, MATS University  



Notes  ``` To understand protected access across packages, consider the  
following example with classes in different packages: ```java  
// File: com/example/base/Parent.java  
package com.example.base;  

public class Parent {  
protected int data = 42;  

protected void display() {  
System.out.println("Data: " + data);  

}
}

// File: com/example/derived/Child.java  
package com.example.derived;  

import com.example.base.Parent;  

public class Child extends Parent {  
public void accessParentMembers() {  

// Can access protected members of the parent class  
System.out.println("Parent data: " + data);  
display();  

}

public void accessOtherParentInstance(Parent other) {  
// Cannot access protected members of other Parent instances  
// System.out.println(other.data); // Compilation error  
// other.display(); // Compilation error  

}
}
Here, despite the Child class being in a different package, it can access  
its protected data field and display method of the Parent class. Protected  
access has an important subtlety: a subclass can access protected  
members through inheritance (via this or super references), but it  
cannot access protected members of other instances of the parent class.  
However,  this  restriction  is  also  evident  in  the  
accessOtherParentInstance method, because if you try to access  

58  
MATS Centre for Distance and Online Education, MATS University  



Notes  protected members of another Parent instance, you will get  
compilation errors. This is because protected access only supports  
inheritance relationship, and it does not allow access to the whole  
parent class instance for any instance of the other package class.  
External classes are prevented from accessing protected data members  
or functions, but subclasses can — making this access level useful in  
framework and library design, where a base class may need to facilitate  
subclasses while preventing them from exposing their functionality to  
unrelated classes. For instance, many of the abstract classes in the Java  
Collections Framework use protected methods to enable subclass  
customization while encapsulating implementation details. To properly  
architect a class hierarchy across different packages, developers should  
think which members ask for the protected access. Excessive use of  
protected access may lead to a weakening of encapsulation and  
exposure of implementation details to subclasses, resulting in tight  
coupling between the base class and its subclasses. Conversely, making  
members private can hinder legitimate customization through  
subclasses. A good rule of thumb is to use protected access for methods  
that should be overridden by subclasses (template methods from the  
Template Method pattern) calls or for members that subclasses need to  
call as part of their implementation. Unlike methods, it is more  
uncommon to mark fields as protected, as subclasses can access them  
directly and thus can avoid significant validation or synchronization  
action taken from the parent class. Instead, protected accessor and  
mutator methods are often a better balance of flexibility and  
encapsulation.  

• Public Classes and Package Organization: This is critical for  
organizing packages and building applications, as public classes  
have a visibility across packages and affect the way classes can  
be referenced within them. This means a public class can be  
referenced from any other class in the Java program, even a  3232

class in another package. However, we cannot have classes  
without having public classes that are the primary interface of  
igniter packages and, with that, is the baseline use of and API  
design for any Java applications. In Java, a source file may  
contain one and only one public class or interface and if there  
is one, the name of that public class must match the name of the  

59  
MATS Centre for Distance and Online Education, MATS University  



Notes  file (excluding. java extension). Importantly, since there is a 1:1  
mapping between public classes and source files, this reinforces  
the fact that the primary units of functionality made available  
for use by a package are its public classes. Classes with default  
package-private access (i.e. non-public) in the same source file,  
on the other hand, are implementation details that support the  
public class that should not be visible outside the package. This  
inherently encourages encapsulating code around clean public  
interfaces with implementation details being hidden in the  
package. Good organization of packages relies on the fact that  4141

a public package has as few public classes as possible, but at the  
same time, these public classes must give a complete and  
coherent interface to the functionality is provided by the  
package. The public classes define the package's contract with  
the calling application, while the package-private classes hold  
implementation information, and no information that the  
calling class doesn't need to know is exposed. }} Consider an  
application that implements a data access layer for some  
package: `java  

// File: com/example/data/UserRepository.java  
package com.example.data;  

public interface UserRepository {  
User findById(long id);  
void save(User user);  
void delete(User user);  

}

// File: com/example/data/UserRepositoryImpl.java  
package com.example.data;  

class UserRepositoryImpl implements UserRepository {  
private DatabaseConnection connection;  

UserRepositoryImpl() {  
connection = DatabaseConnectionFactory.createConnection();  

}

60  
MATS Centre for Distance and Online Education, MATS University  



Notes  @Override  
public User findById(long id) {  

// Implementation details  
}

@Override  
public void save(User user) {  

// Implementation details  
}

@Override  
public void delete(User user) {  

// Implementation details  
}

}

// File: com/example/data/DatabaseConnection.java  
package com.example.data;  

class DatabaseConnection {  
// Implementation details  

}

// File: com/example/data/DatabaseConnectionFactory.java  
package com.example.data;  

class DatabaseConnectionFactory {  
static DatabaseConnection createConnection() {  

// Implementation details  
}

}

// File: com/example/data/User.java  
package com.example.data;  

public class User {  
private long id;  
private String username;  

61  
MATS Centre for Distance and Online Education, MATS University  



Notes  
// Public constructors, getters, and setters  

}
In this example, only the UserRepository interface and User class are  
public, forming the API that other packages can use. The  
implementation classes (UserRepositoryImpl, DatabaseConnection,  
and DatabaseConnectionFactory) are package-private, hidden from  
external  

62  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 3: Managing Errors and Exceptions  

Managing Errors and Exceptions: Exception Handling  
Mechanisms in Java  

Figure 1.4: Exception Hierarchy  
[Source: https://th.bing.com/]  

In software development, especially for one of the most solid and  
popular programming languages such as Java, the ability to handle  
errors and special conditions gracefully is crucial to building robust and  
resilient applications.  
In the context of Java, an exception is an event that interrupts the  
normal flow of execution of the program. Generally, it represents an  
unusual or abnormal scenario that falls outside of the intended  
operating sequence. These exceptions can happen from lots of reasons  
like in case of invalid user input, unavailability of any resource (file not  
found), network connectivity loss or it can also be from programming  
errors like divide by zero situation. Java incorporates a rich and  
organized approach to handle such disruptions, aptly named exception  
handling, which allows developers to predict, catch, and address these  
exceptions in a both systematic and controlled way. Java exception  
handling is built upon the basic concept of what is the risk in a program  
and what is not following the normal flow of logic and making it easier  
to manage error inside a large code. This separation into different  
blocks of code is implemented with keywords and constructs  
specifically designed for this purpose, which are try, catch, finally, and  
throw, that in conjunction help handle exceptions. The try block is the  
core of this mechanism, wrapping the code segment that may raise an  
exception. On the other hand, catch block is an exception handler,  

63  
MATS Centre for Distance and Online Education, MATS University  



Notes  describing the type of exception that you can handle and having the  
statements to be executed when such an exception is raised. Used with  
try and catch, the finally block makes sure a block of code runs  
whether an exception is thrown or caught, making it an excellent place  
to put resource cleanup operations. The throw keyword allows Java  
developers to create an exception, either a standard Java exception or a  
custom exception that fits the application's needs. Java provides these  
constructs which allow developers to bestow applications with the  
ability to recover from errors or terminate gracefully while informing  
the user of what's happened, making for a more stable software and  

precise field, error handling is essential in software development, and  
no one knows where they are going to be deployed.  4141

A tree structure forms the basis for exception handling in Java based  
on a hierarchy of classes, with the Throwable class being the root of  
that hierarchy. This is further divided into two major categories known  
as checked exceptions and unchecked exceptions. Upon hearing the  
term exception, checked exceptions typically come to mind first in  
Java, as they fall directly under Exception and represent exceptional  
behaviors that a sufficiently prepared application should be able to  
handle. Such exceptions are usually linked with external issues or  
resource constraints,  including  input/output  or  network  
communications. Compiler enforces handling of checked exceptions;  
developer needs to either handle it in try-catch block or declare it in  
method using throws clause which essentially passes the responsibility  
to handle it to the calling method. More importantly, it encourages you  
to handle any potential errors up front, preventing them from  
proliferating unchecked through the application. On the other hand,  
unchecked exceptions extend from the class of RuntimeException, and  
correspond to programming errors or logical bugs that are usually  
meant to be handled by the programmer. Unlike checked exceptions,  
these  exceptions  (like  NullPointerException  or  
ArrayIndexOutOfBoundsException) often show a flaw in code logic,  
hence they don't get compile time checks. In general, you don't have to  
implement these, but it is good practice to add try-catch Here to avoid  
terminating the program and apply graceful error recovery when an  
exception occurs. Checked exceptions in Java are about two words:  
design philosophy. Checked exceptions lead the developers in a way  

64  
MATS Centre for Distance and Online Education, MATS University  

user experience. You move from technical correctness to a much more  



Notes  where they think upfront about their errors and make provisions to  
handle it where as unchecked exception give you more flexibility to  
work on programming errors which might be difficult to predict or  
prevent. In addition to these pre-defined exception classes, Java also  
provides the ability to create custom exceptions by extending the  
Exception or RuntimeException classes. This allows application-  
specific exceptions to be crafted, representing the fine-grained error  
conditions that may arise, resulting in a more helpful approach to  
managing the state of an application. While built-in exceptions provide  
some context, custom exceptions can include more specific details  
about the error, including error codes and detailed messages, which can  
be crucial for understanding and resolving issues. One compelling  
feature that contributes to Java's strong error handling capabilities is  
the ability to define and throw custom exception classes.  
The try-catch-finally construct is the workhorse for Java's exception  
handling mechanism: a structured approach to intercepting and  
managing exceptions. The try block specifies the part of the code that  
might throw an exception. This is the basic syntax for exception  
handling in C++ −Try Block: The code which is doubtful to have a race  
condition is enclosed in a try block. If an exception is encountered,  
execution of the try block gets interrupted, the catch block is searched  
if there is any catch block to handle caught exception and control is  
transferred to it. The catch block Follows the try block and is where you  
define the type of exception the block is capable of catching, followed  
by the code to run when such an exception arises. We can define  
multiple catch blocks with a single try block to handle different types  
of exceptions. It allows developers to devise custom error-handling  
approaches per type of exception, offering a more customized and  
resilient way to deal with potential errors. Finally (optional) block: The  
finally block will be executed whether an exception is thrown or  
caught. Usually, it is using for finalization operations, such as file  
streams closing, network connection releasing, other resources that  
have to be free allocated. As you have now guaranteed that that code  
is going to be executed, finally is an extremely important construct to  
allow you to ensure that resources are managed well and help prevent  
resource leaks and things like that. Java also offers a similar statement  
called try-with-resources that also implicitly! closes resources that  
implement the Auto Closeable interface. This statement is especially  

65  
MATS Centre for Distance and Online Education, MATS University  



Notes  
like file streams or database connections, to avoid resource leaks. The  
try-with-resources statement guarantees that each resource is closed  
when it is no longer needed, similar to how all variable classes now are  
automatically collected by the garbage collector. It decreases the boiler  
code necessary for resource handling and is improving the readability  

resources.  
Java provides features for both propagating and rethrowing  
exceptions, so that you can implement more custom error-handling  
logic. Exceptions are thrown by a method, which can either choose to  
handle the exception locally or pass it to the calling method. When an  
exception is propagated, it means the exception is declared in the  
method's throws clause and is left to the caller to handle the exception  
accordingly. This is especially handy when some method returns an  
error it can't handle and needs to inform a calling method about the  
problem. The caller can then decide whether to handle the exception,  
or let it rise further up the call stack. Rethrowing, one means you catch  
an exception in a catch block and throw it again, either as original  
exception or different exception. Usually, wrapping it like this is done  
where a method must perform some kind of cleanup, or want to log the  
exception, before letting it go any further. Because, you can use it to re-  
wrap an exception in a more specific exception type, as to give more  
information about the cause of the error. And there are cases, a method  
that saves something in the database may catch any kind of  
SQLException and as a result throw that as DatabaseAccessException  

With this strategy, developers can implement a layered approach to  
exception handling for individual layers to handle exceptions in its  
level of responsibility and propagate them upwards if required.  
Similarly, in Java, you also have the assert keyword that allows  
developers to write assertions in their code for conditions that should  
always be true and in addition to that, comes with the hierarchy of  
exceptions to propagate. Assertions are usually used in development  
and testing to catch logical programming errors and to make sure that  
the code is behaving the way it should. If an assert fails then an  
AssertionError is raised, indicating a programming error. Assertions  
can be turned on or off when running the code, enabling developers to  

66  
MATS Centre for Distance and Online Education, MATS University  

helpful when working with resources that need to be closed explicitly,  

and maintenance of the Java applications. Try-catch-finally, try-with-  

too, so that the calling method knows that it may be a "custom" error.  



Notes  toggle their behavior based on the environment. The feature helps  
debug Java applications and verify that they are functioning as  
expected.  
Overall, the exception handling feature in Java is a powerful and  
flexible mechanism that enables developers to build robust and fault-  
tolerant applications. Java because of the constructs like try-catch-  
finally, try-with-resources and the support for the creation of user-  
defined exceptions allows the programmer to predict errors, monitor  
them and handle the error in a systematic way. By organizing throw  
exceptions into check and ignore, the hierarchical classification allows  
developers to separate the more severe aspects of software  
development from the less serious. Being able to propagate and  
rethrow exceptions can make it possible to build layered error-handling  
models; this prevents any one Single Responsibility Principle (SRP)  
handler from having to manage all exceptions. The assert keyword is a  51

powerful feature for debugging and correctness of Java applications.  

mechanism that allows the exception to be caught and handled properly  
by the application, preventing it from causing complete failure of the  
application. Doing so, then, leads to faster exception handling, which  
can save valuable milliseconds both in computing and in user  
experience. Error management is not just a technical "thing" — since  
we are professional developers, we learn to develop software that meets  
the new standards, expected of a modern software system.  

67  
MATS Centre for Distance and Online Education, MATS University  

What You Need to Know is Java exception handling is a powerful  



Notes  Unit 4: Multithreading  

Multithreading  
Multithreading is a multiprocessor and concurrent programming  
paradigm that enables multiple threads to run concurrently within a  
process. Essentially it lets a single program do several things at once,  
making programs run faster and more responsively, even when they  
have to do things like I/O or heavy computation work. A thread, the  
basic unit of CPU utilization, contains a thread ID, a program counter,  
a set of registers and a stack. Threads created within a process share the  
code segment, data segment, and operating system resources with all  
other threads within the same process, hence providing an efficient way  
of using resources. There are mainly 5 states of thread in Java life cycle  
namely - New, Runnable, Running, Blocked / Waiting and Terminated.  
Stage 1: NEW When a thread instance and a thread reference is created  
using the Thread class or the Runnable interface, it is said to be in a  
new state. When you call start() method, the thread enters into  
Runnable state, which means it is ready to run and chosen by the thread  
scheduler to start running. When the thread scheduler assigns CPU time  
to the thread, the thread is moved to the Running state. Threads can  
enter the Blocked/Waiting state for several reasons, including waiting  
for I/O operations to complete, needing to acquire a lock, or calling  
sleep() or wait(). Lastly, a thread goes into the Terminated state after it  
has finished executing or when it runs into an unhandled exception.  
Java give us many ways to control and manage threads. The code that  
is executed by the thread is contained in the run() method. The start()  
method is where the thread actually starts by calling the run() method  
in the new thread. sleep() : The sleep() method suspends the execution  
of the thread for the specified amount of time. The join() method is  
used to wait for a thread to finish executing. yield() — is used to  
indicate to the thread scheduler that the current thread can relinquish.  
For shared resource management and avoiding race conditions,  
synchronization mechanisms are essential (including synchronized  
blocks and methods). Methods: wait(), notify() and notifyAll() The  
basic methods to inter-thread communication between synchronized  
blocks. Deadlock Problem In Multithreaded Environment: It is a  
dangerous condition in which two or more threads have blocked  
indefinitely waiting, each other and needs to be solved. Deadlocks can  

68  
MATS Centre for Distance and Online Education, MATS University  



Notes  be avoided by correctly managing and synchronizing resources.  
Thread pools (managed by Executor framework) are an efficient way  
to manage a set of threads and help avoid the overhead of creating and  
destroying threads. A Callable is very much like a Runnable, but it can  
return a value, and it can throw checked exceptions. The Future  
interface is for the result of an asynchronous computation, which  
allows the result to be retrieved once it is available. To create  
applications that remain responsive and efficient, especially in the  
world's of networked or server-side processes necessitating concurrent  
handling. Assembling  knowledge  of thread  management,  
synchronization, and inter-thread communication is essential for  
creating resilient and scalable multithreaded applications.  
1.5 Network Programming  
In simple words, network programming in Java allows you to  
communicate with other network applications and transfer data  

programming by ship on the TCP/IP protocol suite. The java. Java  
provides a rich set of classes for network programming in the java.  
InetAddress is the class that represents an IP address, which is a  
numeric label assigned to each device connected to a computer network  
that uses the Internet Protocol for communication. InetAddress class:  
getLocalHost() and getByName() are some of the methods of the  
InetAddress class to get the IP address of a host. A Socket class is for  
the client-side socket, an endpoint for communication between two  
machines. It defines the IP address and port number of the server which  
is used to create socket. First, answer why socket class, where Socket  
class represents a socket for communication between a client and  
server. The ServerSocket creates a new Socket Object for  
communication with a client when a client connects to a server. The  
URL class is used to identify a Uniform Resource Locator, which is a  
reference to a resource on the web that specifies its location on a  
computer network as well as a mechanism for retrieving it.  
Understanding the concept of URLConnection class. It has methods  
that can read and write data to the URL. Connection-oriented UDP  
communication is done with the help of DatagramSocket and  
DatagramPacket classes. It is a very basic transport layer protocol  
which provides unreliable, unordered delivery of datagrams.  
DatagramSocket- Sends and receives datagram packets  

69  
MATS Centre for Distance and Online Education, MATS University  

between two or more network applications. Yes, Java network  



Notes  DatagramPacket- A datagram representing a packet of data Network  
programming requires things such as setting up sockets, sending and  
receiving data, handling network exceptions, etc. To read and write  
data on a network connection, input and output streams are used. The  
InputStream and OutputStream classes have methods for reading and  
writing byte streams and the BufferedReader and PrintWriter classes  
have methods for reading and writing character streams. Network  
programming is an important aspect of building distributed  
applications, web servers, and client-server systems. A device that  
operates at the lowest level in the OSI model is responsible for packet  
transmission over these connections. So, these were some of the Pros  
of using Java.  
1.6 Java Database Connectivity (JDBC)  272727

JDBC (Java Database Connectivity) is a Java API that allows Java  
programs to connect to and interact with relational databases. JDBC  
stands for Java Database Connectivity, which is an API for Java  
programmers to connect with the database. JDBC is divided into a 2  
layered architecture which contains the JDBC API and JDBC drivers.  
The JDBC API consists of interfaces and classes that communicate  
with databases, and JDBC drivers are vendor specific implementations  
that convert JDBC calls to vendor database commands. The JDBC  
driver is a piece of software that enables the connection between the  
Java application and the database. The Types Of JDBC Drivers: Type  
1 (JDBC-ODBC Bridge), Type 2 (Native-API Driver), Type 3  
(Network Protocol Driver), Type 4 (Thin Driver). Type 1 drivers rely  
on ODBC to connect to databases; this can be slow and relies on the  
platform. Type 2 drivers rely on native database libraries, which can  
be faster but also include platform dependency. Type 3 drivers are a lot  
easier to work with than type 2 to create because they act as a  
middleware server with the database, which means they gain portability  
and scalability. Pure Java Driver (Type 4) — It communicates directly  272727

with the database and offers the best performance and platform  
independence. In order to open a database connection, you load JDBC  
driver, generate a connection object, and execute SQL statements. The  
DriverManager class loads JDBC drivers and returns connection  
objects. The Connection interface represents a connection to a  272727

database and has methods to create statements, execute queries, and  
manage transactions. Statement — The Statement interface is used to  

70  
MATS Centre for Distance and Online Education, MATS University  



Notes  execute a static SQL statement and it is suitable for executing a simple  
SQL statement with no parameters Required, which is a secure way to  
prevent SQL injection statement, only suitable for executing with no  
parameters Required of the SQL statement. The ResultSet interface is  
an interface that represents a table of data generated by executing a  
statement against a database. Especially exceptions related to the  
database are represented by the SQLException class. The JDBC  
provides methods for executing SQL statements like SELECT,  
INSERT, UPDATE, DELETE, etc. To ensure that a series of database  
operations are executed as a single, atomic unit of work, you can use  
transactions to group them together. Support for transaction  
management features, such as commit, rollback, and savepoints.  
JDBC: JDBC is very important for developing data-driven  
applications, as it offers a standard and effective way to connect with  
relational databases. How JDBC works: JDBC architecture, drivers,  
and database connectivity in Java.  
Multithreading is a fundamental concept in the world of concurrent  
programming that allows multiple threads to run inside a single  
process, improving the responsiveness and efficiency of an application.  
Data from this layer is culturally related to multithreaded Java  
applications. Thread life cycle, including states such as New, Runnable,  
Running, Blocked/Waiting, and Terminated through which a thread  
passes during its lifetime, primarily controls the execution flow of a  
thread, whereas operations including those in methods such as start(),  
sleep(), join(), and yield() enable fine-grained control of thread  
behavior. Synchronization is achieved using synchronized blocks or  
methods to maintain data integrity and avoid race conditions, and inter-  
thread communication is performed through wait(), notify(), and  
notifyAll(). A potential pitfall of a multithreading design, deadlock,  
requires prudent resource management and synchronization techniques  
to overcome it. The Executor framework is a powerful tool for  
managing thread pools, optimizing performance by avoiding the  
overhead associated with thread creation and destruction. To enhance  
Multithreading capabilities, Java provides several interfaces including  
the Callable interface and Future interface, which allow threads to  
return values and manage asynchronous computations. In essence,  
multithreading is crucial for creating responsive, scalable applications,  

71  
MATS Centre for Distance and Online Education, MATS University  



Notes  especially in networked or server architectures, where simultaneous  
execution takes center stage.  
Network programming forms the backbone of modern applications,  
enabling the exchange and interaction between Java applications and  
networks. The TCP/IP protocol suite provides a strong foundation for  
network communication, and Java builds upon that through its features  
for network programming. The java. The net In the Java programming  
language, the net package provides a rich set of classes and interfaces,  
such as InetAddress, Socket, ServerSocket, URL, URLConnection,  
DatagramSocket, and DatagramPacket, which enable a network-based  
application. InetAddress is used to resolve IP addresses in string form,  
Socket and ServerSocket for establishing client-server communication,  
URL and URLConnection for fetching a web resource over HTTP, and  
DatagramSocket and DatagramPacket for making connectionless  
communication using UDP. Network programming behaviors such as  
creating sockets, sending and receiving data and handling exceptions  
during the network operations you will be doing on input and output  
streams.  

Multiple-Choice Questions (MCQs)  
1. Which of the following is not a feature of Object-Oriented  

Programming?  
a) Encapsulation  
b) Inheritance  
c) Compilation  
d) Polymorphism  

Answer: c) Compilation  
2. What keyword is used to define a package in Java?  

a) package  
b) import  
c) include  
d) namespace  

Answer: a) package  
3. Which of the following is not a valid exception handling  

keyword in Java?  
a) try  
b) catch  
c) final  

72  
MATS Centre for Distance and Online Education, MATS University  



Notes  d) throw  
Answer: c) final  

4. What is the default priority of a thread in Java?  
a) 1  
b) 5  
c) 7  
d) 10  

Answer: b) 5  
5. Which of the following JDBC drivers is platform-  

independent?  
a) Type-1  
b) Type-2  
c) Type-3  
d) Type-4  

Answer: d) Type-4  

Short Answer Questions  
1. What is encapsulation in Java?  
2. How do you define and use a package in Java?  
3. Explain the difference between checked and unchecked  

exceptions.  
4. What are the main states in a thread’s lifecycle?  
5. What is the role of the DriverManager class in JDBC?  

Long Answer Questions  
1. Explain the four main Object-Oriented Programming (OOP)  

concepts with examples.  

3. What is multithreading in Java? Explain the life cycle of a  
thread with a diagram.  

4. Explain the concept of socket programming in Java with an  
example.  

5. Describe the steps involved in connecting a Java application to  
a database using JDBC.  

73  
MATS Centre for Distance and Online Education, MATS University  

2. Describe the process of handling exceptions in Java using try,  
catch, finally, and throw.  



Notes  
Module 2  

JAVA FX TECHNOLOGY  

LEARNING OUTCOMES  
• To understand the fundamentals and architecture of Java FX.  
• To explore Java 2D and 3D graphics in Java FX.  
• To analyze Java FX animation, effects, and transformations.  
• To study Java FX layout management and UI controls.  
• To implement Java FX event handling and image processing.  

74  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 5: Introduction to Java FX, Features, Architecture  
and Applications  

Introduction to Java FX  
JavaFX represents a significant improvement in building graphical user  
interfaces (GUIs) in Java compared to Swing and the Abstract Window  
Toolkit (AWT). First introduced by Sun Microsystems (subsequently  
bought by Oracle), JavaFX was first celebrated as a 2008-era  
component, giving developers who wanted to develop desktops with  
rich graphics, embedded media and new programming models a higher-  
level, more modern way to do it than from what early Java offered with  
its early emphasis on building complex GUI interfaces all on its  
lonesome. Initially, it was an Oracle product, but when it was open-  
sourced into OpenJDK 2011, the theoretical changes were made to the  
code were for every to contribute to the code, allowing for small  
iterative changes and community development. Initially it was hailed  
as an answer to Adobe Flash and Microsoft Silverlight, this cross-  
platform rich-client alternative was capable of the same rich interactive  
application creation possibilities, now with the Java ecosystem  
advantages. When programming languages such as Visual Basic and  
Visual C++ were introduced, there was a demand for graphical user  
interfaces that were more engaging, allowing interaction and features  
that would be visually appealing, that would also run under a large  
number of operating systems. However, JavaFX, when it landed, came  
with something of a standalone scripting language (JavaFX Script)  
which aimed to simplify UI development, thanks to a declarative  
syntax. But with JavaFX 2.0 (released in 2011), Oracle returned to a  
pure-Java-API approach, ditching the separate scripting language in  
favor of regular Java code feathered with builder patterns and fluent  
APIs. Thus JavaFX became a tangible platform for the existing pool of  
Java developers based on the extensive familiarity with Java and some  
of the ability to do modern UI development. The long and short of it is  
simply this: JavaFX was never really about the technology — it was a  
case study for Oracle that Java was still relevant, even in the midst of  
an explosion of web and mobile technologies. : JavaFX was the first  
stone in that rich client mountain: it established the right architecture  
for taking Java out of the server and into both the desktop stacks. The  
major functionality and improvements were rolled out with every new  

75  
MATS Centre for Distance and Online Education, MATS University  



Notes  release over a series of reworks. The core Java API was developed in  
JavaFX 2.0; JavaFX 8 (along with Java 8) integrated more with the Java  
Development Kit (JDK), and the more recent releases enhanced  
performance, added new UI controls, extended platform support. So  
this makes 2018: a new major shift for JavaFX: with Java 11, it was  
decoupled from the JDK. While this added some extra steps when you  
wanted to include it in your projects, this modularization allowed  
JavaFX to release its libraries independently of the overall Java  
platform release cadence. But what do you know, all this was possible  
by JavaFX for Java which was released on December 3, 2008, and  
eventually led to what we have today, a complete mature framework  
for building rich cross platform applications with powerful graphics,  
multimedia support and advanced UI components. And its evolution is  
a window into some of the most significant trends in software  
development overall, including the shift toward more declarative  
programming models, the rising need for rich user experiences, and the  
new need for cross-platform compatibility as an ever more  
heterogeneous computing landscape emerges. Having a clearer  
understanding of what led us to here, we now have the context better  
to look at its present capabilities and its role in the wider Java  
ecosystem before looking at its feature set, architecture and use in  
modern application development.  

JavaFX Application Structure  
JavaFX application is divided hierarchically into three main  
components known as Stage, Scene and nodes. We need to  
import javafx.application.Application class in every JavaFX  
application. This provides the following life cycle methods for JavaFX  
application.  

o

o

o

public void init()  
public abstract void start(Stage primaryStage)  
public void stop()  

in order to create a basic JavaFX application, we need to:  
1. Import javafx.application.Application into our code.  
2. Inherit Application into our class.  
3. Override start() method of Application class.  

Stage  

76  
MATS Centre for Distance and Online Education, MATS University  



Notes  Stage in a JavaFX application is similar to the Frame in a Swing  
Application. It acts like a container for all the JavaFX objects. Primary  
Stage is created internally by the platform. Other stages can further be  
created by the application. The object of primary stage is passed  
to start method. We need to call show method on the primary stage  
object in order to show our primary stage. Initially, the primary Stage  
looks like following.  

However, we can add various objects to this primary stage. The objects  
can only be added in a hierarchical way i.e. first, scene graph will be  
added to this primaryStage and then that scene graph may contain the  
nodes. A node may be any object of the user's interface like text area,  
buttons, shapes, media, etc.  
Scene  
Scene actually holds all the physical contents (nodes) of a JavaFX  
application. Javafx.scene.Scene class provides all the methods to deal  
with a scene object. Creating scene is necessary in order to visualize  
the contents on the stage.  
At one instance, the scene object can only be added to one stage. In  
order to implement Scene in our JavaFX application, we must  
import javafx.scene package in our code. The Scene can be created by  
creating the Scene class object and passing the layout object into the  
Scene class constructor. We will discuss Scene class and its method  
later in detail.  
Scene Graph  
Scene Graph exists at the lowest level of the hierarchy. It can be seen  
as the collection of various nodes. A node is the element which is  
visualized on the stage. It can be any button, text box, layout, image,  
radio button, check box, etc.  

77  
MATS Centre for Distance and Online Education, MATS University  



Notes  The nodes are implemented in a tree kind of structure. There is always  
one root in the scene graph. This will act as a parent node for all the  
other nodes present in the scene graph. However, this node may be any  
of the layouts available in the JavaFX system.  
The leaf nodes exist at the lowest level in the tree hierarchy. Each of  
the node present in the scene graphs represents classes  
of javafx.scene package therefore we need to import the package into  
our application in order to create a full featured javafx application.  

Historical Context:  
Java's history of developing graphical user interfaces has undergone an  
evolution driven by paradigms shifts in technology and development as  
well as developer and user expectations. This started with the Abstract  
Window Toolkit (AWT), the original GUI toolkit that Java shipped  
with the first version of Java in 1995. AWT offered a basic set of UI  
components that mapped directly to native platform components, in  
what is known as a “heavyweight” approach. Although this method  
allowed applications to preserve the appearance and behavior of the  
underlying operating system, it limited the level of customization and  
appearance consistency across different platforms. Moreover, the  
component set of AWT was quite limited with basic components only  
buttons, text fields and basic containers etc. These factors led to the  
creation of Swing, which was released in 1997 as part of the Java  
Foundation Classes (JFC). Previously, Swing was a major  
improvement because it adopted a "lightweight" architecture, which  
meant that in most cases each of Swing's components were drawn using  
Java's own rendering engine instead of native components. That was  

78  
MATS Centre for Distance and Online Education, MATS University  



Notes  way more flexible, had much richer component set, and much more  
consistent behavior cross platform. From this, Swing adopted the  
pluggable look-and-feel system to enable applications to look the same  
regardless of the underlying operating system or adopt the native look  
and feel when needed. Swing remained the de facto GUI toolkit for over  
a decade with commercial and enterprise applications building on  
thousands of Swing-based applications and establishing the baseline  
for user interface design in the Java ecosystem. But as web and mobile  
applications grew and as users experienced more advanced user  
interfaces, expectations were updated for desktop applications as well.  
For modern users, rich animations, seamless multimedia integration,  
hardware-accelerated graphics—and more visually engaging  
experiences—were all things that pressed Swing beyond its initial  
design parameters. These evolving expectations, together with  
improvements in graphics hardware and new rendering technologies,  
set the stage for the arrival of JavaFX. JavaFX was first developing as  
"Project F3" (Form Follow Function) within Sun Microsystems, were  
first announced as a public product in 2007 and first released in 2008.  
First iteration (JavaFX 1. x), which had a dedicated scripting language  
(JavaFX Script), that allowed you to describe user interfaces in a  
declarative manner. It was a radical departure from Swing's imperative  
programming model. Another focus was the integration of rich media  
and the added support for animation, which positioned JavaFX as  
competition for Adobe Flash and Microsoft Silverlight in the arena of  
Rich Internet Applications (RIA). Oracle bought Sun Microsystems in  
2010, and for a while there it didn't look good for JavaFX. But then  
Oracle established its real commitment to the platform when it  
announced a massively ambitious roadmap. JavaFX 2.0, introduced in  
2011, was a pivotal change, dropped the separate scripting language  
and used a standard Java API. This move brought JavaFX into closer  
alignment with mainstream Java development practices, but without  
sacrificing the advanced graphics and animation features available in  
the platform. This evolution continued with JavaFX 8 in 2014, which  
aligned versioning with the Java SE platform and provided complete  
integration for JavaFX; included as part of the JDK. [More changes that  
includes UI controls, 3D, touch] This release added a number of new  
UI controls, better 3D graphics support, and improved touch  

79  
MATS Centre for Distance and Online Education, MATS University  



Notes  capabilities: an acknowledgment of the rising significance of touch-  
enabled devices.  
For example, in 2018, the biggest milestone was that JavaFX got  
decoupled from the JDK with Java 11 and became an independent  
module under the OpenJFX project. Doing so gave JavaFX the  
freedom to grow on its own timetable, separate from the release  
schedule of the core Java platform. As each GUI framework evolved,  
they improved upon their predecessors' limitations and adapted to the  
changing technological landscape and user expectations. AWT offered  
some primitive platform native components, Swing better flexibility  
and more components, and JavaFX hardware acceleration, modern  
skinning via CSS, richer animation, and full multimedia support. It also  
signals an evolution in mindset, moving from imperative programming  
and dense code in AWT and Swing, to the emphasized declarative  
design encouraged by JavaFX, especially with FXML for UI  
definition.  
Positioning in the Modern UI Landscape  
JavaFX maintains a unique position in the wealth of user interface  
technologies available to developers today; indeed it reflects its  
technical prowess with a strategic value proposition. JavaFX and its  
place among the alternatives for building GUIs (including web  
development, native platform toolkits and the other cross-platform  
options) which gives you insight into this position. This is one of the  26

many strong points of JavaFX, the ability to be able to create true native  
applications with the same behaviour across operating systems. While  
most web applications rely on a browser runtime, JavaFX applications  
can include all the required runtime components and be distributed as  
standalone executables. This is still useful in cases where tight  
integration with the OS, offline capabilities, or access to local system  
resources is needed. JavaFX also boasts a cross-platform architecture  
that enables it to run not only on Windows, but also on macOS and  
Linux, and even to some extent, mobile platforms, which can be a big  
plus when building applications that need to run in heterogeneous  
computing environments. For organizations that have a variety of  
technology ecosystems, or for those that are creating software for  
distribution to people who may be using any number of operating  
systems, they can rely on one code base rather than maintain distinct  
implementations for each platform. This cross-platform capability puts  

80  
MATS Centre for Distance and Online Education, MATS University  



Notes  JavaFX in competition with frameworks such as Qt, Electron, and  
Flutter — each of which has its own take on the dilemma of cross-  
platform development. JavaFX can be seen as a natural enterprise  
extension to companies that have invested heavily in Java technology.  
Java is pervasive in the enterprise, with many organizations having  
established Java development skills, build pipelines, security practices,  
and deployment workflows. JavaFX taps into this already well-  
established ecosystem, providing these organizations with the ability  
to develop complex, sophisticated desktop applications without a new  
programming language, or a completely different programming  
approach. This interoperability with the wider Java ecosystem,  
including compatibility with tools, frameworks, build tools, and IDEs,  
offers a unified programming experience that sets JavaFX apart from  
other solutions that may require the adoption of entirely new  
technology stacks. Today the User Interface of web applications are  
heavily inspired by web technologies and frameworks like React,  
Angular, Vue. js includes much of modern user interface development.  
JavaFX acknowledges this fact by providing the capability to embed  
web content into applications with the WebView component, which is  
similar to embedding a web browser inside an application. This hybrid  
approach allows the developers to leverage the best features of web  
technologies for content rendering while merging it with the platform  
integration and performance advantages provided by a native  
application framework. Additionally, JavaFX adopts concepts from  
modern web development, as seen in the use of CSS for styling and  
FXML for separating presentation and logic. These features also  
make it easier for developers who are familiar with these types of  
technologies to work with the stack, and align with the broader industry  
trend toward defining UIs in a declarative fashion and separation of  
concerns. JavaFX shines above other technologies when it comes to  
data-driven enterprise applications. You are still an Editor for  
importing concepts, concepts into which the framework can be used to  
bind the connection of really, making the interface responsive, in which  
case you can update the data when some data is actually changed.  
When these two powerful technologies are combined together, it  
creates the perfect platform for business applications requiring data  
visualization, analysis, and manipulation due to Java's rock-solid data  
processing capabilities and a wealth of connectivity options to  

81  
MATS Centre for Distance and Online Education, MATS University  



Notes  databases and services. The introduction and success of Electron, which  
bundles web applications with a Chromium runtime to create desktop  
applications, has reshaped the desktop application landscape. Electron  
has revolutionized the world of desktop apps but comes with few  
drawbacks such as performance and resource hogging but JavaFX is  
one good alternative. JavaFX applications tend to be smaller in terms  
of size and resource usage, compared to Electron applications that  
require an entire web browser engine to be included. This efficiency is  
crucial for applications that run on systems with limited resources or  
efficiency-critical applications. JavaFX stands out with its excellent  
multimedia and graphics support as well. Positioning it well, for  
applications which needs rich visual experiences, is its scene graph  
architecture, hardware-accelerated rendering pipeline and built-in  
support for animation, 3D graphics, and a variety of media formats.  
The rich media support and scene-graph architecture allow JavaFX to  
be used for data visualization, demonstrations, educational software as  
well as creative software such as keyframing tools where primitives  
must render dynamically. As web applications have grown more  
complex, the lines between web and desktop applications have become  
less distinct. JavaFX recognizes this convergence with CSS styling,  
the FXML markup language for UI definition, and WebView for web  
content integration. It still has the power of a compiled language and a  
native runtime, providing performance and security characteristics that  
manage to be hard to come by through an entirely web-based solution.  
Core Philosophy and Design Principles  
JavaFX was designed based on a set of core philosophy and design  
principles which continue to influence its design and usage. These  
principles are drawn from the lessons of past Java UI frameworks as  
well as future directions in application development in a more  
heterogeneous and dynamic computing ecosystem. One of the  
principles that the design philosophy around JavaFX is built on is the  
need for expressive and declarative user interface construction. In  
contrast with the more imperative programming model of AWT and  
Swing, where interfaces were created almost exclusively by procedural  
code, this is a major advancement. JavaFX In a way, also embraces a  

82  
MATS Centre for Distance and Online Education, MATS University  



Notes  more declarative paradigm, especially with FXML for defining user  
interfaces in an XML-based markup language.  

While draft.is or TiddlyWiki is structured as an application — an  

interface containing all its own logic — React.js separates UI structure  
from application logic. As we will touch on the declarative approach  
further above the visual and aesthetic, the declaration based approach  
even flows over the structuring to the aesthetic, so JavaFX uses CSS to  
allow usto visually adjust UI elements. This choice enhances the broad  
knowledge base surrounding CSS, both for web developers and web  
designers, while simultaneously providing a robust and standard way  
to build visually striking apps without needing to change internal code.  
The ability to apply multiple stylesheets and to work with dynamic  
styles also help towards building interfaces that are visually coherent  
and adaptive. Another one of the core concepts is hardware  
acceleration out of the box — JavaFX has been designed from the very  
beginning to maximize the potential of existing graphics hardware by  
way of its Prism rendering pipeline. Using this method, artists can  
construct rich animations and render dense scenes, with pixel-perfect  

83  
MATS Centre for Distance and Online Education, MATS University  



Notes  accuracy regardless of size (including very large displays). By  
providing a graphics pipeline that abstracts the interaction with  
hardware, JavaFX enables developers to write visually and functionally  
rich applications without the need of detailed knowledge with any  
specific graphics system while utilizing the hardware when it is  
available. JavaFX is also designed for cross-platform consistency  
while still respecting platform conventions. Unlike previous  
approaches that tended to leave developers choosing one or the other  
between cross-platform visual consistency and native integration,  
JavaFX attempts to balance these tradeoffs. The platform differs  
between what is showable patterns and functional behaviors when  
appropriate, but provides a uniform model and idea of contributions to  
underlying systems. This may sound like a no-brainer, but it applies to  
accessibility too: JavaFX is built to work with any type of assistive  
technology across multiple platforms, so applications can be used by  
people of all abilities. JavaFX represents the idea of scale in terms of  
the various kinds of application and deployment cases. Its architecture  
handles everything from simple forms-based business applications, to  
data visualization tools, to complex maps with rich graphics. It can be  
used for standalone desktop applications, for web deployment through  
Java Web Start (in previous versions), or for embedded systems  
applications. This is implemented through modules, meaning that you  
can only add the necessary components for the given needs of the  
application. Pretty much any Java SE application can contain JavaFX  
components, and JavaFX itself is available as an importable Java  
library. This allows developers to take advantage of their existing  
investment in Java technology as they learn and adopt the modern UI  
features of JavaFX. The framework offers initial support to integrate  
Swing components when needed, allowing upgrading of older  
applications to be done in a gradual fashion. Another major aspect of  
Flutter is its WebView component, which allows for integration of  
browser content, acknowledging the significance of web technologies  
in current applications. Developer productivity has, in fact, hugely  
impacted JavaFX's design. Then I also mention properties binding (or  
whatever name it's got inside your own UI library, with property IDs  
that can be only bound in a declarative way from the data model while  
automatically redoing the view upon data changes so that it is not  
needed to do the same manually in code), which cut the amount of  

84  
MATS Centre for Distance and Online Education, MATS University  



Notes  boilerplate code and up is not prone to consistency errors, as well as  
getting rid of a lot of boilerplate code. In the same way, the animation  
framework does not expect you to do complex mathematical  
calculations, instead, it offers high-level abstractions for creating rich  
transitions and effects. The event handling system, which follows  
consistent patterns across various component types, also increases  
developer efficiency as the learning curve is lowered. In addition,  
JavaFX follows the design/developer collaboration approach by  
supporting tools like Scene Builder, which is a visual design  
environment that produces FXML that can be used directly in  
applications. This strategy acknowledges the reality of modern  
application development, where implementation and design specialists  
increasingly collaborate. This separation of concerns in FXML and  
CSS makes it easy for the designer to work on all of the visual aspects  
without needing to focus on how this will all fit in the application logic.  
The next core design principle is multimedia integration, and this was  
a crucial consideration in the development of JavaFX, which offers  
first-class support for audio, video, and images without the need for  
additional third-party libraries. JavaFX also has built-in support for  
images, audio, and video, which reduces the need for external libraries  
or plugins for common media operations to develop rich client  
applications. It even extends to 3D content, because JavaFX natively  
supports 3D objects and scenes as part of its out-of-the-box arsenal.  
JavaFX finally reflects the idea of future-readiness with a number  
regarding display technologies and help for touch interfaces and new  
interaction patterns. The platform was created with an eye towards  
trends for high resolution displays, touch capable devices, and animated  
user experiences. This future-proofing helps guarantee that JavaFX-  
built applications do not go out of date as computing environments  
persist in metamorphosing.  

85  
MATS Centre for Distance and Online Education, MATS University  



Notes  Core Features and Capabilities of JavaFX  

These capabilities are just a glimpse into the powerful tools JavaFX  
offers for developing high-performance, cross-platform applications  
with stunning graphics and UI. The core of it is a scene graph  
architecture, where graphical elements are arranged in a hierarchical  
way that allows for quick rendering and interaction response. It is the  
foundation on which JavaFX builds its approach of arranging UI  
components, layouts, and custom visual objects as a hierarchy of nodes  
in a scene graph. It includes a comprehensive library of pre-built UI  
controls including buttons, text fields, tables, trees, charts, and more.  
These controls match modern UI patterns and expectations like  
animation, visual effects, and styling (including CSS). The styling  
system approach that JavaFX introduced is a huge improvement  
compared with other UI frameworks in Java, enabling developers to  
decouple the visual aspect from the application logic and to deliver  
visually unique applications without touching their internal code. Prism  
is the platform's rendering engine that uses hardware acceleration to  
maintain graphics performance, especially for animations and effects.  
This hardware-accelerated pipeline allows JavaFX apps to provide  
visually stunning experiences even for complex scene rendering and  
high resolution content. Along with these visual features, JavaFX has  
full multimedia support with built-in classes for images, audio, and  
video. Such integrated support means no additional libraries and APIs  
are needed for working with common media formats, enabling the rapid  

86  
MATS Centre for Distance and Online Education, MATS University  



Notes  development of complex content-rich applications. JavaFX, on the  
other hand, offers built-in visual support for 3D scenes, enabling  
developers to construct and manipulate three-dimensional objects as  
needed, as well as leveraging the same APIs for traditional 2D  
interfaces. JavaFX’s binding framework, which allows UI elements to  
be declaratively bound to underlying data models, is another  
differentiator. When data changes, the UI automatically updates and  43

you get to write a little less boilerplate to synchronize presentation  
code with data to avoid inconsistencies between the two. This two-way  
binding goes from property to property across the framework and  
allows creating more adaptive, data-driven applications. JavaFX also  
provides a declarative approach to UI definition via FXML, an XML-  
based markup language. The accompanying Scene Builder tool offers  
a similar, visual design experience for building out JavaFX interfaces,  
outputting FXML declarations that can be used out of the box in  
applications. JavaFX also has integrated WebView, which embeds a  
web browser engine, into the content. This allows applications to  
render HTML, run JavaScript, and communicate with web applications,  
essentially merging desktop and web technologies. JavaFX Integration  
and Performance JavaFX Core Features The combination of all of these  
core features makes JavaFX a powerful tool for building modern  
applications that have the performance and integration characteristics  
of traditional native applications complemented with the more  
advanced visual richness and application interaction models that users  
are becoming accustomed to.  

Figure 2.1: JavaFX Architecture  
Source: https://static.packt-cdn.com/  

87  
MATS Centre for Distance and Online Education, MATS University  



Notes  Scene Graph and UI Components  

At the center of JavaFX's rendering architecture is a scene graph, which  
is a hierarchical structure that represents all of the visual elements in a  
single application. This approach to constructing user interfaces is a  
monumental shift from the Java UI frameworks that preceded it and  
supports many advanced features of JavaFX. A scene graph is  
organized as a tree where each node in the tree is either a visual element,  
a group of visual elements, or some operation (a transformation or an  
effect) applied to its children. Such a hierarchical organization lends  
itself well to the compositional nature of user interface as-built  
(composite components are built of more simple components). In  
JavaFX, the scene graph starts with a Stage that serves as the top-level  
container, usually a window in desktop applications. Scenes graph  
structure A Stage has exactly one Scene, which holds the root node of  
the scene graph. From this root, you have a tree of nodes extending (or  
a graph if you want to be technical) for all visual elements in the  
interface. Node class Diagram The Node class is the root of all objects  
in the scene graph and contains common properties and behaviours for  
positioning, transformation, effects, event handling, and user  
interaction. JavaFX divides its nodes into some categories: shapes  
(Rectangle, Circle, Path), controls (interactive components like Button,  
TextField and TableView), containers (layout components like HBox,  
VBox, and BorderPane), media nodes (ImageView, MediaView) and  
web content (WebView). Note that Group nodes are also used to  
combine multiple nodes into a single node which can be executed as an  
atomic unit. These various node types act as building blocks for  
crafting interfaces that can range from basic forms to elaborate  

88  
MATS Centre for Distance and Online Education, MATS University  



Notes  visualizations. The scene graph architecture provides many strong  
benefits to UI development. First, it is a natural model for building  
complex interfaces using simple components.  

Users can compose new types of components from merely existing  
nodes, transformations and effects, and custom behaviors. Second, the  
hierarchy aids efficient rendering with culling (trees that are far away  
from view aren't rendered) and dirty region (only redrawing the  
sections that have changed.) The JavaFX runtime will automatically  
take care of these optimizations, so developers can focus on writing  
their complex interfaces without having to have knowledge of the  
rendering optimizations. Third, the scene graph provides a single  
model for transformations and transition, which simplifies animation  
and visual effects. Any node in the graph can have properties such as  
position, rotation, scale, and opacity animated to produce complex  
visual behaviors with minimal code. The Scene graph is the core  
hierarchical structure upon which JavaFX UI components are built,  
providing a rich toolkit for building applications. Components can be  
simple elements or complex, data-driven controls. JavaFX provides  
primitive shapes (like Rectangle, Circle, Line, Path, etc.) in its most  
simple form for building custom graphics. Text nodes can display  
formatted text with a variety of fonts, styles, and effects. The  
framework offers a wide range of layout components (HBox, VBox,  
BorderPane, GridPane, FlowPane, etc.) that position its children based  
on different spatial configurations and are responsive to size changes.  
JavaFX provides a rich set of controls that implement common UI  
patterns for user interaction. These include basic controls like Button,  
Label, TextField, PasswordField and CheckBox. Selection controls  

89  
MATS Centre for Distance and Online Education, MATS University  



Notes  include ChoiceBox, ComboBox, ListView, TreeView, and  
TableView. That said, JavaFX has Slider, ProgressBar and ScrollBar  
for numerical input. Date selection is managed by DatePicker and  
complex text entry is provided by TextArea and HTMLEditor. Higher-  
level components include the list of chart types (PieChart, LineChart,  
BarChart, etc.) for data visualization, TreeTableView for hierarchical  
data representation, and Pagination to split data into pages. Basic  
interaction patterns such as alerts, confirmation requests, and custom  
modal interfaces are provided by the dialog components. They follow  
common patterns for styling, interaction, and customization. The  
component exposes its properties, which can be bound to application  
data, configured programmatically, or set with FXML. Components  
emit events when users interact with them as part of a unified event  
model that greatly simplifies the implementation of interactive  
behaviors. JavaFX controls are designed to be functional and leave it  
up to the programmer to decide how it should look. Each control  
provides a complete implementation of its intended functionality out-  
of-the-box, with developers able to extensively customize appearance  
and behavior. This customization can take place at several levels: CSS  
styling, properties set in code, changing the control's cell factory (for  
list-based controls), or by building completely new controls with  
subclassing or composition. This versatility enables developers to  
design functional yet visually improved interfaces. JavaFX's  
implementation of UI components is designed to be accessible,  
allowing its applications to be compatible with screen reader software  
and other assistive technologies. Find out how JavaFX implements  
appropriate roles and provides accessibility information, contributing  
to the ability for applications built with JavaFX to be usable by people  
of varying abilities. Context: scene graph and component model ⇒  
declarative UI construction Unlike earlier frameworks, where  
developers imperatively controlled low-level graphics contexts,  
JavaFX developers specify the desired contents and structure of the  
interface. The framework abstracts away the specifics of rendering,  
layout, and event propagation, resulting in cleaner, more maintainable,  
and less error-prone code.  

90  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 6: Java 2D Shapes, Colors and Text  

Java 2D Shapes, Colors, and Text  
Java offers a strong 2D graphics API within the java. awt and javax.  
swing packages that help the developer customize/add shapes, colors,  
and text in their graphical applications. These and other functionality  
to draw basic shapes like lines, rectangles, ovals, polygons can be  
achieved using classes called Graphics and Graphics2D. The  
Graphics2D class is an extension of Graphics class, which contains  
more sophisticated control over geometry, coordinate transformations,  
color management, and text layout. For instance, by overriding the  
paintComponent method and using Graphics2D on a Swing  
component, you can draw a rectangle and an ellipse with varying  
colors and stroke widths.  
import javax.swing.*;  
import java.awt.*;  

public class ShapeDrawing extends JPanel {  
@Override  
protected void paintComponent(Graphics g) {  

super.paintComponent(g);  
Graphics2D g2d = (Graphics2D) g;  

// Set color and draw a rectangle  
g2d.setColor(Color.BLUE);  
g2d.fillRect(50, 50, 100, 70);  

// Set stroke and draw an oval  
g2d.setColor(Color.RED);  
g2d.setStroke(new BasicStroke(3));  
g2d.drawOval(200, 50, 100, 70);  

}

public static void main(String[] args) {  
JFrame frame = new JFrame("Java 2D Shapes");  
frame.add(new ShapeDrawing());  
frame.setSize(400, 200);  
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  

91  
MATS Centre for Distance and Online Education, MATS University  



Notes  frame.setVisible(true);  
}

}
Customizing Shapes with Colors and Strokes  

and paint it as per your need. The Color class contains some predefined  
colors and it can also create custom colors based on RGB. Additional  
styles, such as smooth color transitions and different line weights can  
be done with the classes GradientPaint and BasicStroke. In the  
following example, we apply a gradient fill to a rectangle, and use a  
dashed stroke for a line.  

g2d.setPaint(new GradientPaint(50, 50, Color.BLUE, 150, 120,  
Color.CYAN, true));  
g2d.fillRect(50, 50, 100, 70);  

float[] dashPattern = {10, 5, 2, 5};  
g2d.setStroke(new BasicStroke(3, BasicStroke.CAP_ROUND,  
BasicStroke.JOIN_BEVEL, 1, dashPattern, 0));  
g2d.setColor(Color.BLACK);  
g2d.drawLine(50, 150, 200, 150);  

visually appealing drawings beyond basic shapes.  
Combining Shapes, Colors, and Text for Interactive Graphics  
This implies that integrating these elements also means that the  
developers can reap visual applications of anything from drawing apps  
through games and visualizations. As an example, we can dive to a  
real-world use case of a dashboard visualization, which has bars inside  
bars filled with gradients, custom strokes outline and anti aliased text  
labels. It is powered for them to create visually enhanced and  
interactive UI components.  

JavaFX 2D Shapes  
JavaFX provides a rich set of Shape classes in the package  
javafx.scene.shape.  
These shapes are nodes that can be added directly to a Scene or inside  
layout  containers.  
You can style them with properties like fill, stroke, strokeWidth, etc.  

92  
MATS Centre for Distance and Online Education, MATS University  

You can customize the shapes with colours, gradients, and stroke styles  

This snippet demonstrates how Java 2D enables smoother, more  



Notes  Common 2D shapes in JavaFX include:  

Shape  
Description  

Class  

A straight line between two points (startX,startY) and  
Line  

(endX,endY).  

A rectangle with specified width, height, and optional arc  
for rounded corners.  

Rectangle  

Circle  
A circle defined by center coordinates (centerX,centerY)  
and a radius.  

An ellipse defined by center coordinates and two radii  
(radiusX, radiusY).  

Ellipse  

Polygon  

Polyline  

A shape with multiple sides defined by points.  

Similar to Polygon but not closed.  

A section of an oval or circle defined by a start angle and  
length.  

Arc  

JavaFX provides the flexibility to create our own 2D shapes on the  
screen .There are various classes which can be used to implement 2D  
shapes in our application. All these classes resides in  
javafx.scene.shape package.  
This package contains the classes which represents different types of  30

2D shapes. There are several methods in the classes which deals with  
the coordinates regarding 2D shape creation.  

What are 2D shapes?  
In general, a two dimensional shape can be defined as the geometrical  
figure that can be drawn on the coordinate system consist of X and Y  
planes. However, this is different from 3D shapes in the sense that each  
point of the 2D shape always consists of two coordinates (X,Y).  
Using JavaFX, we can create 2D shapes such as Line, Rectangle,  
Circle, Ellipse, Polygon, Cubic Curve, quad curve, Arc, etc. The class  
javafx.scene.shape.Shape is the base class for all the shape classes.  

How to create 2D shapes?  
As we have mentioned earlier that every shape is represented by a  
specific class of the package javafx.scene.shape. For creating a two  
dimensional shape, the following instructions need to be followed.  

93  
MATS Centre for Distance and Online Education, MATS University  



Notes  
1. Instantiate the respective class : for example, Rectangle rect = new  
Rectangle()  

2. Set the required properties for the class using instance setter methods:  
for example,  

rect.setX(10);  
rect.setY(20);  
rect.setWidth(100);  
rect.setHeight(100);  

3. Add class object to the Group layout: for example,  

Group root = new Group();  
root.getChildren().add(rect);  

The following table consists of the JavaFX shape classes along with  
their descriptions.  

Shape  

Line  

Summary  

Connects two points (X,Y) on a 2D plane. Use  
javafx.scene.shape.Line.  

Four-sided figure with equal opposite sides and right  
angles. Use javafx.scene.shape.Rectangle.  

Rectangle  

Ellipse  

Arc  

A curve with two focal points; distance sum to focal  
points is constant. Use javafx.scene.shape.Ellipse.  

A segment of  a circle or ellipse. Use  
javafx.scene.shape.Arc.  

A special ellipse with coinciding focal points. Use  
javafx.scene.shape.Circle.  

Circle  

A closed shape formed by joining multiple line segments.  
Use javafx.scene.shape.Polygon.  

Polygon  

Cubic  
Curve  

A 3rd-degree curve in the XY plane. Use  
javafx.scene.shape.CubicCurve.  

A 2nd-degree curve in the XY plane. Use  Quad  
Curve  javafx.scene.shape.QuadCurve.  

94  
MATS Centre for Distance and Online Education, MATS University  



Notes  Note: JavaFX provides dedicated classes in javafx.scene.shape for  
creating and displaying a wide range of 2D geometric shapes, each with  
properties you can customize and render on a scene.  

JavaFX Shape Properties  
All the JavaFX 2D shape classes acquires the common properties  
defined by JavaFX.scene.shape.Shape class. In the following table,  
we have described the common shape properties.  

Property  

fill  

What it Does Setter Method  

Fills the  
interior of the  
shape with a  
paint or color.  

setFill(Paint)  

If  true,  
smooths the  
edges of the  
shape.  

smooth  setSmooth(boolean)  

Defines dash  
pattern offset  

strokeDashOffset for creating setStrokeDashOffset(double)  
dashed  
outlines.  

Sets the style  
of the line’s  

strokeLineCap end caps (e.g., setStrokeLineCap(StrokeLineCap)  
butt, round,  
square).  

Sets the style  
of the joint  

strokeLineJoin  setStrokeLineJoin(StrokeLineJoin)  

setStrokeMiterLimit(double)  

where  two  
lines meet.  

Limits  the  
distance  

strokeMiterLimit  
between inner  
and outer  

95  
MATS Centre for Distance and Online Education, MATS University  



Notes  Property  

stroke  

What it Does Setter Method  

corner points  
of a joint.  

Sets the color  
or paint used  
for the outline setStroke(Paint)  
(border) of the  
shape.  

Determines  
where  
stroke  

the  
is  

strokeType  setStrokeType(StrokeType)  
drawn (inside,  
outside,  or  
centered).  

Sets  the  
strokeWidth  thickness of setStrokeWidth(double)  

the outline.  

These properties let you style shapes in JavaFX by customizing their  
fill color, outline color and width, smoothing, dash patterns, and how  
line ends and joins are rendered.  

96  
MATS Centre for Distance and Online Education, MATS University  



Notes  

97  
MATS Centre for Distance and Online Education, MATS University  



Notes  

JavaFX Line  
In general, Line can be defined as the geometrical structure which joins  
two points (X1,Y1) and (X2,Y2) in a X-Y coordinate plane. JavaFX  
allows the developers to create the line on the GUI of a JavaFX  
application. JavaFX library provides the class Line which is the part  
of javafx.scene.shape package.  

98  
MATS Centre for Distance and Online Education, MATS University  



Notes  How to create a Line?  
Follow the following instructions to create a Line.  

o

o

o

Instantiate the class javafx.scene.shape.Line.  
set the required properties of the class object.  
Add class object to the group  

Properties  
Line class contains various properties described below.  

Property  Description  Setter Methods  

endX  The X coordinate of setEndX(Double)  
the end point of the  
line  

endY  

startX  

startY  

The y coordinate of setEndY(Double)  
the end point of the  
line  

The x coordinate of setStartX(Double)  
the starting point of  
the line  

The y coordinate of setStartY(Double)  
the starting point of  
the line  

Example 1:  

package application;  
import javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.Group;  
import javafx.scene.shape.Line;  
import javafx.stage.Stage;  
public class LineDrawingExamples extends Application{  

@Override  
public void start(Stage primaryStage) throws Exception {  

99  
MATS Centre for Distance and Online Education, MATS University  



Notes  // TODO Auto-generated method stub  
Line line = new Line(); //instantiating Line class  
line.setStartX(0); //setting starting X point of Line  
line.setStartY(0); //setting starting Y point of Line  
line.setEndX(100); //setting ending X point of Line  
line.setEndY(200); //setting ending Y point of Line  
Group root = new Group(); //Creating a Group  
root.getChildren().add(line); //adding the class object //to the  

group  
Scene scene = new Scene(root,300,300);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Line Example");  
primaryStage.show();  

}
public static void main(String[] args) {  

launch(args);  
}

}

Output:  

100  
MATS Centre for Distance and Online Education, MATS University  



Notes  Example 2 : Creating Multiple Lines  

package application;  
import javafx.application.Application;  
import javafx.scene.Group;  
import javafx.scene.Scene;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Line;  
import javafx.stage.Stage;  
public class LineDrawingExamples extends Application{  

public static void main(String[] args) {  
launch(args);  

}
@Override  
public void start(Stage primaryStage) throws Exception {  

// TODO Auto-generated method stub  
primaryStage.setTitle("Line Drawing Examples");  
Line line1 = new Line(10,50,150,50);  

//Line(startX,startY,endX,endY)  
Line line2 = new Line(10,100,150,100);  
Line line3 = new Line(10,50,10,100);  
Line line4 = new Line(150,50,150,100);  
Group root = new Group();  
root.getChildren().addAll(line1,line2,line3,line4);  
Scene scene = new Scene (root,300,200,Color.GREEN);  
primaryStage.setScene(scene);  
primaryStage.show();  

}

}
Output:  

101  
MATS Centre for Distance and Online Education, MATS University  



Notes  JavaFX Cirlce  
A circle is a special type of ellipse with both of the focal points at the  
same position. Its horizontal radius is equal to its vertical radius.  
JavaFX allows us to create Circle on the GUI of any application by  
just instantiating javafx.scene.shape.Circle class. Just set the class  
properties by using the instance setter methods and add the class  
object to the Group.  
Properties  
The class properties along with the setter methods and their  
description are given below in the table.  

Property  Description  Setter Methods  

centerX  X coordinate of  
the centre of  
circle  

setCenterX(Double  
value)  

centerY  

radious  

Y coordinate of  
the centre of  
circle  

setCenterY(Double  
value)  

Radius of the  
circle  

setRadius(Double  
value)  

Example:  
package application;  
import javafx.application.Application;  
import javafx.scene.Group;  
import javafx.scene.Scene;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Circle;  
import javafx.stage.Stage;  
public class Shape_Example extends Application{  

@Override  
public void start(Stage primaryStage) throws Exception {  

102  
MATS Centre for Distance and Online Education, MATS University  



Notes  // TODO Auto-generated method stub  
primaryStage.setTitle("Circle Example");  
Group group = new Group();  
Circle circle = new Circle();  
circle.setCenterX(200);  
circle.setCenterY(200);  
circle.setRadius(100);  
circle.setFill(Color.RED);  
group.getChildren().addAll(circle);  
Scene scene = new Scene(group,400,500,Color.GRAY);  
primaryStage.setScene(scene);  
primaryStage.show();  

}
public static void main(String[] args) {  

launch(args);  
}

}

103  
MATS Centre for Distance and Online Education, MATS University  



Notes  

JavaFX Graphical Effects and Transformations  
As one of the most powerful GUI toolkits to build the rich client  
application, JavaFX gives us a very handy set of graphical effects and  
transformations that make it possible to give more visual effects and  
interactivity to the user interface. These features are important for the  
development of modern and interactive applications that catch the  
user's eye. While the graphical effects allow you to apply visual  
changes to nodes (like blur, drop shadows, and coloring) the  
transformations allow you to modify the geometrical properties of  
nodes like scale, rotation and translation. These tools are very  
important to understand and need to use thoroughly in order to develop  
rich user interface-based applications for JavaFX developer. JavaFX  
effects are essentially visual transformations that change how a node  
is rendered while keeping the node's underlying geometry and layout  
intact. For example, you may use a Gaussian blur to smooth the edges  
of an image or add a drop shadow to give some depth. Transformations  
edit the position, size, or orientation of the node within the scene graph,  
in contrast. You could scale the button to make it grow or shrink, rotate  
the label to write it in an angle, or translate the image to drag it across  
the screen. These transformations are non-destructive, meaning the  
node's original properties remain unchanged. JavaFX comes with many  
built-in effects and transformations, all with their own parameters and  
options. This capability enables developers to deliver an expansive  
range of visual tweaks, from subtle touches to bold transformations. For  
instance: A developer could create a night mode effect using a color  
adjust effect to invert the color scheme of their interview application,  
or add a reflection effect to their app's button to make it shiny. All these  
effects and transformations could be animated and give you a very nice  
dynamic visual experience. The Hierarchical structure of the elements  
that minimal JavaFX Scene Graph reflected onto JavaFX animation  
philosophyEffects and Transformations The effects are applied to the  
specific nodes, the transformations change the node and all children  
elements. Because of this hierarchical nature multiple effects and  
transformation could be done to different nodes in the scene graph  
resulting in complex visual effects. In addition, JavaFX is hardware  
accelerated for effects and transformations, meaning that they will be  

104  
MATS Centre for Distance and Online Education, MATS University  



Notes  rendered efficiently and smoothly even for complex scenes. Hardware  
acceleration is especially crucial in scenarios involving animations and  
interactive applications, where performance takes center stage. For  
example, if a developer wants to design an eye-catching button that  
increases in size as the user hovers over it. They would use a scale  
transform on the button and an animation toward scale factor using a  
timeline. In the same vein, a developer may create a drop shadow effect  
to highlight a selected item in a list view as visual acknowledgment of  
user interaction. Effects and transformations are naturally integrated in  
JavaFX, making it easier to produce visually stunning applications with  
minimal coding effort.  

105  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 7: Java FX Effects  

Java FX Effects  
JavaFX supports numerous graphics effects out of the box: notably  
blur, drop shadow, color adjustment, and reflection. These effects can  
then be triggered on any node in the scene graph to provide an  
application increased visual fidelity. Now, let us show some of these  
effects with working code in Java. The first mentioned new effect is  
the GaussianBlur effect newly add which is blurring the contents of a  
node. This is used for illusion of 2D or physical emphasis. Here's a  
simple example:  

Javaimport javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.layout.StackPane;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Rectangle;  
import javafx.stage.Stage;  
import javafx.scene.effect.GaussianBlur;  

public class GaussianBlurExample extends Application {  
@Override  
public void start(Stage primaryStage) {  

Rectangle rect = new Rectangle(200, 100, Color.BLUE);  
GaussianBlur blur = new GaussianBlur();  
blur.setRadius(10); // Adjust the blur radius  
rect.setEffect(blur);  

StackPane root = new StackPane(rect);  
Scene scene = new Scene(root, 400, 200);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Gaussian Blur Example");  
primaryStage.show();  

}

public static void main(String[] args) {  
launch(args);  

106  
MATS Centre for Distance and Online Education, MATS University  



Notes  }
}
In the example, we create a Rectangle and then apply a GaussianBlur  
effect to it. The setRadius() method defines the amount of blur.  
[Next] The DropShadow effect creates a shadow behind a node to  
help emulate depth. Here’s an example:  
Java  
import javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.layout.StackPane;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Circle;  
import javafx.stage.Stage;  
import javafx.scene.effect.DropShadow;  

public class DropShadowExample extends Application {  
@Override  
public void start(Stage primaryStage) {  

Circle circle = new Circle(50, Color.RED);  
DropShadow shadow = new DropShadow();  
shadow.setRadius(20);  
shadow.setColor(Color.BLACK);  
circle.setEffect(shadow);  

StackPane root = new StackPane(circle);  
Scene scene = new Scene(root, 200, 200);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Drop Shadow Example");  
primaryStage.show();  

}

public static void main(String[] args) {  
launch(args);  

}
}
There, a Circle is defined and the DropShadow effect is used.  
Methods setRadius() and setColor() governs the shadow appearance.  
Using ColorAdjust effect This allows you to modify node's hue and  

107  
MATS Centre for Distance and Online Education, MATS University  



Notes  saturation, brightness and contrast. This allows for potential color  
variations or special effects.  
Java  
import javafx.application.Application;  
import javafx.scene.Scene;  
import javafx.scene.layout.StackPane;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Rectangle;  
import javafx.stage.Stage;  
import javafx.scene.effect.ColorAdjust;  

public class ColorAdjustExample extends Application {  
@Override  
public void start(Stage primaryStage) {  

Rectangle rect = new Rectangle(200, 100, Color.GREEN);  
ColorAdjust adjust = new ColorAdjust();  
adjust.setHue(0.2);  
adjust.setSaturation(0.5);  
rect.setEffect(adjust);  

StackPane root = new StackPane(rect);  
Scene scene = new Scene(root, 400, 200);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Color Adjust Example");  
primaryStage.show();  

}

public static void main(String[] args) {  
launch(args);  

}
}
In this example, the ColorAdjust effect is used to define a color on a  
Rectangle. The color value is controlled through the setHue() and  
setSaturation() methods. Next, we have the Reflection effect that  
ensures what you see in the node above it, is also seen right below it,  
providing it a mirror kind of effect.  
import javafx.application.Application;  
import javafx.scene.Scene;  

108  
MATS Centre for Distance and Online Education, MATS University  



Notes  import javafx.scene.layout.StackPane;  
import javafx.scene.control.Label;  
import javafx.stage.Stage;  
import javafx.scene.effect.Reflection;  

public class ReflectionExample extends Application {  
@Override  
public void start(Stage primaryStage) {  

Label label = new Label("Reflection");  
Reflection reflection = new Reflection();  
reflection.setFraction(0.7); // Adjust the reflection fraction  
label.setEffect(reflection);  

StackPane root = new StackPane(label);  
Scene scene = new Scene(root, 200, 100);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Reflection Example");  
primaryStage.show();  

}

public static void main(String[] args) {  
launch(args);  

}
}
In this example, a Reflection is applied to a Label. The length of the  
reflection is controlled with the setFraction() method. All of these  
samples show you how to use graphical effects in JavaFX. Developers  
can use a combination of these effects by adjusting their properties to  
produce a variety of visual enhancements.  

109  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 8: Java FX Transformations  

JavaFX Transformations:  
This is due to JavaFX transformations, which enables developers to  
change the spatial features of the nodes, including scaling, rotation  
and translation. This is a crucial process for building interactive and  
responsive user interfaces. The Scale transformation is used to resize  
a node. Here's an example:  
import javafx.application.Application;  
import javafx.scene.layout.Pane;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Rectangle;  
import javafx.scene.transform.Rotate;  
import javafx.scene.transform.Scale;  
import javafx.scene.transform.Translate;  

public class TransformDemo extends Application {  
@Override  
public void start(Stage stage) {  

Rectangle rect = new Rectangle(100, 60,  
Color.CORNFLOWERBLUE);  

// Apply transformations  
rect.getTransforms().addAll(  

new Translate(100, 100),  
new Rotate(45, 50, 30),  
new Scale(1.5, 1.5)  

);  
Pane root = new Pane(rect);  
Scene scene = new Scene(root, 400, 300);  
stage.setTitle("JavaFX Transformations");  
stage.setScene(scene);  
stage.show();  

}
public static void main(String[] args) {  

launch(args);  
}

}

110  
MATS Centre for Distance and Online Education, MATS University  



Notes  
JavaFX Rotation  
Rotation can be defined as the process of rotating an object by a  
certain angle θ (theta). In JavaFX, the  
class javafx.scene.transform.Rotate represents the Rotation  
transform.  
The image illustrates the rotation transform. the rectangle shown in  
the image is rotated along the Y-axis by the angle θ. The coordinates  
of the rectangle gets changed due to the rotation while the edges  
remains of the same length.  

Properties  
The properties of the class along with the setter methods are described  
in the following table.  

Property  Description  Setter Methods  

angle  It is a double type setAngle(double  
property. It  value)  
represents the  
angle of rotation  
in degrees.  

111  
MATS Centre for Distance and Online Education, MATS University  



Notes  
axis  It is a object type  

property. It  
setAxis(Point3D  
value)  

represents the  
axis of rotation.  

pivotX  It is a double type setPivotX(double  
property. It  
represents the X  
coordinate of  
rotation pivot  
point.  

value)  

pivotY  It is a double type setPivotY(double  
property. It  
represents the Y  
coordinate of  
rotation pivot  
point.  

value)  

pivotZ  It is a double type setPivotZ(double  
property. It  
represents the Z  20

coordinate of  
rotation pivot  
point.  

value)  

Constructors  
The class contains six constructors.  

1. public Rotate() : creates the rotate transform with the default  
parameters.  

2. public Rotate(double angle) : creates the rotate transform  
with the specified angle measured in degrees. Pivot points are  
set to (0,0).  

3. public Rotate(double angle, Point3D axis) : creates the 3D  
rotate transform with the specified transform. Pivot points are  
set to (0,0,0).  

112  
MATS Centre for Distance and Online Education, MATS University  



Notes  4. public Rotate(double angle, double pivotX, double pivotY)  
: creates the Rotate transform with the specified angle and  
pivot coordinate (x,y).  

5. public Rotate(double angle, double pivotX, double pivotY,  
double pivotZ) : creates the Rotate transform with the  
specified angle and 3D pivot coordinate (x,y,z).  

6. public Rotate(double angle, double pivotX, double pivotY,  
double pivotZ,Point3D Axis) : creates a 3D Rotate transform  
with the specified angle and pivot coordinate (x,y,z).  

Example:  
The following example illustrates the implementation of  
Rotation transform. Here, we have created two rectangles.  
One is filled with the lime-green color while the other is  
filled with the dark-grey color. The dark-grey rectangle is  
rotated with the angle 30 degree along the pivot point  
coordinates (100,300).  

package application;  
import javafx.application.Application;  
import javafx.scene.Group;  
import javafx.scene.Scene;  
import javafx.scene.paint.Color;  
import javafx.scene.shape.Rectangle;  
import javafx.scene.transform.Rotate;  
import javafx.stage.Stage;  
public class RotateExample extends Application{  
@Override  
public void start(Stage primaryStage) throws Exception {  

// TODO Auto-generated method stub  
// creating the rectangles  
Rectangle rect1 = new Rectangle(100,100,200,200);  
Rectangle rect2 = new Rectangle(100,100,200,200);  

// setting the color and stroke for the Rectangles  
rect1.setFill(Color.LIMEGREEN);  
rect2.setFill(Color.DARKGREY);  
rect1.setStroke(Color.BLACK);  

113  
MATS Centre for Distance and Online Education, MATS University  



Notes  rect2.setStroke(Color.BLACK);  

// instantiating the Rotate class.  
Rotate rotate = new Rotate();  

//setting properties for the rotate object.  
rotate.setAngle(30);  
rotate.setPivotX(100);  
rotate.setPivotY(300);  

//rotating the 2nd rectangle.  
rect2.getTransforms().add(rotate);  

Group root = new Group();  
root.getChildren().addAll(rect1,rect2);  
Scene scene = new Scene(root,500,420);  
primaryStage.setScene(scene);  
primaryStage.setTitle("Rotation Example");  
primaryStage.show();  

}
public static void main(String[] args) {  

launch(args);  
}
}

114  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 9: Java FX Animation  

Java FX Animation  
JavaFX is a robust and flexible toolkit for creating rich client  
applications that go beyond static UIs to include dynamic animations,  
immersive 3D graphics, complex layout management, and a full set of  
UI controls. JavaFX is highly visual and you can use timelines,  
transitions, and keyframes to do animation. A Timeline, the heart of  
JavaFX animation, a time-based driver that fires events at specific  
periods in time. Transitions, such as FadeTransition,  
TranslateTransition, and RotateTransition, offer pre-defined animation  
effects that can be applied to nodes to create animations with less  
complexity. Keyframes we use instead represent the state of node at a  
certain point in time, allowing for complex animations to be created by  
interpolating between the two states. UI transition animations are  
smaller snippets of animations and can be utilized to indicate when the  
user hovers/clicks on UI controls, for example, using a FadeTransition  
to gradually change the opacity of a button, reducing its visual presence  
as the button is being changed on hover. For instance, a  
TranslateTransition can move a shape across the screen, giving it the  
illusion of motion, and a RotateTransition can rotate an object,  
energizing a UI. Keyframes Demonstration — Bouncing Ball  
Animation A composite animation can be created by adding keyframes  
that change the ball's position and velocity with time, resulting in a  
more realistic bounce. When used well, animation—especially  
interactivity—is useful in JavaFX, but it can also help create a good  
user experience by giving feedback, highlighting, and improving  
interface expressiveness, which makes it more engaging and easy to  
use. With these animation techniques, developers can add vitality to  
their applications, infuse energy into their static interfaces and engage  
their user through dynamic experiences. With the ability to orchestrate  
visual components in time, it enables developers to craft rich user  
experiences, hence why JavaFX is such a powerful framework for  
creating progressive, stunning applications.  
2.6 Java FX 3D Shapes:  
With a solid 3D graphics support, JavaFX is capable of rendering rich  
and interactive 3D worlds, beyond just 2D interfaces. To deal with  
JavaFX 3D shapes one can use classes such as Box, Sphere, Cylinder,  

115  
MATS Centre for Distance and Online Education, MATS University  



Notes  and MeshView which are representing basic 3D primitives. For  
example, a Box is used to make a cube or rectangular prism, and a  
Sphere is an object shaped like a sphere. A Cylinder — as the name  
signifies — is a cylindrical shape. More advanced 3D models can be  
made through MeshView, where more advanced details can be created  
such as vertices, faces, and texture coordinates can be defined. Through  
Translate, Rotate and Scale properties, the primitives are  

rotate its position and also scale. JavaFX also has lighting and material  
properties to make 3D scenes more realistic. As you shine light sources  
(PointLight, AmbientLight, …) on a scene, the 3D objects display  
shadows and highlights, which gives your objects a sense of depth.  
Materials (e.g. PhongMaterial) specify the surface characteristics of the  
3D object and govern its color, reflectivity, and texture. These  
properties can be used to create 3D scenes that never fail to look great,  
now on par with things you would expect to see built with full 3D  
graphics libraries. A PhongMaterial, for instance, can be added to a  
Sphere to make the shape appear metallic or glossy, or multiple  
PointLights can be added to the scene to get realistic-looking lighting  
effects. JavaFX also supports accurate 3D models generated in external  
modeling programs like Blender or Maya, using the OBJ and FBX file  
formats for importing. By supporting these new formats, this allows  
developers to use high-fidelity 3D assets in their own applications, and  
breaks open new avenues for 3D experiences. This gives developers  
complete control to manipulate 3D shapes, lights, and materials to  
produce visually appealing applications ranging from interactive 3D  
visualizations to rich gaming experiences, showcasing the platform's  
versatility and capability to manage advanced graphics.  
2.7 Java FX Layout:  
Having good layout management is an essential part of building  
functional and visually appealing user interfaces. The main layout  
panes provided by JavaFX are BorderPane, HBox, VBox, GridPane and  
StackPane, each intended to layout UI components in a particular  
fashion. Another example is BorderPane, which divides the layout into  
top, bottom, left, right, and center sections, allowing you to create a  
structured layout with different sections. HBox and VBox – Helpful  
when needing to arrange components on a single line, horizontally or  
vertically GridPane: A componen that arranges UI in a grid, giving  

116  
MATS Centre for Distance and Online Education, MATS University  

manipulatable in 3D space, meaning we can position the geometry,  



Notes  accurate control over each UI components position and alignment For  
example, StackPane, which stacks Nodes on top of each other. These  
layout panes can contain other panes to create intricate and adaptable  
layouts. As an example, we can structure the application's overall layout  
with a BorderPane, the top region with an HBox for a toolbar, the left  
region with a VBox for a navigation menu, and the center region with  
a GridPane for a data entry form. VBox, StackPane, etc., depending on  
the expected behavior, and they can also use layout properties on their  
own (e.g., alignment, padding, and spacing) to adjust the components'  
appearance and behavior. The alignment properties determine the  
placement of UI components in relation to their parent container, and  
padding and spacing properties add visual distance between UI  
components and the parent container or between neighboring  
elements. What is more, JavaFX support CSS styling which allows  
developers to style the layout panes and UI components according to  
their own custom style guide, providing better project visual  
consistency and aesthetics. Static ImportsIn many cases, including the  
libraries you need is sufficient to get you started, but if you want more  
control over your final distribution, there are some additional steps you  
can take to reduce the amount of unused code from your bundles.  
Developers can learn these layout techniques to make a very intuitive,  
responsive, and good-looking application to have a good user  
experience. JavaFX layout management is flexible and powerful,  
treason to build modern several applications.  
2.8 Java FX UI Controls  
JavaFX visuals are a set of controls that includes buttons, text fields,  
labels, checkboxes, radiobuttons, and combo boxes. On the other hand,  
buttons are intended for actions, for example in submitting a form and  
navigating to a new screen. Text fields are used for receiving user inputs  50

and for displaying text that can be entered and altered by users. Labels  
therefore are static text that helps inform the user about what is  
required. Checkboxes, radio buttons and combo boxes are used to select  
options. New UI control is automatically assigned with set of  
properties/methods that could be used to customize its appearance and  
behavior. These attributes provide characteristics for certain types of  
controls— for instance, a button's text, font, and color can be changed,  
and a text field can have its prompt text or input validation configured.  
JavaFX is a rich user interface toolkit for Java apps. For example, you  

117  
MATS Centre for Distance and Online Education, MATS University  



Notes  can bind an event handler to a button that allows the button to perform  
one or more action(s) when it is clicked. Implemented in the form of  
UI controls, they can be styled with CSS and designed. Custom styles  
enable you to create buttons with a flat or gradient appearance, or adjust  
how text fields appear with rounded corners or a custom border. In  
addition, JavaFX offers several UI controls tailored for tabular and  

TableView display data in a table format, in columns and rows  
TreeView display data, in a tree structure, in parent and child nodes The  
data consumer application mentioned above needs these specialized UI  
controls to render the data places mentioned above and to manipulate  
these complex data to accomplish the goal. JavaFX also offers a wide  
variety of UI controls that developers can use to create highly  
interactive and visually appealing applications. These UI controls and  
event handling mechanisms contribute to a rich user experience, the art  
of making applications that are functional yet engaging is a domain for  
you to discover. This is why JavaFX UI controls will always be a great  
toolkit to use for developing modern interactive applications.  
2.9 JavaFX Images:  
JavaFX has various components that can be used in tandem such as  
images and event handling which allows us to create dynamic and  
interactive UIs. Combining these two flavours of software provides  
developers with the power to construct applications that not only  
present aesthetically pleasing content, but also respond dynamically  
with intelligence in accordance to user input. Let's take an example,  
say an application that showcases a gallery of pictures. (Users can  
browse the gallery by hitting navigation buttons or swiping on the  
screen.) We also define TextView3 and TextView4 objects for our UI;  
these will be used to display the information about the image and when  
buttons are pressed (Gallery contains images) each image can be  
represented by ImageView object, and our Next and Previous buttons  
will be represented by Button objects. The navigation buttons and the  
ImageView objects can have event handlers that respond to user clicks  
and touch gestures. If the user clicks on a navigation button, the event  
handler may change the contents of the ImageView to the next or last  
picture from the gallery. When the user swipes on the screen, the event  
handler can detect the swipe gesture and update the ImageView  
accordingly. JavaFX provides drag-and-drop, so users can drag images  

118  
MATS Centre for Distance and Online Education, MATS University  

hierarchical data, including TableView and TreeView respectively.  



Notes  around the application. You can do this by using the  
setOnMousePressed(), setOnMouseDragged(), setOnMouseReleased()  
methods of the ImageView class. When the user click the mouse  
button on the ImageView, the setOnMousePressed() event handler is  
executed and it would be possible to record the initial position of the  
mouse pointer. The position of the ImageView (the one to be dragged)  
can be updated based on mouse movement in the  
setOnMouseDragged() event handler when the user drags the mouse.  
The setOnMouseReleased() event handler can be used to finalize the  
drag-and-drop operation when the user releases the mouse button.  
2.10 JavaFX Event Handling:  
JavaFX Application Lifecycle and Event Handling JavaFX Application  
Lifecycle And Event Handling JavaFX allows developers to develop  
interactive In this article above things will be more clear, as JavaFX  
provides a mechanism for working with images. Image loading and  
manipulation is important for dynamic and interactive applications.  
JavaFX offers comprehensive support for managing multiple image  
formats such as PNG, JPEG, and GIF, using the javafx. scene. image.  
Image class. This container provided by RwImage gives the flexibility  
to load images from a multitude of sources, including local files,  
URLs, or input streams. The caption for the progress of loading an  
image is to create an Image object and point to an image source. For  
example, an image can be loaded from a local file by using the image  
constructor and passing the file path as an argument. Likewise, for an  
image, the URL string is also passed to the constructor for loading an  
image from a URL. After the creation of Image object, it can be  
rendered inside the JavaFX stage using the javafx. scene. image.  
ImageView class. The ImageView serves as a node to draw the image  
in the scene graph. Developers can use the setImage() method to assign  
the Image object to the ImageView. In addition to just displaying  
them, JavaFX provides many ways to deal with images. The  
ImageView class has methods like setFitWidth() and setFitHeight() to  
scale the image to fit the provided dimensions. By default, images are  
scaled proportionally, so setPreserveRatio() can be used to preserve the  
aspect ratio of an image to avoid distortion. Using the getTransforms()  
method of the ImageView class, developers can also apply in-depth  
transformation on image like rotation, translation, scaling, etc. This  
will return an observable list of Transform objects which can be  

119  
MATS Centre for Distance and Online Education, MATS University  



Notes  modified as necessary to produce the desired visual effects. To rotate  
an image, for example, add a Rotate transform to the list, indicating the  
rotation angle. For JavaFX you can perform image filtering which  
enables a developer to apply an image with different effects like Blur,  
color shading, drop shadow, etc. These effects can be applied using the  
setEffect() method of the ImageView class. For example, to create a  
blur effect, a GaussianBlur effect can be instantiated and assigned to  
the ImageView. JavaFX also has low-level image manipulation classes  
in its pixelreader and pixelwriter methods.  
Multiple-Choice Questions (MCQs)  

1. Which of the following is not a feature of JavaFX?  
a) Rich UI Components  
b) Hardware Acceleration  
c) Platform-Dependent Execution  
d) CSS Styling  

Answer: c) Platform-Dependent Execution  
2. In JavaFX, which class is used to represent 2D shapes like  

circles and rectangles?  
a) javafx.scene.text  
b) javafx.scene.shape  
c) javafx.scene.control  
d) javafx.scene.image  

Answer: b) javafx.scene.shape  
3. Which JavaFX transformation allows resizing of a graphical  

object?  
a) Rotation  
b) Scaling  
c) Translation  
d) Reflection  

Answer: b) Scaling  
4. What is the main purpose of JavaFX Animation?  

a) Handling user inputs  
b) Managing database connectivity  
c) Creating motion effects in UI  
d) Writing multithreaded programs  

Answer: c) Creating motion effects in UI  

5. Which JavaFX class is used to load and display an image?  

120  
MATS Centre for Distance and Online Education, MATS University  



Notes  a) ImageLoader  
b) ImageView  
c) ImageDisplay  
d) ImageHandler  

Answer: b) ImageView  
Short Answer Questions  

a) What are the main features of JavaFX?  
b) How can you draw a rectangle with a custom color in JavaFX?  
c) Explain the difference between JavaFX rotation and translation  

transformations.  
d) What are some common JavaFX UI controls?  
e) How do you handle mouse events in JavaFX?  

Long Answer Questions  
a) Describe the architecture of JavaFX and its key components.  
b) Explain how to create and apply graphical effects in JavaFX  

with an example.  
c) What are the different transformations available in JavaFX?  

Explain each with an example.  
d) Discuss JavaFX animation techniques and how they can be used  

to enhance a user interface.  
e) Explain the process of handling user events in JavaFX and  

provide a sample program demonstrating event handling.  

121  
MATS Centre for Distance and Online Education, MATS University  



Module 3  
SERVLET TECHNOLOGY  

LEARNING OUTCOMES  
• To understand the architecture of J2EE and Servlets.  
• To explore the servlet structure and its life cycle.  
• To study form data handling and request-response  

mechanisms.  
• To analyze client request handling and server response  

generation.  
• To understand session tracking and cookie management.  

122  



Notes  Unit 10: J2EE Introduction and Architecture  

J2EE Introduction and Architecture  
You are currently reading about Jakarta EE (Formerly J2EE or Java  
EE) Latest Version: Jakarta EE 10, learn how to use as old J2EE Java  
Enterprise Edition. In the late 1990s, J2EE was introduced as a  
complement to the Java Standard Edition (JSE) to create a  
standardized framework for enterprise application development, and it  
was a product of Sun Microsystems. We believed so strongly in a  
complete integrated development environment that could solve many-  
faceted enterprise computing problems without compromising the  
primary promise of Java "write once run anywhere", that we offered  
tutorial programs, synergies with upstream partners, and pushed  
through customer accounts manager having knowledge beyond  
database and applications servers products. This architectural shift was  
a significant departure from the monolithic application designs that  
preceded it in enterprise systems and into a more modular, component-  
oriented methodology to meet the needs of an increasingly distributed  
and componentized environment of business computing. It was not just  
a technical specification—J2EE democratized enterprise development  
by providing common patterns, practices and abstractions, helping  
folks focus on business logic rather than the underlying infrastructure  
concerns. J2EE defined standard APIs to connect to databases,  
messaging, transaction management, web services, and more,  
establishing a platform upon which third-party vendors, open-source  
projects, and enterprise engineers could build to create a shared  
community around a common technology stack. Java EE 5, 6, 7, 8, a.k.a  
Jakarta EE 9+ (various specifications under the Jakarta EE umbrella  
— it brings together many specifications and broken-down  
Enterprise/Server components from Java EE). Even with the emergence  
of alternative frameworks and architectural approaches, the legacy of  
J2EE endures, underpinning countless mission-critical applications  
across diverse industries and shaping the principles of modern  
enterprise development. In this Unit, we will delve into the architecture,  
components, and development methodologies of J2EE, unveiling how  
this groundbreaking platform laid the foundation for enterprise  
application development practices that still echo in modern software  
engineering.  

123  
MATS Centre for Distance and Online Education, MATS University  



Notes  

Figure 5.1: Servlet Architecture  
[ Source: https://th.bing.com/]  

Java Enterprise Edition (J2EE) is a specification that leads enterprise  
application development to be done based on a specification that  
provides the main interfaces and the behavior upon which the  
associations of the applications should be based which multiple vendors  
can develop compliant implementations. Standardization has played a  
key role in the emergence of a healthy marketplace of application  
servers such as IBM WebSphere, Oracle WebLogic, Red Hat JBoss,  
Apache TomEE, and GlassFish, giving organizations the flexibility of  
making deployment choices while ensuring application portability.  
When J2EE was first developed, it was born out of these gaps in the  
enterprise development world: how to develop distributed systems,  
common concern over distributed transactions, designing scalable  
communication protocols and security models. Your fleece-covered  
IVR is about more than just reducing clicks; it's about reducing  
payments to outside vendors (those handy-teddies!). The adoption path  
of J2EE mirrored the classic technology diffusion curve, with the  
original  adopters  being  primarily  financial  services,  
telecommunications and large scale e-commerce applications, and  
subsequently expanding into healthcare, government, manufacturing,  
and essentially any sector with a significant presence of IT  
infrastructure. As it has evolved, J2EE has retained fundamental  
architectural concepts while responding to new models: component-  
based architecture morphed into service-oriented architecture, which  
has moved towards microservices; synchronous communication  
models were paired with asynchronous; XML-based configuration was  
supplanted by configuration by annotation-based methods and  

124  
MATS Centre for Distance and Online Education, MATS University  



Notes  convention over configuration; and monolith deployments have  
crumbled into both containerized builds and services. Such flexibility  
has kept J2EE firmly in the conversation, despite massive shifts in  
development practices. For students as well as practitioners, learning  
J2EE gives practical expertise in working on enterprise systems and  
also helps understand architectural patterns that are not technology-  
bound, which makes the subject an essential cornerstone of any  
education in enterprise software engineering.  
Fundamental Architecture of J2EE  
After reading through Unit 1 of Jeff Lynch's book J2EE made easy, I  
was left with the impression that the J2EE architecture is simply a  
multi-tiered distributed application architecture that separates concerns  
in a way that allows each tier to effectively handle modularity,  
scalability, and maintainability issues. J2EE is based on a modified  
version of the client-server software architecture and is chiefly  38

characterized by a four-tier architecture consisting of the client tier,  
web tier, business tier and enterprise information system (EIS) tier.  
These tiers allow for functional stratification, both logically and  
physically, so each tier can evolve independently of the other whilst  
retaining contracted interfaces for cross-tier conversations. The client  
tier refers to all user interface technologies this is where end-users will  
interact with the application from web browsers rendering  
HTML/CSS/JavaScript to native mobile apps, desktop apps using Java  
Swing or JavaFX, and headless clients like IoT devices or other systems  
that consume APIs. The web tier is predominantly designed with  
Servlet and JavaServer Pages (JSP) technologies, this tier accepts  
HTTP requests, manages user sessions, applies presentation logic, and  
passes the required data to the business tier and vice versa. The layer  
separates client implementations from business logic (in this case, a  
microservice) quite well, which is increasingly common in the  
contemporary era, allowing for great freedom with how applications  
are accessed and presented to users. As you know, the business tier,  
which contains the application's core functionality, business rules, and  
workflows, is arguably the heart of the J2EE architecture, with such  
functionality typically being implemented using Enterprise JavaBeans  
(EJB). The elements of this tier run in a container environment that  
manages thing like transaction control, security, concurrency, and  
lifecycle, so that developers can just think about business logic, not  

125  
MATS Centre for Distance and Online Education, MATS University  



Notes  what is under the infrastructure. The third and final tier, the EIS tier,  
includes the data persistence layer and integrations with other systems  
(external systems, external databases, legacy applications, enterprise  
information systems), and it is accessed through JDBC, JPA, JTA, and  
JCA technologies. This architectural separation lies at the heart of  
scalability because each tier can be scaled independently according to  
the performance needs of that tier and fault tolerance because a  
problem in one tier is less likely to cascade throughout the entire  
application. Furthermore, this multi-layer design also enables teams to  
specialize, making it easier for developers to work on particular  
segments of the application based on their strengths, whether it be user  
interface, business logic, or data handling.  
In particular, the container model was one of the more unique  
architecture innovations introduced by J2EE, defining a clear  
separation between infrastructure services and application logic that  
almost all enterprise development frameworks have followed since. In  
this paradigm, application components run within specialized runtime  
environments (also known as containers) that offer standardized  
services — transaction management, security, resource pooling,  
lifecycle management, etc — via well-defined contracts instead of  
through explicit coding. This abbeys the inversion of control pattern,  
which significantly reduces the amount of boilerplate, adds consistency  
across apps and enables developers to concentrate mostly on business-  
specific functionality instead of plumbing. J2EE specifies various  
container types for particular component models and execution  
contexts. It is common for web applications to utilize beans, known as  
Enterprise JavaBeans (EJBs), which are instances of components  
managed by an EJB container, the runtime environment that manages  
the lifecycle of an EJB component and its components and creates for  
an EJB a complex service environment in which xact propagation,  
instance pooling, and concurrent access to beans x are among the  
complex services in its remote method invocation. It (web container, or  
servlet container) serves as the execution environment for Servlets, JSP  
pages, and other web-tier components, handling request routing,  
threading models, session management, and HTTP protocol details.  
You are supporting and simplifying access to naming, security and  
remote EJB functionality, rather than J2EE managed component  
containers, you are offering application client containers against  

126  
MATS Centre for Distance and Online Education, MATS University  



Notes  standalone Java-based applications that include J2EE services. Last but  
not least, we have the applet container which is no longer popular with  
so many J2EE applications but still loads Java Applets that run inside  
web browsers. This container-based architecture has the following  
advantages: it gives you uniform programming models for different app  
types; it allows the declaration of complex services in terms of  
deployment descriptors and annotations; it allows components to be  
reused via standard interfaces and lifecycles; it allows you to easily  
impose security on the edges; it allows pooling of resources and  
instance management for optimization; and it allows deployment  
flexibility through constant package formats. J2EE framework  
emphasizes a model of development around the container where you  
encapsulate functionality in granular well defined, loosely coupled  
components with well understood responsibilities and interfaces.  
Because it steers developers to architectures that are highly cohesive  
in components and loosely coupled among components in a natural  
way, these principles can be applied to effective enterprise application  
design irrespective of technology.  
J2EE is itself defined as a building block that comprises other  
components, services, and APIs to build the platform. Among the  
finest and most versatile component technologies are Servlets, which  
extend the functionality of web servers and dynamically builds web  
content in response to HTTP requests; JavaServer Pages (JSP), which  
is a template-based component technology for generating dynamic web  
content, and can separate HTML markup from Java code; Enterprise  
JavaBeans (EJB), which implements business logic (three varieties  
exist, including session beans designed to orchestrate business  
processes, (largely superseded by Java Persistence API) entity beans  
that represent your data and Message-Driven Beans that implement  
asynchronous processing; and JavaServer Faces (JSF), which  
implements a component-based MVC (model-view-controller)  
framework for web interfaces. These components are supplemented by  
the container services of J2EE, which provide cross-cutting  
capabilities to all components running in the application server  
environment. They consist of JNDI (Java Naming and Directory  
Interface) for finding resources and components, JTA (Java  
Transaction API)responsible for transaction management across  
multiple resources, JAAS (Java Authentication and Authorization  

127  
MATS Centre for Distance and Online Education, MATS University  



Notes  Service) for security, JMS (Java Message Service) for reliable  
asynchronous messages, and JCA (Java Connector Architecture) for  
interactions with external enterprise information systems. The platform  
also includes many specialized APIs that focus on specific enterprise  
areas: JDBC (Java Database Connectivity) for interacting with  
databases; JPA (Java Persistence API) to perform object-relational  
mapping; JAX-WS and JAX-RS for SOAP and RESTful web services;  
JavaMail for email; and many other areas that have been added in newer  
platform versions. Dependency injection is the mechanism by which  
this rich ecosystem converges around common patterns and practices  
(starting with JNDI lookup, later formalized around CDI — Contexts  
and Dependency Injection), and the proliferation of design patterns  
such as MVC (Model-View-Controller), DAO (Data Access Object),  
Service Locator, Business Delegate, and Composite Entity. This  
ecosystem of technologies, services, and patterns culminated in a  
platform that offers to meet the varied needs of enterprise applications  
while ensuring uniform maintainable implementation patterns.  
Evolution and Deployment of J2EE Applications  
The platform has matured over time, with each release building upon  
previous functionality to solve for new enterprise obstacles. On  
December 12, 1999, the first version of J2EE delivered in the form of  
the J2EE 1.2 specification, specifying the architecture: Servlet 2.2, JSP  
1.1, EJB 1.1 and JDBC 2.0 technologies for standardized enterprise  
development. J2EE 1.3 brought connector architecture, revamped JMS  
and EJB 2.0 local interfaces to this foundation (2001). J2EE 1.4 (2003)  
brought a crucial direction towards ease of web services integration,  
adding JAX-RPC, SOAP with Attachments API for Java (SAAJ), and  
Java API for XML Registries (JAXR), aligning with the overall  
industry shift towards service-oriented architectures. The rebranding to  
Java EE 5, 2006, marked a turning point release in which annotations,  
dependency injection, and the Java Persistence API combined to  
significantly reduce the complexity of development, overcoming  
criticisms of the platform featuring overly verbose frameworks. Java  
EE 6 (2009): added web profile for lightweight implementations, a  
more powerful Contexts and Dependency Injection (CDI)  
implementation, and built-in support JAX-RS 1.1 for improved  
RESTful web services. Java EE 7 (2013) added standardized batch  
processing and concurrency utilities in partnership with updated web  

128  
MATS Centre for Distance and Online Education, MATS University  



Notes  technologies including WebSocket and JSON processing. With the  
release of Java EE 8 (2017), the platform became even more modern  
— with support for HTTP/2, improved security features, and added  
support for JSON binding. The move to the Eclipse Foundation resulted  
in Jakarta EE 9 (2020) which was iterations with primarily the javax  
namespace adjusted. * to jakarta. *, and Jakarta EE 10 (2022) started  
to add significant new capabilities under the new governance model.  
Over the course of this evolution, the platform has exhibited incredible  
backward compatibility while incrementally moving away from its  
originally very XML-centric, container-centric model to an  
increasingly lightweight, annotation-based, developer-centric model—  
analogous to the broader industry transition from monolithic  
applications to microservices and cloud-native architectures. But these  
shifts represent J2EE's ability to evolve with changing paradigms in  
development while maintaining its core strength: namely,  
standardization and portability.  
A J2EE application goes through a well defined process from its  
designing, implementation, testing, deployment and maintenance.  
Architects, for example, break the system requirements down into the  
appropriate tiers and components, define boundary interfaces, data  
models, and cross-cutting concerns such as security and transaction  
management (often using UML diagrams, architectural patterns, and  
J2EE environment reference architectures) during the design time  
phase. There is also a slice of data focused on the implementation work  
that typically involves many specialized teams working at the same  
time: user interface developers who are creating the JSP pages,  
Servlets, or JSF components; programmers focused on business logic  
writing EJBs or CDI beans; data access experts creating JPA entities  
and repositories; and integration engineers writing the connectors for  
external systems. During development, this parallel effort is made  
possible by J2EE's standardized APIs and component models, which  
specify clear contracts between different parts of the application.  
Packaging Modules The build aggregates these varied artifacts into  
deployable units according to J2EE's packaging rules: JAR (Java  
Archive) files for utility classes and libraries, WAR (Web Application  
Archive) files for web modules with Servlets and related resources,  
EJB-JAR files for Enterprise JavaBeans, and EAR (Enterprise Archive)  
files that bundle multiple modules into an integrated application.  

129  
MATS Centre for Distance and Online Education, MATS University  



Notes  Arising from the building is deployment, which is the act of installing  
these packaged artifacts in a J2EE application server that then checks  
the configuration, satisfies dependencies, sets the right container  
services and makes the application available to the end-user. DevOps  
practices are prevalent throughout modern J2EE development,  
encompassing CI/CD pipelines for the automated execution of build,  
test and deployment phases; containerization technologies such as  
Docker, for streamlined environment consistency; orchestration tools  
such as Kubernetes, for coordinating and scaling deployments; and  
Infrastructure-as-Code approaches that further replicate deploys  
through environments. The architecture of J2EE applications is  
distributed throughout multiple tiers; as a consequence, testing these  
applications results in a unique set of challenges. J2EE provides  
significant benefits with this highly standardized approach across its  
lifecycle as J2EE components become portable (the same application  
can run on various everywhere implementations), a standard  
deployment model is applicable across applications regardless of the  
implementation of the actual application, and common enterprise  
concerns are addressed using well-defined patterns.  
Key Technologies and Components in J2EE  
Servlet technology is the foundation of J2EE's web tier, serving as a  
Java-centric method for processing HTTP requests and creating  
dynamic responses in web applications. Servlets are managed in a  
container that coordinates their lifecycle through specific methods:  
init() for initialization, service() (usually overridden via doGet(),  
doPost(), etc.) for request handling, and destroy() for teardown  
activities. For example, the container takes care of managing the object  
lifecycle, which means developers don't have to worry about low-level  
background processing like socket handling, thread management, and  
protocol details, etc. — they only have to worry about processing the  
request in an application-specific way. Servlets process incoming  
requests via HttpServletRequest objects, containing parameters,  
headers, session info, and request details, and responses via  
HttpServletResponse objects, enabling control over content types,  
headers, status codes, and response content. Servlets provide a  
performance state—an interface to manage server-side session  
maintenance over literate requests through HttpSession interface, one  
of the building blocks of web applications. Servlets can be mapped to  

130  
MATS Centre for Distance and Online Education, MATS University  



Notes  specific URL patterns by means of deployment descriptors (web. (xml)  
or annotations (@WebServlet), allowing for flexible routing  
configurations. In addition to basic request handling, the Servlet API  
provides features for request dispatching (forwarding or including  
content from other resources), filtering (intercepting requests for pre or  
post-processing), event listeners (receiving notifications about various  
contextual events such as application startup or session creation), and  
asynchronous processing (handling long-running operations without  
blocking threads in the container). Servlet EvolutionThe Servlet  
specification has evolved hand-in-hand with trends in web  
development: Servlet 2.5 fitted in annotations to avoid excessive  
configuration; Servlet 3.0 brought asynchronous processing and  
programmatic registration; Servlet 3.1 strengthened security and  
facilitated file uploads; and Servlet 4.0 added HTTP/2 support and  
server push. At the same time, Servlets remained the underlying  
technology behind almost all the frameworks in the Java space (JSF,  
Spring MVC, Struts and other dozens). Servlets serve as reusable  
components for constructing Java web apps, and while many  
developers now engage primarily with higher-level abstractions of  
Servlets, it is critical to understand the underlying fundamentals of  
Servlets in order to troubleshoot, optimize performance, and deploy  
your own custom components across the J2EE ecosystem.  
The JavaServer Pages (JSP) technology takes the web tier features of  
J2EE and adds document-centric facilities for generating dynamic  
content that work naturally in conjunction with the Servlet model. JSP  
pages consist of standard static (usually HTML markup) and some  
dynamic tags and embedded Java code, this framework produces a  
template-based development environment using separate concerns for  
presentation and business logic. When a JSP page is requested for the  
first time, the container translates the page into a Servlet class and  
compiles that class before executing it, as you would with any Servlet—  
which means JSP is a syntactic sugar over the Servlet. This process  
translates standard HTML into raw text output, JSP directives () into  
package declarations and imports, scriptlets () into method body code,  
expressions () into output statements, declarations () to class-level  
variables and methods, and different tag types to Java constructs. There  
are several approaches JSP uses to create dynamic content: scriptlets  
for embedding raw Java code inside a page, expressions for embedding  

131  
MATS Centre for Distance and Online Education, MATS University  



Notes  an evaluated value, the Expression Language (EL) for simplified access  
to object properties and standard and custom tag libraries for more  
complex markup-oriented functionalities. The JSP Standard Tag  
Library (JSTL) includes tags for common tasks such as iteration,  
condition, XML processing, database access, and i18n, so that  
embedded Java code can be used much less. Custom tag libraries take  
this concept further by enabling developers to create re-usable,  
declarative components that encapsulate domain-specific logic. Over a  
period of 15 years, JSP technology evolution has proved to be about  
progressive separation of concerns (JSP 2.0 + Expression Language for  
easy object access; JSP 2.1 + expression language enhancements with  
JSF integration; JSP 2.x line of development to further enhance those  
while keeping backward compatibility as its guiding principle). Though  
JSP development has largely been replaced with component-based  
frameworks such as JavaServer Faces and template engines like  
Thymeleaf, JSP features still remain in use amongst enterprise  
applications, especially for their view components via MVC  
architectures. JSP's sustained relevance can be attributed to its  
simplified learning curve, natural fit to HTML design flows, its  
efficient execution model, and seamless compatibility with Servlet-  
based applications.  
EJB technology is the J2EE's main component model for writing  
business logic. EJBs run inside specialized containers that provide  
infrastructure functionalities such as transaction management,  
security, concurrency control, and instance life cycle management,  
enabling developers to primarily focus on business functionality  
instead of low-level system issues. There have been three distinct bean  
types defined by the EJB specification, each serving different use  
cases: Session Beans that encapsulate business processes and client-  
facing services and are further classified into Stateless Session Beans,  
which maintain no client-specific state between method invocations,  
Stateful Session Beans which maintain client-specific state for the  
duration of a session, and Singleton Session Beans, which maintain a  
single instance per application and are useful when a shared state or  
coordinated operations are needed; Message-Driven Beans (MDBs),  
which offer message-oriented asynchronous processing by consuming  
messages from a JMS destination or message provider; and Entity  
Beans, which historically helped to provide object-relational mapping  

132  
MATS Centre for Distance and Online Education, MATS University  



Notes  for database persistence but are now largely rendered obsolete by the  
introduction of the Java Persistence API (JPA) since EJB 3.0. The  
development of EJB technology is a microcosm of the overall evolution  
of J2EE into more developer-friendly programming models:[2] EJB 1.0  
and 2.0 had long interfaces, deployment descriptors, and lots of  
boilerplate code and were justly criticized for being complex and  
verbose; EJB 3.0 was a radical simplification thanks to annotations,  
dependency injection, and the Plain Old Java Object (POJO)  
programming model; this option drastically reduced development  
effort; newer versions built on that with cleaner approaches and  
innovations like asynchronous method invocation, timer services, and  
better capability for transactions. EJBs inherently implement many of  
the foundational enterprise patterns: Component-Based Development  
uses a modular structure, Inversion of Control uses container-managed  
services, Dependency Injection uses resource acquisition, Facade  
Pattern for simplifying client access to complex subsystems, Business  
Delegate abstracts away remote implementation details. Although  
alternative frameworks such as Spring have captured much of the  
market share by providing equivalent functionality with reduced  
perceived overhead, EJBs are still a mainstay of many large enterprise  
applications, especially in cases where distributed transactions and  
complex security policies are involved or when integrating with older  
legacy J2EE systems. An insight into the component-based design  
concepts that are employed in a specific technology is useful—whether  
it be EJB or any future framework.  
The Java Persistence API (JPA) is a specification that configures  
anObject Relational Mapping in the j2ee platform to provide a unified  
and object-oriented interface to the relational data that can be managed  
as objects. Java Persistence API (JPA) was introduced in EJB 3.0 to  
supersede the previous entity bean paradigm, which was criticized for  
its complexity and performance issues, and used a lightweight, Plain  
Old Java Object (POJO) setup leveraging proven Object Relational  
Mapping (ORM) frameworks like Hibernate. Essentially, JPA  
reconciles the object-oriented world and the relational world using  
entities—plain old Java classes, annotated with @Entity, that  
correspond to persistent data structures. All these features are  
complemented with extra annotations to customize their mapping  
behavior: @Table for the database table or tables this entity is mapped  

133  
MATS Centre for Distance and Online Education, MATS University  



Notes  to, @Id to identify primary key fields, @Column to configure the  
mapping of each single field, and relationship annotations  
(@OneToOne, @OneToMany, @ManyToOne, @ManyToMany) for  
the associations between entities. However, this doesn't cover the entire  
lifecycle of persistence. JPA empowers it with a richer set of features  
exposed via Entity Manager instances that provide methods to persist,  
find, merge, and delete entities, while internally, it maintains a  
persistence context that can track changes to an entity and propagate  
them to the underlying database. The specification defines a strict  
entity lifecycle: new/transient, managed, detached, removed – and  
transitions between them according to Entity Manager operations and  
transaction boundaries. To retrieve data, JPA has several query  
methods: the Java Persistence Query Language (JPQL), a platform-  
independent, object-oriented query language that has the same building  
blocks as SQL but operates on entities rather than tables; the Criteria  
API, which is a type-safe, programmatic alternative to the string-based  
queries; and native SQL queries for accessing features that are only  
available in specific databases. It handles more sophisticated  
persistence issues such as inheritance mapping (with support for single  
table, joined table, and table-per-class strategies), composite keys,  
embedded objects, lazy loading of relationships, optimistic locking for  
concurrent access, and second-level caching for performance reasons.  
There are several JPA implementations available, including but not  
limited to Hibernate (the most popular), EclipseLink (JPA reference  
implementation), OpenJPA and others; however, they all wrap the  
standardized API and usually extend it with additional aspects/features.  
The JPA advancements over time and their new capabilities could be  
summarized as follows: JPA 2.0 brought the Criteria API, collection  
mappings, and validation integrations; JPA 2.1 got stored procedures,  
fetching strategies and entity graphs, and attribute converters; JPA 2.2  
introduced support for some of the Java 8 features such as Stream API  
results, Date/Time types and repeatable annotations. However, since  
data persistence requirements are inherently a fundamental part of all  
enterprise applications, JPA continues to be a cornerstone technology  
in the world of J2EE because it provides a very good blend of  
standardization and flexibility of database integration for diverse  
scenarios.  

134  
MATS Centre for Distance and Online Education, MATS University  



Notes  The Java Message Service (JMS) resource adapter provides J2EE  
applications with standardized asynchronous messaging capabilities so  
that loosely-coupled communication is possible among distributed  
components across application boundaries. These messaging  
approaches provide additional benefits compared to synchronous  
communication approaches, including: temporal decoupling, where a  
sending application does not need to be online at the same time as the  
receiving application; load-leveling, where messages can be buffered  
for processing during variable workload periods; reliability, where the  
delivery of a message can be ensured and scaled across multiple  
consumers at ease using message-oriented middleware. JMS defines  
two main types of messaging models — and point-to-point (PTP) via  
queues where a message is sent to only one consumer instance,  
commonly used to perform a load balancing approach, and publish-  
subscribe (pub/sub) via topics where a message is sent to all active  
subscribers, well suited to event propagation or notifications  
distribution scenarios. The JMS API provides a uniform programming  
model across these patterns with a few principal interfaces:  
ConnectionFactory and Connection for creating communication  
channels with the message provider, Session for creating messages and  
producers/consumers, MessageProducer for publishing messages to  
destinations, MessageConsumer for receiving messages from  
destinations, and various Message types (TextMessage, BytesMessage,  
MapMessage, StreamMessage, ObjectMessage) representing different  
payload formats. Messages are structured as not just payloads, but also  
headers (for standard routing and identification metadata) and  
properties (for application-specific attributes that aid in filtering and  
processing). JMS provides for synchronous consumption (the receiver  
instructs the provider to deliver a message), as well as for  
asynchronous  consumption  (messages  trigger  registered  
MessageListener callbacks), giving the application flexibility in what  
delivery model it chooses. Thus, J2EE's transaction model integration  
allows messages to be part of distributed transactions, assuring that the  
messaging operations are consistent with other resources as databases.  
Message-Driven Beans (MDBs) are a specific component model  
catering to message consumption, enabling developers to define the  
information processing without considering concurrency management,  
transaction management, and resource pooling, which are handled by  

135  
MATS Centre for Distance and Online Education, MATS University  



Notes  the EJB container. Since its inception, JMS has been on an evolution  
path of simplification and integration with other J2EE technologies:  
JMS 1.1 unified the separate point-to-point and publish-subscribe  
APIs; JMS 2.0 added a simplified API, delivery delay capabilities, and  
shared subscriptions for pub/sub load balancing across multiple  
consumers. While JMS standards have stood the test of time, as with  
many other legacy technologies, it is increasingly integrated with (or  
replaced by) more modern messaging technologies, particularly in  
microservices or event-driven architectures context.  
Security, Transactions, and Integration in J2EE  
Security is a key cross-cutting concern of the J2EE architecture and is  
handled through a broad architecture that cuts across all tiers and  
components of enterprise applications. The Model consists of different  
layers of security including authentication (verifying the identity of the  
user), authorization (access control to the resources), confidentiality  
(protection of data against disclosure), integrity (data not altered during  
a transmission), and non-repudiation (a party cannot deny the  
authenticity of their signature). In bare terms, J2EE security  
implementations are normally conceived of as a combination of  
declarative where the constraints are delineated via annotations or  
deploy descriptors with no touching of app code and programmatic  
where the security checks are embedded directly into the business logic  
for intricate access control. Authentication involves extracting  
credentials (for example through form-based login, HTTP Basic/Digest  
authentication, client certificates, single sign-on ticket, or integrations  
to external systems such as LDAP, Kerberos, or SAML), validating the  
credentials based on user repositories, and issuing a security context to  
the authenticated session. User identities are grouped into roles—  
logical groupings indicating application-specific functions or  
responsibilities—that access controls are defined against at a more role-  
based level to encourage maintainability and scalability rather than  
granular definitions against individual user identities. Authorization  
constraints can be imposed at various levels: web resources, using URL  
patterns and HTTP methods; EJB methods based on callers’ roles;  
application data that is filtered according to users’ contexts; and even  
JMS destinations or web services that are offered only to authorized  
consumers. Container-managed services integrate with the J2EE  
security model using the Java Authentication and Authorization  

136  
MATS Centre for Distance and Online Education, MATS University  



Notes  Service (JAAS) to provide pluggable authentication modules, subject-  
based authorization, and delegation capabilities. For securing web  
services, specifications such as WS-Security provide the means for  
securing message-level protection, while for preventing the abuse of  
APIs, standards based on OAuth 2.0 and OpenID Connect are  
increasingly used in modern authentication scenarios. Transport-level  
security is usually built on TLS/SSL for secure communication, as the  
data should be encrypted when sent over the network; protecting data  
on the wire between tiers and to/from outside systems. Beyond these  
technical controls, robust J2EE security implementations must also  
mitigate concerns pertaining to secure configuration (removing default  
credentials and unnecessary services), input validation (to prevent  
injection attacks and cross-site scripting), session management (to  
guard against session fixation and session hijacking), auditing (to  
record security-relevant events for monitoring and compliance  
purposes), and secure exception handling (to avoid information leaks  
in error messages). J2EE security has evolved alongside new threats  
and new deployment patterns: Java EE 6 brought programmatic login  
and interceptor-based security; Java EE 7 added expression-based  
access control support; Java EE 8 introduced a new Security API (JSR  
375) that made it easier to configure identity stores and HTTP-  
authentication mechanisms; and Jakarta EE has continued to build upon  
these abilities to support cloud-native and microservices environments.  
Transaction management is one of the several most significant  
infrastructural services provided by J2EE that offers the ability to help  
ensure data consistency and integrity across many operations and  
resources. ACID — Atomicity (all or nothing); Consistency (A  
transaction should maintain the data in a valid state before and after the  
execution); Isolation (As an impact of the operation will not alter the  
rest of the transactions); and Durability (the committed changes persist  
during failure cases). J2EE provides two basic transaction management  
styles: container-managed transactions (CMT), where the application  
server automatically manages transaction demarcation based on  
declarative configurations, and bean-managed transactions (BMT),  
where application code explicitly controls transaction boundaries. In  
the case of container-managed transactions, the developer indicates  
transaction attributes that describe how components participate in  
transactions: Required creates a new transaction or join an existing  

137  
MATS Centre for Distance and Online Education, MATS University  



Notes  transaction if one exists; RequiresNew always creates a new  
transaction; Mandatory requires an existing transaction; NotSupported  
suspends any current transaction; Supports joins an existing transaction  
but does not require one; and Never prohibits being run within a  
transaction context. You can set these attributes through annotations  
(@TransactionAttribute) or deployment descriptors, giving you fine-  
grained control (without peppering your rigid business code with  
transaction details). One especially powerful feature of J2EE is its  
support for distributed transactions (also known as global or XA  
transactions) across multiple heterogeneous resources including  
databases, message queues, and legacy systems. As in other  
transactional systems, the ability to coordinate commits across  
resources is provided by the transaction manager and the two-phase  
commit (2PC) protocol, as users join the transaction using the Java  
Transaction API (JTA) to ensure atomicity across participating  
resources. Resource integration is done using J2EE resource adapters,  
which implement the XA interface, providing the ability for  
transaction manager to enlist such resources in distributed transactions.  
Transaction management generally interacts with other container  
services. Although the J2EE transaction model is a great fit for  
consistency in traditional applications, it struggles with distributed  
cloud architectures where we can see several issues, like the  
performance impact due to distributed transactions, and the fact that  
ACID guarantees are not useful with long-running workflows. As a  
result, modern J2EE applications typically layer optional eventual  
consistency patterns, compensating transactions, or saga patterns on  
top of ACID transactions for certain distributed cases, even though the  
transaction infrastructure platform is very much basic for those core  
business operations in which we can't compromise on data integrity.  
Tight integrations with Enterprise Information Systems (EIS), such as  
ERP systems, mainframe applications, database systems, and other  
legacy infrastructure is done through J2EE's standardized approach,  
provided here by the Java Connector Architecture (JCA). Before JCA,  
the integration did not usually use any standards, and relied heavily on  
custom-built, point-to-point connectors that led to maintenance and  
duplication nightmares in a multi-project environment. JCA solves  
these problems by defining a common architecture of resource  
adapters, which are specialized components that serve as a bridge  

138  
MATS Centre for Distance and Online Education, MATS University  



Notes  between J2EE applications and resource managers (such as database  
connection pools, EISes, or messaging systems); these components  
make use of the services provided by the container (transaction  
management, security, connection pooling). This architecture consists  
of three main contracts: the Connection Management contract, which  
defines the central pooling, lifecycle management, and allocation  
optimization models when connections to database servers are made;  
the Transaction Management contract, which allows resource adapters  
to participate in container-managed transactions by coordinating both  
local and XA transactions; and the Security contract, which provides  
secure access to external systems by mapping credentials, delegating  
principal, and propagating the security context. JCA resource adapters  
would generally have a standard Common Client Interface (CCI) for  
application code want to talk to the EIS, and adapter-specific interfaces  
that are specific to the external systems. This enables application  
servers to cater to different integration scenarios and ensure similar  
management approaches across various types of EIS connections. In  
addition to basic connectivity, JCA also supports different patterns of  
interaction: synchronous request-reply for operations that require an  
immediate response, local transactions for simple consistency  
requirements, distributed transactions for operations that span multiple  
resources and record-based interfaces for structured data exchange. The  
spec has matured to meet the increasing integration challenges: JCA  
1.5 had work management for incoming communication, creating  
message endpoints that consume events from thirdparty sources; JCA  
1.6 included support for annotations, pluggable work contexts, and  
better lifecycle management features; and JCA 1.7 enhanced security  
and connection validation capabilities. Although JCA is a thorough  
integration solution, other paths are open in the J2EE world: Web  
Services (JAX-WS, JAX-RS) is a common for service-oriented  
integration, JMS is for message-oriented middleware, JDBC is a low-  
level access to databases, and Java API for XML Processing (JAXP) is  
for XML-oriented data interchanging. With API-based integration,  
lightweight REST services, and cloud-native connectivity becoming  
the order of the day, JCA is not given the same prominence in new  
application development as it might have been in the past.  
Nevertheless, JCA is still critical for integration with legacy systems in  
enterprises where there are no alternatives available. Learning the  

139  
MATS Centre for Distance and Online Education, MATS University  



Notes  concepts behind JCA is needful to know about enterprise integration  
patterns and different challenges to address this integration, no matter  
what particular technology used to accomplish this goal.  
J2EE Web Services technologies allow distributed applications to  
communicate over the platform and organizational boundaries in an  
interoperable and cross heterogeneous environment. The platform is  
based on two styles of web service generation: SOAP with  
XSD/WSDL documents and REST with standard HTTP verbs and  
semantics. Center of SOAP based development, the Java API for XML  
Web Services (JAX-WS) serves a powerful API which uses annotations  
and auto-generated artifacts to make service implementation much  
easier. It is possible for developers to expose services simply by  
annotating a class with @WebService and methods with  
@WebMethod; the container will generate the required WSDL, XML  
Schema definitions, and marshalling code. JAX-WS also well adapts  
to both approaches to handling WSDL files: top-down (starting from  
existing WSDL documents) and bottom-up (where WSDL will be  
generated from the Java classes). Example 1: Java Architecture for  
XML Binding (JAXB) JAXB handles complex data types and maps  
them to and from Java classes automatically. JAXB does the  
marshalling and unmarshalling of Java object to XML and back to Java  
automatically. Widespread in enterprise scenarios, JAX-WS is  
extended with WS-Security for message-level security, WS-  
ReliableMessaging for guaranteed delivery, WS-Addressing for  
asynchronous communication and WS-Policy for declarative  
configuration. For REST-based services, there is the Java API for  
RESTful Web Services (JAX-RS) which is a lightweight specification  
that focuses on dealing with resources and HTTP key concepts in an  
annotation-based programming model. Resource classes are annotated  
with @Path to specify URI patterns and methods are further annotated  
with @GET, @POST, @PUT, or @DELETE to specify which HTTP  
operation they143565iws seventeen220 query for. Content negotiation  
occurs via the @Produces and @Consumes annotations, where you  
indicate the acceptable media types, while parameters get bound as per  
annotations such as @PathParam, @QueryParam and @FormParam.  
JAX-RS uses serialization and deserialization for Java objects and  
many other representations such as JSON, XML, text, and so on based  
on content negotiation. In addition to these key specifications, the J2EE  

140  
MATS Centre for Distance and Online Education, MATS University  



Notes  web services ecosystem provides supporting technologies such as  
JSON Processing (JSON-P) and JSON Binding (JSON-B) for working  
with structured data, WebSocket API for bidirectional communication,  
and Concurrency Utilities for asynchronous processing. The trajectory  
of J2EE web service evolutions mirrors broader industry directions: in  
its early days, J2EE support was focused on SOAP and WS-*  
specifications for enterprise integration, with Java EE 6 adding robust  
RESTful support in JAX-RS 1.1, and Java EE 7 improving both  
paradigms with client APIs and more format options, but Java EE 8  
and Jakarta EE have increasingly favored lightweight, cloud-friendly  
approaches prioritizing REST, JSON and reactive programming  
models. And because APIs will become the very  

141  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 11: Java Servlet  

Java Servlet: Basic Servlet Structure  
Java Servlets are one of the key technologies of Java web development  
technology, they are the basis of server-side programming in Java,  
which with the emergence of many clients does not lose its popularity.  
Servlets are basically Java classes made with the purpose of following  
the given specification of Java ServletAPI to handle request and  
generate response normally inside a/your web application framework.  
Servlet technology dates from the late 1990s as one of Java's first  
enterprise offerings, responding to the shortcomings of CGI (Common  
Gateway Interface) programming by providing higher performance,  
platform independence, and to easily take advantage of the Java  
ecosystem. Servlets run inside servlet containers (or web containers)  
that provide the runtime environment and lifecycle management. With  
the container-based architecture, infrastructure management and  
application logic are separated, giving developers the freedom to focus  
on business functionality rather than lower-level protocols and  
communication mechanisms. Where CGI-based programs create a new  
process for each request, servlets run inside the JVM, which provides  
sophisticated support for multi-threading. This underlying architectural  
difference allows servlets to offer much better performance and  
resource usage than older web programming models. Even though  
more abstracted frameworks such as JavaServer Pages (JSP),  
JavaServer Faces (JSF), and various other MVC implementations  
followed in its wake, servlets are the real based technology behind Java  
web applications. For any Java developer who is working on web  
application, understanding servlets is a prerequisite, since all high level  
frameworks are finally backed by the servlet technology, behind the  
scenes, Servlet technology is the core of all request-response  
mechanism. The servlet spec has come a long way since it was  
introduced, and in each version, new features have been added but are  
still backward compatible. Newer servlet implementations offered  
support for annotations, async processing, non-blocking I/O and other  
improvements which have helped keep this technology useful in  
modern web development contexts.  

142  
MATS Centre for Distance and Online Education, MATS University  



Notes  Basic Structure and Core Components of Java Servlets  
A servlet is a simple Java class that has to extend appropriate servlet  
class (javax.servlet.Servlet) and then implement specific methods that  
handle the request from the client. All servlets must implement the  
javax. servlet. Servlet interface - This interface defines all the necessary  
methods needed for the servlet lifecycle management and the request  
processing. However, rather than implementing the Servlet interface  
directly, most developers extend the GenericServlet or HttpServlet  
abstract classes, which provide partial implementations of the  
interface. In particular, the HttpServlet class is important because it is  
used to handle HTTP-specific request-response interactions using  
methods like doGet(), doPost(), doPut(), doDelete(), etc.,  
corresponding to the HTTP methods. The following steps summarize  
the typical structure of a servlet implementation: package declarations,  
imports, non-required annotations, class declaration extending  
HttpServlet, non-required constructors, must-have lifecycle methods  
(init, destroy), and must-have request handler methods. Servlet  
structure: A servlet contains a variety of structural components such as  
deployment descriptors (specifically specification web. xml (or using  
annotations in modern implementations), servlet mappings to associate  
URL patterns with servlet instances, initialization parameters that  
configure how servlets behave, and context parameters that are  
applicable across the entire web application. Request handling  
methods are at the heart of servlet functionality and accept  
HttpServletRequest and HttpServletResponse objects as their  
parameters – these objects are the primary conduits for interaction with  
clients. The request object contains all the information the client sent to  
the server, such as parameters, headers, cookies, and session data, and  
the response object has methods to set data to be sent to the client, set  
response headers, set cookies, and control the status of the response.  
Servlets are inherently multithreaded, meaning that it is important to  
consider how to handle multithreading in the design of a servlet; the  
servlet container instantiates a single instance of a servlet and then  
handles multiple requests to the servlet by invoking them on multiple  
threads, which means that thread safety is paramount. Servlet error  
handling uses Java's exception mechanism, but it has special rules for  
catching and reporting checked and runtime exceptions. The servlet  
architecture also includes request filtering capabilities through the  

143  
MATS Centre for Distance and Online Education, MATS University  



Notes  Filter API, allowing pre-processing and post-processing operations to  
be applied across servlets, and the use of listeners to handle various  
events occurring in the application or user session. Grasping these  
structural characteristics establishes the groundwork required for  
successful servlet programming, allowing developers to design solid,  
maintainable web applications that effectively utilize the features of the  
Java Servlet API.  

144  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 12: Servlet Life Cycle  

3.3 Servlet Life Cycle  

Figure 3.2: Servlet Life Cycle  
[Source: https://th.bing.com/]  

This servlet life cycle governs how servlets are created, initialised,  
subserviced request and finally destroyed within the container  
environment. Servlet life cycle is a step-by-step process of such states  
followed by transitions which is handled by only the servlet container  
which calls certain methods at specific time on the servlet. From when  
web container either loads the servlet class (when web app starts) or  
when first request comes (dependent on load-on-startup). Once your  
class has been loaded, a container shall instantiate one and only one  
instance of a servlet to your no-argument constructor, making it a  
singleton with respect to your application. After that comes the  
initialization phase, during which the container calls the servlet's  
init(ServletConfig config) method and passes it a ServletConfig object  
that allows access to initialization parameters and the ServletContext.  
This initialization action is critical for execution of resource expensive  
tasks such as examples are database connection establishment,  
configuration file reading, or other setup processes. The init() method  
completes before the servlet can attempt to handle client requests. After  
initialization, the servlet goes into the service phase: it lives on and  
responds to client requests until the container removes it. In this state,  
each request from a client causes the container to call the servlet's  
service() method (or, for HTTP servlets, the appropriate HTTP method  
handler such as doGet() or doPost()) on possibly multiple threads.  
Since servlets are singletons, instance variables of the servlet might be  

145  
MATS Centre for Distance and Online Education, MATS University  



Notes  accessed by multiple request-processing threads concurrently, thus  
making thread-safety an important consideration for servlet  
implementations. When the Times of retting a servlet out of servile —  
when the application shuts down, or redeploys the server — whether  
the servlet is a phase of destruction by its destroy() method. This makes  
it possible to free resources, close connections, and perform other  
cleanup operations. The servlet lifecycle ends after destruction, when  
the instance switches to being eligible for garbage collection. This  
lifecycle is managed by the servlet container, the part of the web server  
that handles the servlet's functionality, which serves the dual role as  
manager of the servlet's execution environment by encapsulating  
communication protocols, implementing thread management,  
enforcing security policies, and providing pooling of servlet resources,  
freeing the servlet developers to concentrate on business logic rather  
than the intricacies of infrastructure. The container makes sure the  
contract defined by the Servlet API is followed by instantiation of  
request and response objects, handling session tracking, enforcing  
security constraints, and enabling access to shared resources by way of  
the ServletContext. This container-servlet synergy illustrates the classic  
"inversion of control" paradigm (the container calls servlet methods,  
not the other wayaround); which leads to a simplified, generic, and  
standardized component model that's perfectly tailored for enterprise-  
level applications.  
Request Processing and HTTP Handling in Servlets  
This is the basic functionality of servlet, taking client requests and  
generating response for those requests. A web application reacts to an  
HTTP request it receives from a client by dispatching that request to  
the servlet container, which then forwards that to the servlet for  
processing, determining the proper servlet that can fulfil the request by  
using URL mapping configurations defined in a deployment descriptor  
or by annotation-based configurations. Once the container has  
determined which HttpServlet will service the request, it creates the  
HttpServletRequest and HttpServletResponse objects which  
encapsulate the data of the client's request and the means to formulate  
a response to the request, respectively. The service method of the  
servlet is where the request is passed to the appropriate HTTP method  
handler (such as GET, POST, PUT, or DELETE) for the HTTP method  

146  
MATS Centre for Distance and Online Education, MATS University  



Notes  being made. The HttpServletRequest interface provides you with full  
access to all parts of the incoming request  
Session Management and State Persistence  
(sending cryptographic hashes of credentials) and Client Certificate  
Authentication (using X.509 certificates) as well as programmatic  
authentication through the HttpServletRequest. Servlet 3.0 The login()  
method that we can use. After the user has been authenticated, identity  
information is made available to servlets using methods such as  
getUserPrincipal(), getRemoteUser(), and isUserInRole(), which can  
support fine-grained, role-based access control within application  
code. Transport Layer Security (TLS/SSL) can provide confidentiality  
and integrity protection for servlet communications; configurability is  
done through a element in security constraints. In addition to  
declarative security, servlets support programmatic security via the  
previous HttpServletRequest methods and the newer SecurityContext  
API. For example, cross-site scripting (XSS) protection mechanisms  
include output encoding utilities and the HttpOnly and Secure cookie  
attributes, while cross-site request forgery (CSRF) defenses may rely  
on synchronizer tokens that servlets can generate and validate. Servlet  
A servlet is a purely Java class that extends the capabilities of a server,  
like a web server. Java servlets solve this problem through a series of  
complementary session management and state persistence  
mechanisms. The core mechanism for session tracking is the  
HttpSession interface, which acts as a server-side container that stores  
and allows retrieval of information specific to a user across multiple  
requests. The first time that a client accesses the application, the servlet  
container sends the client a unique session identifier, using either  
cookies or URL rewriting, and binds an HttpSession object (using the  
identifier) to the client. On subsequent requests, the container retrieves  
the session identifier from the client, finds a corresponding  
HttpSession, and makes it accessible to servlets via the getSession()  
method of HttpServletRequest. A session object acts as a key-value  
store, allowing servlets to insert attribute objects with  
setAttribute(String name, Object value) method at the same time  
repopulating the requests from the same client using the method  
getAttribute(String name), thus preserving state across requests from  
the same client. The container automatically manages the session  
lifecycle, creating sessions on-demand, maintaining session activity  

147  
MATS Centre for Distance and Online Education, MATS University  



Notes  and invalidating them after a specified timeout period or by the  
application when the session invalidate() method is called. The servlet  
specification describes some session tracking mechanisms, including  
(the default and most common way) cookies, URL rewriting (attaching  
the session-id at the end of the URL when cookies are disabled), secure  
sockets layer (SSL) session information, and (outdated) hidden form  
fields. In addition to session management, servlets come with a few  
other state management mechanisms: application state can be  
maintained within the ServletContext for the entire web application to  
use, request-level attributes are useful for sharing information to  
components handling the same request, and cookies can be placed on  
the client with configurable expiration times for persistence. For more  
permanent state storage, servlets usually communicate with databases  
via JDBC, JPA, or other persistence technologies. Replication and  
across-container session persistence refers to maintaining session data  
between container restarts making it an important consideration in  
enterprise environments, for which most commercial servlet containers  
provide configurable policy for backups and/or session recovery to  
ensure high availability. Common security issues in session  
management are session fixation attacks (which should be prevented by  
always regenerating session IDs after successful authentication),  
session hijacking (prevented by setting cookie attributes for same-site,  
secure and HTTP only and implementing secure HTTPS  
communications), cross-site request forgery (CSRF) (solved with  
synchronizer tokens). Session management strategies are also  45

influenced by performance considerations, where too much session  
data can lead to bloated memory and eventually impact garbage  
collection, and session replication in clustered environments can lead  
to added network overhead. Prevaring on these different state  
persistence strategies help servlet programmer use best suited options  
according to specific applicaiton scenario criction optimal usage state  
action, proformance, Scalability and securtiy.  
Servlet Security and Authentication Mechanisms  
The knowledge is based on.java servlet SecurityServlet Security is an  
important concern for application in servlet such as the security is the  
general mechanism for securing web resources as well as  
authentication, authorization and confidentiality of application data. As  
the servlet container, this is the main enforcement point of those  

148  
MATS Centre for Distance and Online Education, MATS University  



Notes  security controls that, together with application defined constraints,  
build a strong security architecture. The basic security model in servlet  
applications is based on the concepts of realms, users, roles, and  
constraints. Authentication (authentication mechanisms) defines who  
you are, while authorization (authorization mechanisms) defines what  
you can access and action and is based on the given roles of the  
authenticated user. The deployment descriptor (web. xml), security  
constraints are defined using the element , which binds collections of  
web resources (represented in identified URL patterns) with two  
constraints: those of authorization (user roles), and those of transport  
guarantee (HTTP or HTTPS). NASDAQ: SQ, which provides  
payments, post-trade risk management, and compliance solutions as  
well as rich-data research. Modern servlet containers also include  
additional security features such as HTTP Strict transport security  
(HSTS), Content security policy (CSP), and an access via OAuth and  
OpenID Connect for federated authentication scenarios. Security filters  
are yet another very powerful means to define cross-cutting security  
concerns (such as input validation, output sanitization and access  
logging) in one location and have them invoked during the lifecycle of  
each of your servlets. Aware of these various security measures,  
developers are empowered with the knowledge necessary to execute  
defense-in-depth concepts tailored to their application's threat profile  
but at the same time protecting servlets applications so sensitive  
resources and information are never exploited by attackers, while still  
giving access to the legitimate user. Since security threats on the web  
keep changing, it is very important to update the web security best  
practices and use the servlet specification's security features and other  
protections as per the need to develop and maintain secure web  
applications.  
Advanced Features and Modern Servlet Capabilities  
Since then, the Java Servlet specification has undergone many  
generations of enhancement and refinement, delivering features that  
significantly boost developer productivity, achieve better application  
performance, and provide for more flexible architectures throughout.  
Servlets have come a long way since their early design, and current  
implementations are significantly more advanced than just the simple  
request-response model that served as the backbone of the early web  
applications. The new annotation-based configuration that comes with  

149  
MATS Centre for Distance and Online Education, MATS University  



Notes  Servlet 3.0 radically changes servlet development, eliminating much or  
all of the necessary XML deployment descriptor dependency. Instead  
of the traditional xml-based configuration, APIs like @WebServlet,  
@WebFilter and @WebListener allow for declarative configuration,  
directly in Java code, which enables simple deployment and better  
code readability. This approach enables you to configure for URL  
mapping, initialization parameters, description metadata and other  
configuration features that were limited to web related. xml. Servlet 3.0  
introduced asynchronous request processing capabilities; these  
additional capabilities were subsequently enhanced in the next versions  
to help tackle scalability issues from long-running operations by  
releasing a thread during processing. This allows servlets to start async  
operations that could take a long time to complete without holding up  
container threads, and can help applications become more responsive  
to incoming requests and use system resources more efficiently under  
load. The API supports container-managed asynchronous processing  
and application-managed threading, with mechanisms for timeout  
handling and completion notification. Servlet 3.1: As the first major  
specification after Servlet 3.0, Servlet 3.1 introduced Non-blocking I/O  
support, which allowing Servlet vendors to implement a scale-out  
model for improved scalability by allowing asynchronous reading and  
writing of request and response data. This ability to react to events as  
they occur, rather than waiting for all the elements to be present at once  
can be important when uploading or downloading files over the wire,  
as well as processing streamed data or integrating with reactive  
programming models. To support such db functions, both the  
ReadListener and WriteListener interfaces enable it to send  
notifications to its applications where data can be read, or it can write  
the output buffer which is empty and its post data isn't blocked. Servlet  
40 enables HTTP/2 supported servlets through which servlets can take  
advantage of performance characteristics offered by the new protocol  
version, such as multiplexing, header compression and server push  
features. PushBuilder provides an API that allows for server push,  
where the Servlet can send resources to the client out of band, before  
the client has even requested them. This includes stochastic servlets,  
filters, and listeners for web applications, enabling application  
initialization code to programmatically attach them instead of a static  
declaration in the web.xml file. This breaks apart a glass wall and builds  

150  
MATS Centre for Distance and Online Education, MATS University  



Notes  flexible structures between web applications and frameworks.  
Subsequent servlet versions introduced embedded container  
capabilities, allowing applications to programmatically configure and  
launch servlet containers themselves, supporting microservice  
architectures and simpler deployment models. Fragment web. This is  
similar to the built-in ability of Spring to provide extension points that  
the libraries can also contribute to when configuring the web  
applications, and the web.xml support allows libraries to contribute as  
well. The other important concept is the ServletContainerInitializer  
mechanism through which library authors can add hooks to the  
framework initialization by configuring information on integration  
points in their last descriptor. Security lattice across versions is having  
great features like, programmatic authentication, role mapping, and  
integration with Java EE/Jakarta EE security frameworks. Same with  
multipart request handler allows you to process file uploads, if API is  
common then all multipart requests will be parsed in the same way and  
protocol upgrade support allows you transition from HTTP to  
WebSocket or similar protocols. As for security, we use JSR-375 (Java  
EE Security API) integration, which gives us the latest security  
practices from identity stores to authentication mechanims to security  
context concerns. Together, they facilitate modern web development  
yet retain compatibility with existing code bases. By recognizing and  
harnessing these capabilities, developers can create advanced, high-  
performing web applications that align with contemporary demands for  
responsiveness, scalability, and developer productivity, thereby  
ensuring that servlet technology retains its relevance in the modern  
software development landscape, despite the rise of alternative  
frameworks and architectural approaches.  
Integration with Java EE/Jakarta EE and Ecosystem  
Considerations  
Java Servlets are a part of the larger Java EE (now Jakarta EE)  
ecosystem, providing a building block technology that interacts with  
many other specifications and frameworks to build complete enterprise  
applications. So, in-development systems, where servlets work, quite  
integrates well into those convolution landscapes. At the specification  
level, servlets work closely with many Java EE technologies, including  
JavaServer Pages (JSP), which is a view technology that compiles into  
servlets behind the curtains; Expression Language (EL), which  

151  
MATS Centre for Distance and Online Education, MATS University  



Notes  provides a clean syntax for accessing data within JSP pages and other  
templating technologies; the JSP Standard Tag Library (JSTL) to  
extend JSP functionality with reusable tag components; and lastly,  
JavaServer Faces (JSF), which builds a component-based UI  
framework on top of the servlet foundation. The servlet container also  
implements a number of Java EE specifications other than servlets such  
as JNDI (Java Naming and Directory Interface) for resource lookups,  
JDBC (Java Database Connectivity) for database access, JTA (Java  
Transaction API) for transaction management, JMS (Java Message  
Service) for messaging, and various security technologies like JAAS  
(Java Authentication and Authorization Service). Such a container  
environment helps servlets access them through standard APIs, readily  
available data sources include DataSources, JMS destinations, and  
EJBs (Enterprise JavaBeans) via JNDI lookups or injection  
mechanisms. In modern servlet environments (Java Servlets, Java EE,  
Jakarta EE, etc.), dependency injection happens with CDI (Contexts  
and Dependency Injection), which is the type-safe, extensible way to  
access a resource/component. Then, through annotations like @Inject  
(along with producer methods and qualifiers), servlets can get their  
dependencies as injected without any code to look them up manually.  
Bean Validation with Servlets Bean Validation enables declarative  
validation of request parameters and form submissions. Servlets can  
leverage a number of frameworks and libraries beyond servlet  
technology itself: persistence technologies such as JPA (Java  
Persistence API), Hibernate, or MyBatis; web frameworks such as  
Spring MVC, Struts or Play Framework (most are designed on top of  
servlet technology); template engines such as Thymeleaf, FreeMarker,  
or Velocity; and utility libraries for JSON processing, XML, logging,  
and other cross-cutting concerns. The microservices architectural trend  
impacted how servlets are deployed, as frameworks such as Spring  
Boot, WildFly Swarm/Thorntail, and Payara Micro allow for the  
serving of self-contained applications with embedded servlet  
containers. These cloud deployment factors influence servlet  
applications via Docker containerization, Kubernetes orchestration  
and integration of cloud services. In servlet-based environments,  
performance-enhancing techniques include connection pooling, in-  
memory and distributed caching strategies, distributing loads among  
several containers and resource management. To test servlet  

152  
MATS Centre for Distance and Online Education, MATS University  



Notes  applications, you have specialized frameworks like JUnit, Mockito,  
Spring Test, Arquillian, and tools that simulate HTTP requests. There  
are also namespace changes because of the transition from Java EE to  
Jakarta EE (from javax. * to jakarta. *) and governance changes but  
the core integration archetypes remain unchanged. Technologies such  
as Jakarta EE Faces Flow and Security, MicroProfile for microservices  
development and GraalVM native image compilation will continue to  
evolve the ecosystem around reactive programming models, better  
application microservice development and consumption in startup  
time and resources. By being aware of these integration points and  
ecosystem considerations, developers can make informed architectural  
decisions, choose the right technologies for the different needs of their  
application, and build servlet-based applications that take full  
advantage of the rich features and services offered by the Java  
enterprise platform as a whole.  
Servlet Life Cycle: Stages in Servlet Execution  
The servlet life cycle is one of the basic concepts of Java web  
development, indicating the specific order of actions that take place  
between the instantiation and finalization of the servlet. Servlets differ  
from regular Java applications in that there is no well-defined main  
method that serves as their entry point; they run inside the managed  
environment of a servlet container (for example, Apache Tomcat, Jetty  
or JBoss) which takes responsibility for handling the lifecycle of servlet  
instances by instantiating, initializing, invoking, and finally destroying  
servlet instances according to a specified protocol. This lifecycle is  
vitally important for Java developers who are creating enterprise web  
applications, as it gives a roadmap of how to manage HTTP requests  
properly while allowing for appropriate resource management,  
resulting in the application working smoothly during its time running.  
Now, servlets go through the following phases: loading and  
instantiation, initialization, service processing (request handling,  
response generation), and destruction. So, these stages serves for a  
specific purpose and they provides developers with hooks to implement  
specific behavior through methods that are defined in the javax.  
servlet. Servlet interface. In this Unit, we will take a closer look at these  
stages and the evolution of servlets in terms of their purpose, details  
on how they work and the proper techniques to handling the execution  
process in enjoyable Java Web applications. Understanding servlet life  

153  
MATS Centre for Distance and Online Education, MATS University  



Notes  cycle empowers developers to build not only powerful but highly  
efficient and scalable web applications that manage resources  
effectively, handle concurrent requests, and implement complex  
business logic while adhering to the separation of concerns principle  
that is a cornerstone of modern software architecture.  
I. Loading and Instantiation Phase  
The loading and instantiation phase is the first phase in the servlet life  
cycle, during which the servlet container is first notified of a servlet and  
loads the servlet into an execution environment. A servlet class is  
loaded usually at one of the 3 moments in time: at container startup,  
during first request of the servlet, or at an explicit time, defined in the  
deployment descriptor (web. xml) or through annotations. When the  
servlet container is initialized, it looks at the web application's  
configuration files, most notably the deployment descriptor (web. xml)  
or servlet annotations in the case of modern applications—would  
indicate servlets to be loaded on startup, by marking these servlets with  
a element in web. xml or by using the loadOnStartup attribute of the  
@WebServlet annotation in code. These elements take integers  
representing the relative order in which servlets are to be initialized,  
with smaller numbers receiving higher priority; negative values (or the  
absence of the element) signify that the servlet is to be loaded only on  
its first request. Now when the container finds the servlet class, it loads  
the servlet class into memory using the Java ClassLoader also making  
sure that the classes and the libraries required by the class are available  
in the classpath. And only after loading successfully this container calls  
its no-argument constructor of the servlet, which is an instance we will  
use for dealing with all the requests for the application, keeping in mind  
that is actually a singleton in relation to the servlet context.  
Understanding this instantiation mechanism is crucial for developers  
to implement servlets correctly according to certain rules. First, servlet  
classes must implement a public no-argument constructor, since the  
container uses reflection to create instances without passing  
parameters. This constructor should remain lightweight and should not  
contain complex initialization logic: proper initialization will need to  
be deferred until the initialization phase discussed in the upcoming  
section. Second, a single servlet instance is used to process multiple  
requests, and they might come at the same time, so instance variables  
should be used with caution because this can be a thread safety issue  

154  
MATS Centre for Distance and Online Education, MATS University  



Notes  — otherwise it is better to use immutable objects or thread-local storage  
to maintain state between method invocations. It must implement the  
javax. servlet. Servlet interface, usually by sub-classing the javax.  
servlet. GenericServlet class for protocol-independent servlets or the  
javax. servlet. http. HttpServlet A class for HTTP-specific servlets,  
which is a base class that provides default implementations of the  131313

interface methods. The servlet context is selected too at the time of  
instantiation, allowing the servlet to be served with access to the  
application-wide ServletContext that gives it access to key elements of  
configuration, keys for parameters, and connectors for applications that  
allow for inter-app communication across the application. This context  
allows servlets to share information among themselves, read  
configuration parameters, and interact with other components of the  
web application. This loading and instantiation step culminates in the  
servlet instance being created (but not yet ready to be called), ready for  
an initialization step. This phase is mainly based on activities managed  
by the container, with little developer intervention, but knowing how it  
works under the hood is important so that you can implement the design  
of your servlets in such a way that they work well in the container  
environment, especially when you implement custom classloading or  
need to work with complex dependency scenarios.  
II. Initialization Phase  
The Initialization Phase signifies the servlet moves away from just  
being an instance of a class to an entity that can actually serve requests.  
So you know this important moment occurs right after instantiation,  
when the servlet container invokes the servlet's init(ServletConfig  
config) method, a contract method defined in the javax. servlet. All  131313

servlets must implement this interface, which is a Servlet interface.  
The key objective of this step is to provide an opportunity for the  
servlet to initialize one-time setup stuff (like loading configuration  
values, getting database connections, creating resource pools, etc.) that  
will be used during the full lifecycle of the servlet. A ServletConfig  
object is passed to the init() method by the container — this object  
allows the servlet to access configuration parameters specified in the  
deployment descriptor(web. xml) or through annotations. This object  
acts as a middle ground between the deployment configuration and the  
servlet code itself enabling the developer to extract configuration  
details away from the code, thus changing behavior without changing  

155  
MATS Centre for Distance and Online Education, MATS University  



Notes  code. In addition, the servlet can get a reference to the ServletContext  
object that represents the web application and can be used to get access  
to application-wide resources and functionality via the ServletConfig.  
It is contra the event if the init() method is invoked at least once in the  
life cycle of a servlet, so controlling the initialization that never repeats  
if once the servlet instance will initialize. Because the initialization  
phase offers a precious opportunity to create resource-intensive setup  
tasks that can be then amortized to all the following request processing,  
since many requests may be ultimately processed by this one servlet  
instance.  
If initialization fails the init() method throws a ServletException,  
allowing servlets to signal serious errors that preclude their  
functioning. By doing so, it ensures that the servlet doesn't get into  
action in a half-baked or bad state, which can lead to erratic application  
behavior or even expose a servlet to security threats. Initialization tasks  
can include opening database connections, creating connection pools,  
initializing caching mechanisms, loading configuration files,  
establishing a network connection to a remote service, precomputing  
results, and constructing data structures that are used to support the  
servlet's primary function. Because the init() method is only called  
once, developers need to make sure that all necessary resources are  
acquired and configured correctly at this stage, with suitable error  
handling in place so that initialization errors can be handled gracefully.  
The GenericServlet abstract class implements a default version of the  
init(ServletConfig) method, which stores the config object and then  
calls a no-argument init() method that subclasses can override to  
implement their initialization logic without needing to manage the  
ServletConfig reference that will be stored for them. The configuration  
management separation pattern helps in the development of servlets by  
allowing the configuration management logic to be separate from the  
specific business logic implementation. Different approaches can be  
taken in the initialization phase to gear up for an application, e.g., lazy  
initialization of expensive resources or eager initialization of critical  
components, based on the performance needs and resource limits of the  
application. The initialization phase ends when the servlet goes into  
the service phase awaiting requests from the client.  
III. Service Phase - Request Processing  

156  
MATS Centre for Distance and Online Education, MATS University  



Notes  Servlet Life Cycle The service methodServlet Life Cycle--The Service  
Phase. This step starts when the servlet container receives an  
appropriate  HTTP  request  and  invokes  the  servlet's  
service(ServletRequest req, ServletResponse res) method, which  
details the request and a channel to build the response. For HTTP  
servlets (the most usual species in modern web applications), the  
container actually invokes the service(HttpServletRequest req,  
HttpServletResponse res) method of the HttpServlet class, which  
receives HTTP-specific request and response objects populated with  
protocol-relevant information. The default implementation of this  
method given by HttpServlet checks the HTTP method (GET, POST,  
PUT, DELETE… etc.) and calls the relevant method of the servlet:  
doGet(), doPost(), doPut(), doDelete()… etc. The pattern of delegation  
simplifies the servlet development because developers only need to  
implement the methods representing the HTTP methods the application  
supports and not handle the dispatching themselves. All of those  
method specific handlers receive identical request and response objects  
that allows them to inspect any request params, any request headers,  
and request content and to produce appropriate responses, including  
status codes, response headers, and response body content. The service  
phase, unlike initialization and destruction, occurs during the lifetime  
of the servlet and will be executed whenever a request is made to the  
servlet, either once or multiple times, on different threads, to handle  
multiple requests.  
Handling requests in a multi-threaded manner is both a performance  
gain and a huge development hurdle. Handling concurrent requests  
efficiently without creating a new request thread per client per request  
is typically accomplished by the servlet container (e.g., Tomcat) by  
means of a request context (thread pool) that it manages under the  
covers. This model enables a single instance of a servlet to handle  
multiple clients simultaneously, thereby significantly improving  
scalability compared to creating a separate instance per client. But this  
shared-instance model makes it important to focus on thread safety,  
because instance variable is shared across all service method  
invocations. To avoid the inevitable pitfalls of managing state in this  
environment, there are a few strategies: we can use synchronization to  
guard shared resources, we can use thread-local storage to store request  
specific data, the local variables that are scoped to the thread's stack,  

157  
MATS Centre for Distance and Online Education, MATS University  



Notes  we can use immutable objects that we can pass around safely, or we can  
use session mechanisms to hold client specific state. It also includes  
important processing steps that developers have to implement, e.g.  
parsing request parameters and headers, mariage or authenticate the  
user if applicable, apply the application-specific business logic and  
formulate a fitting response, which covers the status code as well as  
headers and content. Service phase: Handling errors is pivotal,  
exceptions should be caught and converted into HTTP compatible  
error representations. Also, the servlet API allows request dispatching  
between servlets, which is useful for maintainability, permission  
checking, and modularity. During the service phase, performance  
considerations of minimizing processing time, good memory usage,  
resource management and caching of frequently used data or  
computations to decrease response time come into account. We can say  
that the service phase exists for as long as the servlet is running,  
handling requests until the servlet container calls the destroy phase.  

After processing the request during the service phase, servlets need to  
create and send appropriate responses back to clients, thus completing  
the request-response loop at the core of HTTP interaction. For the  
response generation, we use (and are given) the HttpServletResponse  
object provided by the container, which includes methods to set status  
codes, headers, content type, get output streams or writers to send the  
response body, etc. Status codes convey the result of processing  
requests—for example, 200 (OK) if a request was processed  
successfully, 404 (Not Found) if it tried to access resources that don’t  
exist, or 500 (Internal Server Error) if the server failed to handle the  
request—and should always be configured before writing any response  
content. HTTP headers are used to send additional information about  
the data being transmitted along with the response, and they control  
how caching should work, attributes of the transport layer, security  
rules, and many other things between the client and server; for example,  
common headers include Content-Type, Content-Length, Cache-  
Control, and Set-Cookie. Using the setContentType() method, the  
response content type, or the format of the data (text/html,  
application/json, image/jpeg, etc), and the character encoding for  
textual content is included on the response to help the client correctly  
parse and render the response data. Servlets can generate the response  

158  
MATS Centre for Distance and Online Education, MATS University  

IV. Service Phase - Response Generation  



Notes  body with either a PrintWriter (obtained by calling getWriter()) (for  
character data), or another type of output stream (obtained by calling  
getOutputStream()) (for binary data), but not both within the same  
response (as this constitutes a violation of the servlet specification and  
results in an IllegalStateException being thrown).  
The response generation technique largely depends on type and nature  
of the application. Servlets directly create markup using print  
statements or use template engines like Thymeleaf or FreeMarker to  
separate presentation logic from business logic for HTML based  
applications, which will delegate rendering JSP (JavaServer Pages)  
using request dispatch. In data-centric applications, servlets typically  
return JSON or XML payloads, leveraging libraries such as Jackson,  
Gson or JAXB to marshal/unmarshal Java beans to/from these  
serialized representations. Binary data lowers content—like PDF,  
images, or downloadable files—requires some business and particular  
consideration, including content kind, content disposition headers, and  
safe streaming strategies to handle massive files effectively. Complex  
response patterns are now common in web applications, such as partial  
updates for AJAX-based interfaces, streaming for large data sets or  
real-time updates, compression to reduce the bandwidth footprint, and  
content negotiation to return different representations depending on  
what the clients can or want. Caching directives are another important  
part of response generation, allowing servlets to hint to clients and  
intermediaries about whether contents are fresh and reusable, reducing  
load and improving performance. Likewise, the ability to manage  
cookies via the Cookie class and the addCookie() method allows  
servers to track sessions and maintain stateful interactions through the  
inherently stateless HTTP protocol. Error handling during response  
generation needs to be treated differently, since exceptions raised after  
part of the response was delivered can cause corrupted or partial content  
to be delivered; typically proper error handling involves both buffer  
management and error pages mapped in the deployment descriptor.  
Once the response has been generated, the servlet container takes care  
of the underlying work of sending the response back over the network  
connection and getting ready for the next request. While generating the  
response, servlet must be aware of performance implications, such as  
memory consumed when generating large response, buffered output to  

159  
MATS Centre for Distance and Online Education, MATS University  



Notes  tradeoff between memory usage and responsive, and freeing resource  
associated with response to avoid leak when operating in high volume.  

Although the destruction phase marks the last stage in the servlet life  
cycle, it takes place when a servlet needs to be taken out of service by  
the servlet container. This phase is invoked under a variety of  
situations, such as when the web application is being undeployed or  
redeployed or if the servlet container is shutting down gracefully, or  
when the container needs to recover resources. The service phase will  
be invoked thousands or millions of times in the lifetime of the servlet  
(and will also be executed on a separate thread for each request), but  
the destruction phase will be executed (like the initialization phase) a  
guaranteed — exactly once — for each servlet instance that is created.  
This container indicates the start of this phase by invoking the destroy()  
method on the servlet, which is a contract method written in javax.  
servlet. This interface allows servlets to be given the chance to do some  
cleanup work when the servlet is being taken out of service. The  
destroy() method is primarily responsible for releasing resources —  
closing database connections, terminating network connections,  
shutting down thread pools, releasing file handles, and freeing any  
other system resources that the initialized acquired during the  
initialization phase or in the servlet's operational life. The cleanup also  
prevents resource leaks that might exist beyond the servlet lifetime,  
eventually leading to performance degradation or server instability.  
Moreover, the destruction phase allows you to persist state information  
that must outlive the current application instance (for example, saving  
accumulated statistics, unsaved data, or configuration changes to  
permanent storage).  
During the destruction phase, the servlet container guarantees a  
graceful shutdown. It guarantees that before calling destroy() all the  
threads currently running in the service method must complete their  
processing or are given a reasonable time to do so. That is, the destroy()  
method will not fire until ALL service method invocations have exited  
or a container-specific timeout has occurred. After calling destroy(),  
VI. Concurrency and Thread Safety  
Managing concurrency is one of the biggest challenges in servlet  
development because a servlet by design pattern, is a single instance  
that is invoked by multiple clients (in parallel). Instead of the common  

160  
MATS Centre for Distance and Online Education, MATS University  

V. Destruction Phase  



Notes  approach in programming model where each client request receives its  
own application instance, the servlet container follows the singleton  
approach with multi-threaded execution, leading to a shared  
application space with the necessity of mitigating the risks associated  
with shared state in a multi-threaded environment. Hint: When a servlet  
container (like an application server or web server) handles multiple  
concurrent requests directed at the same servlet, it may forward these  
requests in parallel by calling the servlet's service() method in separate  
threads. The potentially huge performance advantages derived from  
this concurrency model comes at the expense of a shared state with  
respect to instance variables (fields) of the servlet as it is instantiated  
per application rather than per request. Therefore, at the servlet instance  
level, every instance variable is at risk of race conditions, data  
corruption, and other concurrency problems unless appropriately  
safeguarded. Concurrency can be handled in servlets in four ways:  
making your servlet thread-safe by synchronizing yourself with your  
critical section code or maintaining an immutable state, using local  
variables instead of instance variables — since local variables are  
thread-local automatically as they are created on the stack of the thread,  
using the thread-local storage pattern or ThreadLocal class to persist  
thread-specific state, or using an interface known as  
SingleThreadModel (which has been deprecated for now in at least the  
last couple of servlet specifications) which allows the web container to  
enforce that only one thread accesses a servlet instance at any time, so  
that the container needs to keep a pool of servlet instances.  
For servlets that need to retain state between requests, certain  
concurrent programming strategies are helpful. Synchronization is the  
most simple solution to the problem, using Java's synchronized  
keyword or explicit locks provided in java. util. concurrent. ensure that  131313

only a single thread can execute a specific part of code or a shared  
resource at a time and can be found in the locks package.  
Synchronization, on the other hand, comes with performance overhead  
in the forms of thread contention and possible deadlocks and so is only  
appropriate for short-lived, sparse operations. Many concurrency  
scenarios can be elegantly addressed using immutable objects [Java  
Concurrency] which can safely be shared across threads, without  
synchronization, after they've been built; this is the case for things like  
configuration data or pre-computed results that will not change during  

161  
MATS Centre for Distance and Online Education, MATS University  



Notes  servlet execution. Java.Core. Concurrent.Collections classes util.  
implementations in the java.util.concurrent package  —
ConcurrentHashMap, CopyOnWriteArrayList, and BlockingQueue  
implementations, for example—provide thread-safe alternatives to the  
standard collections with better performance characteristics than  
explicitly synchronized collections. The HttpSession API is designed  
to handle user-specific state by maintaining a container-managed  
thread-safe association between data and a particular client session  
instead of relying on a servlet to do so, which further delegates the  
thread-safety concern to the container. Other than these basic  
techniques, servlets supporting significant concurrent traffic will often  
use more advanced patterns like the read-write lock pattern for  
resources that are expensive to acquire but that are heavily read and  
seldom written, double-check locking for lazily initialized expensive  
resources, or compare-and-swap operations provided by atomic classes  
such as AtomicInteger and AtomicReference lock-free updates to  
trivial values. Testing servlets for thread safety is particularly difficult,  
needing specialized tools such as stress testing frameworks, static  
analysis tools to catch possible concurrency issues or explicit  
concurrency testing frameworks that can generate managed race  
conditions. Servlet concurrency can be achieved by following certain  
principles and practices in your application development lifecycle.  
VII. Advanced Life Cycle Considerations  
In addition to the basic lifecycles stages, there are various advanced  
aspects that heavily influence servlet functioning and efficiency in real-  
world applications. Servlet initialization parameters is a method of  
configuring servlets without changing code so the deployment can set  
it to whatever it wants. These parameters can be defined through the  
element in web. xml or the initParams field of the @WebServlet  
annotation and accessed during initialization phase via the  
ServletConfig. getInitParameter() method. This configuration construct  
fosters the separation of code from configuration, allowing the same  
piece of servlet code to run differently on different environments. Load-  
on-startup settings dictate exactly when servlet initialization happens,  
optimizing startup time and request latency. Servlets with positive  
integers in their element or loadOnStartup annotation attribute are  
constructed at container startup in increasing numerical order so that  
critical servlets are in place when the application first receives traffic,  

162  
MATS Centre for Distance and Online Education, MATS University  



Notes  while servlets that lack this directive or have negative values construct  
lazy on first request. This helps a lot for servlets which have expensive  
initialization processes, and the servlets provides low-level or any  
services which are required by other components. Error handling is  
another high-level concept that straddles the servlet life cycle,  
including both programmatic exception handling in servlet methods  
and declaratively defined error page mappings in the deployment  
descriptor, which direct specific types of exception or HTTP error  
codes to dedicated error-handling servlets or JSP pages, thereby  
allowing for consistent error presentation across the application while  
allowing for generic information to be hidden that a developer can use  
to troubleshoot.  

Servlet context listeners allow for the management of an application's  
life cycle, passing the life cycle management from individual servlets  
to the application level, by implementing the ServletContextListener  
interface and being notified of an applications startup and shutdown  
through the contextInitialized() and contextDestroyed() methods  
respectively. These listeners usually make application-wide  
initializations and clean-ups like creating database connection pools,  
logging configuration, Caches preloading, JDBC drivers registration,  
In a similar way, session listeners — that is, classes that implement the  
HttpSessionListener,  HttpSessionAttributeListener,  and  
HttpSessionBindingListener interfaces — allow code to be executed  
when a session is created, destroyed, and when its attributes change:  
useful for keeping track of users, managing resources, and for security  
monitoring purposes. The asynchronous processing, which was  
introduced in the Servlet 3.0 specification, changes the conventional  
request-response life cycle by letting servlets perform long-running  
operations while freeing the container's request-processing thread. By  
calling request. Either doAllInOneThread() of startAsync() method in  
some servlet, where the servlet get the AsyncContext object, which  
disassociates the request and response object from the current thread,  
allowing original thread for returning to the container’s thread pool  
while processing is continued on another thread, and may be end much  
later. This pattern is useful for long-running operations, server-push  
technologies, and non-blocking I/O system integration. The servlet  
specification additionally defines resource management through  

163  
MATS Centre for Distance and Online Education, MATS University  



Notes  annotations  including  @Resource,  @Resources,  and  
@PostConstruct/@PreDestroy, which enables resource injection and  
life cycle method designation that incorporates with the container's  
higher resource management amenities.  
Production deployments add a number of other life cycle  
considerations. For example, many containers will be able to reload  
servlets, so that if a servlet class changes, the servlet can be detected  
and getting going through the life cycle of destruction and initialization  
without a restart of the application, which can be useful during  
development but can sometimes be turned off in production for  
performance reasons. One of the special challenges with clustering  
environments, where different physical or virtual machines may run  
multiple servlet containers: session replication, distributed caching,  
synchronized initialization have to be considered because servlets aren't  
singletons, and their life cycle management should be handled  
specifically. While supplying a servlet involves specifying which  
bytecode will be executed, there are security concerns that intersect the  
servlet life cycle that you need to include in your design, including role-  
based access controls that restrict which users can access which  
servlets, programmatic security checks that you perform in servlet  
methods, and secure initialization that protects sensitive configuration  
data. Lifecycle performance tuning through connection pooling at  
initialization, request dispatching during the service phase, response  
caching between requests, and resource management at destruction.  
Most servlet life cycle monitoring and debugging relies on recording  
important transitions into a log file, container-specific utilities (such as  
the one that tracks servlet life cycle and state), or JMX (Java  
Management Extensions), exposing servlet metrics and state data to  
outboard monitoring systems. Having advanced the understanding of  
the servlets life cycle, developers can ideally design servlets for  
correctness, efficiency, scalability, enterprise integration, and optimal  
operation in hard times.  
With Java EE, a specified life cycle for the servlet engines gives a  
structured life cycle framework — characterized in tall levels below.  
By thoroughly understanding and appropriately utilizing the  
functionalities of each phase, developers are able to craft resilient,  
performant, and maintainable web applications that make effective use  
of the servlet container's services and adhere to correct resource  

164  
MATS Centre for Distance and Online Education, MATS University  



Notes  management and concurrency control protocols. However, a deep  
understanding of servlet life cycle is always essential to Java web  
application development regardless of being simple web applications  
or complex enterprise solutions.  
3.4 Reading Form Data from Servlet  
Enter user input One of the most basic tasks that are performed in  
web applications. [To know more JAVA SERVLETS] – How To  
Handle HTML Forms In Servlets? Knowing how to retrieve, validate  
and then use this data effectively is one of the key parts of building  
interactive web applications.  
3.4.1 Understanding HTTP Form Submission  
So, when someone fills a form on a webpage, the data is sent to a  
server with an HTTP request. The form data can be sent in one of two  
ways, depending on how the form is configured:  
GET Method: The form data is added to the URL as a query  

you may want to bookmark the outcome.  
POST Method: As the form data is sent as part of the HTTP  
request body, it is not visible in the URL. Sensitive information,  222222

large amounts of data, or a request that might mutate server state  
should be passed via the body by this method The HTML markup  
for these form types looks like this:  
<!-- GET method form -->  
<form action="processForm" method="get">  
<input type="text" name="username">  
<input type="submit" value="Submit">  
</form>  

<!-- POST method form -->  
<form action="processForm" method="post">  
<input type="password" name="password">  
<input type="submit" value="Submit">  
</form>  
3.4.2 Extracting Form Data in Servlets  
There are some methods in Java servlets for extracting the form data.  
The main methods are defined in the HttpServletRequest interface,  
and are slightly different depending on whether the data was  
submitted using GET or POST.  

165  
MATS Centre for Distance and Online Education, MATS University  

string parameter. This is usable with non-sensitive data and when  



Notes  Basic Parameter Retrieval  
getParameter(String name) is the most common and used method  
which receives the parameter name and returns the value associated  
with the parameter name as a String  

@WebServlet("/processForm")  
public class FormProcessorServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Retrieve a single parameter value  
String username = request.getParameter("username");  

// Process the username  
if (username != null && !username.isEmpty()) {  

response.getWriter().println("Hello, " + username + "!");  
} else {  

// No username or empty username  
response.getWriter().println("Hello, guest!");  

}
}

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  
// For POST requests, we can use the same getParameter method  
doGet(request, response);  

}
}

(when we have checkbox or multi-select list in our form, with the  
same name) as a String array.:  
@WebServlet("/processInterests")  
public class InterestProcessorServlet extends HttpServlet {  

166  
MATS Centre for Distance and Online Education, MATS University  

// Valid username provided  

Handling Multiple Values  
We use getParameterValues(String name) to get multiple values  



Notes  protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Retrieve multiple values for the same parameter  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  

if (interests != null && interests.length > 0) {  
out.println("<ul>");  
for (String interest : interests) {  

out.println("<li>" + interest + "</li>");  
}
out.println("</ul>");  

} else {  
out.println("<p>No interests selected.</p>");  

}

out.println("</body></html>");  
}

}
Retrieving All Parameters  
To retrieve all the parameters that were passed in with a form, use  
getParameterNames() to obtain an enumeration of the parameter  
names, then iterate through them to get the values of each parameter:  
@WebServlet("/displayAllParams")  
public class ParameterDisplayServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

167  
MATS Centre for Distance and Online Education, MATS University  

String[] interests = request.getParameterValues("interest");  

out.println("<h2>Your Selected Interests:</h2>");  



Notes  
out.println("<html><body>");  
out.println("<h2>All Form Parameters:</h2>");  
out.println("<table border='1'>");  
out.println("<tr><th>Parameter Name</th><th>Parameter  

Enumeration<String> paramNames =  
request.getParameterNames();  

while (paramNames.hasMoreElements()) {  
String paramName = paramNames.nextElement();  
out.println("<tr><td>" + paramName + "</td><td>");  

} else {  

}
} else {  

out.println("<ul>");  

}
out.println("</ul>");  

}
out.println("</td></tr>");  

}
out.println("</table>");  
out.println("</body></html>");  

}

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

168  
MATS Centre for Distance and Online Education, MATS University  

Value(s)</th></tr>");  

String[] paramValues =  
request.getParameterValues(paramName);  

if (paramValues.length == 1) {  
String paramValue = paramValues[0];  
if (paramValue.length() == 0) {  

out.println("<i>No Value</i>");  

out.println(paramValue);  

for (String paramValue : paramValues) {  
out.println("<li>" + paramValue + "</li>");  



Notes  throws ServletException, IOException {  
doGet(request, response);  

}
}
Using the Parameter Map  
For more structured parameter handling, getParameterMap() returns a  
Map containing parameter names as keys and parameter values as  
String arrays:  
@WebServlet("/processMapForm")  
public class ParameterMapServlet extends HttpServlet {  

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

Map<String, String[]> parameterMap =  
request.getParameterMap();  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>Form Data Summary:</h2>");  

// Process all parameters using the map  
for (Map.Entry<String, String[]> entry :  

parameterMap.entrySet()) {  
String paramName = entry.getKey();  

out.println("<p><strong>" + paramName + ":</strong> ");  

} else {  
out.println("<br>");  

out.println("- " + value + "<br>");  
}

169  
MATS Centre for Distance and Online Education, MATS University  

String[] paramValues = entry.getValue();  

if (paramValues.length == 1) {  
out.println(paramValues[0]);  

for (String value : paramValues) {  



Notes  }

out.println("</p>");  
}

out.println("</body></html>");  
}

}
3.4.3 Character Encoding Considerations  
To retrieve all the parameters that were passed in with a form, use  
getParameterNames() to obtain an enumeration of the parameter  
names, then iterate through them to get the values of each parameter:  
@WebServlet("/internationalForm")  
public class InternationalFormServlet extends HttpServlet {  111111

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Set character encoding before retrieving parameters  
request.setCharacterEncoding("UTF-8");  

// Now retrieve parameters with proper encoding  
String name = request.getParameter("name");  
String address = request.getParameter("address");  

// Set response encoding  
response.setContentType("text/html; charset=UTF-8");  
PrintWriter out = response.getWriter();  222222

out.println("<html><body>");  
out.println("<h2>International Form Data:</h2>");  
out.println("<p>Name: " + name + "</p>");  
out.println("<p>Address: " + address + "</p>");  
out.println("</body></html>");  

}
}
3.4.4 Processing Different Form Data Types  

170  
MATS Centre for Distance and Online Education, MATS University  



Notes  Form data is always transmitted as strings, but your application may  
need to convert these strings to appropriate data types for processing.  
Type Conversion  
If you want to handle the parameters in a more structured way, you  
can use getParameterMap(): It returns a Map that has parameter  
names as keys and parameter values as String arrays  
:
@WebServlet("/calculateTotal")  
public class ShoppingCartServlet extends HttpServlet {  

protected void doPost(HttpServletRequest request,  111111

HttpServletResponse response)  
throws ServletException, IOException {  

try {  
// Convert string to integer  
int quantity =  

Integer.parseInt(request.getParameter("quantity"));  

// Convert string to double  
double price =  

Double.parseDouble(request.getParameter("price"));  

// Convert string to boolean  
boolean isGift =  

Boolean.parseBoolean(request.getParameter("gift"));  

// Perform calculations  
double total = quantity * price;  
if (isGift) {  

total += 5.00; // Gift wrapping fee  
}

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>Order Summary</h2>");  
out.println("<p>Quantity: " + quantity + "</p>");  

171  
MATS Centre for Distance and Online Education, MATS University  



Notes  out.println("<p>Price per unit: $" + String.format("%.2f",  
price) + "</p>");  

"</p>");  
out.println("<p>Total: $" + String.format("%.2f", total) +  

"</p>");  
out.println("</body></html>");  

} catch (NumberFormatException e) {  
// Handle parsing errors  

"Invalid number format in form data");  
}

}
}
Handling Date Inputs  
Converting string date inputs to java.util.Date objects:  
@WebServlet("/processDate")  
public class DateProcessorServlet extends HttpServlet {  

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

String dateString = request.getParameter("eventDate");  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

try {  
SimpleDateFormat dateFormat = new  

SimpleDateFormat("yyyy-MM-dd");  
Date eventDate = dateFormat.parse(dateString);  

// Calculate days until event  
long daysDiff = (eventDate.getTime() - new Date().getTime())  

/ (1000 * 60 * 60 * 24);  

172  
MATS Centre for Distance and Online Education, MATS University  

out.println("<p>Gift wrapping: " + (isGift ? "Yes" : "No") +  

response.sendError(HttpServletResponse.SC_BAD_REQUEST,  



Notes  out.println("<html><body>");  
out.println("<h2>Event Information</h2>");  
out.println("<p>Event Date: " + dateFormat.format(eventDate)  

+ "</p>");  
out.println("<p>Days until event: " + daysDiff + "</p>");  
out.println("</body></html>");  

} catch (ParseException e) {  
out.println("<html><body>");  
out.println("<h2>Error</h2>");  
out.println("<p>Invalid date format. Please use yyyy-MM-dd  

format.</p>");  
out.println("</body></html>");  

}
}

}

3.4.5 Handling File Uploads  
For flowing files, the getParameter() methods of the standard are not  
enough. Instead, you must refer to the Part API added in Servlet 3.0  
or third-party library such as Apache Commons FileUpload.  
Using Servlet 3.0 Part API  
@WebServlet("/fileUpload")  
@MultipartConfig(  

fileSizeThreshold = 1024 * 1024, // 1 MB  44

maxFileSize = 1024 * 1024 * 10,  // 10 MB  
maxRequestSize = 1024 * 1024 * 50) // 50 MB  

public class FileUploadServlet extends HttpServlet {  111111

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Get the file part from the request  
Part filePart = request.getPart("file");  

// Extract file information  
String fileName = getSubmittedFileName(filePart);  

173  
MATS Centre for Distance and Online Education, MATS University  



Notes  long fileSize = filePart.getSize();  
String contentType = filePart.getContentType();  

// Define the location to save the file  
String uploadPath =  

getServletContext().getRealPath("/uploads");  
File uploadDir = new File(uploadPath);  
if (!uploadDir.exists()) {  

uploadDir.mkdir();  
}

// Save the file  
filePart.write(uploadPath + File.separator + fileName);  

// Process other form fields  
String description = request.getParameter("description");  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>File Upload Summary</h2>");  
out.println("<p>File Name: " + fileName + "</p>");  
out.println("<p>File Size: " + fileSize + " bytes</p>");  
out.println("<p>Content Type: " + contentType + "</p>");  
out.println("<p>Description: " + description + "</p>");  
out.println("<p>File saved successfully to: " + uploadPath +  

"</p>");  
out.println("</body></html>");  

}

// Helper method to extract the file name from the Part header  222222

private String getSubmittedFileName(Part part) {  
String contentDisp = part.getHeader("content-disposition");  
String[] items = contentDisp.split(";");  
for (String item : items) {  111111

if (item.trim().startsWith("filename")) {  

174  
MATS Centre for Distance and Online Education, MATS University  



Notes  return item.substring(item.indexOf("=") + 2, item.length() -  
1);  

}
}
return "";  

}
}
3.4.6 Form Data Validation  
Always put security first when dealing with form data. Here are  
some crucial security practices:  
@WebServlet("/registerUser")  
public class UserRegistrationServlet extends HttpServlet {  11

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

String username = request.getParameter("username");  
String email = request.getParameter("email");  
String password = request.getParameter("password");  
String confirmPassword =  

request.getParameter("confirmPassword");  

List<String> errors = new ArrayList<>();  

if (username == null || username.trim().length() < 3) {  
errors.add("Username must be at least 3 characters long");  

}

if (email == null || !email.matches("^[\\w-\\.]+@([\\w-]+\\.)+[\\w-  
]{2,4}$")) {  

errors.add("Please enter a valid email address");  
}

if (password == null || password.length() < 8) {  
errors.add("Password must be at least 8 characters long");  

175  
MATS Centre for Distance and Online Education, MATS University  

// Validate username  

// Validate email  

// Validate password  



Notes  }

// Confirm passwords match  
if (!password.equals(confirmPassword)) {  

errors.add("Passwords do not match");  
}

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  

if (errors.isEmpty()) {  
// All validations passed, process the registration  
out.println("<h2>Registration Successful</h2>");  
out.println("<p>Username: " + username + "</p>");  
out.println("<p>Email: " + email + "</p>");  
// In a real application, you would save the user to a database  

here  
} else {  

out.println("<h2>Registration Failed</h2>");  
out.println("<p>Please correct the following errors:</p>");  
out.println("<ul>");  
for (String error : errors) {  

out.println("<li>" + error + "</li>");  
}
out.println("</ul>");  
out.println("<p><a href='javascript:history.back()'>Go back  

and try again</a></p>");  
}

out.println("</body></html>");  
}

}

3.4.7 Security Considerations  

176  
MATS Centre for Distance and Online Education, MATS University  

// Validation errors found  



Notes  Always put security first when dealing with form data. Here are  
some crucial security practices:  
Input Sanitization  
Note: Always sanitize user input to avoid security problems such as  
XSS attacks:  
@WebServlet("/commentProcess")  
public class CommentProcessorServlet extends HttpServlet {  

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

String name = request.getParameter("name");  
String comment = request.getParameter("comment");  

// Sanitize input to prevent XSS attacks  
name = sanitizeInput(name);  
comment = sanitizeInput(comment);  

// Process the sanitized data  
response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>Comment Received</h2>");  
out.println("<p>From: " + name + "</p>");  
out.println("<p>Comment: " + comment + "</p>");  
out.println("</body></html>");  

}

private String sanitizeInput(String input) {  
if (input == null) {  

return "";  
}

// Replace potentially dangerous characters with their HTML  
entities  

String sanitized = input  
.replace("&", "&amp;")  

177  
MATS Centre for Distance and Online Education, MATS University  



Notes  .replace("<", "&lt;")  
.replace(">", "&gt;")  
.replace("\"", "&quot;")  
.replace("'", "&#x27;")  
.replace("/", "&#x2F;");  

return sanitized;  
}

}
CSRF Protection  
Implement Cross-Site Request Forgery (CSRF) protection by using  
tokens:  
@WebServlet("/secureForm")  
public class SecureFormServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Generate a CSRF token  
String csrfToken = generateCSRFToken();  

// Store the token in the session  
HttpSession session = request.getSession();  
session.setAttribute("csrfToken", csrfToken);  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>Secure Form</h2>");  
out.println("<form action='processSecureForm'  

method='post'>");  
out.println("Name: <input type='text' name='name'><br>");  
out.println("Email: <input type='email' name='email'><br>");  
// Include the CSRF token as a hidden field  
out.println("<input type='hidden' name='csrfToken' value='" +  

csrfToken + "'>");  
out.println("<input type='submit' value='Submit'>");  

178  
MATS Centre for Distance and Online Education, MATS University  



Notes  out.println("</form>");  
out.println("</body></html>");  

}

private String generateCSRFToken() {  
// Generate a random token (in a real application, use a  

cryptographically secure method)  
return UUID.randomUUID().toString();  

}
}

@WebServlet("/processSecureForm")  
public class SecureFormProcessorServlet extends HttpServlet {  

protected void doPost(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Retrieve the submitted token  
String submittedToken = request.getParameter("csrfToken");  

// Retrieve the stored token from the session  
HttpSession session = request.getSession();  
String storedToken = (String) session.getAttribute("csrfToken");  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

if (storedToken != null &&  
storedToken.equals(submittedToken)) {  

// Token is valid, process the form  
String name = request.getParameter("name");  
String email = request.getParameter("email");  

out.println("<html><body>");  
out.println("<h2>Form Processed Successfully</h2>");  
out.println("<p>Name: " + name + "</p>");  
out.println("<p>Email: " + email + "</p>");  

179  
MATS Centre for Distance and Online Education, MATS University  

// Validate the CSRF token  



Notes  out.println("</body></html>");  

// Invalidate the token after use (one-time use)  
session.removeAttribute("csrfToken");  

} else {  
// Invalid or missing token, potential CSRF attack  
response.setStatus(HttpServletResponse.SC_FORBIDDEN);  
out.println("<html><body>");  
out.println("<h2>Error: Invalid Request</h2>");  
out.println("<p>The form submission could not be processed  

due to security concerns.</p>");  
out.println("</body></html>");  

}
}

}
3.5 Handling Client Request and Generating Server Response  
Java servlets operate on the fundamental principle of handling client  
requests and providing responses. This section walks through all  42

aspects of this request-response cycle, from understanding what an  
HTTP protocol is to generating dynamic content based on user input..  
3.5.1 Understanding the HTTP Request-Response Cycle  
In order to understand the specifics of how to handle requests in  
servlets, we need to learn the HTTP request-response cycle::  
Client Request: The client (typically a web browser) sends an HTTP  

Server Processing: The server processes the request, which may  
involve:  
Routing the request to the appropriate servlet  
Extracting request parameters  
Processing business logic  
Accessing databases or external services  
Server Response: The server generates an HTTP response and sends  
it back to the client.  
Client Rendering: The client processes the response (e.g., rendering  
HTML, executing JavaScript).  
In Java servlets, this cycle is represented by:  
The HttpServletRequest object, which encapsulates the client request  

180  
MATS Centre for Distance and Online Education, MATS University  

request to the server.  



Notes  The HttpServletResponse object, which provides methods to generate  
the response  
3.5.2 Analyzing the Request  
In order to handle an incoming request we need to understand it.  
Servlets offer several ways to get information from the request.  
Request Headers  
HTTP headers are metadata about the request. Using the getHeader()  
method you can fetch headers equal to:  
@WebServlet("/requestInfo")  
public class RequestInfoServlet extends HttpServlet {  11

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>Request Information</h2>");  

// Get basic request information  
out.println("<h3>Basic Info</h3>");  
out.println("<p>Request Method: " + request.getMethod() +  

"</p>");  
out.println("<p>Request URI: " + request.getRequestURI() +  

"</p>");  
out.println("<p>Protocol: " + request.getProtocol() + "</p>");  

// Get request headers  
out.println("<h3>Request Headers</h3>");  
out.println("<table border='1'>");  
out.println("<tr><th>Header Name</th><th>Header  

Enumeration<String> headerNames =  
request.getHeaderNames();  

while (headerNames.hasMoreElements()) {  
String headerName = headerNames.nextElement();  

181  
MATS Centre for Distance and Online Education, MATS University  

Value</th></tr>");  



Notes  
out.println("<tr><td>" + headerName + "</td><td>" +  

}
out.println("</table>");  

out.println("</body></html>");  
}

}
Cookie Information  
Cookies sent by the client can be retrieved using the getCookies()  
method:  
@WebServlet("/cookieInfo")  
public class CookieInfoServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

out.println("<html><body>");  
out.println("<h2>Cookie Information</h2>");  

Cookie[] cookies = request.getCookies();  

if (cookies != null && cookies.length > 0) {  
out.println("<table border='1'>");  
out.println("<tr><th>Cookie Name</th><th>Cookie  

for (Cookie cookie : cookies) {  
out.println("<tr>");  
out.println("<td>" + cookie.getName() + "</td>");  

out.println("</tr>");  
}

182  
MATS Centre for Distance and Online Education, MATS University  

String headerValue = request.getHeader(headerName);  

headerValue + "</td></tr>");  

Value</th></tr>");  

out.println("<td>" + cookie.getValue() + "</td>");  



Notes  out.println("</table>");  
} else {  

out.println("<p>No cookies found in this request.</p>");  
}

out.println("</body></html>");  
}

}
Session Information  
HTTP sessions allow you to track user state across multiple requests:  
@WebServlet("/sessionInfo")  
public class SessionInfoServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

// Get or create a session  
HttpSession session = request.getSession();  

// Update session access counter  
Integer accessCount = (Integer)  

session.getAttribute("accessCount");  
if (accessCount == null) {  

accessCount = 1;  
} else {  

accessCount++;  
}
session.setAttribute("accessCount", accessCount);  

out.println("<html><body>");  
out.println("<h2>Session Information</h2>");  

out.println("<p>Session ID: " + session.getId() + "</p>");  
out.println("<p>Session Creation Time: " + new  

Date(session.getCreationTime()) + "</p>");  

183  
MATS Centre for Distance and Online Education, MATS University  



Notes  out.println("<p>Last Accessed Time: " + new  
Date(session.getLastAccessedTime()) + "</p>");  

out.println("<p>Is New Session: " + session.isNew() + "</p>");  
out.println("<p>Session Access Count: " + accessCount +  

"</p>");  

out.println("</body></html>");  
}

}
Request Attributes  
Servlets can set and retrieve attributes within each request scope,  
which is useful for storing information relevant to those components.:  
@WebServlet("/setAttributes")  
public class AttributeSetterServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Set some request attributes  
request.setAttribute("username", "john_doe");  
request.setAttribute("userRole", "admin");  
request.setAttribute("lastLogin", new Date());  

// Forward the request to another servlet to display the attributes  
RequestDispatcher dispatcher =  

request.getRequestDispatcher("/displayAttributes");  
dispatcher.forward(request, response);  11

}
}

@WebServlet("/displayAttributes")  
public class AttributeDisplayServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

184  
MATS Centre for Distance and Online Education, MATS University  



Notes  
out.println("<html><body>");  
out.println("<h2>Request Attributes</h2>");  

// Retrieve and display attributes  
String username = (String) request.getAttribute("username");  
String userRole = (String) request.getAttribute("userRole");  
Date lastLogin = (Date) request.getAttribute("lastLogin");  

out.println("<p>Username: " + username + "</p>");  
out.println("<p>User Role: " + userRole + "</p>");  
out.println("<p>Last Login: " + lastLogin + "</p>");  

out.println("</body></html>");  
}

}
3.5.3 Generating the Response  
Now, servlets must provide a proper reply after handling the request.  

HttpServletResponse object.  
Setting Response Headers  
Response headers provide metadata about the response:  
@WebServlet("/setHeaders")  
public class HeaderSetterServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Set response headers  
response.setContentType("text/html");  
response.setHeader("Cache-Control", "no-cache, no-store, must-  

revalidate");  
response.setHeader("Pragma", "no-cache");  
response.setHeader("Expires", "0");  

PrintWriter out = response.getWriter();  

185  
MATS Centre for Distance and Online Education, MATS University  

You can create different types of responses using  

response.setHeader("Custom-Header", "Custom Value");  



Notes  out.println("<html><body>");  
out.println("<h2>Custom Headers Set</h2>");  
out.println("<p>This response includes custom HTTP headers  

that control caching and demonstrate header setting.</p>");  
out.println("</body></html>");  

}
}
Setting Cookies  
Cookies allow you to store small pieces of data on the client:  
@WebServlet("/setCookie")  
public class CookieSetterServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

// Create a new cookie  
Cookie userCookie = new Cookie("username", "john_doe");  

// Configure the cookie  
userCookie.setMaxAge(24 * 60 * 60); // Expires in 24 hours  
userCookie.setPath("/");  

application  
userCookie.setHttpOnly(true);  

JavaScript  

// Available across the entire  

// Not accessible via  

userCookie.setSecure(true);  // Only sent over HTTPS  

// Add the cookie to the response  
response.addCookie(userCookie);  

// Create a session tracking cookie  
Cookie trackingCookie = new Cookie("sessionTracker",  

UUID.randomUUID().toString());  
trackingCookie.setMaxAge(30 * 60); // Expires in 30 minutes  
response.addCookie(trackingCookie);  

response.setContentType("text/html");  
PrintWriter out = response.getWriter();  

186  
MATS Centre for Distance and Online Education, MATS University  



Notes  out.println("<html><body>");  
out.println("<h2>Cookies Set</h2>");  
out.println("<p>The following cookies have been set:</p>");  
out.println("<ul>");  
out.println("<li>username: john_doe (expires in 24 hours)</li>");  

" (expires in 30 minutes)</li>");  
out.println("</ul>");  
out.println("</body></html>");  

}
}
HTTP Status Codes  
Setting the appropriate HTTP status code is important for proper  
client-server communication:  
@WebServlet("/statusCodes")  
public class StatusCodeDemoServlet extends HttpServlet {  

protected void doGet(HttpServletRequest request,  
HttpServletResponse response)  

throws ServletException, IOException {  

String codeParam = request.getParameter("code");  

if (codeParam != null) {  
try {  

int statusCode = Integer.parseInt(codeParam);  

switch (statusCode) {  
case 200:  

response.setStatus(HttpServletResponse.SC_OK);  
sendResponse(response, "200 OK", "The request has  

succeeded.");  
break;  

case 201:  

response.setStatus(HttpServletResponse.SC_CREATED);  
sendResponse(response, "201 Created", "The request  

3.6 Handling Cookies  

187  
MATS Centre for Distance and Online Education, MATS University  

out.println("<li>sessionTracker: " + trackingCookie.getValue() +  

has been fulfilled and a new.  



Notes  Cookies are one of the core technologies that allow managing state on  
web apps. One of the challenges developers who use HTTP protocol  
face is that it is stateless. Cookies became the elegant solution to this  
problem, peas in a pod of data that could be stored on the client’s side  
and sent with every request. Specifically in Java web development,  
within the Servlets and JSP framework, cookies miss an elegant way to  
persist user settings, track user's activities, and maintain the state of a  

in the client browser. When a user visits a site, the server can send one  
or more cookies to that user's browser, which the browser keeps  
locally. When using the same server on additional requests, the  
browser automatically adds these cookies to the request headers. This  
mechanism enables the server to identify returning users and pull up  
previously stored information without relying on users needing to  
introduce themselves on each and every page request. The Java Servlet  
API provides a rich set of classes and methods that can be used to  
create, modify, and retrieve cookies. The main class for cookie  
operations is javax. servlet. http. Cookie: This is just a handy way to  
encapsulate the name/value pairs that make up a cookie. This API  
allows the Java developer to work with cookies in their web  

Cookies offer a key feature in modern web development, allowing  
websites to remember user preferences, store their shopping cart data,  
implement authentication mechanisms, and facilitate personalized  
content delivery. But in recent years with GDPR, the CCPA and  
growing focus on user privacy, the standard use of cookies by  
developers means they have to be careful about how they implement  
cookie-based solutions. We will cover the technical details related to  
cookies in Java web applications but also some important concerns  
around privacy, security, and best practices.  
This article will cover deeper cookie management — the attributes used  
to specify cookie behaviour, how cookies are sent and received,  
removing cookies and the benefits and drawbacks of using cookies. We  
will also delve into how cookies fit into larger session management  
paradigms, discussing the use of cookies, session tracking mechanisms,  
and their achievements to provide all-encompassing state preservation  
in Java web applications.  

188  
MATS Centre for Distance and Online Education, MATS University  

user's session. In a way, a cookie is just a small text file, which is stored  

applications, providing a rich, personalized experience for the user.  



Notes  Handling Cookies in Java Web Applications: The javaxz.servlet.http  
package in Java's Servlet API enables powerful cookie support.  
servlet. http. Cookie class. In this section you study core functionality  
for creating, sending and receiving, and manipulating cookies in Java  
web applications.  
Creating and Sending Cookies: In Java, a cookie can be created  
easily. The Cookie class's constructor takes the cookie name and  

to the client browser through the response. addCookie() method. Here  
is the process translated into an example::  
// Create a new cookie  
Cookie userCookie = new Cookie("username", "john_doe");  

// Set cookie properties (optional)  
userCookie.setMaxAge(60 * 60 * 24 * 30); // Expires in 30 days (in  
seconds)  
userCookie.setPath("/");  
application  

// Available across the entire  

userCookie.setSecure(true);  
userCookie.setHttpOnly(true);  

// Only sent over HTTPS  
// Not accessible via JavaScript  

// Send the cookie to the client  
response.addCookie(userCookie);  
Here, we have created a cookie with a name "username" and value  
"john_doe". Then, we set multiple properties and set it to send it to  
client browser. These attributes determine the cookie's behavior, such  
as its duration, accessibility, and security properties  
Receiving and Reading Cookies  
All cookies for the domain are included in request headers when a  

servlet, by using the request. getCookies() method which return array  
of Cookie objects. The code below shows how to obtain and read the  
cookies:  
// Get all cookies from the request  
Cookie[] cookies = request.getCookies();  

// Check if cookies exist  
if (cookies != null) {  

189  
MATS Centre for Distance and Online Education, MATS University  

cookieValue as string parameters. You create a cookie, and then send it  

client does a request to the server. You retrieve these cookies in a  



Notes  // Iterate through all cookies  
for (Cookie cookie : cookies) {  

// Retrieve the cookie name and value  
String name = cookie.getName();  

// Process the cookie based on its name  
if ("username".equals(name)) {  

// Found the username cookie  
System.out.println("Welcome back, " + value);  
break;  

}
}

}
The above code iterates through all cookies received in the request,  
searching for a specific cookie by name. Once found, the cookie's  
value can be retrieved and used to customize the response or make  
application decisions.  
Modifying Cookies  
The above code loops through all the cookies that were sent with the  
request and looks for one with a specific name. When located, the  
cookie value can be accessed, and the data can be used to tailor the  
response or to decide on actions to take within the application:  
// Get all cookies from the request  
Cookie[] cookies = request.getCookies();  

if (cookies != null) {  
for (Cookie cookie : cookies) {  

if ("username".equals(cookie.getName())) {  
// Create a new cookie with the same name but updated value  
Cookie updatedCookie = new Cookie("username",  

"jane_doe");  
updatedCookie.setMaxAge(cookie.getMaxAge());  
updatedCookie.setPath(cookie.getPath());  

// Send the updated cookie to the client  
response.addCookie(updatedCookie);  
break;  

190  
MATS Centre for Distance and Online Education, MATS University  

String value = cookie.getValue();  



Notes  }
}

}
In this example, we search for the "username" cookie and create a  
new cookie with the same name but an updated value. We also  

Deleting Cookies  
In order to remove a cookie, set its age to zero or a negative value and  
send it back to the client. This is an instruction in your web browser  
to delete the cookie. Here is some code that shows how this can be  
done:  
// Create a cookie with the same name  
Cookie cookieToDelete = new Cookie("username", "");  

// Set the maximum age to 0 (delete immediately)  
cookieToDelete.setMaxAge(0);  

// Ensure it's on the same path as the original cookie  
cookieToDelete.setPath("/");  

// Send the cookie to the client  
response.addCookie(cookieToDelete);  
You must set the path for the cookie being deleted to be the same as  
the original cookie. If the paths differ, the browser may not treat it as  
the same cookie, so the deletion will silently fail  
Cookie Persistence  
Cookies can be classified into two types based on their persistence:  
Session Cookies: These cookies expire when the browser session  
ends. They are stored in memory and are not written to disk. To create  
a session cookie, don't set the maxAge property or set it to -1.  
Cookie sessionCookie = new Cookie("sessionId",  
generateSessionId());  
// No maxAge means it's a session cookie  
response.addCookie(sessionCookie);  
Persistent Cookies: These cookies have a specific expiration time  
and are stored on disk. They persist even after the browser is closed  
and are sent with requests until they expire.  
Cookie persistentCookie = new Cookie("preferredLanguage", "en");  

191  
MATS Centre for Distance and Online Education, MATS University  

preserve the original cookie's attributes to ensure consistent behavior.  



Notes  persistentCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year in seconds  
response.addCookie(persistentCookie);  
Choosing between session and persistent cookies depends on the  
application's requirements and the nature of the data being stored.  
Benefits of Using Cookies  
Cookies offer numerous advantages for web applications, particularly  
in the context of Java-based systems. This section explores the key  
benefits of incorporating cookies into your application architecture.  
User Experience Enhancement: One of the primary benefits of  
cookies is their ability to enhance user experience by remembering user  
preferences and settings. Consider a web application that allows users  
to customize the interface, such as choosing a theme or language. By  
storing these preferences in cookies, the application can provide a  
consistent experience across multiple visits without requiring users to  
reconfigure their settings each time.  
// Example: Storing user theme preference  
String selectedTheme = request.getParameter("theme");  
if (selectedTheme != null && !selectedTheme.isEmpty()) {  

Cookie themeCookie = new Cookie("userTheme", selectedTheme);  
themeCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year  
themeCookie.setPath("/");  
response.addCookie(themeCookie);  

}
This kind of personalization significantly improves user satisfaction  
and engagement by creating a tailored experience that acknowledges  
and respects individual preferences.  
State Management in Stateless Protocols: HTTP is stateless by  
design, that is, every request to the server is considered independent  
and does not know about prior requests. Cookies allow you to  
maintain state across multiple requests. For example, cookie functions  
in insurance apps for shopping carts are track selected items:  
// Example: Adding item to cart (simplified)  
String itemId = request.getParameter("itemId");  
if (itemId != null) {  

// Get existing cart cookie  
String cartItems = "";  
Cookie[] cookies = request.getCookies();  
if (cookies != null) {  

192  
MATS Centre for Distance and Online Education, MATS University  



Notes  for (Cookie cookie : cookies) {  
if ("cartItems".equals(cookie.getName())) {  

break;  
}

}
}

// Add new item to cart  
if (!cartItems.isEmpty()) {  

cartItems += "," + itemId;  
} else {  

cartItems = itemId;  
}

// Update cart cookie  
Cookie cartCookie = new Cookie("cartItems", cartItems);  
cartCookie.setMaxAge(60 * 60 * 24 * 7); // 1 week  
cartCookie.setPath("/");  
response.addCookie(cartCookie);  

}
Whenever you visit a store and start browsing, you can add things to  
your cart, and it goes around without you losing what you’ve selected  
for a smooth shopping experience.  

greatly enhance the performance of the application by avoiding  

terrible site fetches if stored in cookies for non-sensitive, frequently  
accessed data, which can reduce server load and improve response  
times. For instance, placing display preferences or non-sensitive user  
data into cookies can save you from needing to pull this data from the  
database on each request:  
// First-time user setup  
if (request.getCookies() == null ||  
!containsCookie(request.getCookies(), "displaySettings")) {  

// Default settings  
Cookie settingsCookie = new Cookie("displaySettings",  

"compact:true,showImages:true,fontSize:medium");  

193  
MATS Centre for Distance and Online Education, MATS University  

cartItems = cookie.getValue();  

Performance Optimization: When used correctly, cookies can  

database queries or server-side storage. You are also enabled for the  



Notes  settingsCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days  
settingsCookie.setPath("/");  
response.addCookie(settingsCookie);  

}

// Helper method to check if a cookie exists  
private boolean containsCookie(Cookie[] cookies, String name) {  

for (Cookie cookie : cookies) {  
if (name.equals(cookie.getName())) {  

return true;  
}

}
return false;  

}
Client-side storage also helps offload data to the front-end which  
ultimately relieves the database service and results in quicker  

Authentication and Remember Me Functionality  

which allows users to remain authenticated across browser sessions  
without re-entering credentials. This feature significantly enhances user  

// Example: Implementing "Remember Me" functionality  
boolean rememberMe =  
"true".equals(request.getParameter("rememberMe"));  

if (rememberMe) {  
// Generate secure token (simplistic example)  
String rememberToken = generateSecureToken(username);  

// Store token in database (associated with user)  
storeRememberTokenInDatabase(username, rememberToken);  

// Create persistent cookie with token  
Cookie rememberCookie = new Cookie("rememberToken",  

rememberToken);  
rememberCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days  
rememberCookie.setHttpOnly(true); // Prevent JavaScript access  

194  
MATS Centre for Distance and Online Education, MATS University  

response times and improved scalability.  

Cookies are essential for implementing "Remember Me" functionality,  

convenience while maintaining security.  



Notes  rememberCookie.setSecure(true); // HTTPS only  
rememberCookie.setPath("/");  
response.addCookie(rememberCookie);  

}
In this example, a secure token is generated, stored in the database, and  
also sent to the client as a cookie. On subsequent visits, the application  
can validate this token to automatically authenticate the user without  
requiring a new login.  
Analytics and User Behavior Tracking  
Cookies are useful for tracking user behavior and collecting analytics  
data. This enables applications to track navigation patterns, feature  
usage, and user preferences by assigning unique identifiers to visitors.  
// Example: Setting analytics tracking cookie  
String visitorId = UUID.randomUUID().toString();  
Cookie analyticsCookie = new Cookie("visitorId", visitorId);  
analyticsCookie.setMaxAge(60 * 60 * 24 * 365 * 2); // 2 years  
analyticsCookie.setPath("/");  
response.addCookie(analyticsCookie);  

// Log page visit  
logPageVisit(visitorId, request.getRequestURI());  
This helps product development, marketing strategies and interface  
refinements, which in turn contribute to improved user experiences  
and business results.  
Cookie Attributes and Security Considerations  
In addition to the simple name-value pair, cookies also support a  
range of attributes which can influence their behavior, scope, and  
security characteristics. "It is important to comprehend these attributes  
if you want to deploy safe and efficient cookie-based solutions..  
Domain and Path Attributes: Domain and Path attributes help us  
identify the URLs to which a cookie needs to be sent..  
Domain — The dot character (.) specifies the domain for which  
the cookie is valid. A cookie is, by default, sent only to the domain  
that set it. But you can set a cookie accessible to subdomains by  
providing a domain prepended with a dot.  
Cookie domainCookie = new Cookie("sitePreferences",  
"darkMode:true");  

195  
MATS Centre for Distance and Online Education, MATS University  



Notes  domainCookie. setDomain(". example. com"); // Only available on  
example. com  
response. addCookie(domainCookie);.  
Path Attribute: Specifies the portion of the URL path that must  

Cookies are by default set for the path of the URL where the  
setting occurs. Domain and Path Example: Setting the path to “/”  
will make the cookie accessible across the entire domain.  
Cookie pathCookie = new Cookie("shopCart", "item1:3,item2:1");  
pathCookie.setPath("/shop"); // Only available to URLs starting with  
/shop  
response.addCookie(pathCookie);  
In this example, the cookie will be sent only to pages under the /shop  
path, such as /shop/cart and /shop/products.  
Secure and HttpOnly Flags  
These flags enhance cookie security by restricting when and how  
cookies are transmitted and accessed.  
Secure Flag: When set, the cookie is only sent over HTTPS  
connections, protecting it from interception over unsecured channels.  
Cookie secureCookie = new Cookie("authToken", generateToken());  
secureCookie.setSecure(true); // Only sent over HTTPS  
response.addCookie(secureCookie);  
This is particularly important for cookies containing sensitive  
information like authentication tokens.  
HttpOnly Flag: Prevents client-side JavaScript from accessing the  
cookie, mitigating the risk of cross-site scripting (XSS) attacks.  
Cookie httpOnlyCookie = new Cookie("sessionId", sessionId);  
httpOnlyCookie.setHttpOnly(true); // Not accessible via JavaScript  
response.addCookie(httpOnlyCookie);  
By using the HttpOnly flag, even if an attacker manages to inject  
malicious JavaScript into your page, they won't be able to access the  

SameSite Attribute (Servlet API 4.0+): The SameSite attribute,  
introduced in newer servlet specifications, controls whether cookies  
are sent with cross-site requests, providing protection against cross-  
site request forgery (CSRF) attacks.  
Cookie sameSiteCookie = new Cookie("csrfToken",  
generateCSRFToken());  

196  
MATS Centre for Distance and Online Education, MATS University  

exist in the requested resource before sending the Cookie header.  

cookie directly.  



Notes  sameSiteCookie.setAttribute("SameSite", "Strict"); // Only sent in  
same-site context  
response.addCookie(sameSiteCookie);  
The SameSite attribute can have three values:  
Strict: The cookie is only sent in a first-party context.  
Lax: The cookie is sent with top-level navigations and with GET  
requests from other sites.  
None: The cookie is sent in all contexts, including cross-site requests.  
Note that when using SameSite=None, the cookie must also have the  
Secure flag set.  
7.4.4 Expiration and MaxAge  
The expiration time of a cookie can be controlled using the  
setMaxAge() method, which specifies the cookie's lifespan in  
seconds.  
// Session cookie (expires when the browser is closed)  
Cookie sessionCookie = new Cookie("tempData", "value");  
sessionCookie.setMaxAge(-1); // Default behavior for session cookies  
response.addCookie(sessionCookie);  

// Persistent cookie (expires after a specific time)  
Cookie persistentCookie = new Cookie("userPrefs", "theme:dark");  
persistentCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days in seconds  
response.addCookie(persistentCookie);  

// Delete a cookie  
Cookie deleteCookie = new Cookie("oldCookie", "");  
deleteCookie.setMaxAge(0); // Expires immediately  
response.addCookie(deleteCookie);  
The MaxAge value determines whether a cookie is stored temporarily  
in memory or persistently on disk, and for how long it remains valid.  
Cookie Size Limitations: Browsers impose limits on cookie size and  
the number of cookies allowed per domain. These limitations vary by  
browser but generally include:  

• Maximum size per cookie: Usually around 4KB  
• Maximum number of cookies per domain: Typically 50-60  
• Maximum total size of all cookies for a domain: Around 4KB  

to 10KB  
Given these constraints, it's important to use cookies efficiently:  

197  
MATS Centre for Distance and Online Education, MATS University  



Notes  // BAD PRACTICE: Storing large data in cookies  
Cookie largeCookie = new Cookie("userData", largeJsonObject); //  
May exceed limits  

// BETTER PRACTICE: Store minimal data in cookies  
Cookie idCookie = new Cookie("userId", "12345");  
response.addCookie(idCookie);  
// Retrieve additional data from server-side storage as needed  
For large amounts of data, consider alternatives like HTML5 Web  
Storage (localStorage/sessionStorage) or IndexedDB, with cookies  
used primarily for authentication and session management.  
Cookie Security Best Practices :Implementing secure cookie  
practices is essential for protecting user data and preventing common  
attacks:  
Use the Secure flag for sensitive cookies:  
authCookie.setSecure(true);  
Apply the HttpOnly flag to prevent XSS attacks:  
authCookie.setHttpOnly(true);  
Implement proper cookie expiration:  
// Set reasonable expiration times based on the cookie's purpose  
authCookie.setMaxAge(60 * 30); // 30 minutes for authentication  
Validate cookie data:  

// Process the cookie  
} else {  

// Handle invalid data (potential tampering)  
}
Encrypt sensitive cookie values:  
// Example of encrypting cookie value  

Cookie encryptedCookie = new Cookie("sensitiveData",  

Implement CSRF protection alongside cookies:  
// Generate and store CSRF token  
String csrfToken = generateRandomToken();  
Cookie csrfCookie = new Cookie("csrfToken", csrfToken);  

198  
MATS Centre for Distance and Online Education, MATS University  

String cookieValue = cookie.getValue();  
if (isValidFormat(cookieValue)) {  

String encryptedValue = encryptData(rawValue, encryptionKey);  

encryptedValue);  



Notes  csrfCookie.setHttpOnly(false); // Allow JavaScript access for form  
submission  
response.addCookie(csrfCookie);  

// Store token in session for server-side verification  
session.setAttribute("csrfToken", csrfToken);  
By following these best practices, developers can leverage the  
benefits of cookies while minimizing security risks.  
Session Tracking in Java Web Applications  
In contrast, cookies are a mechanism for storing small bits of  
information on the client side, but come with limitations in terms of  
size, count, and security. Whereas cookie is limited to a single  
request, session tracking is used to maintain status between multiple  
requests.  
Need for Session Tracking: The statelessness of HTTP poses great  

context beyond the input you received with every request. This  
limitation presents a problem in situations like:  

• Multi-step processes: These are operations such as checkout  
workflows, multi-page forms, or wizard interfaces that  
involve multiple steps and require maintaining state across  
multiple requests.  

• User authentication: Remembering who is logged-in without  
asking for credentials on every request.  

complex state for an application, such as shopping carts, game  
states, or workspace configurations.  

• Customization: Providing tailored content based on user  

3.7 Session Tracking  
The Servlet specification in Java has support for multiple session  
tracking mechanisms:  

• Cookie-Based Sessions : The server creates it and sends it to  
the client as a cookie. This cookie is included in subsequent  
requests, permitting the server to identify the session.  

• URL Rewriting: For those browsers that do not support or  
have disabled cookies, at the end of the URLs the session ID  

199  
MATS Centre for Distance and Online Education, MATS University  

difficulties for interactive web application development. You have no  

• Application state: Value can be used to to keep and manage  

preference or browsing history.  

may be appended as a parameter.  



Notes  • SSL Sessions: The SSL session ID can be used to keep the  
session state for HTTPS connections without cookies or URL  
parameters.  

Hidden Form Fields One way is to use session IDs as hidden fields in  
HTML forms and post them along with form data. Out of which,  
session through cookies is the most common and reliable way to  
implement it, whereas URL rewriting could be fall back when no  
cookies available Of these mechanisms, cookie-based sessions are the  
most common and reliable approach, with URL rewriting often used  
as a fallback when cookies are unavailable.  
The HttpSession API: Java's Servlet API offers complete interaction  
with session management using the HttpSession interface. This means  
developers can use this API for session tracking without worrying  
about the underlying mechanism.  
Creating or Retrieving a Session:  
// Get the current session, or create one if it doesn't exist  
HttpSession session = request.getSession();  

// Get the current session only if it exists, without creating a new one  
HttpSession existingSession = request.getSession(false);  
The request.getSession() method returns the current session object  
associated with the request. If no session exists, it creates a new one  
automatically. This behavior can be controlled using the boolean  
parameter: request.getSession(boolean create).  
Storing and Retrieving Data in Sessions:  
// Store data in the session  
session.setAttribute("username", "john_doe");  
session.setAttribute("loginTime", new Date());  
session.setAttribute("shoppingCart", cartObject);  

// Retrieve data from the session  
String username = (String) session.getAttribute("username");  
Date loginTime = (Date) session.getAttribute("loginTime");  
ShoppingCart cart = (ShoppingCart)  
session.getAttribute("shoppingCart");  

// Remove data from the session  
session.removeAttribute("temporaryData");  

200  
MATS Centre for Distance and Online Education, MATS University  



Notes  The session acts as a map-like structure, storing attributes as key-  
value pairs. These attributes can be of any Java type, including  
complex objects, as long as they implement the Serializable interface.  
Managing Session Lifecycle:  
// Get session creation time  
long creationTime = session.getCreationTime();  

// Get last accessed time  
long lastAccessTime = session.getLastAccessedTime();  

// Set session timeout (in seconds)  
session.setMaxInactiveInterval(1800); // 30 minutes  

// Invalidate (terminate) the session  
session.invalidate();  
The session timeout specifies how long the session remains active  
without client interaction. After the specified period of inactivity, the  
server automatically invalidates the session. Sessions can also be  
explicitly invalidated using the invalidate() method, typically during  
logout operations.  
Accessing Session Metadata:  
// Get the session ID  
String sessionId = session.getId();  

// Check if this is a new session  
boolean isNew = session.isNew();  

// Get the maximum inactive interval  
int maxInactiveInterval = session.getMaxInactiveInterval();  
These methods provide access to session metadata, which can be  
useful for debugging, logging, and session management operations.  
Session Tracking Implementation Examples  
Let's explore some practical examples of session tracking in Java web  
applications:  
Example 1: User Authentication and Authorization  
@WebServlet("/login")  
public class LoginServlet extends HttpServlet {  18

201  
MATS Centre for Distance and Online Education, MATS University  



Notes  @Override  
protected void doPost(HttpServletRequest request,  

HttpServletResponse response)  
throws ServletException, IOException {  

String username = request.getParameter("username");  
String password = request.getParameter("password");  

// Get the session (create if it doesn't exist)  
HttpSession session = request.getSession();  

// Store user information in the session  
User user = getUserDetails(username);  
session.setAttribute("user", user);  
session.setAttribute("authenticated", true);  
session.setAttribute("loginTime", new Date());  

// Set session timeout (30 minutes)  
session.setMaxInactiveInterval(30 * 60);  

// Redirect to dashboard  
response.sendRedirect("dashboard");  

} else {  
// Authentication failed - redirect back to login page  
request.setAttribute("errorMessage", "Invalid username or  

password");  
request.getRequestDispatcher("/login.jsp").forward(request,  

response);  
}

}

... */ }  
private User getUserDetails(String username) { /* ... */ }  

}

202  
MATS Centre for Distance and Online Education, MATS University  

// Validate credentials (simplified example)  
if (isValidUser(username, password)) {  

// Validation methods (implementation details omitted)  
private boolean isValidUser(String username, String password) { /*  



Notes  This example demonstrates how sessions can be used to track  
authenticated users. After successful authentication, user information  
is stored in the session, allowing subsequent requests to verify the  
user's identity without re-authenticating.  
Example 2: Shopping Cart Implementation  
@WebServlet("/cart/*")  
public class ShoppingCartServlet extends HttpServlet {  

@Override  
protected void doGet(HttpServletRequest request,  

HttpServletResponse response)  
throws ServletException, IOException {  

// Get the current session (don't create a new one)  
HttpSession session = request.getSession(false);  

if (session == null) {  
// No session exists - redirect to homepage  
response.sendRedirect("/home");  
return;  

}

// Retrieve cart from session  
ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");  

if (cart == null) {  
// Initialize cart if it doesn't exist  
cart = new ShoppingCart();  
session.setAttribute("cart", cart);  

}

// Display cart contents  
request.setAttribute("cartItems", cart.getItems());  
request.setAttribute("totalPrice", cart.getTotalPrice());  
request.getRequestDispatcher("/cart.jsp").forward(request,  

response);  
}

203  
MATS Centre for Distance and Online Education, MATS University  



Notes  @Override  
protected void doPost(HttpServletRequest request,  

HttpServletResponse response)  
throws ServletException, IOException {  

// Get current session or create one  
HttpSession session = request.getSession();  

// Get cart from session or create a new one  
ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");  
if (cart == null) {  

cart = new ShoppingCart();  
session.setAttribute("cart", cart);  

}

// Process cart operation  
String action = request.getParameter("action");  
if ("add".equals(action)) {  

// Add item to cart  
String productId = request.getParameter("productId");  
int quantity =  

Integer.parseInt(request.getParameter("quantity"));  
cart.addItem(productId, quantity);  

} else if ("remove".equals(action)) {  
// Remove item from cart  
String productId = request.getParameter("productId");  
cart.removeItem(productId);  

} else if ("clear".equals(action)) {  
// Clear cart  
cart.clear();  

}

// Redirect back to cart display  
response.sendRedirect("/cart");  

}
}
In this example, we highlight a cart functionality implemented to  
keep track of the items in your session. This cart object is saved in the  

204  
MATS Centre for Distance and Online Education, MATS University  



Notes  session object giving the user the ability to add, delete, and view items  4444444

while making multiple requests..  
7.5.5 Session Management Best Practices  
Session management needs to be done with the utmost attention to  
detail with regards to security, performance, and user experience:  
Security Considerations:  
Session ID Protection:  
// Configure the session cookie to be secure and HttpOnly  
@WebServlet("/secureApp")  
public class SecureAppServlet extends HttpServlet {  

@Override  
public void init(ServletConfig config) throws ServletException {  

super.init(config);  
// Configure session cookies  
ServletContext context = config.getServletContext();  
context.getSessionCookieConfig().setHttpOnly(true);  
context.getSessionCookieConfig().setSecure(true);  

}

// Servlet methods...  
}
Session Fixation Prevention:  
// After successful authentication, regenerate the session ID  
@WebServlet("/login")  2828

public class SecureLoginServlet extends HttpServlet {  
@Override  
protected void doPost(HttpServletRequest request,  

HttpServletResponse response)  
throws ServletException, IOException {  

// Authenticate user...  

// After successful authentication  
if (authenticated) {  

// Get current session data  
HttpSession oldSession = request.getSession();  
Map<String, Object> attributes = new HashMap<>();  

205  
MATS Centre for Distance and Online Education, MATS University  

12121212121212



Notes  Enumeration<String> names =  
oldSession.getAttributeNames();  

while (names.hasMoreElements()) {  
String name = names.nextElement();  
attributes.put(name, oldSession.getAttribute(name));  

}

// Invalidate current session  
oldSession.invalidate();  

// Create new session  
HttpSession newSession = request.getSession(true);  

// Copy attributes to new session  
for (Map.Entry<String, Object> entry : attributes.entrySet()) {  

}

// Set authentication flag  
newSession.setAttribute("authenticated", true);  

}2828

}
}
Proper Session Termination:  
@WebServlet("/logout")  
public class LogoutServlet extends HttpServlet {  

@Override  
protected void doGet(HttpServletRequest request,  

HttpServletResponse response)  
throws ServletException, IOException {  

// Get current session  
HttpSession session = request.getSession(false);  4444444

if (session != null) {  
// Invalidate the session  
session.invalidate();  

}

206  
MATS Centre for Distance and Online Education, MATS University  

12121212121212

newSession.setAttribute(entry.getKey(), entry.getValue());  



Notes  
// Clear authentication cookie if used  
Cookie authCookie = new Cookie("authToken", "");  
authCookie.setMaxAge(0);  
authCookie.setPath("/");  
response.addCookie(authCookie);  

// Redirect to login page  
response.sendRedirect("/login");  

}
}
Performance Optimization:  
Minimize Session Data: Store only necessary data in the session to  
reduce memory consumption and serialization/deserialization  
overhead.  
Session Timeout Management: Balance security and user experience  
when setting session timeouts:  
// Short timeout for sensitive operations  
session.setMaxInactiveInterval(900); // 15 minutes  

// Longer timeout for regular browsing  
session.setMaxInactiveInterval(3600); // 1 hour  
Session Clustering and Persistence: For high-availability  
applications, configure session replication or persistence:  
<!-- Example Tomcat context.xml configuration -->  
<Context>  
<Manager  
className="org.apache.catalina.session.PersistentManager"  

saveOnRestart="true">  
<Store className="org.apache.catalina.session.FileStore"  

directory="/tmp/sessions"/>  
</Manager>  
</Context>  
Multiple-Choice Questions (MCQs)  

1. What does J2EE stand for?  
a) Java 2 Enterprise Edition  
b) Java 2 Embedded Edition  
c) Java Enterprise and Embedded Edition  

207  
MATS Centre for Distance and Online Education, MATS University  



Notes  d) Java Enterprise Evolution  
Answer: a) Java 2 Enterprise Edition  

2. Which of the following is not a component of a Java Servlet?  4444444

a) doGet()  
b) doPost()  
c) doPush()  
d) init()  

Answer: c) doPush()  
3. In which phase of the servlet life cycle is the destroy() method  

called?  
a) Initialization phase  
b) Service phase  
c) Termination phase  
d) Compilation phase  

Answer: c) Termination phase  
4. How can a servlet read form data sent by an HTML form?  

a) request.getParameter("name")  
b) request.readFormData("name")  
c) request.getInput("name")  
d) request.receive("name")  

Answer: a) request.getParameter("name")  
5. What is the purpose of session tracking in servlets?  

a) To maintain client state across multiple requests  
b) To validate user input  
c) To handle file uploads  
d) To close database connections  

Answer: a) To maintain client state across multiple requests  
Short Answer Questions  

1. What are the main components of J2EE architecture?  
2. Explain the purpose of the doGet() and doPost() methods in  

servlets.  
3. What are the different phases of the servlet life cycle?  12121212121212 4444444

4. How do you store and retrieve cookies in a servlet?  
5. What is the difference between session tracking using cookies  

and using HttpSession?  
Long Answer Questions  

1. Explain the architecture of J2EE and its key components.  
2. Describe the life cycle of a Java servlet with an example.  

208  
MATS Centre for Distance and Online Education, MATS University  

12121212121212



Notes  3. How can a servlet handle user input from an HTML form?  
Provide an example program.  

4. Explain the process of handling client requests and generating  
server responses in Java servlets.  

5. What are the different session tracking techniques in servlets?  
Compare them with examples.  

209  
MATS Centre for Distance and Online Education, MATS University  



Module 4  

LEARNING OUTCOMES  

• To study scripting elements and implicit objects.  

210  

JSP Technology  

• To understand the concept, need, and benefits of JSP.  
• To explore the life cycle of JSP.  

• To analyze directive elements and action elements in JSP.  



Notes  Unit 13: Introduction, Need and Benefit of JSP, Life  
Cycle of JSP  

4.1 Introduction to JSP  
JSP(JavaServer Pages) server-side technology to create dynamic web  
pages and web applications. Java Server Pages (JSP) is a web  
application technology that is used to create dynamic web content. JSP  
separates presentation logic (HTML, CSS) from business logic (Java  
code), making web applications easier to maintain and scalable. JSP  
allows the development of web pages that are created dynamically,  
responding to user actions, form submission results, and return values  
from databases, instead of static web pages that are always the same  
when accessed. This is done by embedding Java code in special  
delimiters () in an HTML page. During the run time, JSPs are  
converted into Servlets, which makes it highly performant and reliable.  
Due to this feature, JSP is widely used in enterprise-level web  
applications, online portals, and content management systems that need  
to process data in real-time.  
Need and Benefits of JSP: The need for JSP to come into existence  
came because static web technologies at that time like HTML and  
JavaScript couldn't generate content dynamically on the server side.  
The alternative is to use Servlets, but it can be tiresome and less  
maintainable when writing HTML inside Java classes using Servlets.  
This problem is overcome by JSP in that it allows developers to code  
using Java code within an HTML file. Platform independent is one of  
the main advantages of JSP as it can be executed on any OS that  
supports Java. Then, JSP also provides automatic session management,  
which makes it easier to manage user sessions as compared to handling  
it manually. Plus, it works in harmony with JavaBeans, JDBC, and  
other Java technologies to facilitate database connections and data  
management. One of the other major benefits is tag libraries (JSTL),  
enabling the code to be reused and improves code modularity and  
maintainability. These benefits make JSP a popular choice for  
developing enterprise applications, e-commerce simply by using, and  
interactive web platforms.  
4.2 Life Cycle of JSP  
A JSP page has three main stages during its life cycle: compilation,  
execution, and request handling. The JSP engine first checks if the  

211  12121212121212

MATS Centre for Distance and Online Education, MATS University  



Notes  requested JSP page has already been compiled when a client sends a  4444444

request for a JSP page. If not, it compiles the JSP file to a Servlet class.  
The translation step converts JSP constructs, such as scriptlets (),  
expressions (), and directives (), into corresponding Java code. Once  
translated, the Servlet class is compiled to bytecode and loaded into  
memory of the web server. At this point, the JSP is ready to deal with  
client requests. Execution starts when an HTTP request comes to the  
compiled Servlet. The service() method of the created Servlet gets  
called, which in turn calls the doGet() or doPost() method based on the  
request. The response is then generated and is usually an HTML  
document returned to the client's browser. If the JSP file is modified,  
translation and compilation processes are restarted to account for  
changes.  

Figure 4.1: JSP Life Cycle  
[Source: https://www.researchgate.net/]  

Compilation, Execution, and Request Handling: After it is compiled  
into a Servlet, execution of a JSP page is no different than that for a  
conventional Servlet. Initialization — the jspInit() method is called just  
once when the JSP page is visited for the first time. This is useful for  
configuring database connections or initializing global application-  
wide variables. Next step is request processing (the jspService()  
method is invoked on each HTTP request) This approach collects the  
request parameters, accesses the business logic layer, and construct  

212  
MATS Centre for Distance and Online Education, MATS University  

12121212121212



Notes  HTML content on the fly to serve a response. Destruction: Is the last  
step in the life cycle where before the JSP instance is removed from  
memory jspDestroy() method is called. This is handy for closing  
database connections, freeing resources, or doing cleanup tasks. JSP  
uses all the performance enhancements provided by Servlets (e.g.  
Caching, Session management) so it is a better technology in terms of  
building a scalable web app. The life cycle of a JSP is, therefore,  
essential to understanding how JSP-based applications can be  
optimized and how data is handled during request processing in actual  
production environments.  

213  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 14: JSP Scripting Elements  

JSP Scripting Elements:  

JSP Declaration  
•

•

A declaration tag is a piece of Java code for declaring variables,  4444444

methods and classes. If we declare a variable or method inside  
declaration tag it means that the declaration is made inside the  
servlet class but outside the service method.  
We can declare a static member, an instance variable (can  
declare a number or string) and methods inside the declaration  
tag.  

Syntax of declaration tag:  
<%! Dec var %>  
Here Dec var is the method or a variable inside the declaration tag.  
Example:  
In this example, we are going to use the declaration tags  
<%@ page language="java" contentType="text/html; charset=ISO-  4444444

8859-1"  
pageEncoding="ISO-8859-1"%>  

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Guru Declaration Tag</title>  
</head>  
<body>  
<%! int count =10; %>  
<% out.println("The Number is " +count); %>  
</body>  
</html>  
Explanation the code:  
Code Line 10: Here we are using declaration tag for initializing a  
variable count to 10.  
When you execute the above code you get the following output:  

214  
MATS Centre for Distance and Online Education, MATS University  

12121212121212



Notes  

Output:  
The variable which is declared in the declaration tag is printed as  14

output.  
JSP Scriptlet  

•

•

Scriptlet tag allows to write Java code into JSP file.  
JSP container moves statements in _jspservice() method while  
generating servlet from jsp.  

•

•

For each request of the client, service method of the JSP gets  
invoked hence the code inside the Scriptlet executes for every  
request.  
A Scriptlet contains java code that is executed every time JSP  
is invoked.  

Syntax of Scriptlet tag:  
<% java code %>  
Here <%%> tags are scriplets tag and within it, we can place java code.  
Example:  
In this example, we are taking Scriptlet tags which enclose java code.  19

<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Guru Scriplet</title>  
</head>  
<body>  
<% int num1=10;  

int num2=40;  
int num3 = num1+num2;  

215  
MATS Centre for Distance and Online Education, MATS University  



Notes  out.println("Scriplet Number is " +num3);  
%>  
</body>  
</html>  
Explanation of the code:  
Code Line 10-14: In the Scriptlet tags where we are taking two  
variables num1 and num2 . Third variable num3 is taken which adds up  
as num1 and num2.The output is num3.  
When you execute the code, you get the following output:  

Output:  
The output for the Scriptlet Number is 50 which is addition of num1  
and num2.  
JSP Expression  

•

•

•

•

Expression tag evaluates the expression placed in it.  
It accesses the data stored in stored application.  
It allows create expressions like arithmetic and logical.  
It produces scriptless JSP page.  

Syntax:  
<%= expression %>  
Here the expression is the arithmetic or logical expression.  
Example:  
In this example, we are using expression tag  
<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  

216  
MATS Centre for Distance and Online Education, MATS University  



Notes  <title>Guru Expression</title>  
</head>  
<body>  
<% out.println("The expression number is "); %>  
<% int num1=10; int num2=10; int num3 = 20; %>  
<%= num1*num2+num3 %>  
</body>  
</html>  
Explanation of the code:  
Code Line 12: Here we are using expression tags where we are using  
an expression by multiplying two numbers i.e. num1 and num 2 and  
then adding the third number i.e. num3.  
When you execute the above code, you get the following output:  

Output:  
The expression number is 120 where we are multiplying two numbers  
num1 and num2 and adding that number with the third number.  
JSP Comments  
Comments are the one when JSP container wants to ignore certain texts  
and statements.  
When we want to hide certain content, then we can add that to the  
comments section.  
Syntax:  
<% -- JSP Comments %>  
T his tags are used to comment in JSP and ignored by the JSP container.  
<!—comment –>  
This is HTML comment which is ignored by browser  
Example:  
In this example, we are using JSP comments  
<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  

217  
MATS Centre for Distance and Online Education, MATS University  



Notes  <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Guru Comments</title>  
</head>  
<body>  
<%-- Guru Comments section --%>  
<% out.println("This is comments example"); %>  

</body>  
</html>  
Explanation of the code:  
Code Line 10: Here we are adding JSP comments to the code to  
explain what code has. It is been ignored by the JSP container  
When you execute the above code you get the following output:  

Output:  
We get the output that is printed in println method. Comments are  
ignored by container  
Creating a simple JSP Page  

•

•

A JSP page has an HTML body incorporated with Java code  
into it  
We are creating a simple JSP page which includes declarations,  
scriplets, expressions, comments tags in it.  

Example:  
<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  

218  
MATS Centre for Distance and Online Education, MATS University  



Notes  <html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Guru JSP Example</title>  
</head>  
<body>  

<%-- This is a JSP example with scriplets, comments , expressions --  
%>  
<% out.println("This is guru JSP Example"); %>  
<% out.println("The number is "); %>  
<%! int num12 = 12; int num32 = 12; %>  
<%= num12*num32 %>  
Today's date: <%= (new java.util.Date()).toLocaleString()%>  
</body>  
</html>  
Explanation of the code:  
Code Line 1: Here we are using directives like language, contentType  
and pageEncoding. Language is Java and content type is text/html with  
standard charset ISO 8859. Page encoding is standard charset.  
Code Line 11: Here we are using JSP comments to add comments to  
the JSP  
Code Line 14: Here we are declaring variables num12 and num32  
initializing with 12.  
Code Line 15: Here we are using an expression where we are  
multiplying two numbers num12 and num32.  
Code Line 16: Here we are fetching today’s date using date object.  
When you execute the above code, you get the following output  

Output:  
We are printing overhere,  

• This is guru JSP example.  

219  
MATS Centre for Distance and Online Education, MATS University  



Notes  •

•

The number is num12*num32 (12*12).  
Today’s date is the current date  

How to run simple JSP Page  
•

•

JSP can be run on web servers or application servers.  
Here we will be using a webserver, and we can deploy it on the  
server enclosing it in a war application.  

• We can create JSP in an application (war).  
This is an application which has following directory structure, and the  
application has to be build.  

This application has to be built, and the following message will appear  
after the build is successful:  

After the application is built then, the application has to be run on the  
server.  
To run JSP on the webserver, right click on the project of the IDE  
(eclipse used in this case) and there are many options. Select the option  
of run on the server. It is shown in the screenshot below;  
From the diagram, following points are explained:  

1. There are two options either to choose a server or manually add  
the server to this application. In this case, we have already  
added JBoss server to the application hence, we select the  
existing server.  

2. Once we select the server the server option is shown in point 2  
which server we want to select. There can be multiple servers  
configured on this application. We can select one server from  
all those options  

3. Once that option is selected click on finish button and  
application will run on that server.  

220  
MATS Centre for Distance and Online Education, MATS University  



Notes  

In the below screenshots, you can notice that our JSP program gets  
executed, and the test application is deployed in JBoss server marked  
in the red box.  

Directory Structure of JSP  

221  
MATS Centre for Distance and Online Education, MATS University  



Notes  In directory structure, there is a root folder which has folder WEB-INF,  
which has all configuration files and library files.  
JSP files are outside WEB-INF folder  

Directory structure of JSP  
Example:  
In this example there is test application which has folder structure has  
following:  

So JavaServer Pages (JSP) technology allows developers to create  
dynamic web content by embedding Java code within HTML pages.  

222  
MATS Centre for Distance and Online Education, MATS University  



Notes  JSP scripting elements are the mechanisms through which this  
integration occurs, enabling the execution of Java logic within the web  
page. These elements fall into three primary categories: scriptlet tags,  
expression tags, and declaration tags. Scriptlet tags, denoted by <% ...  
%>, are used to embed Java code that will be executed when the JSP  
page is requested. This code can include any valid Java statement, such  
as variable declarations, control flow statements (if-else, loops), and  
method calls. Scriptlets are particularly useful for performing server-  
side processing, such as retrieving data from a database, manipulating  
data, and generating dynamic content. For instance, a scriptlet could be  
used to iterate through a list of products and display them in an HTML  
table. Expression tags, represented by <%= ... %>, are used to insert the  
result of a Java expression directly into the output stream. The  
expression within the tag is evaluated, and the result is converted to a  
string and inserted into the HTML. This is useful for displaying  
dynamic data, such as the current date and time, user input, or the result  
of a calculation. For example, <%= new java.util.Date() %> would  
display the current date and time. Declaration tags, denoted by <%! ...  
%>, are used to declare variables and methods that are accessible  
throughout the JSP page. Declarations are typically placed at the  
beginning of the JSP page and are used to define reusable code  
components. For example, a declaration could be used to define a  
method that calculates the sum of two numbers, which can then be  
called from scriptlets or expression tags within the page. The order in  
which these scripting elements are processed is crucial. Scriptlets are  
executed first, followed by declarations, and then expressions.  
Scriptlets can modify the state of the page, such as by setting request or  
session attributes, which can then be accessed by subsequent scriptlets  
or expressions. Declarations define the structure of the JSP page, such  
as by defining variables and methods that can be used throughout the  
page. Expressions are evaluated and their results are inserted into the  
output stream, generating the dynamic content that is displayed to the  
user. The use of scripting elements allows developers to create dynamic  
web pages that respond to user input and server-side events. However,  
excessive use of scriptlets can lead to code that is difficult to maintain  
and debug. Best practices suggest minimizing the use of scriptlets and  
encapsulating business logic in Java classes, which can then be  
accessed from the JSP page using JavaBeans or custom tags. This  

223  
MATS Centre for Distance and Online Education, MATS University  



Notes  approach promotes code reusability, maintainability, and separation of  
concerns. Answer: JavaServer Pages (JSP) is a technology that helps  
software developers create dynamically-generated web pages based on  
HTML, XML, or other document types. This integration occurs by  
way of JSP scripting elements, which allow Java logic to be executed  
inside the web page. These components are divided into three types :  
scriptlet tags, expression tags and declaration tags. The flags denoted  
by are scriptlets which are hashed embedded Java Code that will be  
executed when the JSP page will be requested. Your code here can be  
any legal Java statement – variable declarations, control flow  
statements (if-else, loops), or a call to a method. One of the special  
purposes where scriptlets can be very helpful is server-side processing  
in which it can be used to pull to data from the database, process data,  
and generate dynamic content. Example: Show products in an HTML  
table using Scriptlet But example: You can show the list of products in  
an HTML table using a Scriptlet. Expression tags () insert the result of  
a Java expression into the output stream. It evaluates the expression  
found inside the tag, converts the result to a string, and inserts it in the  
HTML. This is also useful for showing dynamic data like current  
date/time, user input, or result of a calculation. For example, — would  
render the current date and time. These declaration tags start with is  
used to import any Java classes/page variables declared here are  
available throughout the JSP page. Declarations are used to define  
reusable code components and are normally found at the top of the JSP  
page. For purpose, a declaration will help you tell Jsp that it's a method  
that calculates the addition of 2 numbers and that method can also be  
called in Jsp via script lets or expression tags. The sequence for the  
processing of these scripting components is very important. The order  
of scriptlets, declarations, and expressions are executed one after the  
other. Scriptlets can change the state of the page, such as by setting  
request or session attributes, which can be read by subsequent scriptlets  
or expressions. Declarations specifies the structure of a JSP page by  
declaring a variables and methods, these can be used in the whole JSP  
page. This is done by evaluating the expressions and inserting their  
results into the output stream, which is the dynamic content shown to  
the user as well. This is how to use scripting elements to develop  
dynamic web pages which respond and update showing user  
information and activities on the server. This doesn't always translate  

224  
MATS Centre for Distance and Online Education, MATS University  



Notes  well when working with snippets of code, for example, in file  
processing or scrapers, where code is quickly written and deployed,  
sometimes in languages that require multiple steps to execute, such as  
Python. Recommended practice is to have a less use of scriptlet, keep  
the business logic in java classes and access these classes from the JSP  
page using JavaBeans or custom tags. It helps in reusing the code,  
maintainability and separation.  

225  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 15: Implicit Objects  

4.4 Implicit Objects:  
What is JSP Implicit object?  

•

•

•

JSP implicit objects are created during the translation phase of  
JSP to the servlet.  
These objects can be directly used in scriplets that goes in the  
service method.  
They are created by the container automatically, and they can  
be accessed using objects.  

How many Implicit Objects are available in JSP?  
There are 9 types of implicit objects available in the container:  

1. Out  
2. Request  
3. Response  
4. Config  
5. Application  
6. Session  
7. PageContext  
8. Page  
9. Exception  

1) Out  
• Out is one of the implicit objects to write the data to the buffer  

and send output to the client in response  
•

•

•

Out object allows us to access the servlet’s output stream  
Out is object of javax.servlet.jsp.jspWriter class  
While working with servlet, we need printwriter object  

Example:  
<%@ page language="java" contentType="text/html; charset=ISO-  22222 22222

8859-1"  
pageEncoding="ISO-8859-1"%>  

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  

226  
MATS Centre for Distance and Online Education, MATS University  



Notes  <title>Implicit Guru JSP1</title>  
</head>  
<body>  
<% int num1=10;int num2=20;  
out.println("num1 is " +num1);  
out.println("num2 is "+num2);  
%>  
</body>  
</html>  
Explanation of the code:  
Code Line 11-12– out is used to print into output stream  
When we execute the above code, we get the following output:  

Output:  
• In the output, we get the values of num1 and num2  

2) Request  
• The  request  object  is  an  instance  of  

java.servlet.http.HttpServletRequest and it is one of the  
argument of service method  

•

•

It will be created by container for every request.  
It will be used to request the information like parameter, header  
information , server name, etc.  

• It uses getParameter() to access the request parameter.  
Example:  
Implicit_jsp2.jsp(form from which request is sent to guru.jsp)  
<%@ page language="java" contentType="text/html; charset=ISO-  22222 22222

8859-1"  
pageEncoding="ISO-8859-1"%>  

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  

227  
MATS Centre for Distance and Online Education, MATS University  



Notes  <head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Implicit Guru form JSP2</title>  
</head>  
<body>  
<form action="guru.jsp">  
<input type="text" name="username">  
<input type="submit" value="submit">  
</form>  
</body>  
</html>  
Guru.jsp (where the action is taken)  

Explanation of code:  
Code Line 10-13 : In implicit_jsp2.jsp(form) request is sent, hence the  
variable username is processed and sent to guru.jsp which is action of  
JSP.  
Guru.jsp  
Code Line10-11: It is action jsp where the request is processed, and  
username is taken from form jsp.  
When you execute the above code, you get the following output  
Output:  

228  
MATS Centre for Distance and Online Education, MATS University  



Notes  When you write test and click on the submit button, then you get the  
following output “Welcome Test.”  

3) Response  
•

•

•

“Response” is an instance of class which implements  
HttpServletResponse interface  
Container generates this object and passes to _jspservice()  
method as parameter  
“Response object” will be created by the container for each  
request.  

•

•

It represents the response that can be given to the client  
The response implicit object is used to content type, add cookie  
and redirect to response page  

Example:  
<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Implicit Guru JSP4</title>  
</head>  
<body>  
<%response.setContentType("text/html"); %>  
</body>  
</html>  
Explanation of the code:  
Code Line 11: In the response object we can set the content type  

229  
MATS Centre for Distance and Online Education, MATS University  



Notes  Here we are setting only the content type in the response object. Hence,  
there is no output for this.  
4) Config  

•

•

•

“Config” is of the type java.servlet.servletConfig  
It is created by the container for each jsp page  101010

It is used to get the initialization parameter in web.xml  
Example:  
Web.xml (specifies the name and mapping of the servlet)  

Implicit_jsp5.jsp (getting the value of servlet name)  
<%@ page language="java" contentType="text/html; charset=ISO-  22222

8859-1"  
pageEncoding="ISO-8859-1"%>  

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Implicit Guru JSP5</title>  
</head>  
<body>  
<% String servletName = config.getServletName();  
out.println("Servlet Name is " +servletName);%>  
</body>  
</html>  
Explanation of the code:  
In web.xml  
Code Line 14-17: In web.xml we have mapping of servlets to the  
classes.  

230  
MATS Centre for Distance and Online Education, MATS University  



Notes  Implicit_jsp5.jsp  
Code Line 10-11: To get the name of the servlet in JSP, we can use  
config.getServletName, which will help us to get the name of the  
servlet.  
When you execute the above code you get the following output:  

Output:  
• Servlet name is “GuruServlet” as the name is present in  

web.xml  
5) Application  

• Application object (code line 10) is an instance of  101010

javax.servlet.ServletContext and it is used to get the context  
information and attributes in JSP.  

•

•

Application object is created by container one per application,  
when the application gets deployed.  
Servletcontext object contains a set of methods which are used  
to interact with the servlet container.We can find information  
about the servlet container  

Example:  
<%@ page language="java" contentType="text/html; charset=ISO-  22222

8859-1"  
pageEncoding="ISO-8859-1"%>  

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Guru Implicit JSP6</title>  
</head>  
<body>  
<% application.getContextPath(); %>  

231  
MATS Centre for Distance and Online Education, MATS University  



Notes  </body>  
</html>  
Explanation of the code:  

• In the above code, application attribute helps to get the context  
path of the JSP page.  

6) Session  
•

•

The session is holding “httpsession” object(code line 10).  
Session object is used to get, set and remove attributes to session  
scope and also used to get session information  

Example:  
Implicit_jsp7(attribute is set)  

<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Implicit JSP</title>  
</head>  
<body>  
<% session.setAttribute("user","GuruJSP"); %>  
<a href="implicit_jsp8.jsp">Click here to get user name</a>  
</body>  
</html>  

Implicit_jsp8.jsp (getAttribute)  

<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  

232  
MATS Centre for Distance and Online Education, MATS University  



Notes  <meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>implicit Guru JSP8</title>  
</head>  
<body>  
<% String name = (String)session.getAttribute("user");  
out.println("User Name is " +name);  
%>  
</body>  
</html>  
Explanation of the code:  
Implicit_jsp7.jsp  
Code Line 11: we are setting the attribute user in the session variable,  
and that value can be fetched from the session in whichever jsp is called  
from that (_jsp8.jsp).  
Code Line 12: We are calling another jsp on href in which we will get  
the value for attribute user which is set.  
Implicit_jsp8.jsp  
Code Line 11: We are getting the value of user attribute from session  
object and displaying that value  
When you execute the above code, you get the following output:  

When you click on the link for the username. You will get the following  
output.  

233  
MATS Centre for Distance and Online Education, MATS University  



Notes  Output:  
When we click on link given in implicit_jsp7.jsp then we are  •

redirected to second jsp page, i.e (_jsp8.jsp) page and we get the  
value from session object of the user attribute (_jsp7.jsp).  

7) PageContext  
•

•

This object is of the type of pagecontext.  101010

It is used to get, set and remove the attributes from a particular  
scope  

Scopes are of 4 types:  
•

•

•

•

Page  
Request  
Session  
Application  

Example:  
<%@ page language="java" contentType="text/html; charset=ISO-  22222

8859-1"  
pageEncoding="ISO-8859-1"%>  

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Implicit Guru JSP9</title>  
</head>  
<body>  
<%  
pageContext.setAttribute("student","gurustudent",pageContext.PAGE  
_SCOPE);  
String name = (String)pageContext.getAttribute("student");  
out.println("student name is " +name);  
%>  
</body>  
</html>  

234  
MATS Centre for Distance and Online Education, MATS University  



Notes  Explanation of the code:  
Code Line 11: we are setting the attribute using pageContext object,  
and it has three parameters:  

•

•

•

Key  
Value  
Scope  

In the above code, the key is student and value is “gurustudent” while  
the scope is the page scope. Here the scope is “page” and it can get  
using page scope only.  
Code Line 12: We are getting the value of the attribute using  
pageContext  
When you execute the above code, you get the following output:  

Output:  
•

8) Page  
•

The output will print “student name is gurustudent”.  

Page implicit variable holds the currently executed servlet  
object for the corresponding jsp.  

• Acts as this object for current jsp page.  
Example:  
In this example, we are using page object to get the page name using  
toString method  

<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  

235  
MATS Centre for Distance and Online Education, MATS University  



Notes  <title>Implicit Guru JSP10</title>  
</head>  
<body>  
<% String pageName = page.toString();  
out.println("Page Name is " +pageName);%>  
</body>  
</html>  
Explanation of the code:  
Code Line 10-11: In this example, we are trying to use the method  
toString() of the page object and trying to get the string name of theJSP  
Page.  
When you execute the code you get the following output:  

Output:  
• Output is string name of above jsp page  

9) Exception  
•

•

•

Exception is the implicit object of the throwable class.  
It is used for exception handling in JSP.  
The exception object can be only used in error pages.Example:  

<%@ page language="java" contentType="text/html; charset=ISO-  
8859-1"  

pageEncoding="ISO-8859-1" isErrorPage="true"%>  
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01  
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  
<html>  
<head>  
<meta http-equiv="Content-Type" content="text/html; charset=ISO-  
8859-1">  
<title>Implicit Guru JSP 11</title>  
</head>  
<body>  

236  
MATS Centre for Distance and Online Education, MATS University  



Notes  <%int[] num1={1,2,3,4};  
out.println(num1[5]);%>  
<%= exception %>  
</body>  
</html>  
Explanation of the code:  
Code Line 10-12 – It has an array of numbers, i.e., num1 with four  
elements. In the output, we are trying to print the fifth element of the  
array from num1, which is not declared in the array list. So it is used to  
get exception object of the jsp.  
Output:  

We are getting ArrayIndexOfBoundsException in the array where we  
are getting a num1 array of the fifth element.  

So JSP provides a set of predefined objects, known as implicit objects,  
which are automatically available to developers within the JSP page.  
These objects provide access to server-side resources and contextual  
information, simplifying the development of dynamic web  
applications. The implicit objects include request, response, config,  
application, session, pageContext, page, and exception. The request  

237  
MATS Centre for Distance and Online Education, MATS University  



Notes  object, an instance of javax.servlet.http.HttpServletRequest, provides  
access to information about the client's request, such as request  
parameters, headers, and cookies. Developers can use the request object  
to retrieve form data, access session attributes, and handle file uploads.  
The  response  object,  an  instance  of  
javax.servlet.http.HttpServletResponse, allows developers to send data  
back to the client, such as HTML content, images, and other resources.  
Developers can use the response object to set response headers,  
cookies, and redirect the client to another page. The config object, an  
instance of javax.servlet.ServletConfig, provides access to servlet  
configuration information, such as initialization parameters and servlet  
context. Developers can use the config object to retrieve configuration  
settings for the JSP page. The application object, an instance of  
javax.servlet.ServletContext, provides access to application-wide  
resources and attributes. Developers can use the application object to  
share data between different JSP pages and servlets within the same  
web application. The session object, an instance of  
javax.servlet.http.HttpSession, provides access to session-specific data  
and attributes. Developers can use the session object to store user-  
specific information, such as login credentials and shopping cart  
contents.  The  pageContext  object,  an  instance  of  
javax.servlet.jsp.PageContext, provides access to the JSP page's  
context, including access to other implicit objects and page-scoped  
attributes. Developers can use the pageContext object to forward  
requests to other pages, include other resources, and manage page-  
scoped attributes. The page object, an instance of java.lang.Object,  
represents the JSP page itself. In most cases, it is equivalent to the this  
keyword. The exception object, an instance of java.lang.Throwable, is  
available only in error pages and provides access to the exception that  
caused the error. Developers can use the exception object to display  
error messages and log error details. The implicit objects are  
automatically created and initialized by the JSP container when the JSP  
page is requested. They are accessible within scriptlets, expression tags,  
and declaration tags. The request and session objects are particularly  
useful for managing user sessions and handling form data. The  
application object is useful for sharing data between different parts of  
the web application. The pageContext object provides a convenient  
way to access other implicit objects and manage page-scoped attributes.  

238  
MATS Centre for Distance and Online Education, MATS University  



Notes  The exception object simplifies error handling in JSP pages.  
Understanding and effectively using these implicit objects is essential  
for developing robust and efficient JSP applications.  
4.5 Directive Elements:  
Directive Elements JSP directive elements used to control the overall  
behavior of the JSP page and also to provide the configuration  
information to the JSP page to the container. These elements do not  
produce any output that has to be sent to the client, instead they control  
the general structure and behavior of the JSP page. Directive elements  
are found at the top of the JSP page and start with . Directive elements  
can be of three types: page, include, and taglib. Indeed, the page  
directive defines page-specific properties like content type, import  
statements, and error page configuration. The page directive contain  
attributes like contentType, import, errorPage, isErrorPage, session,  
buffer, autoFlush, info, isThreadSafe, language, extends. The  
contentType is a string representation of the MIME type of the  
response, e.g., text/html or application/json. The import attribute allows  
for the importing of Java classes and packages so that they are  
available for use in the JSP page. The URL of the error page to be  
displayed in case of Exception is defined using the errorPage attribute.  
isErrorPage attribute determines whether the page is an error page  
Example of using session in in JSP page The session attribute:  
Determines whether the JSP page participates in a session.  
ParseBuffer(buffer,20); This instruction parses a response buffer of 20  
bytes. autoFlush attribute specifies the buffer autoFlush or not The info  
attribute provides a description of the JSP page. The isThreadSafe  
attribute indicates if the JSP page is thread safe. The language  
parameter specifies the scripting language in the JSP page. The  
extends attribute in id extends the superclass of the generated servlet.  
The line with the include directive looks like this: Other than that, the  
included file can be a static HTML file, another JSP, servlet or any  
other resource that is available to the JSP container. There are two  
forms of the include directive: a static one and a dynamic one. Static  
include: () – Includes the file at translation time, that is, the included  
file is processed only once, during JSP page compilation. Dynamic  
include or generates the file at request time which means the included  
file will be processed each time the JSP page is requested. This article  
explains the usage of JSP Taglibs along with an example JSP page. The  

239  
MATS Centre for Distance and Online Education, MATS University  



Notes  taglib directive has two attributes: prefix and uri. The uri attribute  
indicates the URI of the tag library descriptor (TLD) file that defines  
the custom tags. The prefix attribute defines the prefix to be used by the  
custom tags in the JSP page. At the same time, directive elements can  
guide the JSP pages in behavior and structure. They allows us to  
process page-level settings (like external resources) and add a custom  
tag. So keyword such are Directive element must be used appropriately  
in JSP application to more effectively.  
Advanced JSP Scripting and Implicit Object Utilization  
While its basic usage—combining JSP scripting elements and implicit  
objects—serves most purposes, advanced techniques can help optimise  
the functionality and efficiency of JSP applications significantly. For  
example, scriptlets can be utilized to execute complicated business  
logic like data validation, which involves checking data integrity and  
accuracy against specific criteria, form processing can process user  
input from HTML forms to operate on, and database interactions can  
fetch data from a database. Using scriptlets for presentation logic  
should be minimized, as it may cause code that is hard to maintain and  
debug.  
Directive Elements:  
In this Article JSP (JavaServer Pages) directive elements define  
essential construction information for the JSP container regarding the  
information, dependencies and handling requirements of a webpage.  
These are not included in the output instead they are configuration  31

directives that guide how the JSP page will be translated and executed.  
1 There are three primary directive elements: the page directive, the  
include directive, and the taglib directive. You can give page specific  
information using this directive like content type of the page, how to  
handle the error for the page and about session management. It appears  
at the start of a JSP page and can consist of several attributes. The  
contentType property carries the MIME type and character encoding of  
the response, so that the client browser interprets the response.  
Example: → This sets the content type as HTML with UTF-8  
encoding. In this example, the errorPage attribute defines the URL of  
an error page to be displayed in case of an exception as part of that  
page processing. This gives a chance to handle errors gracefully &  
prevents users from having the raw stack traces. The isErrorPage  
property informs whether in the current context an error page is present,  

240  
MATS Centre for Distance and Online Education, MATS University  



Notes  making possible the implementation of conditional error handling  
logic. Session AttributeExecutes on endInitialize | endLoadSyntaxPage  
Attributes When set to true, the session attribute allows or prevents  
SQL session management for the page. If set to true, the session implicit  
object will be available as well, enabling developers to access the  
session data. Developers can import Java classes and packages, which  
become available for use in the JSP page by using the import attribute.  
For multiple import attributes multiple classes or packages can be  
imported. The language attribute also specifies the scripting language  
of the JSP page which is usually Java. Other properties, like buffer,  
autoFlush, and info, offer more fine-grained control over the process  
of paging. The include directive allows you to include a file in the JSP  
page at translation time. It enables code reuse and modular  
development. The file to include could be a JSP page, HTML file, or  
any text file. The file attribute defines the path to the file to be  
included. For example, // contains master header jsp file. Since the  
included file is processed just like part of the current page, any changes  
to the included file would cause the JSP page to be recompiled. 2 The  
taglib directive is used to declare a tag library so that its custom tags  
can be used in this JSP page. They offer a way to encapsulate  
commonly-used functionality and make JSP development simpler. 3  
The uri attribute declares the URI of the tag library and the prefix  
attribute declares a prefix to identify in the library the tags. For  
example, declares the JSTL core tag library with prefix c. After  
declaring a tag library, its custom tags can be used in the JSP page using  
the specified prefix within the JSP page. 4 It is three-line  
configuration. Because they perform the directives, which control the  
behaviour of JSP, they allow page authors to have more control over  
their JSP  
Action Elements:  
JSP action elements are runtime instructions that dynamically generate  
content or control the flow of execution within a JSP page. Unlike  
directive elements, which are processed at translation time, action  
elements are executed at runtime, allowing for dynamic behavior. The  
two primary action elements are jsp:forward and jsp:include, each  
serving distinct purposes in JSP development. The jsp:forward action  
element is used to transfer control from the current JSP page to another  
resource, such as another JSP page, servlet, or HTML file. It effectively  

241  
MATS Centre for Distance and Online Education, MATS University  



Notes  redirects the request to the specified resource, and the current page  
ceases processing. The page attribute specifies the relative or absolute  
URL of the resource to which control should be transferred. For  
instance, <jsp:forward page="welcome.jsp" /> forwards the request to  
the welcome.jsp page. The jsp:forward action can also include  
parameters using the jsp:param sub-element, allowing developers to  
pass data to the target resource. For instance, <jsp:forward  
page="profile.jsp"><jsp:param  name="userId"  value="123"  
/></jsp:forward> forwards the request to the profile.jsp page with the  
userId parameter set to 123. The jsp:forward action is often used for  
implementing navigation logic, error handling, and conditional page  
flow. It is crucial to note that once the jsp:forward action is executed,  
any output buffered by the current page is discarded, and the response  
is generated by the target resource. The jsp:include action element is  
used to include the output of another resource into the current JSP page  29

at runtime. This allows for dynamic content inclusion and modular  
development. The page attribute specifies the relative or absolute URL  
of the resource to be included. For instance, <jsp:include  
page="footer.jsp" /> includes the output of the footer.jsp page. The  
included resource is executed, and its output is inserted into the  
response stream of the current page. The jsp:include action can also  
include parameters using the jsp:param sub-element, allowing  
developers to pass data to the included resource. For instance,  
<jsp:include  page="news.jsp"><jsp:param  name="category"  
value="sports" /></jsp:include> includes the output of the news.jsp  
page with the category parameter set to sports. The jsp:include action  
is often used for including common page elements, such as headers,  
footers, and navigation bars, dynamically. It allows for creating  
reusable components and maintaining consistency across multiple  
pages. Unlike the include directive, which includes files at translation  
time, the jsp:include action includes resources at runtime, allowing for  
dynamic content generation. Action elements provide a powerful  
mechanism for controlling the flow of execution and generating  
dynamic content within JSP pages, enabling developers to create  
interactive and dynamic web applications. JSP action elements are  
instructions that are executed during runtime and are used to  
dynamically generate content or control the flow of execution in a JSP  
page. Whereas directive elements are processed during the translation  

242  
MATS Centre for Distance and Online Education, MATS University  



Notes  phase, action elements are executed in the runtime phase, providing  
dynamic run-time behavior. The only two dominant action elements are  
jsp:forward and jsp:include and they serve different purposes.  
jsp:forward action element Transfers control from one JSP page to  
another JSP page, servlet, or HTML file. This is useful as it makes use  
of the request and is placed on the JSP page itself. It does its job of re-  
routing the request to the targeted resource and the current page stops  
its processing. The page attribute indicates the relative or absolute URL  
of the resource to which control will be transferred. Such as forwards  
the request to welcome. jsp page. jsp:forward action may also pass  
parameters to the target resource with the jsp:param sub-element, thus,  
developers can also pass some data to the target resource. Example,  
forwards the request to the profile. The Web/cgi-bin/launchpage.jsp  
page with the userId parameter set to 123. Also, jsp:forward action is  
commonly used for navigation logic, error handling and conditional  
page flow. Please note that, upon executing the jsp:forward action,  
anything that is output buffered by the current page will be: discarded  
and the response will be generated by the target resource. JSP  
JSP:include The jsp:include action element is used to include the  
output of another resource (servlet, JSP file, etc) in the current JSP page  
at runtime. Dynamic content inclusion and modular development. The  
page property points to the relative or absolute URL of the page to  
include For example, outputs the footer. jsp page. The included  
resource is invoked and the result is inserted directly into the response  
stream such that it becomes part of the output of the current page. The  
developer of the included resource must access the included resource  
through the request object just as with the request, but the developer of  
the included resource can also pass parameters if they exist within it as  
sub-elements to the parent include. For example, includes the output of  
the news jsp page — the category parameter set to sports. jsp:include  
action is frequently utilized to dynamically include shared components  
like headers, footers, or navigation bars. It enables the development of  
reusable components and the seamless preservation of uniformity  
across different pages. The jsp:include action differs from the include  
directive in that the include directive includes files at translation time,  
whereas the jsp:include action includes resources at runtime, enabling  
dynamic content generation. By acting as a combination of XML and  

243  
MATS Centre for Distance and Online Education, MATS University  



Notes  Java, action elements are a great way to control your flow of execution  
and generate dynamic content within JSP pages.  
Page Directive: Configuring Page-Specific Attributes  
The page directive in JSP development is one of the primary methods  
through which a developer can define several things on a page that  
affect the way the JSP container manages this page. Syntax : It is  
usually found at the top of a JSP page and it has one or more attributes  
each of which has its own purpose. Here the contentType attribute is  37

used to state the mime type of JSP page response and the character  
encoding. This attribute makes sure that the client browser understand  
the content. For example: defines that the content type is HTML,  
encoded in UTF-8, so the page will render the HTML content encoded  
in UTF-8 Some other widely used values are text/plain,  
application/json, and application/xml, according to the content being  
produced. On imports tag JSP developers can make use of Java classes  
and packages in JSP page. It makes development JSP so simpler  
because you will not have to use fully qualified class names. Import  
multiple classes or packages using import for multiple import attributes  
e.g. imports all classes in the java. util package. If an exception occurs  
and the errorPage attribute of the page is specified, the page URL  
specified in errorPage will be invoked. That means we can implement  
graceful error handling and avoid raw stack traces from being  
displayed to users. For example, If there is any Exception then a jsp  
page should be shown. Check whether the current page is an error page  
with the isErrorPage attribute This post is related to the exception  
implicit object that is available when the isException=true. For  
example, specifies that the page in question is an error page. The  
session attribute is used to enable or disable session management for  
the page. When this is true, the session implicit object is made  
available and developers can store and read session data. Example: The  
creates session management for the page. This uses a buffer attribute  
where you can set the buffer size for the output stream before writing  
it to the client autoFlush Specifies whether the buffer will be  
automatically flushed if the buffer is full. The info attribute is a string  
storing a description of the page, which can be obtained through calling  
the HttpServlet class getServletInfo() method. The language attribute  
defines the scripting language that's used in a JSP page, it is Java in  
usual. The other attributes that can be specified (extends, pageEncoding  

244  
MATS Centre for Distance and Online Education, MATS University  



Notes  and isThreadSafe) give more control over how the page is processed. It  39

is important to note that the page directive is critically important in  
setting up page-specific information so that the JSP container can  
process the page as per the information given.  
Include Directive:  
One is the include directive, which is a powerful tool in JSP  
development, allowing developers to insert the content of another file  
into the current JSP page at translation time. This allows for modular  
development and code reuse, as common elements that appear on  
multiple pages can be factored out into separate files and then included  
in multiple JSP pages. This last parameter is the file to be included.  
The path can be a relative/absolute path depending upon where the  
included file is.  
Multiple-Choice Questions (MCQs)  

1. What is the primary purpose of JSP?  
a) To create standalone Java applications  
b) To generate dynamic web content  
c) To replace JavaScript in web pages  
d) To manage databases  

Answer: b) To generate dynamic web content  
2. Which of the following is not a JSP scripting element?  

a) Scriptlet (<% %>)  
b) Expression (<%= %>)  
c) Declaration (<%! %>)  
d) Method (<%method%>)  

Answer: d) Method (<%method%>)  
3. Which implicit object in JSP is used to access session-related  

data?  
a) request  
b) session  
c) application  
d) config  

Answer: b) session  
4. What does the <%@ page %> directive do in JSP?  

a) Includes another JSP file  
b) Defines global settings for a JSP page  
c) Forwards a request to another page  
d) Declares a Java variable  

245  
MATS Centre for Distance and Online Education, MATS University  



Notes  Answer: b) Defines global settings for a JSP page  

5. Which action element is used to forward a request to another  
resource in JSP?  

a) <jsp:forward>  
b) <jsp:include>  
c) <jsp:action>  
d) <jsp:redirect>  

Answer: a) <jsp:forward>  
Short Answer Questions  

1. What are the advantages of using JSP over servlets?  24

2. Explain the different phases in the life cycle of a JSP page.  
3. What is the difference between a scriptlet and an expression in  

JSP?  
4. Name and explain three JSP implicit objects.  
5. What is the difference between <jsp:forward> and  

<jsp:include>?  
Long Answer Questions  

1. Describe the life cycle of a JSP page with a detailed explanation  
of each phase.  

2. Explain JSP scripting elements with examples of each.  
3. What are JSP implicit objects? Describe any five with their  

usage.  
4. Explain the different types of JSP directive elements and their  

purposes.  
5. How do JSP action elements work? Compare <jsp:forward> and  

<jsp:include> with examples.  

246  
MATS Centre for Distance and Online Education, MATS University  



Module 5  
Spring and Spring Boot Framework  

LEARNING OUTCOMES  
• To understand the core concepts of Spring and Spring Boot.  

• To analyze web application development using Spring.  
• To study Spring Boot architecture and key components.  
• To implement database connectivity using Spring JDBC.  
• To explore Aspect-Oriented Programming (AOP) in Spring  

Boot.  

247  

• To explore dependency injection and IOC container.  



Notes  Unit 16: Introduction to Spring Initializing and Writing  
Spring application  

5.1 Introduction to Spring:  
With Spring, a full-fledged and well-accepted framework that has  
absolutely changed the way Java applications are developed by  
providing an infrastructure to develop enterprise applications. Spring is  
a container framework that is designed to develop very loosely coupled  
easily testable and maintainable applications based on DI(AOP)  
principles under the hood. Spring is designed in a modular way,  
meaning developers can pick and choose only the aspects that they will  
need, making it a light development environment. The framework is  
capable of serving different types of applications like web  
applications, microservices, and batch processing systems. Spring was  
conceived out of a desire to overcome the challenges and confines of  
Java EE, providing a more agile and pragmatic approach to application  
development. Over the years, the framework has evolved to support  
new technologies and methodologies, making it a popular choice  
among developers. Spring is a collection of many different modules  
that focus on different aspects of application development. The heart  
of this framework is its core container, responsible for managing the  
full lifecycle of application components (beans). The Spring's DI  
mechanism helps developers configure the dependencies for beans and  
process these beans by injecting the dependencies for them in runtime.  
By doing so, we encourage loose coupling, such that interdependencies  
between code are reduced and code is more reusable. Aspect-Oriented  
Programming, or AOP, is another key pillar of Spring, offering a way  
to modularize cross-cutting concerns like logging, security, and  
transaction management. Aspects can also handle cross-cutting  
concerns, allowing developers to encapsulate these concerns into facets  
that can be applied uniformly to the application without polluting the  
business logic itself. The Spring framework enables seamless  33

interaction with different data access technologies like JDBC,  
Hibernate, JPA, etc., to facilitate data persistence. Spring Boot is a sub-  
project of Spring that has taken the core components of Spring and  
provided sensible defaults for creating stand-alone, production-ready  
Spring applications (also known as Auto-Configuration). Spring offers  

248  
MATS Centre for Distance and Online Education, MATS University  



Notes  a wealth of documentation, an active community, and an abundance of  
resources that make it suitable for both novice and expert developers.  

Figure 5.1: Spring Framework  
[Source: https://www.careerride.com/]  

Initializing a Spring Application:  
When a Spring application starts, it initializes the Spring container that  
serves as the central interface in the Spring framework to manage the  
components of your application. A Spring application consists of  
different types of objects called "beans". 4 Techniques to Initialize a  
Spring Container Historically, bean configuration, including properties  
to inject and bean dependencies, was done primarily in XML. An  
XML file is created and is usually called applicationContext. xml but  
defining the beans using elements. The container would parse this  
XML file and create the beans. XML and its configuration can be  
lengthy and cumbersome, particularly for large and complex  
applications. The solution Spring provided, was an annotation-based  
configuration which allowed the developers to define beans (and their  
dependencies) inside the code written in Java. With annotations like  
@Component, @Service, @Repository and @Controller, classes are  
marked as beans, while @Autowired and @Qualifier determine which  
dependency is to be injected. Spring also provides Java-based  
configuration, which is a more programmatic way of defining beans  

249  
MATS Centre for Distance and Online Education, MATS University  



Notes  and their dependencies. Developers may write configuration classes  
(with annotation @Configuration) and specify beans (with @Bean  
methods). It gives them more control and flexibility for configuring  
how they handle data. Spring Boot comes with autoconfiguration which  
makes the bootstrapping process even simpler. Spring Boot  
automatically instantiates the Spring container and configures it with  
the dependencies that exist in the classpath. One of its key features is  
auto-configuration, meaning if Spring MVC is found on the classpath,  
a dispatcher servlet and other beans will be automatically populated.  
This means that in most cases there is no manual configuration  
required. The decision on which method to use depends on the  
characteristics required by the application. In general annotation based  
and java based configuration is preferred in modern spring  
applications due to better readability and flexibility. XML-based  
configuration is still possible but primarily exists for legacy  
applications or when very specific configuration is required. In  
whichever way we choose to go about it, the initialization is upon us  
and we create an ApplicationContext, which is your Spring container.  
In Application Context, you have many methods to access the beans,  
retrieve the configuration properties, and also to publish the events.  
Now, the Application Context is helpful when it comes to obtaining the  
beans and calling the methods from those beans. Spring Application is  
typically used in Spring Boot applications. run() method part to create  
the Application Context. This means that the container will be  
configured automatically and the application will be started. Bean  
validation also takes place in Spring for this reason, where Spring  
ensures that all beans have either been created properly or possess the  
correct configuration and parameterization for the application to run  
properly. Knowing the different initialization modes and their impact  
helps developers in properly configuring their Spring applications and  
making the advantages of the framework.  
Writing Spring Applications:  
Creating Spring applications is based on the use of the framework's  
main attributes Dependency Injection (DI) and a component-based  
style. DI encourages loose coupling because the beans do not create  
their dependencies, but rather, define them. It frees the components  
from each other using dependency injection (DI) at runtime and  
increases code reusability by maintaining loosely coupled components.  

250  
MATS Centre for Distance and Online Education, MATS University  



Notes  Spring Applications are, generally speaking, layered with  
presentation, service, data access layers, etc. All three layers contain  
components, which are classes annotated with @Component,  
@Service, @Repository, or @Controller. These annotations indicate  
that these classes are beans, which enables the Spring container to  
manage their lifecycle. The Service Implementation classes are also  
annotated with the @Service annotation and the different classes that  
are used to interact with the database (DAO classes) are annotated with  
the @Repository annotation. It is about @Controller annotation used  
in spring framework to decorate classes which handle HTTP request.  
@Autowired: Used to specify dependencies between beans. When one  
bean needs another, the @Autowired annotation can be used to inject  
the needed bean instance. There are many types of dependency  
injection Constructor Injection, Setter Injection, Field Injection  
supported by Spring. However, in most cases, constructor injection is  
preferable so that all dependencies are set when the bean is created.  
Setter injection and field injection can be applied for situations where  
constructor injection is impractical. It also provides support for  
dependency injection through Java-based configuration. Developers  
configure beans and their dependencies using @Bean methods in  
@Configuration classes. It allows for more flexibility in the  
configuration process. By using AOP and aspect-oriented  
programming, developers can modularize cross-cutting concerns, such  
as logging, security, and transaction management, into aspects that can  
be applied across multiple classes and components. Upon encapsulating  
these concerns into aspects, developers would be able to apply them  
consistently across the application without muddling the core business  
logic. We define aspects using @Aspect classes and pointscuts using  
annotations such as @Before, @After, @Around, @Pcumptcut, etc.  
Because Spring also supports multiple data access technologies,  
interacting with a database becomes more straightforward. The  
database can be accessed using JDBC, Hibernate, or JPA by the  
developers. It can be tricky to access data easily as the project grows in  
size and the codebase gets bigger, but Spring definitely reduces that  
complication by providing repositories that create database queries  
based on the name of the method you wroteSpring Data is a sub-project  
under the Spring umbrella that makes it easier to access data by  
providing functionality to create repositories, which automatically  

251  
MATS Centre for Distance and Online Education, MATS University  



Notes  builds database queries based on the name of the method you wrote.  
Spring MVC is a model-view-controller framework for building web  
applications. The Spring MVC framework makes use of the Dispatcher  
Servlet, which is responsible for processing incoming HTTP requests  
and sending it to the appropriate controllers. Controller - Classes  
annotated with the @Controller handle specific HTTP requests. JUnit  
and Mockito are usually used to test spring applications. Thanks to  
Spring's dependency injection support, you can mock and stub  
dependencies easily, hence also write unit tests easily. Spring Boot  
makes it easy to create stand-alone, production-grade Spring-based  
Applications that you can "just run". Spring Boot lets you package  
your applications as executable JAR files, for quick deployment and  
running. Spring framework helps to develop a flexible and easy  
oriented application.  
Spring Boot:  
Enter Spring Boot which has become a real-deal-industry-changer for  
all Spring Development, liberating developers with quicker and more  
efficient development of stand-alone, production-ready Spring  
Applications. It handles a lot of the boilerplate configuration needed in  
a traditional Spring application, so developers can concentrate on  
writing business logic. It does this with its auto-configuration features,  
which provide Spring container configuration whenever your classpath  
has dependencies. So if Spring MVC is on the class path, Spring Boot  
configures a dispatcher servlet and other necessary components. That  
means much less setup is required manually. Spring Boot comes with  
sensible defaults for many aspects of application development,  
including embedded servers, logging, and security. If necessary,  
developers can override these defaults, but usually, they are enough for  
most applications. Since spring-boot applications need to include all  
jars for uses (zipped into a jar) and load an embedded server. This is  
what simplifies their deployment and execution since they can be run  
from the command line with the java -jar command. The Spring Boot  
CLI is a command-line tool that you can use to create and run Spring  
Boot applications with ease. The CLI has also your back for  
dependencies management and test running. The Spring Boot Actuator  
Module: The Spring Boot actuator module provides endpoints to  
monitor and manage your Spring Boot application. This endpoints  
gives information of application bsolutely. By using DI in our Web  

252  
MATS Centre for Distance and Online Education, MATS University  



Notes  Application we can ensure that our components or services are unload  
and reuseable, let us dive into Dependency Injection, Web Application  
Development, and return 8800−word answer in Eight paragraphs on  
what DI we can achieve through Web Application Development in the  
context or any learnings out there, DI in combination with Web  
Application Development.  

253  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 17: Dependency Injection  

5.2 Dependency Injection  
Dependency Injection (DI) helps achieve loose coupling and  
modularity within the systems. Basically, DI helps provide the  
dependencies of a class from an outside source instead of the class  
creating/managing them itself.  

At the heart of the Spring Framework lies the Spring container, which  
is responsible for creating, configuring, wiring, and managing the  
complete lifecycle of objects within an application. These objects,  
known as Spring Beans, are managed through a process called  
Dependency Injection (DI).  
The container determines which objects to instantiate and how to  
configure and assemble them based on the configuration metadata  
provided. This metadata can come in various forms, such as XML  
configuration files, Java annotations, or Java-based configuration  
classes. The diagram below (not shown here) illustrates a high-level  
overview of how the Spring Framework operates: the Inversion of  
Control (IoC) container uses POJO (Plain Old Java Object) classes  
and the configuration metadata to build a fully functioning application.  

Types of Spring IoC Containers  

254  
MATS Centre for Distance and Online Education, MATS University  



Notes  Spring offers two primary types of IoC containers:  

Sr.No.  Container  Description  

This is the most basic type of container,  
defined  by  the  
org.springframework.beans.factory.BeanFa  
ctory interface. It supports fundamental  
dependency injection features. Interfaces  

Spring  
such  as  BeanFactoryAware,  

1 BeanFactory  
Container  

InitializingBean, and DisposableBean are  
also part of this container. Though  
BeanFactory is retained for backward  5252

compatibility with many third-party tools, it  
is less commonly used in modern Spring  
applications.  

This is a more advanced container that  
extends BeanFactory and includes additional  
enterprise features, such as resolving text  Spring  

ApplicationC messages from properties files and  
2

ontext  publishing application events to listeners. It  
is defined by the  Container  
org.springframework.context.ApplicationC  
ontext interface.  

The ApplicationContext container is a superset of BeanFactory,  
offering all its features and more. For most applications,  
ApplicationContext is preferred, as it provides richer functionality.  
However, BeanFactory may still be suitable for lightweight  
environments, such as mobile or embedded applications, where  
memory and speed are critical concerns.  

This inversion of control (IoC) means the class does not take  
responsibility for managing its dependencies, instead, the  
responsibility is delegated to an external agent, normally an IoC  
container. DI is a design principle that follows the Dependency  
Inversion Principle, which puts the high-level modules not relying on  
the low-level modules to maintain the code, but both rely on  
abstractions. Decoupled components allow easy replacement of a  
dependency and hence would result in more flexibility, testability,  
maintainability. In classical application development classes usually  

255  
MATS Centre for Distance and Online Education, MATS University  



Notes  instantiate their dependencies directly and this leads to tight coupling.  
If there are any changes in the dependency, dependent class must also  
be modified leading to a chain of modifications in the significant part  
of code. DI solves this problem by introducing an intermediary (the IoC  
container) that manages the instantiation and provisioning of  
dependencies. The IoC container instantiates objects and injects them  
into dependent classes, according to configuration or conventions. This  
is because classes can now focus on their core logic, and not on how to  
create and manage their dependencies. In between simple factory-style  
IoC containers and advanced framework-style IoC containers. They  
have features like dependency resolution, lifecycle management, and  
configuration management. Using IoC containers, developers are able  
to build more modular, testable, and maintainable applications. The  
container abstracts away the details of object instantiation and  
dependency injection, allowing developers to focus on business logic.  
Understanding Constructor Injection and Its Benefits  
Constructor Injection: It is a type of dependency injection in which  
dependencies are injected into a class via its constructor. With this  
design, a class is guaranteed to receive all of the dependencies it  
requires when it is constructed; as a result, the class is fully initialized  
and prepared for any subsequent interaction. In Constructor Injection,  
your dependencies can declared as final fields, there by ensuring  
immutability. Because this structure is immutable, it is easier to work  
with across threads and you are less likely to accidentally cause side  
effects. In addition, constructor injection provides clarity to a class in  
terms of its dependencies only by looking at its constructor parameters.  
In addition, you are using Dependency Injection, which is an explicit  
declaration of dependencies for classes, and thus it offers better  
readability, maintainability and testability.  
Delving Deeper into IoC Containers and Dependency Resolution  
Well, IoC containers are the all-time base work of Dependency  
Injection this allows you to separate the creation of a service from  
using it. Container runtimes, for example, are responsible for running  
containers, providing features like dependency resolution, lifecycle  
management, and configuration management. Dependency resolution  
is discovering and supplying the correct dependencies to a class based  
on its constructor parameters or setter methods. IoC containers use  
metadata (like annotations or XML configurations) to identify the  

256  
MATS Centre for Distance and Online Education, MATS University  



Notes  dependencies and their implementations. Based on such type matching  
or named binding, they automatically resolve dependencies and allows  
you to easily construct complex object graphs. Another important  
feature of IoC containers is lifecycle management. They handle object  
life-cycle management (creating, initializing, and destroying them).  
The containers can invoke initialization methods after the object is  
created and destruction methods before disposing of the object,  
providing the developers an opportunity to do the necessary work in  
setting up and cleaning up the resources associated with the object. In  
configuration management, the developers specify dependencies and  
implementations using configuration files or annotations. IoC  
containers will read these configurations and use them to wire them  
up. The separation of configuration from code allows for easy  
management and modifications of an application's dependencies  
without compiling the code. Another feature offered by IoC containers  
is scope management where developers can specify the lifecycle and  
visibility of the objects. They can define singleton objects, which are  
objects that have a single instance within the application, or prototype  
objects, which create a new instance for each request. Also, the  
containers provide support for aspect-oriented programming (AOP)  
which allows developers to write cross-cutting concerns such as  
logging or transaction management and apply it to multiple objects.  
That make it easy for the application to be separated into modules  
implementing common functionality.  

257  
MATS Centre for Distance and Online Education, MATS University  



Notes  Unit 18: Developing web applications  

5.3 Developing Web Applications  3636

Web application development refers to the process of designing,  
building, deploying, and maintaining web applications. These apps  
usually deal with showing and processing information, validating user  
input, and maintaining the state of the application. To present  
information in a web app, developers use HTML, CSS, and JavaScript  
among other techniques. Hypertext Markup Language (HTML) is used  5252

to create the structure and content of a web page, and cascading style  
sheets (CSS) are used to style and format that content. FIGURE 22:  
JavaScript adds interactivity and dynamic behavior to web pages. Most  
of the time web applications receive data from databases or external  
APIs and show it to the user. This data may be shown in many forms,  
including tables, lists, or charts. Server-side programming languages  
like Java, Python, or PHP, are used by developers to process the data,  
and generate HTML before sending it to the browser. JavaScript  
running on the client-side can also be used to dynamically update the  
web page content, in real time, without the need of a full page reload.  
One such technique, commonly abbreviated to AJAX (Asynchronous  
JavaScript and XML), enables the development of more dynamic and  
interactive user interfaces. Handling user input, including form  
submissions and search queries, is another core functionality for Web  
applications. The server-side code processes this data after the forms  
collect data from the users. Various techniques for user input  
validation exist, and developers make sure the input is formatted  
correctly. Client-side validation using JavaScript or server-side  
validation using the chosen programming language can perform this  
check. Similarly, web applications need to perform maintain the  
application's state, such as user sessions and application settings.  
Cookies, session variables and databases are some of the different  
methods to store this state. There are many ways the developers ensure  
that the state is consistent across multiple requests. Web Application  3636

Development Conclusion The web application development process  
includes client-side and server-side technologies that combine to create  
dynamic and interactive applications that react to user input and  
manipulate data.  

258  
MATS Centre for Distance and Online Education, MATS University  



Notes  From the perspective of Web applications, we often take care of Form  
input validation and processing information in it.  
Processing Information and Validating Form Input in Web  
Applications  
Thus works in a web application processing information such as  
fetching data from multiple sources, transforming it and showing it to  
users. This can be in the form of databases, external APIs, or user  
input. Data is processed and HTML content is generated using server-  
side programming languages before being submitted to the browser.  
Developers employ numerous methods to query databases, modify  
data structures, and create dynamic content. They may utilize SQL  
(Structured Query Language) to access relational databases, or employ  
object-relational mapping (ORM) frameworks to convert database  
tables into objects. After getting the data, developers can apply  
different methods to transform it into the required format. That could  
mean filtering, sorting, or aggregating the data. Word processors  
include features related to formatting, editing, and printing, while they  
can also utilize templating engines to build up HTML content by filling  
dynamic data into pre-constructed templates. Form Validation is one  
of the key parts of web application development. Then the application  
makes utilization of this data by collecting the output as per the  
conditions stated in the validation object. Basic level validation can be  
done on client-side JavaScript, like checking if required fields are  
filled out or checking validity of email address. It's also important to  
mention that server-side validation is required to stop malicious input  
and maintain data integrity. Renowned developers tempt respective  
patterns to verify that the input was as expected,adding checks on data  
types,longitudinal arrangements, etc. They can also validate complex  
input formats using a regular expression. For instance, if the input is  
invalid, developers can show error messages to the user and stop the  
form from being submitted.  

5.4 Working with Data in Spring  
Developers have control over data persistence with the Spring data  
access layer, that offers powerful tools to interact with databases. Java  
Database Connectivity (JDBC) is the old way of directly interacting  
with the relational database, where developers write SQL queries and  
manually maintain the database connections. Spring does an excellent  
job of doing this by encapsulating abstraction layers and helper classes  

259  
MATS Centre for Distance and Online Education, MATS University  



Notes  that minimize boilerplate code. JDBC by itself is about making a  
connection, creating statements, executing queries, and processing the  
result set. In complex applications, this can be tedious and error-prone.  
One solution to the above difficulties is Spring's JdbcTemplate class,  
which abstracts JDBC operations, manages resources and offers a  
cleaner API. JdbcTemplate allows developers to run SQL queries in a  
few words by utilizing its query(), update(), and execute() methods. An  
example would be to fetch the data, you would call the query() method  
by passing SQL query and RowMapper implementation to map the  
result set to Java objects. This interface contains one method,  34

mapRow(), which is responsible for converting a row of the result set  
into an object. For executing queries with named parameters, Spring  
provides the NamedParameterJdbcTemplate, which makes the code  
more readable and maintainable. JdbcTemplate only gets us halfway  
there, though, as Spring also provides DataSource implementations for  
establishing connections to our databases. This means that the  
DataSource interface is actually a type of factory for connections;  
developers can configure connection pools and so on. For example,  
Spring has DriverManagerDataSource, that creates new connection  
each time request is made, and BasicDataSource from Apache  
Commons DBCP provides connection pooling. Another important  
feature of Spring data access is transaction management.  
TransactionTemplate provides a way of committing a transaction, so  
makes transaction transactional very easy and reduces the boilerplate  
to write, you will just have to focus on all your normal transaction  
overall logic. Transactional management with declarative transactions  
(e.g. using @Transactional annotations) further abstracts transaction  
management by automatically opening and closing transactions. Spring  
Data JDBC, one of the newer members of the Spring Data clan, offers  
a minimalist and object-oriented approach to data access. You focus on  
mappng domain objects to relational database table mappings, which  
will reduce the need to write manual SQL queries. Spring Data JDBC  
follows an aggregate oriented approach, which means that domain  
objects are regarded as aggregates, which are further defined as  
collections of related objects. This strategy is cohesive with domain-  
driven design, crafting a more organic correspondence between the  
domain models and the database schemas. JdbcAggregateTemplate sits  
behind Spring Data JDBC for all database operations. This template  

260  
MATS Centre for Distance and Online Education, MATS University  



Notes  comes with a set of functions on how to save, delete and query for  
aggregates. Spring Data JDBC uses annotation mapping like @Table,  
@Id and @Column for mapping domain objects to database tables.  
Each of those are explained below @Table annotation specifies the  
table name, @Id specifies the primary key, and @Column specifies the  
column name. These annotations help Spring Data JDBC to map  
objects to the database table, it will generate SQL queries automatically  
so user need not to write the query themselves. Spring Data JDBC does  
also support relationships between aggregates. You can map one-to-  
one, one-to-many, and many-to-many relationships using annotations  
such as @MappedCollection and @Reference. @MappedCollection  
===> @Reference: Mapped collection of related objects, and mapped  
a single related object. Spring Data JDBC caters you with an  
aggregate-root mapping model, thus making for a simpler data access  
by eliminating the need for writing SQL queries on your own and  
handling a lot of mapping. Full-fledged Data Access Solution: It is  
deeply integrated with Spring's transaction management and other  
features, providing a full data access solution.  
5.5 Introduction to Spring Boot:  
Spring Boot is a new milestone on the way to evolution of the Spring  
ecosystem — it alleviates the pain of extra configuration and  
complexities of the traditional Spring development cycle. A Heavy  
framework for enterprise applications tightly packed with  
configurations which is end of the case nightmare for developers  
especially for the newbies. Spring Boot minimizes all of these into  
sensible defaults, tracking configuration and an embedded server,  
making it simple and possible for developers to bootstrap and deploy  
applications. Difference between Spring Framework and Spring Boot –  
The Spring is a Framework where another is reduce or eliminate, the  
requirement to make three-letter dependency in specific modules. This  
is in stark contrast to Spring itself, which is a huge framework and  
requires you to configure everything you want even the beans,  
datasources, web components etc. Usually this is set up using XML or  
Java annotations. On the other hand, Spring Boot follows the  
Convention over Configuration approach by providing sensible  
defaults for most of the configuration. To do this, it automatically sets  
up components based on the dependencies in the classpath, with the  
least amount of configuration. Example: You can see that when it finds  

261  
MATS Centre for Distance and Online Education, MATS University  



Notes  a database driver in the classpath, Spring Boot will automatically  
configure a DataSource and JdbcTemplate. It includes an Embedded  
Server (Tomcat, Jetty, and Undertow), so there is not necessity for  
external deployment server. γ This simplifies the deployment steps, as  
developers can bundle applications into runnable JAR files that can be  
executed without a separate server. One of the most important feature  
of spring boot is auto-configuration, which makes developer's life  
easy. It auto detects beans by looking for dependencies in the  
classpath. What this means is if a web dependency exists, Spring Boot  
will automatically configure a DispatcherServlet and other web related  
classes. Because of that less the configuration required, which helps the  
developer to concentrate more on the business logic. Spring Boot  
provides several starters — a set of convenient dependency descriptors  
to simplify the dependency management. Starter dependencies is self-  
explanatory; it is basically a wrap for related dependencies grouped  
together as a single dependency to avoid declaring them one by one.  
Adding a starter dependency like spring-boot-starter-web pulls in the  
required dependencies to create web applications with Spring MVC,  
Tomcat and Jackson. Spring Boot Actuator provides a set of  
production-ready features, such as health checks, application metrics,  
and auditing. Features helpful for tracking and operating the  
applications in production environments. It provides excellent testing  
support and has a suite of testing solutions, such as @SpringBootTest  
and MockMvc, making integration tests easier to implement. These  
tools ease integration and unit testing so developers can mock extensive  
tests to their applications. Basically, Spring Boot is a tiny little baby of  
Spring with all its goodness and no in-depth complexity. It also  
removes the configuration burden, improves deployment, and  
introduces production-ready features, making it the ideal framework for  
building modern enterprise applications.  
5.6 Spring Boot Architecture:  
The architecture of Spring Boot is a significant set of core components  
to simplify and accelerate the applications development process by  
providing an overview of the framework. Spring Boot is built on a core  
component called its auto-configuration mechanism that, based on  
dependencies available in the classpath, it auto configures the beans.  
This leads to less manual configuration, allowing developers to  
concentrate on business logic.  

262  
MATS Centre for Distance and Online Education, MATS University  



Notes  
The Spring Web MVC framework provides Model-View-Controller  9999

(MVC) architecture and ready components that can be used to develop  
flexible and loosely coupled web applications. The MVC pattern results  
in separating the different aspects of the application (input logic,  
business logic, and UI logic), while providing a loose coupling between  
these elements.  

• The Model encapsulates the application data and in general  8888

they will consist of POJO.  
• The View is responsible for rendering the model data and in  

general it generates HTML output that the client's browser can  
interpret.  

• The Controller is responsible for processing user requests and  
building an appropriate model and passes it to the view for  9999

rendering.  
The DispatcherServlet  
The Spring Web model-view-controller (MVC) framework is designed  
around a DispatcherServlet that handles all the HTTP requests and  8888

responses. The request processing workflow of the Spring Web  
MVC DispatcherServlet is illustrated in the following diagram −  9999

Following is the sequence of events corresponding to an incoming  
HTTP request to DispatcherServlet −  

• After receiving an HTTP request, DispatcherServlet consults  8888

the HandlerMapping to call the appropriate Controller.  

263  
MATS Centre for Distance and Online Education, MATS University  



Notes  • The Controller takes the request and calls the appropriate  
service methods based on used GET or POST method. The  
service method will set model data based on defined business  
logic and returns view name to the DispatcherServlet.  
The DispatcherServlet will take help from ViewResolver to  
pickup the defined view for the request.  

•

• Once view is finalized, The DispatcherServlet passes the model  
data to the view which is finally rendered on the browser.  

All the above-mentioned components, i.e. HandlerMapping,  9999

Controller, and ViewResolver are parts  
of WebApplicationContext which is an extension of the  
plainApplicationContext with some extra features necessary for web  
applications.  
Required Configuration  
You need to map requests that you want the DispatcherServlet to  8888

handle, by using a URL mapping in the web.xml file. The following is  
an  example  to  show  declaration  and  mapping  
for HelloWeb DispatcherServlet example −  

<web-app id = "WebApp_ID" version = "2.4"  9999

xmlns = "http://java.sun.com/xml/ns/j2ee"  
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  
xsi:schemaLocation = "http://java.sun.com/xml/ns/j2ee  
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">  

<display-name>Spring MVC Application</display-name>  

<servlet>  
<servlet-name>HelloWeb</servlet-name>  
<servlet-class>  

org.springframework.web.servlet.DispatcherServlet  
</servlet-class>  
<load-on-startup>1</load-on-startup>  

</servlet>  

<servlet-mapping>  
<servlet-name>HelloWeb</servlet-name>  
<url-pattern>*.jsp</url-pattern>  

264  
MATS Centre for Distance and Online Education, MATS University  



Notes  </servlet-mapping>  

</web-app>  

The web.xml file will be kept in the WebContent/WEB-INF directory  3333333 66666666

of  
of HelloWeb DispatcherServlet, the framework will try to load the  3333333

application context from file named [servlet-name]-  

your  66666666 web  application.  Upon  initialization  

a
servlet.xml located in the application's WebContent/WEB-INF  3333333 66666666

directory. In this case, our file will be HelloWebservlet.xml.  

Next, <servlet-mapping> tag indicates what URLs will be handled by  3333333

which DispatcherServlet. Here all the HTTP requests ending  
with .jsp will be handled by the HelloWeb DispatcherServlet.  
If you do not want to go with default filename as [servlet-name]-  
servlet.xml and default location as WebContent/WEB-INF, you can  
customize this file name and location by adding the servlet  
listener ContextLoaderListener in your web.xml file as follows −  

<web-app...>  

<!-------- DispatcherServlet definition goes here----->  
....  
<context-param>  

<param-name>contextConfigLocation</param-name>  
<param-value>/WEB-INF/HelloWeb-servlet.xml</param-value>  

</context-param>  

<listener>  
<listener-class>  

org.springframework.web.context.ContextLoaderListener  
</listener-class>  

</listener>  

</web-app>  

265  
MATS Centre for Distance and Online Education, MATS University  



Notes  Now, let us check the required configuration for HelloWeb-  
servlet.xml file, placed in your web application's WebContent/WEB-  
INF directory –  

<beans xmlns = "http://www.springframework.org/schema/beans"  
xmlns:context = "http://www.springframework.org/schema/context"  
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"  66666666

xsi:schemaLocation =  
"http://www.springframework.org/schema/beans  

http://www.springframework.org/schema/beans/spring-beans-  
3.0.xsd  3333333

http://www.springframework.org/schema/context  
http://www.springframework.org/schema/context/spring-context-  

3.0.xsd">  

<context:component-scan base-package = "com.tutorialspoint" />  

<bean class =  
"org.springframework.web.servlet.view.InternalResourceViewResolv  
er">  

<property name = "prefix" value = "/WEB-INF/jsp/" />  
<property name = "suffix" value = ".jsp" />  

</bean>  

</beans>  

Following are the important points about HelloWeb-servlet.xml file −  
• The [servlet-name]-servlet.xml file will be used to create the  

beans defined, overriding the definitions of any beans defined  
with the same name in the global scope.  

• The <context:component-scan...> tag will be use to activate  
Spring MVC annotation scanning capability which allows to  
make use of annotations like @Controller and  
@RequestMapping etc.  

• The InternalResourceViewResolver will have rules defined to  
resolve the view names. As per the above defined rule, a logical  
view named hello is delegated to a view implementation  
located at /WEB-INF/jsp/hello.jsp .  

266  
MATS Centre for Distance and Online Education, MATS University  



Notes  The following section will show you how to create your actual  66666666

components, i.e., Controller, Model, and View.  
Defining a Controller  
The DispatcherServlet delegates the request to the controllers to  
execute the functionality specific to it. The @Controller annotation  
indicates that a particular class serves the role of a controller.  
The @RequestMapping annotation is used to map a URL to either an  
entire class or a particular handler method.  

@Controller  
@RequestMapping("/hello")  
public class HelloController {  

@RequestMapping(method = RequestMethod.GET)  
public String printHello(ModelMap model) {  

model.addAttribute("message",  
Framework!");  

return "hello";  

"Hello  Spring  MVC  

}777777

}

The value attribute indicates the URL to which the handler method is  
mapped and the method attribute defines the service method to handle  
HTTP GET request. The following important points are to be noted  66666666

about the controller defined above −  
• You will define required business logic inside a service method.  

You can call another method inside this method as per  
requirement.  

• Based on the business logic defined, you will create a model  777777

within this method. You can use setter different model attributes  66666666

and these attributes will be accessed by the view to present the  
final result. This example creates a model with its attribute  
"message".  

• A defined service method can return a String, which contains  777777 66666666

the name of the view to be used to render the model. This  777777

example returns "hello" as logical view name.  
Creating JSP Views  
Spring MVC supports many types of views for different presentation  
technologies. These include - JSPs, HTML, PDF, Excel worksheets,  

267  
MATS Centre for Distance and Online Education, MATS University  



Notes  XML, Velocity templates, XSLT, JSON, Atom and RSS feeds,  
JasperReports, etc. But most commonly we use JSP templates written  66666666

with JSTL.  
Let us write a simple hello view in /WEB-INF/hello/hello.jsp −  

<html>  
<head>  

<title>Hello Spring MVC</title>  
</head>  

<body>  
<h2>${message}</h2>  

</body>  
</html>  

Here ${message} is the attribute which we have set up inside the  777777

Controller. You can have multiple attributes to be displayed inside your  
view.  

Spring Web MVC Framework Examples  
Based on the above concepts, let us check few important examples  
which will help you in building your Spring Web Applications –  

Sr.No. Example & Description  2121

Spring MVC Hello World Example  
1

2

3

This example will explain how to write a simple Spring  777777

Web Hello World application.  

Spring MVC Form Handling Example  
This example will explain how to write a Spring Web  
application using HTML forms to submit the data to the  
controller and display a processed result.  

Spring Page Redirection Example  2121

Learn how to use page redirection functionality in Spring  
MVC Framework.  

268  
MATS Centre for Distance and Online Education, MATS University  



Notes  
Spring Static Pages Example  

4

5

Learn how to access static pages along with dynamic  
pages in Spring MVC Framework.  

Spring Exception Handling Example  
Learn how to handle exceptions in Spring MVC  
Framework.  

Spring Boot auto-configuration works through conditional  
configuration classes, which are annotated with @Configuration and  
either @ConditionalOnClass or @ConditionalOnBean. No translation  
availableSorry, your browser doesn't support embedded videos. A  
conditional annotation, for example a configuration class annotated  
with @ConditionalOnClass(DataSource. Those will be effective only  
in case DataSource class is on the classpath. Another important parts  
of spring boot architecture is spring boot’s starters. Starters are  
dependency descriptors that aggregating similar dependencies into a  
single dependency. They help manage dependencies: Since you don’t  
have to specify all dependencies one by one. The spring-boot-starter-  
web starter, for example, aggregates all dependencies needed for web  
app development, including Spring MVC, Tomcat, and Jackson.  
Bootstrap also supplies some sensible defaults for configuration,  
making development even easier. One of the significant features of  
Spring Boot is its embedded server. It does not require it to run on an  
external server, which means Joseph needs to deploy physical server  
or any server which just runs JET, builds standalone executable JAR  
file which can be launched without an external server. Spring Boot does  
have an Embedded Container of its own, supporting Tomcat, Jetty, and  
Undertow. Spring Boot provides a way to configure which embedded  
server to use with the spring. called in a properties file or via command  
line. Spring Boot actuator module contains production-ready features  
like health checks, metrics and auditing. It can help the production  
applications to monitor and manage. The actuator module exposes  
various endpoints that offer insight into the application's operation,  
such as health, metrics, and more. You can use HTTP or JMX to access  
these endpoints. Spring Boot's command-line interface (CLI) makes it  
easy to use Spring features as you build succinct and concise scripts  

269  
MATS Centre for Distance and Online Education, MATS University  



Notes  and even for rapid prototyping. To create and run Spring Boot  
applications, the CLI provides a list of commands. It is also equipped  
with a suite of Groovy scripts that can be used to automate common  3333333

development tasks. Testing Tools: @SpringBootTest and MockMvc  
make integration and unit testing easier. @SpringBootTest to create an  
application context for testing, and MockMvc to test web controllers.  
For testing, Spring Boot offers testing starters, too — spring-boot-  
starter-test being the starter that contains all testing dependencies.  
Recognizing the pros and cons of these usages — Spring Boot  
Externalized Configuration This makes configuration management  
very simple as you can change configuration values without  
recompiling the application. Spring Boot provides profile-specific  
configuration, which enables its user to configure the application by  
different environments such as Development, Testing, and Production.  
Spring Boot Event Publishing: Spring Boot provides a powerful  
mechanism to publish and listen to application events. This is suitable  
for async processing and decoupling components.  
Project Components in Spring Boot  
The architecture of Spring Boot is created in such a way that it  
simplifies the effort involved in the development phase; and the project  
components in Spring Boot are a fundamental aspect of this design.  
Among those, annotations, dependency management, and application  
properties are fundamental. Annotations are a type of metadata that  
provides a declarative way to add information to source code.  
Annotations are widely used in Spring Boot for the configuration of  
beans, mappings, and transactions. To give you an example, it uses  
@Component, @Service and @Repository annotations to annotate the  
classes so that these classes are discovered automatically and registered  
as Spring beans. @Autowired must be followed by, is Autowired,  
which reduces the code to be written for instantiation. In Spring  
Framework, @RequestMapping and its variants (@GetMapping,  
@PostMapping, etc.) allow developers to map HTTP requests to  
controller methods, making it easier to create web applications. Data  
consistency is taken care of by annotations like @Transactional which  
manages the transaction management functionality. Annotations in  
Spring Boot greatly minimize boilerplate code and xml configuration.  
You can also create custom annotations to consolidate common  
patterns and configurations, allowing for code reusability.  

270  
MATS Centre for Distance and Online Education, MATS University  



Notes  
Spring boot manages its dependency primarily through Maven or  
Gradle and relies on transitive dependencies to work. Spring Boot  
starters are pre-configured dependency sets for different functionalities.  
As an example, spring-boot-starter-web contains the dependencies  
needed to create a web app with Spring MVC, Tomcat, and Jackson.  
spring-boot-starter-data-jpa contains dependencies for working with a  
JPA and databases (Hibernate, JDBC drivers, etc.). spring-boot-starter-  
security → Dependency for authentication and authorization. These  
starter dependencies make the project setup easier, which means fewer  
dependency conflicts and compatibility issues. Spring Boot provides a  
parent pom, spring-boot-starter-parent, which defines the versions of  
common dependencies, making it even easier to manage dependencies.  
This parent POM also defaults some configurations to build plugins  
like the one from the Spring Boot Maven plugin that helps simplify  
creating executable JARs. Spring Boot dependency management is  
also highly extensible. It allows overrides for some dependency  
versions and the addition of as needed depending on the use case. This  
level of flexibility enables developers to adapt the project to their  
particular needs.  
Application properties managed at application-level properties or  
application. Also remember that application settings like env, yml files  
let you centralize the place for managing application settings. Using  
these properties, you can set up the details to connect with a DB, server  
port numbers, logging level, and many other application-specific  
configurations. These properties are loaded automatically by Spring  
Boot and they get fed into the application. You can access Properties  
using the @Value annotation or through Environment objects. For  
instance, @Value("${server. This piece "/schedule/secrets/" + port  
injects the value of the server. port property into a field. It also allows  
you to have sub keys (flattened hierarchies) to allow you to make your  
properties easier to read, like when they are defined in the same  
context. You can learn more in the system, Spring Boot supports  
Externalized configuration, properties can be loaded from several  
sources including command-line arguments, environmental variable,  
external configuration file. This resistance allows developers to prevent  
modifying source code when adapting the application actions on new  
environments. Profiles are used to define the configuration of any  

271  
MATS Centre for Distance and Online Education, MATS University  



Notes  environment (development, tests, production). For example,  
application-dev. properties for production-specific settings. properties  
allow to configure settings specific to production. Spring boot  
automatically loads the right profile quiet properties depending on the  
playing profile. The application properties are also important to  
configure Spring boot's auto-configuration. Most of Spring Boot's auto-  
configurations are configurable by properties, which means developers  
can tweak the behavior of these configurations. For instance, the  
spring. datasource. The url property is used for setting up the database  
connection URL, whereas the spring. jpa. hibernate. Schema  
Generation ddl-auto Property ddl-auto property is used to configure  
the behavior of Hibernate's Schema generation. These properties give  
you an extremely powerful and flexible way to customize your Spring  
Boot applications.  
5.8  Developing Spring Boot Applications  
That's because Spring Boot applications are meant to be developed as  
simply as possible by using starter dependencies and automatic  
configurations. As noted, before, Starter dependencies give a pre-  
configured set of dependencies for particular functionalities. It saves  
developers from spending much more time just setting up a project  
rather than writing business logic code. For instance, to build a web  
application, developers only have to add spring-boot-starter-web  
dependency in a project. Spring Boot Starter Web - This starter  
dependency comes with all necessary dependencies required to create  
a web application like Spring MVC, Tomcat, Jackson. Similarly, if a  
data access layer needs to be created, developers can simply add the  
spring-boot-starter-data-jpa dependency, which includes the necessary  
dependencies for interaction with JPA and databases. They are modular  
and compositional starter dependencies you use the parts you need and  
leave out the rest. One such critical feature of Spring Boot is the auto  
configurations, which ease the development process even more. So  
basically, Spring Boot does have default configuration classes which  
it configures (beans, components) by checking the available  
dependencies in the classpath and properties file provided like  
application. It removes the need for XML or Java-based configuration,  
decreasing boilerplate code and increasing maintainability. For  
instance, if we have the spring-boot-starter-web dependency, Spring  
Boot automatically configures a dispatcher servlet, view resolvers, etc.  

272  
MATS Centre for Distance and Online Education, MATS University  



Notes  Likewise, If spring-boot-starter-data-jpa dependency is found, Spring  
Boot will configure a data source, an entity manager factory and a  
transaction manager. Each of these auto-configurations is an  
intelligent, adaptive component that automatically recognizes and  
configures the necessary components according to the project  
dependencies and properties. It is also very powerful mechanism to  
customize the auto-configurations as well. By declaring their own  
beans or properties, developers can customize the default  
configurations. If, for instance, developers want to configure a data  
source, they can define a DataSource bean in their application context.  
In the same thought, if developers want to know how to customize the  
web configuration, they can define a WebMvcConfigurer bean. With  
such customization possibilities, you can fully customize the app as per  
your needs.  

The Spring Boot command line interface (CLI) also helps to ease  
getting started with Spring Boot. The build tool and CLI enable  
creating, running, and packaging Spring Boot applications in a very  
convenient way. It also offers a command package to handle  
dependency management, code generation, and various other  
development steps. You can use spring init to generate a new Spring  
Boot Project and spring run to execute one. We have ancripción and  
automation tools and loads of distribution information close to Maych  
to save time and allow productivity. Also, Spring boot gives us  
developer tools such as spring boot DevTools to improve the developer  
experience. With features like Hot Module Replacement (HMR) and  
remote debugging, DevTools drastically empowers productivity for  
developers. With automatic application restarts, developers do not  
have to manually restart the application in order to see changes to the  
code in real-time. Live reload refreshes the browser automatically upon  
modifying static resources like HTML, CSS, and JavaScript.  
Debugging applications running on remote servers is called remote  
debugging. These servers are embedded into developers' applications  
allowing packages to be deployed as executable JARs in any  
environment without needing an external server. This makes the  
deployment process easier and provides consistency across  
environments. Another reason is that Spring Boot offers remarkable  
deployment options, including Docker containers and cloud platforms,  

273  
MATS Centre for Distance and Online Education, MATS University  



Notes  enabling developers to select the deployment method that is most  
appropriate for them.  
5.9 Aspect-Oriented Programming (AOP) in Spring Boot  
Aspect-Oriented Programming (AOP) is a programming paradigm that  
provides a way to modularize cross-cutting concerns, such as logging,  
security, and transaction management.  

One of the core components of the Spring Framework is its support for  
Aspect-Oriented Programming (AOP). AOP is a programming  
paradigm that allows you to separate concerns within your application,  
especially those that cut across multiple layers—known as cross-  
cutting concerns. These concerns, such as logging, security,  
transaction management, auditing, and caching, often impact  
multiple parts of the application but do not belong to the core business  
logic.  
In Object-Oriented Programming (OOP), the primary unit of  3333333

modularity is the class, whereas in AOP, it is the aspect. While  
Dependency Injection (DI) is used to decouple objects from one  
another, AOP is used to decouple cross-cutting concerns from the  
business logic they influence. In essence, AOP is somewhat analogous  
to triggers in other languages like Java, .NET, or Perl, where you can  
hook into specific events in code execution.  
Spring's AOP module enables this capability by providing interceptors  
that can execute custom code at defined points in a method's  
execution—either before, after, or around the method call.  

AOP Core Terminologies  

Term  Description  

A module that encapsulates behaviors affecting  
multiple classes. For example, a logging aspect can  
capture logs across the application. Multiple aspects  
can exist within a single application.  

Aspect  

A specific point in the program flow where an aspect  
Join Point  

Advice  

can be applied—typically a method call or execution.  

The actual code to be executed at a join point. It defines  
what action should occur and when (e.g., before or after  
a method).  

274  
MATS Centre for Distance and Online Education, MATS University  



Notes  Term  Description  

A collection of join points where an advice should be  
applied. Pointcuts are often defined using expressions  
or method patterns.  

Pointcut  

A mechanism to add new methods or fields to existing  
classes dynamically.  

Introduction  

Target  
Object  

The object being advised. In Spring, this is always a  
proxy object (also called the advised object).  

The process of linking aspects with target objects to  
create advised objects. This can occur at compile-time,  
load-time, or runtime.  

Weaving  

Types of Advice in Spring AOP  
Spring supports the following five types of advice mechanisms:  

Advice Type Description  

before  Executes the advice before the method runs.  

Executes the advice after the method finishes,  
regardless of outcome.  

after  

after-  Executes the advice only if the method completes  
successfully.  returning  

after-  Executes the advice only if the method throws an  
exception.  throwing  

Executes advice both before and after the method  
invocation, providing the most control.  

around  

Implementing Custom Aspects in Spring  
Spring offers two main approaches to define and apply aspects in your  
applications:  

Approach  Description  

XML Schema-  
based  

Aspects are defined as regular Java classes, and  
AOP behavior is configured through XML. This  

Configuration  

275  
MATS Centre for Distance and Online Education, MATS University  



Notes  Approach  Description  

method was commonly used in earlier Spring  
versions.  

This modern approach allows developers to define  
aspects using annotations. Regular Java classes  
are annotated with @Aspect, and pointcuts and  
advice methods use annotations like @Before,  
@After, @Around, etc.  

@AspectJ  
Annotation Style  

Spring AOP is a fully featured AOP used in Spring for both defining  
and applying aspects with Spring boot. It uses annotations or XML  
configurations to define aspects and applies those aspects to join  
points, which are defined as points in an application execution such as  
method calls and exception handling. Using AOP with Spring Boot is  
even easy, because Spring Boot creates auto-configurations and starter  
dependencies for it. AOP is a cross-cutting concern, and it is available  
by simply adding the spring-boot-starter-aop dependency. However,  
this starter dependency is already packing all the required dependencies  
to use Spring AOP.  

New types of advice in Spring AOP, we have five types of advice in  
Spring  AOP,  these  54 are  actions  that  are  taken  
before/after/around/returning/throwing a join point. Before advice runs  
before a join point, e.g. a method call. It can be utilized to carry out  
pre-processing functions like logging input parameters or checking  
user permissions. After advice that’s executed after a join point,  
regardless of if the join point completes successfully or throws an  
exception. This can be handy for post-processing like logging  
execution time or releasing resources. Advice is done around a join  
point and developer can control the execution of the join point. It can  
be used for complex operations, such as transaction management or  
caching. Returning advice is executed following the successful  
completion of a join point, providing a means to examine the join  
point's return value. It can then be used for example to log the return  
value or transform the return value.  
Multiple-Choice Questions (MCQs)  

1. What is the primary purpose of the Spring framework?  
276  

MATS Centre for Distance and Online Education, MATS University  



Notes  a) To develop mobile applications  
b) To simplify Java application development  
c) To replace SQL databases  
d) To manage operating system processes  

Answer: b) To simplify Java application development  
2. Which of the following is not a type of dependency injection  

in Spring?  
a) Constructor Injection  
b) Setter Injection  
c) Interface Injection  
d) Field Injection  

Answer: c) Interface Injection  
3. What does the IOC Container in Spring do?  

a) Manages the lifecycle of objects and their  
dependencies  

b) Executes SQL queries  
c) Handles user authentication  
d) Provides a user interface  

Answer: a) Manages the lifecycle of objects and their  
dependencies  

4. Which annotation in Spring Boot is used to mark a class as a  
Spring Boot application?  

a) @SpringApplication  
b) @SpringBootApp  
c) @SpringBootApplication  
d) @BootApp  

Answer: c) @SpringBootApplication  
5. In Aspect-Oriented Programming (AOP), which advice runs  

before the execution of a method?  
a) @After  
b) @Before  
c) @Around  
d) @AfterReturning  

Answer: b) @Before  
Short Answer Questions  

a) What are the key advantages of using the Spring framework?  
b) Explain the difference between dependency injection and  

Inversion of Control (IoC).  

277  
MATS Centre for Distance and Online Education, MATS University  



Notes  c) What are the main components of Spring Boot architecture?  
d) How does Spring Boot simplify dependency management?  
e) What are the different types of AOP advice in Spring Boot?  

Long Answer Questions  
a) Describe the steps involved in creating a simple Spring  

application.  
b) Explain the different types of dependency injection with  

examples.  
c) How do you develop a web application using Spring Boot?  

Explain with an example.  
d) Compare traditional Spring applications with Spring Boot  

applications.  
e) Explain Aspect-Oriented Programming (AOP) in Spring Boot  

278  
MATS Centre for Distance and Online Education, MATS University  

and describe how it improves modularity.  



Notes  References  

Java Programming References  

Chapter 1: Object-Oriented Programming Concepts and  
Implementations  

(12th ed.). Pearson.  

2. Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley  
Professional.  

3. Freeman, E., & Robson, E. (2020). Head First Design Patterns  
(2nd ed.). O'Reilly Media.  

4. Schildt, H. (2021). Java: The Complete Reference (12th ed.).  
McGraw-Hill Education.  

ed.). Pearson.  

Chapter 2: Java FX Technology  

1. Sharan, K. (2017). Learn JavaFX: Building User Experience  
and Interfaces with Java (2nd ed.). Apress.  

9: A Definitive Guide to Building Desktop, Mobile, and  
Embedded Java Clients. Apress.  

3. McKenzie, C. (2014). JavaFX 8: Introduction by Example  
(2nd ed.). Apress.  

4. Lyon, D. A. (2015). The Definitive Guide to Modern Java  
Clients with JavaFX: Cross-Platform Mobile and Cloud  
Development. Apress.  

5. Hommel, S. (2014). Mastering JavaFX 8 Controls. Oracle  
Press.  

Chapter 3: Servlet Technology  

1. Hall, M., & Brown, L. (2014). Core Servlets and JavaServer  
Pages (2nd ed.). Prentice Hall.  

2. Basham, B., Sierra, K., & Bates, B. (2008). Head First Servlets  
and JSP (2nd ed.). O'Reilly Media.  

279  
MATS Centre for Distance and Online Education, MATS University  

1. Horstmann, C. S. (2021). Core Java, Volume I: Fundamentals  

5. Deitel, P., & Deitel, H. (2020). Java How to Program (11th  

2. Vos, J., Gao, W., Chin, S., & Weaver, J. L. (2017). Pro JavaFX  

3. Williams, L. (2018). An Introduction to Servlet Technology.  
Springer.  



Notes  
(2nd ed.). O'Reilly Media.  

5. Murach, J., & Urban, M. (2014). Murach's Java Servlets and  
JSP (3rd ed.). Mike Murach & Associates.  

Chapter 4: JSP Technology  

Tomcat Web Development. Apress.  

2. Bergsten, H. (2003). JavaServer Pages (3rd ed.). O'Reilly  
Media.  

3. Goodwill, J., & Hightower, R. (2009). Professional Jakarta  
Struts. Wrox Press.  

4. Mukhar, K., Zelenak, C., Weaver, J. L., & Crume, J. (2006).  
Beginning Java EE 5: From Novice to Professional. Apress.  

5. Budi Kurniawan. (2012). JSP and Servlets: A Comprehensive  
Study. Brainy Software Inc.  

Chapter 5: Spring and Spring Boot Framework  

1. Walls, C. (2022). Spring in Action (6th ed.). Manning  
Publications.  

2. Sharma, K. (2020). Building REST APIs with Spring 5.0.  
Packt Publishing.  

3. Gutierrez, F. (2019). Pro Spring Boot 2: An Authoritative  
Guide to Building Microservices, Web and Enterprise  
Applications, and Best Practices. Apress.  

4. Cosmina, I., Harrop, R., Schaefer, C., & Ho, C. (2017). Pro  
Spring 5: An In-Depth Guide to the Spring Framework and Its  
Tools. Apress.  

5. Prasad Reddy, K. S. (2017). Beginning Spring Boot 2:  
Applications and Microservices with the Spring Framework.  
Apress.  

280  
MATS Centre for Distance and Online Education, MATS University  

4. Crawford, W., & Hunter, J. (2001). Java Servlet Programming  

1. Zambon, G., & Sekler, M. (2007). Beginning JSP, JSF, and  




