

 The Report is Generated by DrillBit Plagiarism Detection Software

 Submission Information

 Result Information

 Exclude Information Database Selection

 Author Name Dr. Abhishek Guru

 Title Object Oriented Programming Concepts

 Paper/Submission ID 4140122

 Submitted by plagcheck@matsuniversity.ac.in

 Submission Date 2025-07-28 15:04:49

 Total Pages, Total Words 200, 33781

 Document type e-Book

 Similarity 11 %
1 10 20 30 40 50 60 70 80 90

Sources Type

Journal/
Publicatio
n 5.61%

Internet
5.39%

Report Content

Words <
14,

1.84%

Quotes
1.47%

Ref/Bib
1.32%

 Quotes Excluded Language English

 References/Bibliography Excluded Student Papers Yes

 Source: Excluded < 14 Words Excluded Journals & publishers Yes

 Excluded Source 0 % Internet or Web Yes

 Excluded Phrases Not Excluded Institution Repository Yes

 A Unique QR Code use to View/Download/Share Pdf File

DrillBit Similarity Report

 SIMILARITY % MATCHED SOURCES GRADE

LOCATION MATCHED DOMAIN % SOURCE TYPE

11 53 B

A-Satisfactory (0-10%)
B-Upgrade (11-40%)
C-Poor (41-60%)
D-Unacceptable (61-100%)

1 deb.ugc.ac.in 1 Publication

2 lms.matsuniversityonline.com 1 Publication

3 egyankosh.ac.in 1 Publication

4 nibmehub.com 1 Publication

5 medium.com <1 Internet Data

6 accu.org <1 Publication

7 www.geeksforgeeks.org <1 Internet Data

8 pdfcookie.com <1 Internet Data

9 www.expertsminds.com <1 Internet Data

10 pdfcookie.com <1 Internet Data

11 Making C objects persistent The hidden pointers by A-1993 <1 Publication

12 deb.ugc.ac.in <1 Publication

13 www.geeksforgeeks.org <1 Internet Data

14 www.geeksforgeeks.org <1 Internet Data

https://deb.ugc.ac.in/Uploads/SelfLearning/HEI-Exempted-U-0748/HEI-Exempted-U-0748_SelfLearning_20231026135924.pdf
https://lms.matsuniversityonline.com/pluginfile.php/501/mod_resource/content/2/preservation%2C%20conservation%20of%20museum%20and%20archeological.pdf
https://egyankosh.ac.in/bitstream/123456789/11585/1/Unit-2.pdf
https://nibmehub.com/opac-service/pdf/read/Fundamentals%20of%20Computers.pdf
https://medium.com/@umutarpayy/zero-to-hero-mastering-object-oriented-programming-oop-e7a5d8d857ec
https://www.accu.org/journals/overload/3/10/overload10.pdf
https://www.geeksforgeeks.org/cpp-polymorphism/
https://pdfcookie.com/documents/let-us-c-yashwant-kanetkarpdf-dvm1pm91y4vy
http://www.expertsminds.com/assignment-help/cpp-programming/operator-overloading-472.html
https://pdfcookie.com/documents/computer-science-class-12-notespdf-x20gpgq48yl3
https://dx.doi.org/10.1002/spe.4380231202
https://deb.ugc.ac.in/Uploads/SelfLearning/HEI-Exempted-U-0748/HEI-Exempted-U-0748_SelfLearning_20231026135924.pdf
https://www.geeksforgeeks.org/virtual-function-cpp/
https://www.geeksforgeeks.org/pure-virtual-functions-and-abstract-classes/

15 www.upgrad.com <1 Internet Data

16 moam.info <1 Internet Data

17 mis.alagappauniversity.ac.in <1 Publication

18 index-of.es <1 Publication

19 www.geeksforgeeks.org <1 Internet Data

20 github.com <1 Internet Data

21 index-of.es <1 Publication

22 www.geeksforgeeks.org <1 Internet Data

23 pdfcookie.com <1 Internet Data

24 unstop.com <1 Internet Data

25 qdoc.tips <1 Internet Data

26 index-of.es <1 Publication

27 index-of.es <1 Publication

28 medium.com <1 Internet Data

29 docs.nvidia.com <1 Publication

30 www.geeksforgeeks.org <1 Internet Data

31 accu.org <1 Publication

32 egyankosh.ac.in <1 Publication

33 core-docs.s3.us-east-1.amazonaws.com <1 Publication

https://www.upgrad.com/tutorials/software-engineering/c-tutorial/dynamic-memory-allocation-in-c/
https://moam.info/object-oriented-programming_5986f1431723ddd069faffd4.html
https://mis.alagappauniversity.ac.in/siteAdmin/dde-admin/uploads/2/__Diploma_DIPLOMA_Computer%20Applications_51722%20DCA%20PROG%20C_9297.pdf
http://index-of.es/C++/Prentice%20Hall%20C++%20How%20to%20Program%205th%20Edition.pdf
https://www.geeksforgeeks.org/c-inheritance-question-7/
https://github.com/Devinterview-io/oop-interview-questions
http://index-of.es/C++/Addison.Wesley.C++%20Primer.By.Stanley%20B.%20Lippman.pdf
https://www.geeksforgeeks.org/exception-handling-c/
https://pdfcookie.com/documents/basic-java-material-eyv8o68r9o21
https://unstop.com/blog/pointers-in-c
https://qdoc.tips/c-basics-to-advanced-pdf-free.html
http://index-of.es/Programming/EN-%20O_Reilly%20-%20Programming%20Csharp.pdf
http://index-of.es/C++/Apress.Exploring%20C++.2009.pdf
https://medium.com/@grp-21/types-of-compilers-ac2e9f5ab4cd
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.geeksforgeeks.org/introduction-to-arrays-data-structure-and-algorithm-tutorials/
https://www.accu.org/journals/overload/3/10/overload10.pdf
https://egyankosh.ac.in/bitstream/123456789/11585/1/Unit-2.pdf
https://core-docs.s3.us-east-1.amazonaws.com/documents/asset/uploaded_file/2699/WASD/4154453/2024-2025_HS_CDB_FINAL_V2.pdf

34 www.geeksforgeeks.org <1 Internet Data

35 pdfcookie.com <1 Internet Data

36 docview.dlib.vn <1 Publication

37 pdfcookie.com <1 Internet Data

38 qdoc.tips <1 Internet Data

39 www.mygreatlearning.com <1 Internet Data

40 mindmajix.com <1 Internet Data

41 nou.edu.ng <1 Publication

42 quizlet.com <1 Internet Data

43 springeropen.com <1 Internet Data

44 www.airsupplylab.com <1 Internet Data

45 www.toppr.com <1 Internet Data

46 moam.info <1 Internet Data

47 pdfcookie.com <1 Internet Data

48 physics.weber.edu <1 Publication

49 www.learn-c.org <1 Internet Data

50 www.slideshare.net <1 Internet Data

51 qdoc.tips <1 Internet Data

52 www.caluniv.ac.in <1 Publication

https://www.geeksforgeeks.org/difference-between-virtual-function-and-pure-virtual-function-in-c/?ref=rp
https://pdfcookie.com/documents/investigation-of-silver-plasma-and-surface-morphology-from-a-nanosecond-laser-ablation-4k2p8d5jq7l9
http://docview.dlib.vn/tailieu/2016/20161216/maiyeumaiyeu25/discoveringcomputerschapter13_0866.pdf
https://pdfcookie.com/documents/c-interview-questions-ex209q130g23
https://qdoc.tips/c-basics-to-advanced-pdf-free.html
https://www.mygreatlearning.com/blog/method-overloading-in-java/
https://mindmajix.com/python-interview-questions
https://nou.edu.ng/coursewarecontent/CIT383.pdf
https://quizlet.com/144764248/data-structures-flash-cards/
https://jserd.springeropen.com/articles/10.1186/s40411-014-0011-9
https://www.airsupplylab.com/index.php?option=com_content&view=article&id=39&catid=22
https://www.toppr.com/guides/python-guide/tutorials/python-object-and-class/inheritance/python-inheritance-with-examples/
https://moam.info/wipro-aptitude-test-dec-2007_5a2d1bad1723dd61327116d0.html
https://pdfcookie.com/documents/oracle-database-11g-sql-fundamentals-i-volume-i-bullet-student-guide-ex2040y873l3
http://physics.weber.edu/schroeder/scicomp/PythonManual.pdf
https://www.learn-c.org/en/Arrays_and_Pointers
https://www.slideshare.net/mansityagi3323/notes-of-c-programming-1st-unit-bca-i-sem
https://qdoc.tips/c-basics-to-advanced-pdf-free.html
https://www.caluniv.ac.in/cbcs-pg/pg-files/MBA.pdf

53 www.caluniv.ac.in <1 Publication

https://www.caluniv.ac.in/cbcs-pg/pg-files/MBA.pdf

Master of Computer Applications
MCA-101

Object Oriented Programming Concepts

1

3

Course Introduction

Module 1
Programming Paradigms

Unit 1: Programming Language Concepts 4
9

16
44

Unit 2: Types of Programming Language and Its Application Area

Unit 3: File Creation, Compilation and Linking

Module 2
Classes, Objects, Constructors, and Destructors

Unit 4: Object Oriented Programming Concepts, Advantage

Unit 5: Object and Class

45
49

Unit 6: Member Function 58
Module 3 106
Inheritance and Polymorphism

Unit 7: Operator Overloading: Unary and Binary

Unit 8: Overloading Binary Operators Using Friends
5353

Unit 9: Rules of Overloading Operators, Type Conversion

107
111
113
146 Module 4

Operator Overloading and Type Conversion

Unit 10: Pointers 146

158
164
178

Unit 11: Virtual Function, Pure Virtual Function

Unit 12: Polymorphism: Compile Time, Run Time

Module 5
Exception Handling and File Handling

Unit 13: Stream Classes

Unit 14: File Handling in OOP’s

References

178
186
192

COURSE DEVELOPMENT EXPERT COMMITTEE
2222222

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Chhattisgarh

Prof. (Dr.) Jatinder Kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

COURSE COORDINATOR

Chhattisgarh.

COURSE PREPARATION

Information Technology, MATS University, Raipur, Chhattisgarh.

March, 2025

ISBN: 978-93-49916-99-9

@MATS Centre for Distance and Online Education, MATS University, Village-Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

Dr. Abhishek Guru, Associate Professor, School of Information Technology, MATS University, Raipur,

Dr. Abhishek Guru, Associate Professor and Ms. Arifa Khan, Assistant Professor, School of

form, by mimeograph or any other means, without permission in writing from MATS University,

Printed & published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

contents of this course material, this completely depends on AUTHOR’S MANUSCRIPT.

Acknowledgement
The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

COURSE INTRODUCTION

This Object-Oriented Programming (OOP) using C++ is an essential
course designed to introduce students to modern programming 333333

This course provides a strong foundation in object-oriented concepts
such as classes, objects, inheritance, polymorphism, operator
overloading, type conversion, and exception handling. By learning
these concepts, students will be able to design robust and maintainable
software applications. The course is structured into five Modules, each
covering fundamental aspects of OOP using C++.

Module 1: Programming Paradigms
Introduces different programming approaches, including
procedural, object-oriented, functional, and logical
paradigms. It emphasizes the need for object-oriented
programming and explains key OOP principles such as
abstraction, encapsulation, inheritance, and polymorphism.
Students will understand how OOP differs from procedural
programming and why it is widely used in modern software
development.
Module 2: Classes, Objects, Constructors, and
Destructors
delves into the core building blocks of OOP in C++. Students 333333

will learn how to define and use classes and objects
effectively. This Module also explores constructors, which
help initialize objects, and destructors, which manage
resource cleanup. Concepts such as default, parameterized,
and copy constructors are covered to enhance students’
understanding of object creation and memory management.
Module 3: Inheritance and Polymorphism
Focuses on one of the most powerful features of OOP—code
reusability. It covers different types of inheritance, including
single, multiple, multilevel, hierarchical, and hybrid
inheritance. Students will learn how derived classes inherit
properties from base classes, along with function overriding
and virtual functions to achieve runtime polymorphism. The

1
2222222

MATS Centre for Distance and Online Education, MATS University

techniques that enhance code reusability, scalability, and efficiency.

Notes concept of dynamic method dispatch is introduced to enable
flexible and scalable software design.
Module 4: Operator Overloading and Type Conversion 5353

Students explore how operators can be customized to work
with user-defined data types. The Module covers the rules and
restrictions of operator overloading and demonstrates how
unary and binary operators can be overloaded. Additionally,
students will understand type conversion techniques,
including implicit and explicit conversions, and how they can 2222222

be applied between basic types and class types for seamless
data manipulation.
Module 5: Exception Handling and File Handling
Students learn the skills to develop robust and error-free
applications. This Module covers the concepts of errors and
exceptions and explains how exception handling mechanisms
such as try, catch, and throw can be used to manage runtime
errors efficiently. Students will also learn how to handle 333333

multiple exceptions and create user-defined exceptions,
ensuring that their programs remain stable even under
unexpected conditions. File handling practices will also taught
to students.

2
MATS Centre for Distance and Online Education, MATS University

2222222

MODULE 1
PROGRAMMING PARADIGMS

LEARNING OUTCOMES
By the end of this module, students will be able to:

 Understand programming language concepts and their
significance.

 Identify types of programming languages and their
applications.

 Explain source file creation, compilation, and linking.
 Describe the features and structure of a C++ program.
 Define and differentiate data types, keywords, identifiers,

variables, constants, and operators.
 Implement control statements for branching, looping, and

jumping.
 Understand array declaration, initialization, and element

access.
 Differentiate between types of arrays and their usage.

3
MATS Centre for Distance and Online Education, MATS University

2222222

Notes Unit 1: Programming Language Concepts

1.1 Programming Language Concepts
A programming language is a formal set of instructions that enables
humans to communicate with computers and create software
applications. It provides a structured way to define logic, process data,
and control hardware operations. Over the years, programming
languages have evolved to improve efficiency, readability, and

including procedural, object-oriented, functional, and declarative
programming. Understanding the core concepts of programming
languages is crucial for writing efficient, maintainable, and scalable
code. These concepts form the foundation of software development and
enable programmers to solve real-world problems using computational
techniques.
Syntax and Semantics: Every programming language follows a set
of rules that dictate how instructions should be written and
interpreted. These rules are divided into two main aspects:

a) Syntax refers to the grammatical structure of a programming
language. It defines how statements must be written, including
keywords, symbols, and punctuation. For example, in C++, a
statement must end with a semicolon (;).

b) Semantics refers to the meaning behind the written code. It
ensures that a program performs the intended operations
correctly. Even if a program has correct syntax, it may not
produce the desired output if its semantics are flawed.

For instance, consider the following C++ statement:
int x = "Hello"; // Syntax is correct, but semantics are incorrect
(type mismatch)
Here, x is declared as an integer but assigned a string value, which

High-Level vs. Low-Level Languages: Programming languages are
categorized into high-level and low-level languages based on their
abstraction from machine code.

a) Low-Level Languages: These include machine language
(binary code) and assembly language, which are closely related
to hardware instructions. They offer high performance but are
difficult to write and maintain. Example: Assembly language.

4
MATS Centre for Distance and Online Education, MATS University

2222222

modularity. This evolution has led to different programming paradigms,

causes a semantic error.

Notes b) High-Level Languages: These include languages like C++,
Java, and Python, which provide human-readable syntax and
abstract away hardware details. High-level languages enhance
productivity and ease of development.

Example of an assembly language instruction:
MOV AX, 5 ; Moves the value 5 into register AX
In contrast, a high-level language like C++ simplifies this
operation:
int x = 5;
Compilation and Interpretation: Programming languages are
executed using two primary approaches: compilation and
interpretation.

a) Compiled Languages: Languages like C and C++ require a
compiler to convert the entire code into machine language
before execution. This process improves performance but

b) Interpreted Languages: Languages like Python and JavaScript
use an interpreter to execute code line by line, allowing
immediate feedback but potentially reducing execution speed.

Example of a simple C++ program compiled before execution:
#include <iostream>
using namespace std;
int main() {

cout << "Hello, World!";
return 0;

}
Here, the compiler converts the entire program into an executable
file before running it.
Static vs. Dynamic Typing: Programming languages follow different
typing systems to handle variables and data types:

a) Static Typing: In statically typed languages (e.g., C++, Java),
variable types are declared explicitly and checked at compile-
time.

b) Dynamic Typing: In dynamically typed languages (e.g., Python,
JavaScript), variable types are determined at runtime, offering
flexibility but increasing the risk of runtime errors.

Example of static typing in C++:
int num = 10; // The type (int) is explicitly declared

5
MATS Centre for Distance and Online Education, MATS University

makes debugging slower.

Notes Example of dynamic typing in Python:
num = 10 # Type is inferred dynamically
Object-Oriented vs. Procedural Programming: Programming
languages can follow different paradigms, with two of the most
common being procedural programming and object-oriented
programming (OOP).

a) Procedural Programming: Based on a sequence of instructions
executed step-by-step. It uses functions to break down tasks but
does not encapsulate data. Example: C language.

b) Object-Oriented Programming (OOP): Organizes code into
objects and classes, encapsulating data and behavior. It supports
features like inheritance, polymorphism, and encapsulation,
making code more modular and reusable. Example: C++, Java,
Python.

Example of procedural programming in C:
#include <stdio.h>
void greet() {

printf("Hello, World!");
}
int main() {

greet();
return 0;

}
Example of object-oriented programming in C++:
#include <iostream>
using namespace std;
class Greeting {
public:

void sayHello() {
cout << "Hello, World!";

}
};
int main() {

Greeting obj;
obj.sayHello();
return 0;

}

6
MATS Centre for Distance and Online Education, MATS University

2222222

Notes Memory Management: Programming languages handle memory
allocation and deallocation differently:

a) Manual Memory Management: In languages like C and C++,
developers must allocate (new) and free (delete) memory

b) Automatic Memory Management: In languages like Python and
Java, a garbage collector automatically reclaims unused

Example of manual memory allocation in C++:
int* ptr = new int(10); // Dynamically allocated memory
delete ptr; // Manually deallocated memory
In contrast, in Python, memory is managed automatically:
num = 10 # Memory is allocated and managed by Python’s
garbage collector
Standard Libraries and APIs: Modern programming languages
provide standard libraries and APIs to simplify development:

a) Standard Libraries: Built-in functions for mathematical
operations, file handling, and data structures. Example: C++
Standard Library (STL).

b) Application Programming Interfaces (APIs): Predefined
functions that allow programs to interact with external services
or hardware. Example: REST APIs in web development.

Example of using the C++ Standard Library:
#include <iostream>
#include <vector>
using namespace std;
int main() {

vector<int> numbers = {1, 2, 3, 4, 5};
for (int num : numbers) {

cout << num << " ";
}
return 0;

}
Programming languages serve as the foundation for software
development, providing structured methods to write, execute, and
manage code efficiently. Understanding key concepts such as syntax,
typing systems, compilation, paradigms, and memory management is
essential for mastering software development. This knowledge will

7
MATS Centre for Distance and Online Education, MATS University

explicitly.

memory.

Notes form the basis for learning Object-Oriented Programming (OOP) in
C++, which we will explore in the upcoming sections.

8
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Types of Programming Language and Its
Application Area

1.2 Types of Programming Language and Its Application Area

Programming languages serve as the fundamental medium through
which humans communicate with computers to develop software and
applications. Over the years, these languages have evolved
significantly, leading to the development of various categories based on
abstraction levels, execution models, and programming paradigms.
Each programming language is designed to address specific
computational challenges, making it crucial for software developers to

programming languages can be classified into low-level and high-level
languages based on their closeness to machine hardware, and further
into various paradigms such as procedural, object-oriented, functional,
and scripting languages. The correct choice of a programming language
depends on the nature of the task, performance requirements, and ease
of development.

Figure 1: Programming language types and their application

9
MATS Centre for Distance and Online Education, MATS University

understand their classifications and application areas. Broadly,

Notes Low-Level and High-Level Languages: Programming languages are
first categorized based on their level of abstraction from the underlying
hardware. Low-level languages, which include machine language and
assembly language, are closer to the hardware, making them highly
efficient but difficult to program. Machine language consists of binary
code (0s and 1s), which is directly executed by the computer’s CPU
without any translation. However, since writing programs in binary is
complex and error-prone, assembly language was introduced as an
improvement. Assembly language uses symbolic representations,
known as mnemonics, to make programming more readable while still
being closely tied to the hardware. Assembly programs must be
translated into machine code using an assembler. These low-level
languages are mostly used in system programming, embedded systems,
and real-time applications where direct hardware interaction is
required. In contrast, high-level languages provide a greater degree of
abstraction and are designed to be more human-readable. These 48

languages are further categorized into procedural, object-oriented,
functional, scripting, and logic-based languages, each serving different
programming needs and application areas.
Procedural Programming Languages: Procedural languages follow
a structured, step-by-step approach to program execution. These
languages focus on how a task should be accomplished by dividing
programs into functions, loops, and conditional statements. A key
feature of procedural programming is the use of functions that enable
code reusability and modularity. Examples of procedural programming
languages include C, Fortran, Pascal, and COBOL. These languages are
widely used in scientific computing, system programming, and
business applications. For instance, C is extensively used in developing
operating systems, while COBOL is utilized for business applications
in the financial sector. Procedural programming is effective for

Object-Oriented Programming (OOP) Languages: The object-
oriented programming (OOP) paradigm was introduced to overcome
the limitations of procedural programming by emphasizing real-world
modeling using objects and classes. Object-oriented languages support
essential concepts such as encapsulation, inheritance, and
polymorphism, making them highly suitable for large-scale software
development. OOP provides better modularity, code reusability, and

10
MATS Centre for Distance and Online Education, MATS University

developing software where a sequential flow of execution is necessary.

Notes
Python, and C#, all of which are widely used in application
development, enterprise software, and game development. For
example, Java is extensively used in Android app development, while
C++ is preferred for high-performance game engines and real-time
applications. By encapsulating data and functions within objects, OOP
promotes cleaner and more manageable code structures, making it a
preferred paradigm for modern software engineering.
Functional Programming Languages: Functional programming
languages take a mathematical approach to problem-solving by treating
functions as first-class citizens. Unlike procedural and object-oriented
programming, which rely on changing states and variables, functional
programming emphasizes immutability and recursion. This makes it
well-suited for applications that require concurrency and parallel
execution. Functional programming languages such as Haskell, Lisp,
Scala, and Erlang are widely used in artificial intelligence (AI), data
science, and financial modeling. A key advantage of functional
programming is that it minimizes side effects, leading to more
predictable and reliable code. For example, Erlang is used in building
highly concurrent telecom systems, while Haskell is preferred for
complex mathematical computations. Functional programming is
gaining popularity due to its ability to handle large-scale distributed

Scripting Languages: Scripting languages are typically interpreted
rather than compiled, making them easier to learn and use. These
languages are designed for automation, web development, and rapid
prototyping. Unlike compiled languages, which require a separate
compilation step before execution, interpreted languages execute code
line by line, allowing for faster development and debugging. Popular

Python is widely used in data science, artificial intelligence, and
machine learning, while JavaScript is essential for web development
and front-end programming. PHP is primarily used for server-side web
development, powering dynamic websites and content management
systems like WordPress. Scripting languages offer flexibility and ease
of development, making them ideal for small-scale projects and
automation tasks.

11
MATS Centre for Distance and Online Education, MATS University

maintainability. Popular object-oriented languages include C++, Java,

systems efficiently.

scripting languages include Python, JavaScript, PHP, Perl, and Bash.

Notes Logic Programming Languages: Logic programming is a paradigm
based on formal logic, where programs are expressed as a set of rules
and facts rather than step-by-step instructions. Prolog (Programming in
Logic) is the most well-known logic programming language, widely
used in expert systems, natural language processing, and artificial
intelligence applications. In Prolog, a program consists of rules that
define relationships between entities. When a query is made, the logic
engine processes the rules and facts to derive a solution. This approach
makes logic programming well-suited for applications requiring
complex reasoning and decision-making.
Domain-Specific Languages (DSLs): While general-purpose
languages can be used for a wide range of applications, some languages
are designed for specific domains, known as domain-specific languages
(DSLs). These languages are tailored to a particular problem area,
making them highly efficient within their niche. Examples of DSLs
include SQL (Structured Query Language) for database management,
MATLAB for scientific computing, R for statistical analysis, and
HTML/CSS for web development. SQL, for instance, is the industry
standard for managing relational databases, allowing users to perform
complex queries efficiently. Similarly, R and MATLAB are extensively
used in academia and research for statistical modeling and data
analysis. By focusing on specific problem domains, DSLs provide
optimized solutions that general-purpose languages cannot easily
achieve.
Compiled vs. Interpreted Languages: Programming languages can
also be classified based on their execution model—whether they are
compiled or interpreted. Compiled languages translate the entire
source code into machine code before execution, resulting in faster 36

performance. Examples include C, C++, and Java (via the JVM).
Compiled programs run efficiently but require a compilation step
before execution, making debugging more time-consuming. On the
other hand, interpreted languages execute code line by line using an

Examples of interpreted languages include Python, JavaScript, and

generally slower than compiled languages. Some modern languages,
such as Java, use a hybrid approach, where code is first compiled into

12
MATS Centre for Distance and Online Education, MATS University

interpreter, making development faster but execution slower.

PHP. While interpreted languages provide greater flexibility, they are

Notes an intermediate bytecode and then interpreted by a virtual machine
(JVM).

Table 1.1 Difference between two Languages
Interpreted

Feature Compiled Languages
Languages

Entire source code is Code is executed
Execution

compiled into machine line-by-line by an
Process

code before execution.
Faster execution since
the program is already
translated into machine
code.

interpreter.

Slower execution
due to on-the-fly
translation.

Speed &
Performance

Errors are detected at
compile time, requiring
recompilation after
fixing.

Errors are detected
at runtime, making
debugging easier.

Error Handling

Portability

More portable as the
source code can be
executed on any
system with an
interpreter.

Less portable since
compiled code is
specific to a system’s
architecture.

Requires an
Requires a compiler for
translation.

Dependency

Examples

interpreter to
execute the code.

C, C++, Java (compiled Python, JavaScript,
to bytecode), Rust, Go
System programming,
Game development,
Performance-critical
applications

PHP, Ruby
Web development,
Scripting, Rapid
prototyping, Data
analysis

Use Cases

Programming languages have evolved to meet the growing demands of
software development, leading to various paradigms and
classifications. Low-level languages offer efficiency and control,
whereas high-level languages provide abstraction and ease of
development. Procedural and object-oriented programming dominate
mainstream application development, while functional and logic-based
languages serve specialized computational needs. Scripting languages

13
MATS Centre for Distance and Online Education, MATS University

Notes simplify automation and web development, while domain-specific
languages optimize problem-solving in specialized fields.
Understanding the strengths and application areas of different
programming languages enables developers to select the best tools for
their projects. In the next section, we will explore the process of source
file creation, compilation, and linking, which are essential steps in

Table 1.2 Classification of programming languages along with their

specific application areas.
Programming

Application
Language

Type
Description Examples

Areas

Close to
System

machine
programming,
Embedded
systems,

hardware, Assembly,
Machine
Code

Low-Level
Languages

offering high
performance
but difficult to
program.

Hardware
control

Follow a System
structured, step-
by-step

software,
Scientific
computing,
Business
applications

C, Fortran,
Pascal,

Procedural
Languages approach using

functions and
loops.

COBOL

Use classes and
objects to Object- Application

development,
Enterprise

Oriented structure
C++, Java,
Python, C#

Programming programs with
(OOP) encapsulation,

inheritance, and
polymorphism.
Emphasize

software, Game
development Languages

AI & Machine
Learning, Data
Science,

Functional immutability, Haskell,
Lisp, Scala,
Erlang

Programming recursion, and
Languages first-class

functions.
Parallel
computing

14
MATS Centre for Distance and Online Education, MATS University

executing programs efficiently.

Notes Typically
interpreted,
used for

Web
Python,

development,
System

Scripting JavaScript,
Languages automation and PHP, Bash,

automation,
Data analysis

web Perl
development.
Use formal
logic and rule-
based

AI, Expert
Logic

Prolog,
Datalog

systems,
Programming
Languages

programming
for decision-
making.

Knowledge-
based reasoning

Designed for
specific

Databases,
Statistical
modeling,
Scientific

Domain-
Specific
Languages
(DSLs)

SQL, R,
application
areas,

MATLAB,
HTML/CSS

optimized for
particular tasks.
Convert source
code into

computing,
Web design

High-
performance

machine code
before

Compiled C, C++, Java applications,
(JVM-based) Operating

systems, Game
Languages

execution for
better

engines
performance.
Execute code
line-by-line
using an

Web
Python,

Interpreted
Languages

development,
JavaScript, interpreter,

making
Scripting, Rapid

PHP
prototyping

debugging
easier.

15
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: File Creation, Compilation and Linking

1.3 Source File Creation, Compilation and Linking
C++ is a powerful, general-purpose programming language that
combines the efficiency of procedural programming with the flexibility
of object-oriented programming (OOP). Developed by Bjarne
Stroustrup in the early 1980s as an extension of C, C++ provides robust
features that make it suitable for system programming, game
development, large-scale applications, and performance-critical
software. Understanding the features of C++ helps programmers
leverage its strengths, while knowing the structure of a C++ program
ensures that code is written in an organized, readable, and maintainable
manner. This section explores the key features of C++ and provides a
detailed breakdown of a well-structured C++ program.
Features of C++
C++ offers several advanced features that distinguish it from other
programming languages. These features enable programmers to
develop efficient and modular applications with enhanced

 Object-Oriented Programming (OOP): C++ is an object-
oriented language, which means it follows the OOP principles
of encapsulation, inheritance, polymorphism, and abstraction.
These concepts allow for the creation of reusable and modular
code, making software development more scalable and
maintainable.

 High Performance and Efficiency: Since C++ is a compiled
language, it converts source code into machine code before
execution, ensuring faster performance compared to interpreted
languages like Python or JavaScript. Additionally, C++
provides manual memory management, giving programmers
greater control over resource allocation and optimization.

 Multi-Paradigm Programming: C++ supports multiple
programming paradigms, including procedural, object-oriented,
and generic programming. This flexibility allows developers to
use the best approach for different types of applications.

 Strongly Typed and Statically Typed Language: C++ is strongly
typed, meaning that type errors must be resolved before
compilation. It is also statically typed, which means variable

16
MATS Centre for Distance and Online Education, MATS University

performance and flexibility.

Notes types are checked at compile-time rather than runtime. This
helps in reducing runtime errors and improving performance.

 Memory Management with Pointers: C++ provides pointers and
dynamic memory allocation using operators like new and
delete. This enables efficient memory handling but also requires
careful management to avoid memory leaks.

 Standard Template Library (STL): The Standard Template
Library (STL) in C++ offers a collection of predefined classes
and functions for common programming tasks such as data
structures (vectors, lists, stacks, queues) and algorithms
(sorting, searching). This enhances code efficiency and reduces
development time.

 Operator Overloading: C++ allows operators like +, -, and * to
be overloaded so that they can work with user-defined data

 Platform Independence: Although C++ programs need to be
compiled separately for different operating systems, the source
code remains platform-independent, making it portable across
different platforms.

 Low-Level and High-Level Features: C++ supports both low-
level features (like direct memory manipulation) and high-level
abstractions (like classes and objects), making it suitable for
both system programming and application development.

Structure of a C++ Program: A well-structured C++ program consists
of several components, each serving a specific purpose. Understanding
the structure ensures that code is organized, readable, and efficient.
Basic Structure of a C++ Program
A C++ program generally follows this structure:
// 1. Header Files
#include <iostream>
// 2. Namespace Declaration
using namespace std;
// 3. Global Declarations (if any)
// 4. Function Prototypes (if required)
// 5. Main Function
int main() {

// 6. Variable Declaration
int num = 10;

17
MATS Centre for Distance and Online Education, MATS University

types, enhancing code readability and usability.

Notes // 7. Function Call (if required)
cout << "The number is: " << num << endl;

return 0;
}

// 8. Function Definitions (if any)
Header Files: Header files contain predefined functions, classes,
and macros that can be used in the program. They are included
using the #include directive.
Example:
#include <iostream> // Allows input and output operations
#include <cmath> // Provides mathematical functions like sqrt(),
pow()
Namespace Declaration: Namespaces prevent name conflicts by
organizing code into separate scopes. The standard C++ library
functions reside in the std namespace.
Example:
using namespace std;
Without using namespace std;, we would have to use std::cout and
std::cin instead of cout and cin.
Global Declarations: Global variables are declared outside all 50

functions and can be accessed from anywhere in the program.Example:
int globalVar = 100; // Accessible by all functions
Although global variables can be useful, excessive use is discouraged
due to potential side effects and memory consumption.
Function Prototypes: In large programs, function prototypes are
declared before main() to inform the compiler about functions used
later in the program.
Example:
void displayMessage(); // Function prototype
Main Function (main()): Every C++ program must have a main()
function, which serves as the program’s entry point. Execution
begins from main().
Example:
int main() {

cout << "Hello, C++!" << endl;
return 0;

18
MATS Centre for Distance and Online Education, MATS University

Notes }
The return 0; statement indicates successful execution to the operating
system.

manipulates. C++ supports various data types such as int, float, char,
double, and string.
Example:
int age = 25;
float temperature = 36.5;
char grade = 'A';
Function Calls: Functions are used to modularize the code, making it
reusable and easier to manage. A function is defined separately and
called in main().
Example:
void greet() {

cout << "Welcome to C++ Programming!" << endl;
}

int main() {
greet(); // Function call
return 0;

}
Function Definitions: Functions implement reusable logic and are
defined outside main().
Example:
int add(int a, int b) {

return a + b;
}

C++ is a feature-rich programming language that provides high
performance, object-oriented capabilities, and extensive libraries.

and operator overloading, allows programmers to write efficient and
scalable applications. Additionally, following a structured approach to
writing C++ programs—by including header files, proper variable
declarations, and function modularization—ensures that code remains
organized, readable, and maintainable. In the next section, we will
explore data types, tokens, keywords, identifiers, variables, constants,

19
MATS Centre for Distance and Online Education, MATS University

Variable Declaration: Variables store data that the program

Functions improve code maintainability and readability.

Understanding its features, such as OOP, memory management, STL,

Notes and operators, which form the fundamental building blocks of C++
programming.

Table 1.3 Common Compilation Errors and Fixes
Error Type Description Solution

Fix syntax and
recompile.

Incorrect syntax (e.g.,
missing semicolon).

Syntax Error

Ensure proper
function declaration
and linking.

Undefined reference to
a function.

Linker Error

Issues that occur during
execution (e.g.,
division by zero).
Accessing invalid
memory (e.g.,

Debug and handle
exceptions.

Runtime Error

Check pointers and
memory

Segmentation
Fault dereferencing null

pointers).
management.

Figure 2 file creation, compilation to exe generation process
[Source: https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html]

The source file creation, compilation, and linking process are
fundamental steps in C++ programming. The source file contains the
program logic, which is converted into machine code through the
compilation process. The linker then integrates object files and external

20
MATS Centre for Distance and Online Education, MATS University

libraries, producing an executable file that can be run on a computer. 282828

Notes Understanding these stages helps programmers debug errors, optimize
performance, and work efficiently on multi-file projects.

1.3 Features and Structure of C++ Program
C++ is a widely used, high-performance programming language that
blends the features of procedural programming with object-oriented
programming (OOP), making it a powerful tool for software
development. It was developed by Bjarne Stroustrup in the early 1980s
as an extension of the C language and has since evolved into a feature-
rich language used in various domains, including system programming,
game development, real-time simulations, database management, and
large-scale enterprise applications. One of the key reasons for C++’s
widespread adoption is its ability to provide low-level memory
manipulation while also supporting high-level abstractions that

To become proficient in C++, it is essential to understand both its
features and structural organization. The features of C++ highlight its
unique capabilities that differentiate it from other programming
languages, while its structure defines the way in which a C++ program
is written, organized, and executed. This Module provides a detailed
explanation of the core features of C++ and a structured breakdown of
a typical C++ program, ensuring that students develop a strong
foundation in the language.

21
MATS Centre for Distance and Online Education, MATS University

enhance modularity and code reusability.

Notes

Figure 3: features of C++

1.4.1 Features of C++
C++ has a broad range of features that make it versatile, powerful, and
efficient. These features allow it to be used in various domains, from
low-level system programming to high-level application development.
Below is a detailed discussion of the key features of C++:
1. Simple
C++ is considered simple because it offers a structured approach to
programming and provides a rich set of functions and libraries. Its
syntax is largely influenced by the C language, making it easier for

2. Object-Oriented Programming (OOP)
One of the most significant advancements in C++ over its predecessor,
C, is the introduction of Object-Oriented Programming (OOP). OOP is
a programming paradigm that models real-world entities using objects

C++ supports four key principles of OOP:








Encapsulation: The bundling of data (variables) and methods
(functions) within a class to prevent unauthorized access.
Inheritance: The ability of one class to acquire the properties

Polymorphism: The ability of a function or method to behave
differently based on the context in which it is used.
Abstraction: Hiding implementation details while exposing

22
MATS Centre for Distance and Online Education, MATS University

those with a C background to learn and use effectively.

and classes, promoting code reusability, scalability, and modularity.

and behaviors of another class, reducing redundancy.

only the necessary functionalities to the user.

Notes Example of OOP in C++:
#include <iostream>
using namespace std;

class Car {
private:

string brand;
public:

Car(string b) { brand = b; } // Constructor
void display() { cout << "Car Brand: " << brand << endl; }

};

int main() {
Car myCar("Toyota");

return 0;
}
In this example, the class Car encapsulates data (brand) and behavior
(display() function), demonstrating OOP principles.
3. Multi-Paradigm Support
C++ is a multi-paradigm language, meaning it supports multiple styles
of programming, including:

Table 1.4 Different Types of Paradigm

Example
Paradigm Description

Languages

Step-by-step
functions.

instructions using
Procedural C, Pascal

Object- Uses objects and classes to model real-
world entities.

C++, Java
Oriented

Uses templates to write type-
independent functions and classes.

Generic C++, D, Rust

This flexibility allows programmers to select the best programming
paradigm based on the problem they are solving.
4. High Performance and Efficiency 282828

Since C++ is a compiled language, it translates the entire source code
into machine code before execution, leading to faster performance
compared to interpreted languages like Python. Additionally, C++

23
MATS Centre for Distance and Online Education, MATS University

myCar.display();

Notes provides manual memory management, allowing developers to
optimize memory usage and prevent unnecessary resource
consumption. This makes C++ ideal for performance-intensive
applications like gaming, embedded systems, and real-time
simulations.
Example of compiled C++ code execution using GCC:
g++ program.cpp -o program
./program
This command first compiles the source code and then executes the
generated binary file.
5. Strongly Typed Language with Static Typing
C++ is a strongly typed language, meaning that each variable must have
a specific type that cannot be changed during execution. It is also
statically typed, meaning that type-checking occurs at compile time
rather than at runtime.
Example:
int num = 10;
num = "Hello"; // Error: Type mismatch

6. Memory Management with Pointers
Unlike many high-level languages, C++ allows direct memory
manipulation through pointers, providing greater control over memory
allocation and deallocation. This is particularly useful in system
programming and embedded systems, where efficient memory
management is critical.
7. Portability
Programs written in C++ can be compiled and run on different
platforms without significant modification. This makes C++ a portable
language, allowing developers to write cross-platform applications

8. Powerful
C++ is a powerful language due to its ability to handle low-level
programming, memory management, and its close association with
system-level operations. It supports both procedural and object-
oriented programming, giving developers extensive control over
system resources.
9. Fast and Efficient

24
MATS Centre for Distance and Online Education, MATS University

This prevents unexpected errors and improves code reliability.

efficiently.

Notes C++ is compiled directly into machine code, which makes execution
fast and efficient. It is suitable for applications where performance and
speed are critical, such as game development, real-time simulations,
and operating systems.
10. Modularity
C++ encourages a modular approach to programming, where code can
be organized into separate modules or functions. This improves
readability, maintainability, and reusability of code.
11. Compiler Based
C++ is a compiler-based language, meaning that the source code must
be compiled before it can be executed. This process helps catch syntax
and semantic errors at compile time, increasing program stability and
performance.
12. Huge Function Library
C++ provides a large standard library that includes a wide variety of 40

functions and classes for data structures, algorithms, input/output
handling, and more. These pre-defined functions help speed up
development and reduce the need to write code from scratch.
13. Uses of Pointer
One of the unique features of C++ is its support for pointers, which
allows direct memory access and manipulation. This makes it easier to
work with dynamic memory allocation, arrays, and data structures like
linked lists and trees.
These features make C++ a versatile and efficient language, widely 282828

used in software development fields such as system software, game
engines, embedded systems, and high-performance applications.

1.4.2 Structure of a C++ Program
A well-structured C++ program consists of several key components that
define its execution flow. Understanding these components is crucial
for writing clean, efficient, and maintainable code.

Basic Structure of a C++ Program
// 1. Header Files
#include <iostream>
// 2. Namespace Declaration
using namespace std;
// 3. Global Declarations (if any)

25
MATS Centre for Distance and Online Education, MATS University

Notes // 4. Function Prototypes (if required)
// 5. Main Function
int main() {

int num = 10;
// 7. Function Call (if required)
cout << "The number is: " << num << endl;
return 0;

}
// 8. Function Definitions (if any)

Table 1.5 Explanation of Components
Component Description

Contain standard C++ libraries like <iostream>,
<cmath>.

Header Files

Namespace
Declaration
Global

Allows the use of functions like cout without
std:: prefix.
Variables that can be accessed by all functions
in the program. Declarations

Function Declares functions before their definition for
better modularity. Prototypes

Main Function Entry point of the program where execution
starts. (main())

Variable
Defines variables to store data in memory.

Declaration
Executes predefined functions to perform
specific tasks.

Function Calls

Function
Implements the logic of user-defined functions.

Definitions

C++ is a powerful, versatile, and high-performance language that
supports object-oriented programming, manual memory management,
operator overloading, and multiple paradigms. These features make it a
preferred choice for system programming, application development,
and real-time computing. A well-structured C++ program follows a
logical organization, starting from header files and function
declarations to variable initialization and function execution. By
mastering these fundamental concepts, students can develop efficient,
scalable, and maintainable C++ applications.

26
MATS Centre for Distance and Online Education, MATS University

// 6. Variable Declaration

Notes In the next section, we will explore data types, tokens, keywords,
identifiers, variables, constants, and operators, which form the
fundamental building blocks of C++ programming.
Data Types in C++
Data types specify the type of data that a variable can store. Whenever
a variable is defined in C++, the compiler allocates some memory for 51

that variable based on the data type with which it is declared as every

C++ supports a wide variety of data types, and the programmer can
select the data type appropriate to the needs of the application.

Figure 4: Datatypes in c++

Data types define the type of data a variable can store. C++ provides
several types of data types: 444

Table 1.6 Primary Data Types
Data
Type

Size
Description Example

(Bytes)
Stores integers (whole

int 4

4

8

1

1

int age = 25;
numbers)
Stores floating-point numbers float price =
(decimal values) 99.99;
Stores large floating-point double pi =

float

double

char

bool

numbers 3.14159;
char grade =
'A';

Stores single characters

Stores boolean values (true or bool isPassed
false) = true;

27
MATS Centre for Distance and Online Education, MATS University

data type requires a different amount of memory.

Notes Derived Data Types
Built from fundamental types.







Array: int arr[5] = {1, 2, 3, 4, 5};
Pointer: int *ptr;
Reference: int &ref = x;

User-defined Data Types
These are the basic data types provided by the language.







Structure: struct Student { string name; int age; };
Class: class Car { public: string brand; };
Enumeration (enum): enum Color { RED, GREEN, BLUE };

Tokens in C++
Tokens are the smallest Modules in a C++ program. These include:

1. Keywords
2. Identifiers

4. Operators
Keywords in C++
Keywords are reserved words in C++ that have predefined meanings.
Some commonly used keywords are:
int, float, double, char, bool, if, else, while, for, switch, case, break,
continue, return, void, struct, class, public, private, protected,
namespace, new, delete, this, virtual, friend, etc.
Identifiers in C++
Identifiers are the names given to variables, functions, arrays, and
objects.
Rules for Identifiers:







Must begin with a letter (A-Z or a-z) or an underscore _
Cannot be a keyword
Must be unique and case-sensitive

Example:
int studentAge; // Valid
float _salary; // Valid
int 2marks; // Invalid (cannot start with a number)

A variable is a named storage location in memory.
int age = 20;
float price = 99.99;

28
MATS Centre for Distance and Online Education, MATS University

3. Variables and Constants

2.3 Variables and Constants in C++
Variables:

Notes Constants:
A constant is a value that does not change during program execution.





Using const keyword:
const float PI = 3.14159;
Using #define preprocessor directive:
#define MAX_SIZE 100

Operators in C++

Operators form the basic foundation of any programming language.
Without operators, we cannot modify or manipulate the entities of
programming languages and thereby cannot produce the desired results.
C++ is very rich in built-in operators which we will discuss in detail in
this tutorial.In C++ most of the operators are binary operators i.e. these
operators require two operands to perform an operation. Few operators
like ++ (increment) operator are the unary operator which means they
operate on one operand only.

There is also a ternary operator in C++ called Conditional Operator
which takes three operands. We will learn about this in detail in the
later part of the tutorial.

Types of Operators: Operators in C++ are classified as shown below:

Figure 5: Types of operators in c++

1. Arithmetic Operators: +, -, *, /, %
2. Relational Operators: ==, !=, <, >, <=, >=
3. Logical Operators: &&, ||, !
4. Assignment Operators: =, +=, -=, *=, /=, %=
5. Bitwise Operators: &, |, ^, ~, <<, >>
6. Increment/Decrement Operators: ++, --
7. Ternary Operator: condition ? expr1 : expr2;
8. Type Casting Operator: (dataType)value;

29
MATS Centre for Distance and Online Education, MATS University

Notes Example:
int a = 10, b = 20;
int sum = a + b; // Addition
bool result = (a < b); // Relational operator
3. Control Statements in C++
Control statements control the flow of execution in a program. These
are categorized into:

1. Branching Statements (Decision Making)
2. Looping Statements (Iteration)
3. Jumping Statements (Control Transfer)

Branching Statements (Decision Making)
Branching statements are used in C++ to make decisions and execute
different code blocks based on certain conditions. They allow a
program to follow different paths during execution depending on the
logical outcome (true/false) of expressions.

1. if Statement
The if statement is the simplest form of a decision-making structure. It
executes a block of code only when a specified condition is true. If the

17171717

condition is false, the code inside the if block is skipped.

Syntax:
if (condition) {

// Code to execute if condition is true
}
Example:
int num = 10;
if (num > 0) {

cout << "Positive number";
}

2. if-else Statement
The if-else statement is used when there are two possible outcomes. If the

17171717

condition is true, one block of code is executed; otherwise, a different block
is executed.

Syntax:

if (condition) {
// Code if true

} else {
// Code if false

}

30
MATS Centre for Distance and Online Education, MATS University

Notes Example:
int num = -5;
if (num > 0) {

cout << "Positive";
} else {

cout << "Negative";
}
3. if-else-if Ladder
if (condition1) {

// Code
} else if (condition2) {

// Code
} else {

// Code
}

3. if-else-if Ladder
The if-else-if ladder is used when you need to check multiple conditions
sequentially. The conditions are checked from top to bottom, and the
first one that evaluates to true gets executed. If none are true, the else
block is executed.
Syntax:
if (condition1) {

// Code if condition1 is true
} else if (condition2) {

// Code if condition2 is true
} else if (condition3) {

// Code if condition3 is true
} else {

// Code if none of the above conditions are true
}
Example:
#include <iostream>
using namespace std;
int main() {

int marks = 75;

if (marks >= 90) {
cout << "Grade A";

31
MATS Centre for Distance and Online Education, MATS University

Notes } else if (marks >= 75) {
cout << "Grade B";

} else if (marks >= 60) {
cout << "Grade C";

} else {
cout << "Grade D";

}
return 0;

}
4. switch Statement

The switch statement is used when you want to select one block of code to
execute from multiple options, based on the value of a single expression
(usually an integer or character). Each option is labeled with a case, and the

444

break statement is used to exit the switch block.

Syntax:
switch (expression) {

case value1:
// Code
break;

case value2:
// Code
break;

default:
// Code

}
Example:
int choice = 2;
switch (choice) {

case 1: cout << "One"; break;
case 2: cout << "Two"; break;
default: cout << "Invalid";

Looping Statements (Iteration)
Looping, also known as iteration, is a core concept in programming
that allows a set of instructions to be executed repeatedly as long as a
specified condition holds true. In C++, there are three primary types
of loops: for, while, and do-while. These loops help reduce code
redundancy and make programs more efficient when repetitive tasks
are involved.

32
MATS Centre for Distance and Online Education, MATS University

Notes 1. for Loop
The for loop is used when the number of iterations is known in advance.
It includes all loop control elements—initialization, condition check,
and increment/decrement—in a single line, which makes it compact
and easy to use.

Syntax:
for (initialization; condition; increment/decrement) {

// Code to execute
}

 Initialization: Sets a loop control variable.
 Condition: Loop continues as long as this condition is true.
 Increment/Decrement: Updates the loop control variable after

each iteration.
Example:
for (int i = 1; i <= 5; i++) {

cout << i << " ";
}

2. while Loop
The while loop is used when the number of iterations is not known
beforehand. It checks the condition before executing the loop body. If 17171717

the condition is false initially, the loop body will not execute at all.

Syntax:
while (condition) {

// Code to execute
}
Example:
int i = 1;
while (i <= 5) {

cout << i << " ";
i++;

}
3. do-while Loop

The do-while loop is similar to the while loop, but with one key 444

difference: it executes the loop body at least once, regardless of whether
the condition is true or false initially. The condition is checked after the

Syntax:
do {

// Code to execute

33
MATS Centre for Distance and Online Education, MATS University

loop body.

Notes } while (condition);
Example:
int i = 1;
do {

cout << i << " ";
i++;

} while (i <= 5);

Jumping Statements (Control Transfer)
Jumping statements in C++ are used to alter the normal sequential flow
of control in a program. These statements allow a program to exit loops,
skip iterations, or jump to a specific label. They play a crucial role in
implementing non-linear control flow, especially within loops and
switch-case constructs.

1. break Statement
The break statement is used to terminate the execution of a loop or
switch statement prematurely. When the break statement is
encountered, the control immediately exits the loop or switch and
resumes with the next statement following the loop/switch block.

 It is commonly used:
 Inside for, while, or do-while loops to stop execution

when a specific condition is met.
 Within switch statements to prevent fall-through

Example:
for (int i = 1; i <= 5; i++) {

if (i == 3)
break;

cout << i << " ";
}

2. continue Statement
The continue statement is used to skip the current iteration of a loop
and jump to the beginning of the next iteration. It does not exit the loop
but bypasses the remaining code in the current iteration when a
specified condition is true.It is used when you want to ignore certain
values or conditions temporarily, without stopping the entire loop.

Example:
for (int i = 1; i <= 5; i++) {

34
MATS Centre for Distance and Online Education, MATS University

behavior.

Notes if (i == 3) continue;
cout << i << " ";

}
3. goto Statement

The goto statement is used to transfer control unconditionally to
another part of the program marked with a label. It can be used to jump
forward or backward in the code.

While goto can be useful in certain cases such as error handling in
legacy systems, its use is generally discouraged in modern
programming because it makes the control flow hard to understand and
debug (often referred to as “spaghetti code”).
Example:
goto label;
label:
cout << "Jumped here";

This Module covers the basics of C++ programming, including data
types, tokens, operators, and control statements with easy-to-
understand explanations and code examples.
Arrays in C++
Array Declaration and Initialization
An array is a collection of elements of the same data type stored in
contiguous memory locations. It allows storing multiple values using a
single variable name.

Figure 6: Arrays in c++

Advantage of array

Code Optimization: Less code is required, one variable can store
numbers of value.

35
MATS Centre for Distance and Online Education, MATS University

Easy to traverse data: By using array easily retrieve the data of array.
Easy to sort data: Easily short the data using swapping technique.
Random Access: With the help of array index you can randomly access
any elements from array.

Notes

Dis-Advantage of array
Fixed Size: Whatever size, we define at the time of declaration of array, 17171717

we can not change their size, if you need more memory in that time you
can not increase memory size, and if you need less memory in that case
also wastage of memory.

Declaration of an Array
The syntax for declaring an array in C++ is:
data_type array_name[array_size];
Example:
int numbers[5]; // Declaring an array of 5 integers
Here, numbers is an integer array that can hold 5 values.
Array Initialization
Arrays can be initialized at the time of declaration:
int numbers[5] = {10, 20, 30, 40, 50};
If the size is omitted, the compiler automatically determines it based on
the number of elements:
int numbers[] = {10, 20, 30, 40, 50}; // Array of size 5
For character arrays (strings):
char name[] = "Hello"; // Automatically adds '\0' (null character)
2. Accessing Array Elements
Each element in an array is accessed using an index (starting from 0).
Syntax:
array_name[index];
Example:
#include <iostream>
using namespace std;
int main() {

int numbers[5] = {10, 20, 30, 40, 50};

cout << "First element: " << numbers[0] << endl;
cout << "Third element: " << numbers[2] << endl;
return 0;

}

36
MATS Centre for Distance and Online Education, MATS University

Notes Output:
First element: 10
Third element: 30
We can also modify array elements:
numbers[1] = 25; // Changing the second element to 25
Using Loops to Access Array Elements
To access all elements, we can use a loop:
#include <iostream>
using namespace std;
int main() {

int numbers[5] = {10, 20, 30, 40, 50};

for(int i = 0; i < 5; i++) {
cout << "Element at index " << i << ": " << numbers[i] << endl;

}
return 0;

}
3. Types of Arrays 30

C++ supports different types of arrays:
1. One-Dimensional Array

A one-dimensional array is a linear data structure that stores a fixed-

a list or a row of boxes, each containing a value and accessible by an
index.

Figure 7: 1-Dimensional Array Representation

Example:
int arr[5] = {1, 2, 3, 4, 5};

37
MATS Centre for Distance and Online Education, MATS University

size sequence of elements of the same data type. You can think of it as

Notes 2. Two-Dimensional Array (2D Array)
A two-dimensional array is essentially an array of arrays. It is used to
store data in a tabular or matrix form, with rows and columns. Each
element is accessed using two indices: one for the row and one for the
column.

Figure 8: 2-Dimensional array

Declaration:
data_type array_name[rows][columns];
Example:
int matrix[3][3] = {

{1, 2, 3},
{4, 5, 6},
{7, 8, 9}

};
Accessing 2D Array Elements:
cout << matrix[1][2]; // Accesses the element at row index 1, column
index 2 (Output: 6)
Using Loops to Print a 2D Array:
#include <iostream>
using namespace std;

int main() {
int matrix[2][3] = {

{1, 2, 3},
{4, 5, 6}

};

for(int i = 0; i < 2; i++) {
38

MATS Centre for Distance and Online Education, MATS University

Notes for(int j = 0; j < 3; j++) {
cout << matrix[i][j] << " ";

}
cout << endl;

}

return 0;
}

3. Multi-Dimensional Array
A multi-dimensional array is an extension of the concept of one- 42

dimensional and two-dimensional arrays. It is an array of arrays of
arrays (and so on), used to represent data in more than two dimensions.
These are useful when dealing with complex data structures like 3D
grids or higher-dimensional mathematical data.

Figure 9: Multidimensional Array

Example (3D Array):
int arr[2][2][3] = {

{
{1, 2, 3}, {4, 5, 6}

},
{

{7, 8, 9}, {10, 11, 12}
}

};
4. Dynamic Arrays (Using Pointers and new Operator):

Arrays with dynamic memory allocation
int* arr = new int[5]; // Allocates memory for 5 integers

39
MATS Centre for Distance and Online Education, MATS University

Notes arr[0] = 10;
delete[] arr; // Free memory

MCQs:
1. Which of the following programming paradigms emphasizes the use

of functions and avoids changing state or mutable data?

A. Procedural programming

B. Object-oriented programming

C. Functional programming

D. Logical programming

2. In which programming paradigm are programs typically organized

around objects and classes?

A. Procedural

B. Functional

C. Logical

D. Object-oriented

3. Which of the following is NOT a core principle of Object-Oriented

Programming (OOP)?

A. Abstraction

B. Encapsulation

C. Compilation

D. Inheritance

4. What does encapsulation in OOP primarily help with?

A. Running code faster

B. Hiding internal details and protecting data

C. Writing functional expressions

D. Deriving new classes from existing ones

5. What is the main difference between procedural and object-

oriented programming?

A. Procedural programming uses functions, OOP uses if-else statements

B. Procedural programming focuses on the “what,” OOP focuses on the

“how”

C. Procedural programming structures code as procedures or routines;

OOP structures code around objects and data

D. There is no difference

6. Which OOP principle allows objects to take on many forms through

method overriding or overloading?

A. Inheritance

40
MATS Centre for Distance and Online Education, MATS University

Notes B. Polymorphism

C. Encapsulation

D. Abstraction

7. Which programming paradigm is based on formal logic and uses

rules and facts to derive conclusions?

A. Object-oriented

B. Functional

C. Logical

D. Procedural

8. Why is Object-Oriented Programming widely used in modern
5555

software development?

A. It executes faster than other paradigms

B. It is only used in mobile app development

C. It promotes code reuse, scalability, and maintainability

D. It doesn't require any planning or design

9. What is abstraction in OOP?

A. Deriving new classes from existing ones

B. Representing only essential features while hiding unnecessary details

C. Storing variables in memory

D. Writing conditional logic

A. Reducing function calls

B. Sharing code between unrelated classes

C. Allowing a class to acquire properties and methods from another

class

D. Increasing program speed

Short Questions:

1. What is a programming paradigm?

2. How does procedural programming structure a program?
3. Define object-oriented programming in your own words.
4. What is the main goal of functional programming?
5. How is logical programming different from other paradigms?
6. List two key differences between procedural and object-oriented

programming.
7. Why is object-oriented programming considered suitable for

large and complex software systems?

41
MATS Centre for Distance and Online Education, MATS University

10. In OOP, what is inheritance used for?

Notes 8. What is abstraction in object-oriented programming? Provide an
example.

9. Explain the concept of encapsulation and how it enhances data

reuse?

12. Mention two advantages of using object-oriented programming
over procedural programming.

Long Questions:

1. Explain the main characteristics of procedural programming.
How does it handle data and functions? Provide examples.

2. Discuss the core concepts of functional programming. How does
this paradigm differ from procedural and object-oriented
approaches?

3. Describe the logical programming paradigm. What is its basis,
and in what types of applications is it most commonly used?

4. Compare and contrast procedural programming and object-
oriented programming. Highlight the strengths and limitations
of each approach.

5. Why has object-oriented programming become the preferred
paradigm in modern software development? Discuss its
advantages with examples.

6. Define and explain the concept of abstraction in object-oriented
programming. Why is it important in managing complexity in
software systems?

7. What is encapsulation in OOP? How does it help in protecting
the internal state of an object and ensuring data integrity?

8. Explain inheritance with the help of a real-world analogy. How
does inheritance contribute to reusability and hierarchical
classification in software design?

9. Define polymorphism in object-oriented programming.
Differentiate between compile-time and run-time
polymorphism with examples.

10. How do the principles of OOP—abstraction, encapsulation,
inheritance, and polymorphism—work together to support
scalable and maintainable code?

42
MATS Centre for Distance and Online Education, MATS University

security.
10. What is inheritance in OOP, and how does it promote code

11. Describe polymorphism and give a real-world analogy.

Notes 11. Discuss how different programming paradigms (procedural,
object-oriented, functional, and logical) address the problem-
solving process. Which paradigm do you think is most effective,
and why?

12. Imagine you are designing a large software application (e.g., an
online shopping platform). Explain why object-oriented
programming would be a better fit than procedural
programming for this task.

43
MATS Centre for Distance and Online Education, MATS University

Notes
MODULE 2

CLASS, OBJECT, CONSTRUCTOR AND
DESTRUCTOR

LEARNING OfUTCOMES
By the end of this Module, students will be able to:

 Understand Object-Oriented Programming (OOP) concepts and
their advantages.

 Define and differentiate objects and classes in C++.
 Explain the role of member functions in class operations.
 Implement arrays within a class for structured data storage.
 Analyze memory allocation mechanisms for objects.
 Understand the purpose and use of friend functions in C++.
 Explore the concept of local classes and their applications.

44
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Object Oriented Programming Concepts,
Advantage

Paragraph 1: Core Concepts of Object-Oriented Programming 5555

Object-Oriented Programming (OOP) is a paradigm that revolves
around the concept of "objects," which are instances of "classes." A
class acts as a blueprint, defining the properties (attributes) and
behaviors (methods) that its objects will possess. Encapsulation is a
fundamental principle of OOP, where data (attributes) and methods that
operate on that data are bundled together within a single Module, the
object. This bundling not only organizes code but also protects data
from external interference, enhancing security and maintainability.
Access modifiers, such as public, private, and protected, control the
visibility and accessibility of these attributes and methods. Inheritance
is another pivotal concept, enabling the creation of new classes (derived
or child classes) that inherit properties and behaviors from existing
classes (base or parent classes). This promotes code reusability and
establishes a hierarchical structure, facilitating the modeling of real-
world relationships. Polymorphism, meaning "many forms," allows
objects of different classes to respond to the same method call in their
own specific ways. This is achieved through method overloading
(having multiple methods with the same name but different parameters
within a class) and method overriding (providing a specific
implementation of an inherited method in a derived class). Abstraction
is the process of simplifying complex systems by modeling classes
based on their essential properties and behaviors, hiding unnecessary
details from the user. This allows developers to focus on the relevant
aspects of an object, improving code clarity and reducing complexity.
These concepts collectively form the foundation of OOP, enabling the
creation of modular, maintainable, and scalable software systems that
better represent real-world entities and interactions.

45
MATS Centre for Distance and Online Education, MATS University

Notes Paragraph 2: Advantages of Object-Oriented Programming
The advantages of Object-Oriented Programming (OOP) are numerous
and have contributed significantly to its widespread adoption in
software development. Firstly, OOP promotes code reusability through
inheritance, allowing developers to create new classes based on
existing ones, minimizing redundant code and saving development
time. This reusability extends to the design phase, as well, where
established class hierarchies can be adapted and extended for new
applications. Encapsulation enhances data security by restricting direct
access to an object's internal data, preventing unintended modifications
and ensuring data integrity. This also simplifies maintenance, as
changes to an object's internal implementation are less likely to affect
other parts of the system. Modularity, another key advantage, is
achieved by dividing a complex system into smaller, self-contained
objects, each with its own responsibilities.

Figure 10: Core Structure of Object-Oriented Programming
5555

[Source: https://www.istockphoto.com]

This modular structure makes it easier to understand, debug, and
modify individual components without affecting the entire system.
Polymorphism allows for greater flexibility and extensibility, as 5555

different objects can respond to the same method call in their own ways,
enabling the creation of more adaptable and dynamic software. This
adaptability is crucial in handling varying requirements and evolving
systems. Furthermore, OOP facilitates better problem-solving by
modeling real-world entities and relationships more accurately. The

46
MATS Centre for Distance and Online Education, MATS University

Notes ability to abstract complex systems into simpler, manageable objects
allows developers to focus on the essential aspects of a problem,
leading to more efficient and effective solutions. The hierarchical
structure provided by inheritance allows for intuitive organization of
complex systems. Overall, OOP improves code organization,
maintainability, and scalability, making it a powerful paradigm for
developing large and complex software applications.
Paragraph 3: Practical Application and Real-World Impact of
OOP
The practical application of Object-Oriented Programming (OOP)
extends across diverse domains, demonstrating its versatility and
effectiveness in solving real-world problems.
In software development, OOP is heavily used in building complex
applications, from desktop software to web applications and mobile
apps. Graphical User Interfaces (GUIs) are often built using OOP
principles, where UI elements like buttons, windows, and menus are
represented as objects with specific properties and behaviors. Game
development relies heavily on OOP to model game entities, such as
characters, environments, and items, allowing for complex interactions
and simulations. In data management, database systems utilize OOP
concepts to represent data as objects, enabling efficient data retrieval
and manipulation. Enterprise applications, which often involve
complex business logic and data structures, benefit significantly from
OOP's modularity and reusability. In the realm of simulation and
modeling, OOP is used to create realistic simulations of physical
systems, biological processes, and financial models. Scientific
computing leverages OOP to develop libraries and frameworks for
complex calculations and data analysis. The impact of OOP is evident
in the widespread adoption of languages like Java, C++, Python, and
C#, which are designed to support OOP principles. These languages
have empowered developers to create robust, scalable, and
maintainable software systems that have transformed industries and
improved daily life. The ability to model real-world entities and
relationships accurately has led to more intuitive and user-friendly
software experiences. Furthermore, the modularity and reusability of
OOP have accelerated software development cycles and reduced
maintenance costs, allowing organizations to respond more quickly to
changing market demands. The principles of OOP have also influenced

47
MATS Centre for Distance and Online Education, MATS University

Notes software design patterns and architectural styles, contributing to the
development of better software engineering practices. In essence, OOP
has become a cornerstone of modern software development, enabling
the creation of complex and sophisticated systems that address a wide
range of real-world challenges.

48
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Object and Class

2.1 Objects and Classes in C++
1. Introduction to Object-Oriented Programming (OOP)
C++ is an object-oriented programming (OOP) language that
focuses on objects and classes to structure programs efficiently. OOP
concepts include encapsulation, inheritance, polymorphism, and
abstraction, with objects and classes being the foundation.
What is a Class?
A class is a user-defined data type that acts as a blueprint for creating
objects. It defines the attributes (data members) and behavior
(member functions) of an object.
What is an Object?
An object is an instance of a class. When a class is defined, no memory
is allocated until an object is created. Each object has its own copy of
data members but shares the same functions.
2. Declaring a Class in C++
The syntax for defining a class:
class ClassName {

// Access specifier
private:

// Data members (variables)
public:

// Member functions (methods)
};
Example: Defining a Class
#include <iostream>
using namespace std;

// Class definition
class Car {

public:
string brand;
int year;

// Function to display car details
void showDetails() {

cout << "Brand: " << brand << ", Year: " << year << endl;

49
MATS Centre for Distance and Online Education, MATS University

Notes }
};

int main() {
Car car1; // Object creation
car1.brand = "Toyota";
car1.year = 2022;

car1.showDetails(); // Calling function

return 0;
}
Output:
Brand: Toyota, Year: 2022
3. Access Specifiers in Classes
Access specifiers define the scope of class members. There are three
main types:
1. Private (default)





Data members are only accessible inside the class.
Cannot be accessed directly by objects.

class Example {
private:

int secretNumber;
};
2. Public

 Members can be accessed directly from outside the class.
class Example {

public:
int number;

};
3. Protected

 Similar to private, but accessible in derived classes.
class Example {

protected:
int protectedVar;

};
4. Defining and Accessing Class Members
We can define member functions inside or outside the class.

50
MATS Centre for Distance and Online Education, MATS University

Notes Example 1: Inside Class Definition
class Student {

public:
string name;

void display() {
cout << "Student Name: " << name << endl;

}
};
Example 2: Outside Class Definition
class Student {

public:
string name;
void display(); // Function declaration

};

// Function definition outside the class
void Student::display() {

cout << "Student Name: " << name << endl;
}
Constructors in C++
A constructor is a special function that initializes objects
automatically when they are created. It has the same name as the class
and no return type.

Types of Constructors
In C++, a constructor is a special member function of a class that is
automatically called when an object is created. Its primary role is to
initialize the object’s data members.

General Rules:

 Constructor name is same as the class name.

 It has no return type (not even void).

 Can be overloaded to define multiple constructors for a class.

51
MATS Centre for Distance and Online Education, MATS University

Notes

Figure 11: Types of Constructors

1. Default Constructor

A default constructor is a constructor that takes no parameters. It is
either provided by the compiler implicitly or defined explicitly by the

Features:

 Automatically provided by the compiler if no constructor is
defined.

 Initializes the object with default values (0, null, false, etc.).

Example:
class Car {

public:
string brand;
Car() { // Constructor

cout << "A new car object is created!" << endl;
}

};
int main() {

Car car1; // Constructor is called automatically
return 0;

}
Output:
A new car object is created!

52
MATS Centre for Distance and Online Education, MATS University

user.

 Can also be defined manually.

Notes 2. Parameterized Constructor
A parameterized constructor is a constructor that takes arguments to
initialize the object with specific values at the time of creation.

Features:




Allows different objects to be initialized with different values.
Enhances flexibility and control over object initialization.

Example:

class Car {

public:
string brand;
int year;

Car(string b, int y) { // Constructor with parameters
brand = b;
year = y;

}

void display() {
cout << "Brand: " << brand << ", Year: " << year << endl;

}
};
int main() {

Car car1("Ford", 2023); // Passing arguments
car1.display();
return 0;

}
3. Copy Constructor

A copy constructor creates a new object by copying the values of
another object of the same class. Java doesn’t provide a built-in copy

Features:
 Used to create a duplicate object.
 Helps in creating deep copies (manually) when needed.

Example:
#include <iostream>
using namespace std;

53
MATS Centre for Distance and Online Education, MATS University

constructor like C++, but you can define it manually.

Notes class Student {
int roll;
string name;

public:
// Parameterized Constructor
Student(int r, string n) {

roll = r;
name = n;

}
// Copy Constructor
Student(const Student &s) {

roll = s.roll;
name = s.name;
cout << "Copy constructor called!" << endl;

}
void display() {

cout << "Roll: " << roll << ", Name: " << name << endl;
}

};
int main() {

Student s1(101, "Ravi"); // Calls parameterized constructor
Student s2 = s1;
s1.display();
s2.display();
return 0;

// Calls copy constructor

}
Destructors in C++
A destructor is a special function that is automatically invoked when an
object goes out of scope. It releases resources such as memory. It has
the same name as the class but with a tilde (~) symbol.
Example: Destructor
class Car {

public:
Car() {

cout << "Car object created!" << endl;
}
~Car() {

54
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Car object destroyed!" << endl;
}

};

int main() {
Car car1;
return 0;

}
Output:
Car object created!
Car object destroyed!

Objects as Function Arguments
Objects can be passed as parameters in functions.
Example: Passing Object to Function
class Student {

public:
string name;
void display() {

cout << "Student Name: " << name << endl;
}

};

// Function to accept an object as parameter
void showStudent(Student s) {

s.display();
}

int main() {
Student s1;
s1.name = "John";
showStudent(s1); // Passing object
return 0;

}

Array of Objects
We can create an array of objects just like an array of integers.

55
MATS Centre for Distance and Online Education, MATS University

Notes Example: Storing Multiple Objects in an Array
class Car {

public:
string brand;
int year;
void showDetails() {

cout << "Brand: " << brand << ", Year: " << year << endl;
}

};
int main() {

Car cars[2] = {{"Ford", 2023}, {"BMW", 2022}};

for (int i = 0; i < 2; i++) {
cars[i].showDetails();

}
return 0;

}
Pointers to Objects
Pointers can be used to handle objects dynamically.
Example: Pointer to an Object
class Car {

public:
string brand;
int year;

void showDetails() {
cout << "Brand: " << brand << ", Year: " << year << endl;

}
};

int main() {
Car *ptr = new Car;
ptr->brand = "Audi";
ptr->year = 2024;
ptr->showDetails();
delete ptr; // Free memory
return 0;

}

56
MATS Centre for Distance and Online Education, MATS University

Notes














A class is a blueprint for creating objects.
An object is an instance of a class.

Destructors free resources when an object is destroyed. 272727

Objects can be passed to functions and stored in arrays.
Pointers allow dynamic object management.

This Module provides a detailed guide to Objects and Classes in C++
with examples and syntax, making it easier to understand object-
oriented programming concepts.

57
MATS Centre for Distance and Online Education, MATS University

Access specifiers (public, private, protected) control visibility.
Constructors initialize objects automatically.

Notes Unit 6: Member Function

2.2 Member Functions in C++
In C++, a class is a user-defined data type that can contain data
members (variables) and member functions (methods). Member
functions are functions that belong to a class and operate on its data
members. They provide encapsulation by bundling data and behavior
together.
Member functions are used to manipulate the data members, provide
functionality, and enforce data hiding. They are declared inside the
class and can be defined either inside or outside the class.
Syntax of Member Function
Declaring a Member Function in a Class
class ClassName {
public:

void functionName() {
// Function body

}
};
Example of a Simple Member Function
#include <iostream>
using namespace std;

class Car {
public:

void display() {
cout << "This is a car." << endl;

}
};

int main() {
Car myCar;
myCar.display();
return 0;

}
Output:
This is a car.

58
MATS Centre for Distance and Online Education, MATS University

Notes Types of Member Functions 21

Member functions can be classified into the following types:
1. Simple Member Function
2. Inline Member Function
3. Outside Class Definition
4. Static Member Function
5. Constant Member Function
6. Friend Function
7. Virtual Member Function

1. Simple Member Function
A normal member function is declared inside the class and defined
inside the class itself.
Example:
#include <iostream>
using namespace std;
class Student {
public:

void showMessage() {
cout << "Hello, Student!" << endl;

}
};

int main() {
Student obj;
obj.showMessage();
return 0;

}
Output:
Hello, Student!

2. Inline Member Function
If a function is small, it can be defined directly inside the class using
the inline keyword.
Example:
#include <iostream>
using namespace std;
class Square {
public:

59
MATS Centre for Distance and Online Education, MATS University

Notes inline int calculate(int x) {
return x * x;

}
};

int main() {
Square obj;
cout << "Square of 4 is: " << obj.calculate(4);
return 0;

}
Output:
Square of 4 is: 16

3. Member Function Defined Outside the Class
Member functions can also be defined outside the class using the scope
resolution operator ::.
Example:
#include <iostream>
using namespace std;

class Person {
public:

void display(); // Function declaration
};

// Function definition outside the class
void Person::display() {

cout << "Hello from outside the class!" << endl; 888

}

int main() {
Person obj;
obj.display();
return 0;

}
Output:
Hello from outside the class!

60
MATS Centre for Distance and Online Education, MATS University

Notes 4. Static Member Function
A static member function can be called without creating an object of
the class. It can only access static data members.
Example:
#include <iostream>
using namespace std;
class Counter {
private:

static int count;
public:

static void showCount() {
cout << "Count: " << count << endl;

}
};
int Counter::count = 5; // Initializing static variable
int main() {

Counter::showCount(); // Calling static function
return 0;

}
Output:
Count: 5

5. Constant Member Function 272727

A constant member function ensures that the function does not
modify any data members of the class.
Example:
#include <iostream>
using namespace std;
class Demo {
public:

void show() const {
cout << "This is a constant function." << endl;

}
};
int main() {

Demo obj;
obj.show();
return 0;

61
MATS Centre for Distance and Online Education, MATS University

Notes }
Output:
This is a constant function.

6. Friend Function
A friend function is not a member of the class but has access to
private and protected members.
Example:
#include <iostream>
using namespace std;
class Box {
private:

int length;
public:

Box() { length = 10; }
friend void showLength(Box b);

};
void showLength(Box b) {

cout << "Length: " << b.length << endl; 888

}
int main() {

Box obj;
showLength(obj);
return 0;

}
Output:
Length: 10

7. Virtual Member Function
A virtual function is used in inheritance to achieve runtime
polymorphism.
Example:
#include <iostream>
using namespace std;
class Base {
public:

virtual void show() {
cout << "Base class function" << endl;

62
MATS Centre for Distance and Online Education, MATS University

Notes }
};
class Derived : public Base {
public:

void show() override {
cout << "Derived class function" << endl;

}
};
int main() {

Base* basePtr;
Derived obj;
basePtr = &obj;
basePtr->show();
return 0;

}
Output:
Derived class function
Member functions in C++ enhance encapsulation, data hiding, and
modularity. They are integral to Object-Oriented Programming (OOP).
By understanding different types of member functions such as inline,
static, friend, constant, and virtual functions, programmers can
effectively design efficient and structured C++ programs.

2.3 Array within the Class in C++
In C++, an array within a class is used when we need to store multiple
values of the same type as part of an object. Arrays within a class allow 272727

storing multiple elements inside an instance of a class, making it useful
for handling structured data efficiently.
By defining an array as a data member of a class, we can manipulate 888

the elements using member functions.
1. Declaring an Array Inside a Class
We can declare an array as a member variable inside a class. The syntax
is similar to normal array declaration, but it is defined inside the class
scope.
Syntax:
class ClassName {

private:
data_type array_name[size]; // Array as a class member

63
MATS Centre for Distance and Online Education, MATS University

Notes
public:

void memberFunction();
};
Key Points:







The array size should be a constant or fixed at compile time.
We use member functions to initialize and access array
elements.

2. Example: Array within a Class
Example 1: Storing and Displaying Student Marks
#include <iostream>
using namespace std;

class Student {
private:

int marks[5]; // Array as a member of class

public:
void inputMarks() {

cout << "Enter 5 subject marks: ";
for(int i = 0; i < 5; i++) {

cin >> marks[i]; // Taking input for each element
}

}

void displayMarks() {
cout << "Student Marks: ";
for(int i = 0; i < 5; i++) {

cout << marks[i] << " "; // Displaying array elements
}
cout << endl;

}
};

int main() {
Student s1; // Creating an object
s1.inputMarks();

64
MATS Centre for Distance and Online Education, MATS University

The array can be placed under private or public access specifier.

Notes s1.displayMarks();

return 0;
}
Output:
Enter 5 subject marks: 78 89 92 85 88
Student Marks: 78 89 92 85 88

Explanation:
 The class Student has an integer array marks[5] as a private

member.






inputMarks() function takes input for 5 subjects.
displayMarks() function prints the stored values.
The main() function creates an object s1, calls both member
functions, and displays marks.

3. Initializing Arrays in a Class Using a Constructor
We can initialize an array inside a class using a constructor.
Example 2: Using Constructor for Initialization
#include <iostream>
using namespace std;
class Numbers {
private:

int arr[5];
public:

Numbers() { // Constructor to initialize array
for(int i = 0; i < 5; i++) {

arr[i] = i * 10; // Assigning values 0, 10, 20, 30, 40
}

}
void displayArray() {

cout << "Array Elements: ";
for(int i = 0; i < 5; i++) {

cout << arr[i] << " ";
}
cout << endl;

}
};
int main() {

65
MATS Centre for Distance and Online Education, MATS University

Notes Numbers obj; // Object created, constructor initializes array
obj.displayArray();
return 0;

}
Output:
Array Elements: 0 10 20 30 40
Explanation:





The constructor initializes the array values.
The displayArray() function prints the array elements.

4. Array as a Public Member in a Class
Arrays can be public members, allowing direct access from objects.
Example 3: Public Array Access
#include <iostream>
using namespace std;
class Data {
public:

int values[3]; // Public array

void showValues() {
cout << "Stored Values: ";
for(int i = 0; i < 3; i++) {

cout << values[i] << " ";
}
cout << endl;

}
};
int main() {

Data obj;
obj.values[0] = 10;
obj.values[1] = 20;
obj.values[2] = 30;
obj.showValues();
return 0;

}
Output:
Stored Values: 10 20 30

Explanation:

66
MATS Centre for Distance and Online Education, MATS University

Notes 



Note: Public arrays allow direct modification but may violate
encapsulation.
5. Array of Objects in a Class
Instead of an array as a class member, we can have an array of objects.
Example 4: Array of Objects
#include <iostream>
using namespace std;

class Employee {
private:

int id;
string name;

public:
void setDetails(int empId, string empName) {

id = empId;
name = empName;

}

void display() {
cout << "ID: " << id << ", Name: " << name << endl;

}
};

int main() {
Employee employees[3]; // Array of objects
employees[0].setDetails(101, "Alice");
employees[1].setDetails(102, "Bob");
employees[2].setDetails(103, "Charlie");
cout << "Employee Details: " << endl;
for(int i = 0; i < 3; i++) {

employees[i].display();
}

return 0;
}

67
MATS Centre for Distance and Online Education, MATS University

The array values[3] is public, so we can assign values directly.
The function showValues() prints the array elements.

Notes Output:
Employee Details:
ID: 101, Name: Alice
ID: 102, Name: Bob
ID: 103, Name: Charlie
Explanation:





Employee class has setDetails() and display() functions.
employees[3] is an array of objects, storing multiple employee
records.

6. Dynamic Arrays in a Class
If the array size is unknown at compile-time, we can use dynamic 151515

memory allocation.
Example 5: Using Dynamic Arrays
#include <iostream>
using namespace std;
class DynamicArray {
private:

int* arr;
int size;

public:
DynamicArray(int s) {

size = s;
arr = new int[size]; // Dynamically allocating memory

}
void inputValues() {

cout << "Enter " << size << " values: ";
for(int i = 0; i < size; i++) {

cin >> arr[i];
}

}
void displayValues() {

cout << "Stored Values: ";
for(int i = 0; i < size; i++) {

cout << arr[i] << " ";
}
cout << endl;

}
~DynamicArray() {

68
MATS Centre for Distance and Online Education, MATS University

Notes delete[] arr; // Free allocated memory
}

};
int main() {

DynamicArray obj(3);
obj.inputValues();
obj.displayValues();

return 0;
}
Output:
Enter 3 values: 5 10 15
Stored Values: 5 10 15
Conclusion







Arrays within a class allow storing multiple values inside an
object.
We can use constructors, member functions, and dynamic
allocation for better management.
Encapsulation should be maintained by keeping arrays as
private members.

2.4 Memory Allocation of Objects in C++
Introduction to Memory Allocation in C++
Memory allocation refers to the process of assigning memory space for
variables, objects, and data structures during the execution of a
program. In C++, objects can be allocated memory in two ways:

1. Static Memory Allocation – Memory is allocated at compile
time.

2. Dynamic Memory Allocation – Memory is allocated at
runtime using new and delete.

Understanding memory allocation is crucial for efficient resource
management and avoiding memory leaks.
1. Static Memory Allocation of Objects 151515

In static memory allocation, memory is allocated during compile time,
and the allocated memory remains fixed throughout the program
execution.
Syntax:
class ClassName {

// Class members

69
MATS Centre for Distance and Online Education, MATS University

Notes };

int main() {
ClassName obj; // Static allocation

}
Example:
#include <iostream>
using namespace std;

class Student {
public:

string name;
int age;

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

}
};

int main() {
Student s1; // Memory allocated statically
s1.name = "John";
s1.age = 20;
s1.display();

return 0;
}
Output:
Name: John, Age: 20
Key Points:







Memory is allocated at compile time.
Objects are created in the stack memory.
Memory is automatically deallocated when the object goes out
of scope.

2. Dynamic Memory Allocation of Objects
In dynamic memory allocation, memory is allocated at runtime using
the new keyword, and the object is stored in heap memory. The
allocated memory must be manually deallocated using delete.

70
MATS Centre for Distance and Online Education, MATS University

Notes Syntax:
ClassName* obj = new ClassName(); // Dynamic allocation
delete obj; // Deallocation
Example:
#include <iostream>
using namespace std;
class Student {

public:
string name;
int age;

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

}
};

int main() {
Student* s1 = new Student(); // Memory allocated dynamically
s1->name = "Alice";
s1->age = 22;
s1->display();

delete s1; // Deallocating memory

return 0;
}
Output:
Name: Alice, Age: 22
Key Points:







Memory is allocated at runtime.
Objects are stored in heap memory.
We must use delete to free allocated memory and prevent
memory leaks.

3. Dynamic Memory Allocation for Arrays of Objects 4949

Sometimes, we need to allocate memory dynamically for an array of
objects.
Syntax:
ClassName* objArray = new ClassName[size]; // Allocating an array

71
MATS Centre for Distance and Online Education, MATS University

Notes delete[] objArray; // Deallocating the array
Example:
#include <iostream>
using namespace std;
class Student {

public:
string name;
int age;

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

}
};

int main() {
int n = 3;
Student* students = new Student[n]; // Array of objects

students[0].name = "John";
students[0].age = 20;

students[1].name = "Emma";
students[1].age = 21;

students[2].name = "Mike";
students[2].age = 19;

for (int i = 0; i < n; i++) { 4444

students[i].display();
}

delete[] students; // Freeing allocated memory

return 0;
}
Output:
Name: John, Age: 20
Name: Emma, Age: 21

72
MATS Centre for Distance and Online Education, MATS University

Notes Name: Mike, Age: 19
Key Points:





We use new to allocate memory for an array of objects. 4949

delete[] must be used to deallocate memory for arrays.
4. Constructor and Destructor in Dynamic Memory Allocation
When objects are created dynamically, constructors are automatically
called, but we must manually call the destructor by using delete.
Example:
#include <iostream>
using namespace std;

class Student {
public:

Student() {
cout << "Constructor called!" << endl;

}
~Student() {

cout << "Destructor called!" << endl;
}

};

int main() {
Student* s1 = new Student(); // Constructor is called
delete s1; // Destructor must be explicitly called using delete

return 0;
}
Output:
Constructor called!
Destructor called!
Key Points:





Constructor runs automatically when an object is created.
Destructor must be invoked manually for dynamically allocated
objects using delete.

73
MATS Centre for Distance and Online Education, MATS University

Notes 5. Memory Leak and Its Prevention 151515

What is a Memory Leak?
A memory leak occurs when dynamically allocated memory is not
deallocated properly, leading to excessive memory usage and
performance issues.
Example of Memory Leak:
void createObject() {

int* ptr = new int(10); // Memory allocated but not deleted
}
In this case, ptr is allocated memory but is never deleted, leading to a
memory leak.
Preventing Memory Leaks:
Always use delete or delete[] after dynamic memory allocation.
void createObject() {

int* ptr = new int(10);
delete ptr; // Properly deallocating memory

}
6. Smart Pointers for Automatic Memory Management
C++ provides smart pointers (available in the <memory> library) that
automatically manage memory, preventing leaks.
Example using unique_ptr:
#include <iostream>
#include <memory>
using namespace std;

class Student {
public:

Student() {
cout << "Constructor called!" << endl;

}
~Student() {

cout << "Destructor called!" << endl;
}

};

int main() {
unique_ptr<Student> s1 = make_unique<Student>(); // No need for

delete

74
MATS Centre for Distance and Online Education, MATS University

Notes
return 0;

}
Output:
Constructor called!
Destructor called!
Key Benefits:





No need to use delete, as memory is automatically managed.
Helps prevent memory leaks.

Conclusion








Static memory allocation is handled automatically by the
compiler and uses stack memory.
Dynamic memory allocation uses heap memory and requires
manual deallocation using delete.
Arrays of objects can also be allocated dynamically using new[]
and must be freed using delete.
Memory leaks occur when memory is not properly deallocated, 4444

which can be prevented using delete or smart pointers.
By understanding these concepts, programmers can write efficient and
optimized C++ programs while effectively managing memory.
This explanation provides a detailed yet structured approach to memory
allocation in C++, covering syntax, theory, examples, and best
practices.
2.5 Friend Function in C++
Introduction to Friend Function
In C++, data hiding is an important concept in object-oriented
programming (OOP). The private and protected members of a class
cannot be accessed directly from outside the class. However,
sometimes, we need to access these members from non-member
functions.
To achieve this, C++ provides Friend Functions, which allow access to
private and protected members of a class without being a member of
that class.
A friend function is declared inside the class but defined outside the
class with the keyword friend.
Syntax of Friend Function
The general syntax of a friend function in C++ is:
class ClassName {

75
MATS Centre for Distance and Online Education, MATS University

Notes private:
int privateData;

public:
ClassName() : privateData(0) {}

// Friend function declaration
friend void friendFunction(ClassName obj);

};

// Definition of friend function
void friendFunction(ClassName obj) {

cout << "Private data: " << obj.privateData;
}
Key Points in Syntax:

1. The friend function is declared inside the class using the friend
keyword.

2. The friend function is not a member function of the class but
can access private and protected data.

3. The friend function is defined outside the class like a normal
function.

Example: Using Friend Function in C++
Example 1: Accessing Private Members Using a Friend Function
#include <iostream>
using namespace std;
class Sample {
private:

int secretNumber;
public:

Sample(int num) : secretNumber(num) {}

// Friend function declaration
friend void showSecret(Sample obj);

};

// Friend function definition
void showSecret(Sample obj) {

76
MATS Centre for Distance and Online Education, MATS University

Notes cout << "The secret number is: " << obj.secretNumber << endl;
}

int main() {
Sample obj(42);
showSecret(obj); // Calling friend function
return 0;

}
Output:
The secret number is: 42
Explanation:







The function showSecret() is declared as a friend.
Since showSecret() is a friend function, it can access the private
data of the Sample class.

Friend Function with Multiple Classes
A friend function can be used to access private members of multiple
classes.
Example 2: Friend Function Accessing Two Classes
#include <iostream>
using namespace std;

class ClassB; // Forward declaration

class ClassA {
private:

int dataA;

public:
ClassA(int value) : dataA(value) {}

// Declaring a friend function
friend void addValues(ClassA objA, ClassB objB);

};

class ClassB {
private:

int dataB;

77
MATS Centre for Distance and Online Education, MATS University

The class Sample has a private member secretNumber.

Notes
public:

ClassB(int value) : dataB(value) {}

// Declaring the same friend function
friend void addValues(ClassA objA, ClassB objB);

};

// Friend function definition
void addValues(ClassA objA, ClassB objB) {

cout << "Sum: " << objA.dataA + objB.dataB << endl;
}

int main() {
ClassA objA(10);
ClassB objB(20);
addValues(objA, objB);
return 0;

}
Output:
Sum: 30
Explanation:





ClassA and ClassB each have a private variable.

both classes and performs an addition.
Friend Function in Operator Overloading
A friend function is commonly used for operator overloading in C++.
Example 3: Overloading the + Operator Using Friend Function
#include <iostream>
using namespace std;

class Number {
private:

int value;

public:
Number(int v) : value(v) {}

78
MATS Centre for Distance and Online Education, MATS University

The addValues() friend function accesses private members of

Notes // Friend function to overload the '+' operator
friend Number operator+(Number obj1, Number obj2);

void display() {
cout << "Value: " << value << endl;

}
};

// Friend function definition
Number operator+(Number obj1, Number obj2) {

return Number(obj1.value + obj2.value);
}

int main() {
Number n1(5), n2(10);
Number sum = n1 + n2;
sum.display();
return 0;

}
Output:
Value: 15
Explanation:





The + operator is overloaded using a friend function.
The friend function accesses private members and returns a new
object.

Advantages of Friend Functions
1. Access to Private Data – Friend functions can access private

and protected data of a class.
2. Useful in Operator Overloading – Friend functions are widely

used for operator overloading.
3. Multiple Class Access – A single friend function can be used

to access private members of multiple classes.
4. Encapsulation Is Maintained – Even though a friend function

accesses private members, it does not belong to the class.
Limitations of Friend Functions

1. Breaks Data Hiding – Friend functions break the principle of
encapsulation because they can access private members.

79
MATS Centre for Distance and Online Education, MATS University

Notes 2. Increases Coupling – Since a friend function is not a member
of the class, it increases dependencies between classes.

3. Not Inherited – Friend functions are not inherited by derived
classes.

4. Security Issues – Excessive use of friend functions may expose
sensitive data.

The friend function in C++ allows accessing private and protected
members of a class without being a member of that class. It is declared
inside the class using the friend keyword and defined outside like a
normal function. Friend functions are commonly used for operator
overloading and accessing multiple classes but should be used carefully
to avoid breaking encapsulation.
Key Takeaways





Declared inside a class using friend but defined outside the
class.
Not a member function but can access private and protected
members.





Can be used for multiple classes and operator overloading.
Should be used carefully to maintain data security.

By understanding friend functions, programmers can effectively
manage data access while maintaining flexibility in object-oriented
design.
2.6 Local Class in C++
In C++, a local class is a class that is defined within a function or a
block scope. Unlike global or member classes, a local class is accessible
only within the function where it is declared. Local classes are useful
for encapsulation and hiding implementation details that are only
relevant within a specific function.
Local classes can be used for:





Encapsulating helper functionality within a function.
Avoiding namespace pollution, as they are not accessible
outside the function.

 Enhancing security, since they are not accessible from other
functions.

Syntax of Local Class in C++
A local class is defined inside a function, but its methods can be
declared inside or outside the function. The syntax is:
void function_name() {

80
MATS Centre for Distance and Online Education, MATS University

Notes class LocalClass { // Local class declaration
public:

void display() {
std::cout << "Inside Local Class" << std::endl;

}
};

LocalClass obj; // Creating an object of the local class
obj.display(); // Calling the function

}
Key points about local classes:

1. Defined within a function and not accessible outside.
2. Can access only static variables of the enclosing function.
3. Cannot have static data members.
4. Cannot access non-static variables or parameters of the

function.
5. Objects of a local class can be created only within the function

where it is defined.
Example 1: Basic Local Class Usage
#include <iostream>
using namespace std;

void myFunction() {
class LocalClass { // Local class inside a function
public:

void showMessage() {
cout << "This is a local class function!" << endl;

}
};

LocalClass obj; // Creating an object
obj.showMessage(); // Calling the function

}

int main() {
myFunction(); // Call function that contains local class
return 0;

}

81
MATS Centre for Distance and Online Education, MATS University

Notes Output:
This is a local class function!
Accessing Static Variables of Enclosing Function
Since local classes cannot access non-static variables of the enclosing
function, they can only use static variables.
#include <iostream>
using namespace std;

void myFunction() {
static int count = 0; // Static variable

class LocalClass {
public:

void increment() {
count++; // Accessing static variable
cout << "Count: " << count << endl;

}
};

LocalClass obj1, obj2;
obj1.increment();
obj2.increment();

}

int main() {
myFunction();
myFunction(); // Calling again to show static behavior
return 0;

}
Output:
Count: 1
Count: 2
Count: 3
Count: 4
Limitations of Local Class

1. Cannot Access Non-Static Variables
 Local classes cannot directly access the non-static

variables of the enclosing function.

82
MATS Centre for Distance and Online Education, MATS University

Notes #include <iostream>
using namespace std;

void myFunction() {
int x = 10; // Non-static variable

class LocalClass {
public:

void display() {
// cout << "Value of x: " << x; // Error: Cannot access non-static

variables
}

};

LocalClass obj;
obj.display();

}

int main() {
myFunction();
return 0;

}
2. Cannot Have Static Data Members

 Unlike normal classes, local classes cannot have static
data members.

#include <iostream>
using namespace std;

void myFunction() {
class LocalClass {
public:

static int x; // Error: Static data members not allowed
};

}

int main() {
myFunction();
return 0;

83
MATS Centre for Distance and Online Education, MATS University

Notes }
Compiler Error:
Error: Static data members are not allowed in local classes

3. Cannot Use Friend Functions or Templates




Local classes cannot have friend functions.

Example 2: Using Local Class with Function Parameters
A local class can work with parameters passed to a function, but it
cannot directly access them unless they are passed to the local class as
arguments.
#include <iostream>
using namespace std;

void calculateSquare(int num) {
class LocalClass {
public:

int square(int x) {
return x * x;

}
};

LocalClass obj;
cout << "Square of " << num << " is: " << obj.square(num) << endl;

}

int main() {
calculateSquare(5);
calculateSquare(7);
return 0;

}
Output:
Square of 5 is: 25
Square of 7 is: 49

Example 3: Using Local Class with Pointers
#include <iostream>
using namespace std;

84
MATS Centre for Distance and Online Education, MATS University

They cannot be used as template arguments directly.

Notes
void pointerExample() {

class LocalClass {
public:

void printMessage(const char* message) {
cout << "Message: " << message << endl;

}
};

LocalClass obj;
obj.printMessage("Hello from Local Class!");

}

int main() {
pointerExample();
return 0;

}
Output:
Message: Hello from Local Class!

Advantages of Local Class
1. Encapsulation:

 Hides the class implementation inside the function.
2. Memory Efficiency:

 Objects of local classes exist only while the function

3. Better Readability & Maintenance:
Keeps related logic in one place, reducing global scope
pollution.



Local classes in C++ provide a powerful way to encapsulate logic
within a function, ensuring that certain classes remain hidden from the
rest of the program. However, they come with limitations, such as the
inability to have static data members or access non-static variables of
the enclosing function.
2.7 Constructors in C++
A constructor is a special member function in C++ that initializes
objects of a class. It has the same name as the class and is automatically
called when an object is created.

85
MATS Centre for Distance and Online Education, MATS University

executes, saving memory.

Notes Key Features of Constructors:








They do not return any value (not even void).
They are invoked automatically when an object is created.
They initialize the object’s data members.
They can be overloaded to handle different types of
initialization.

Types of Constructors in C++
1. Parameterized Constructor
2. Multiple Constructors (Constructor Overloading)
3. Default Argument Constructor

1. Parameterized Constructor
A parameterized constructor is used to initialize an object with
specific values at the time of creation. It takes arguments and assigns
them to object data members.
Syntax:
class ClassName {
public:

ClassName(data_type param1, data_type param2) {
// Constructor body

}
};
Example:
#include <iostream>
using namespace std;

class Student {
private:

string name;
int age;

public:
// Parameterized Constructor
Student(string studentName, int studentAge) {

name = studentName;
age = studentAge;

}

void display() {

86
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Name: " << name << ", Age: " << age << endl;
}

};

int main() {
Student s1("John", 20); // Passing values at object creation
Student s2("Alice", 22);

s1.display();
s2.display();

return 0;
}
Output:
Name: John, Age: 20
Name: Alice, Age: 22
In this example:

 The constructor Student(string, int) initializes objects with
values.

 When s1 and s2 are created, their data members are assigned
values.

2. Multiple Constructors (Constructor Overloading)
C++ allows multiple constructors with different parameters in the
same class. This is called constructor overloading.
Syntax:
class ClassName {
public:

ClassName() { ... } // Default Constructor
ClassName(int x) { ... } // Parameterized Constructor
ClassName(int x, int y) { ... } // Another Parameterized Constructor

};
Example:
#include <iostream>
using namespace std;

class Rectangle {
private:

int length, width;

87
MATS Centre for Distance and Online Education, MATS University

Notes
public:

// Default Constructor
Rectangle() {

length = 0;
width = 0;

}

// Constructor with one parameter
Rectangle(int side) {

length = width = side; // Square
}

// Constructor with two parameters
Rectangle(int l, int w) {

length = l;
width = w;

}

void display() {
cout << "Length: " << length << ", Width: " << width << endl;

}
};

int main() {
Rectangle r1; // Calls Default Constructor
Rectangle r2(5); // Calls Constructor with one parameter
Rectangle r3(4, 6); // Calls Constructor with two parameters

r1.display();
r2.display();
r3.display();

return 0;
}
Output:
Length: 0, Width: 0
Length: 5, Width: 5

88
MATS Centre for Distance and Online Education, MATS University

Notes Length: 4, Width: 6
Here, the constructor is overloaded to accept zero, one, or two
parameters, allowing different ways to create objects.
3. Default Argument Constructor
A default argument constructor allows assigning default values to
parameters. If no arguments are provided, the default values are used.
Syntax:
class ClassName {
public:

ClassName(data_type param1 = default_value1, data_type param2 =
default_value2) {

// Constructor body
}

};
Example:
#include <iostream>
using namespace std;

class Car {
private:

string brand;
int price;

public:
// Default Argument Constructor
Car(string carBrand = "Toyota", int carPrice = 500000) {

brand = carBrand;
price = carPrice;

}

void display() {
cout << "Brand: " << brand << ", Price: " << price << endl;

}
};

int main() {
Car c1; // Uses default values
Car c2("Honda"); // Uses default price

89
MATS Centre for Distance and Online Education, MATS University

Notes Car c3("BMW", 1200000); // Uses provided values

c1.display();
c2.display();
c3.display();

return 0;
}
Output:
Brand: Toyota, Price: 500000
Brand: Honda, Price: 500000
Brand: BMW, Price: 1200000
In this example:

 If no values are passed, default values ("Toyota", 500000) are
used.





If one argument is passed ("Honda"), the default price is used.
If both arguments are passed ("BMW", 1200000), they override
the defaults.

Table 2.1 Comparison of Constructor Types

Constructor Type Definition
Initializes
object

Usage Example
an

with
Parameterized
Constructor

specific values Student s1("John", 20);
as passed

arguments.
Different
constructors Multiple

Constructors
(Constructor
Overloading)

handle different Rectangle r1(); or
ways of Rectangle r2(5,10);

an initializing
object.
Allows setting
default values for
parameters if no

Default Argument
Constructor

Car c1();, Car
c2("Honda");

arguments
provided.

are

90
MATS Centre for Distance and Online Education, MATS University

Notes Conclusion
 Constructors help in automatic object initialization when an

instance is created.




Parameterized constructors allow passing values.
Multiple constructors provide flexibility using constructor
overloading.

 Default argument constructors allow setting default values
while still allowing customization.

Dynamic Constructor in C++
1. Dynamic Initialization of Objects
Dynamic initialization refers to initializing objects at runtime using
values provided by the user or obtained during program execution. This
is particularly useful when the values needed for initialization are not
known at compile time.
C++ supports dynamic memory allocation using the new operator,
allowing objects to be created in the heap memory. This is useful for
efficient memory management, especially when working with
variable-sized data.
Syntax
class ClassName {

data_type variable;
public:

ClassName(data_type value) {
variable = value; // Dynamic initialization

}
};
Example: Dynamic Initialization of an Object
#include <iostream>
using namespace std;

class Rectangle {
int length, width;

public:
// Constructor with dynamic initialization
Rectangle(int l, int w) {

length = l;
width = w;

91
MATS Centre for Distance and Online Education, MATS University

2.8 Dynamic Initialization of Objects, Copy Constructor, and

Notes }

int area() {
return length * width;

}
};

int main() {
int l, w;

cout << "Enter length and width: ";
cin >> l >> w;

Rectangle r(l, w); // Dynamic Initialization
cout << "Area of Rectangle: " << r.area() << endl;

return 0;
}
Output:
Enter length and width: 10 5
Area of Rectangle: 50
Key Points:







Object values are initialized at runtime using user input.
Useful when object attributes depend on dynamic conditions.
Helps in optimizing memory usage.

2. Copy Constructor
Theory
A copy constructor is a special constructor used to initialize an object
using another object of the same class. It creates a new object by
copying the values from an existing object.
By default, C++ provides a default copy constructor that performs
shallow copying. However, in cases where dynamic memory
allocation is used, we must define a custom copy constructor to avoid
memory issues like dangling pointers and duplicate memory
deallocation.
Syntax
class ClassName {
public:

92
MATS Centre for Distance and Online Education, MATS University

Notes ClassName(const ClassName &obj) {
// Copy constructor definition

}
};
Example: Copy Constructor Demonstration
#include <iostream>
using namespace std;

class Student {
string name;
int age;

public:
// Parameterized Constructor
Student(string n, int a) {

name = n;
age = a;

}

// Copy Constructor
Student(const Student &s) {

name = s.name;
age = s.age;

}

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

}
};

int main() {
Student s1("Alice", 21); // Normal Constructor
Student s2 = s1; // Copy Constructor

cout << "Original Object: ";
s1.display();

cout << "Copied Object: ";
s2.display();

93
MATS Centre for Distance and Online Education, MATS University

Notes
return 0;

}
Output:
Original Object: Name: Alice, Age: 21
Copied Object: Name: Alice, Age: 21
Key Points:







The copy constructor is called when a new object is initialized
from an existing object.
If not defined explicitly, the compiler provides a default copy
constructor.
Required when objects use dynamic memory allocation,
preventing shallow copying issues.

3. Dynamic Constructor
Theory
A dynamic constructor is a constructor that allocates memory
dynamically using the new operator. This is particularly useful when
dealing with variable-sized arrays, strings, or objects with memory
allocated at runtime.
Since memory is allocated dynamically, it must be released manually
using the delete operator inside the destructor to prevent memory
leaks.
Syntax
class ClassName {

data_type* ptr;
public:

ClassName(size_t size) {
ptr = new data_type[size]; // Dynamic memory allocation

}

~ClassName() {
delete[] ptr; // Releasing allocated memory

}
};
Example: Dynamic Constructor in Action
#include <iostream>
using namespace std;

94
MATS Centre for Distance and Online Education, MATS University

Notes class DynamicArray {
int *arr;
int size;

public:
// Dynamic Constructor
DynamicArray(int s) {

size = s;
arr = new int[size]; // Allocating memory dynamically
for (int i = 0; i < size; i++) {

arr[i] = i * 10; // Assigning values dynamically
}

}

void display() {
for (int i = 0; i < size; i++) {

cout << arr[i] << " ";
}
cout << endl;

}

// Destructor to free memory
~DynamicArray() {

delete[] arr;
}

};

int main() {
int n;

cout << "Enter size of array: ";
cin >> n;

DynamicArray dArr(n); // Creating an object dynamically
cout << "Array elements: ";
dArr.display();
return 0;

}

95
MATS Centre for Distance and Online Education, MATS University

Notes Output:
Enter size of array: 5
Array elements: 0 10 20 30 40
Key Points:







A dynamic constructor allocates memory at runtime using

It is useful for dynamic data structures like linked lists,
arrays, and trees.
The destructor must release memory using delete [] to prevent
memory leaks

Table 2.2 Concepts of Constructor Types
Concept Description Key Feature
Dynamic Assigns values to
Initializat object attributes at

Uses parameterized
constructors.

ion runtime.
Copy Initializes a new Avoids shallow copy issues

an when using dynamic memory
allocation.

Construct object
or

using
existing object.

Dynamic Allocates memory
Must use delete in the
destructor to free memory.

Construct dynamically using
or new.

When to Use?






Dynamic Initialization: When values for object properties are
not known at compile time.
Copy Constructor: When we need to create a duplicate object
while ensuring deep copying.
Dynamic Constructor: When working with dynamic memory
allocation, such as arrays, linked lists, or large data
structures.

By understanding and implementing these concepts, programmers can
manage object-oriented memory allocation efficiently in C++.
2.9 Destructors in C++
In object-oriented programming, constructors and destructors play a
crucial role in managing the lifecycle of an object. While a constructor
is used to initialize an object, a destructor is used to clean up resources
before an object is destroyed.

96
MATS Centre for Distance and Online Education, MATS University

new.

Notes A destructor is a special member function in C++ that is automatically
called when an object goes out of scope or is explicitly deleted. It is
primarily used to release memory, close files, or perform cleanup
operations.
1. Destructor Syntax
The destructor in C++:







Has the same name as the class, but prefixed with a tilde ~.
Takes no parameters and has no return type (not even void).
Is automatically invoked when an object is destroyed.

General Syntax:
class ClassName {
public:

~ClassName() {
// Destructor body

}
};

2. Basic Example of a Destructor 6

#include <iostream>
using namespace std;

class Demo {
public:

// Constructor
Demo() {

cout << "Constructor is called!" << endl;
}

// Destructor
~Demo() {

cout << "Destructor is called!" << endl;
}

};

int main() {
Demo obj; // Object created
return 0;

}

97
MATS Centre for Distance and Online Education, MATS University

Notes Output:
Constructor is called!
Destructor is called!
Explanation:





When obj is created, the constructor executes.
As soon as the program reaches the end of main(), the destructor
is automatically invoked, destroying obj.

3. Destructor in Dynamic Memory Allocation
Destructors are crucial when dynamically allocating memory to prevent
memory leaks.
Example: Using Destructor to Release Heap Memory
#include <iostream>
using namespace std;

class DynamicArray {
private:

int* arr;
int size;

public:
// Constructor - Allocates memory
DynamicArray(int s) {

size = s;
arr = new int[size];
cout << "Memory allocated for array of size " << size << endl;

}

// Destructor - Deallocates memory
~DynamicArray() {

delete[] arr;
cout << "Memory deallocated" << endl;

}
};

int main() {
DynamicArray obj(5);
return 0;

}

98
MATS Centre for Distance and Online Education, MATS University

Notes Output:
Memory allocated for array of size 5
Memory deallocated
Explanation:



 The destructor releases the allocated memory using delete[],
preventing memory leaks.

4. When is a Destructor Called?
A destructor is automatically called in the following cases:

1. When a local object goes out of scope (at the end of a block).
2. When a dynamically allocated object is explicitly deleted

using delete.
3. For static objects at program termination.
4. For objects inside another object, when the containing object

is destroyed.
5. Destructor in Inheritance (Base & Derived Class)
In an inheritance hierarchy, destructors are called in reverse order—
first the derived class destructor, then the base class destructor.
Example: Destructor in Inheritance
#include <iostream>
using namespace std;

class Base {
public:

Base() { cout << "Base Constructor\n"; }
~Base() { cout << "Base Destructor\n"; }

};

class Derived : public Base {
public:

Derived() { cout << "Derived Constructor\n"; }
~Derived() { cout << "Derived Destructor\n"; }

};

int main() {
Derived obj;
return 0;

}

99
MATS Centre for Distance and Online Education, MATS University

The constructor dynamically allocates memory using new.

Notes Output:
Base Constructor
Derived Constructor
Derived Destructor
Base Destructor
Explanation:

 The Base class constructor runs first, followed by the Derived
class constructor.

 On destruction, the Derived class destructor runs first,
followed by the Base class destructor.

6. Destructor in Polymorphism (Virtual Destructor)
If a base class has a non-virtual destructor, deleting a derived class
object using a base class pointer causes undefined behavior.
Wrong Way (Without Virtual Destructor):
#include <iostream>
using namespace std;

class Base {
public:

~Base() { cout << "Base Destructor\n"; }
};

class Derived : public Base {
public:

~Derived() { cout << "Derived Destructor\n"; }
};

int main() {
Base* ptr = new Derived();
delete ptr; // Only Base Destructor is called!
return 0;

}
Output:
Base Destructor
The Derived class destructor is never called!, leading to a memory
leak.
Correct Way (Using Virtual Destructor):
#include <iostream>

100
MATS Centre for Distance and Online Education, MATS University

Notes using namespace std;

class Base {
public:

virtual ~Base() { cout << "Base Destructor\n"; }
};

class Derived : public Base {
public:

~Derived() { cout << "Derived Destructor\n"; }
};

int main() {
Base* ptr = new Derived();
delete ptr; // Both destructors are called correctly
return 0;

}
Output:
Derived Destructor
Base Destructor
By declaring the destructor in the base class as virtual, C++ ensures
proper destructor chaining, avoiding memory leaks.
7. Destructor and Smart Pointers
C++11 introduced smart pointers to automate memory management.
Example: Using unique_ptr
#include <iostream>
#include <memory>
using namespace std;

class Demo {
public:

Demo() { cout << "Constructor\n"; }
~Demo() { cout << "Destructor\n"; }

};

int main() {
unique_ptr<Demo> ptr = make_unique<Demo>();
return 0;

101
MATS Centre for Distance and Online Education, MATS University

Notes }
Output:
Constructor
Destructor
Since unique_ptr automatically calls the destructor, no need for
explicit delete.
8. Key Points About Destructors

1. Only one destructor per class (cannot be overloaded).
2. Cannot be declared const, volatile, or static.
3. Should release resources (memory, files, database

connections).
4. Destructor execution order is reverse of constructor

execution.
5. Use virtual destructors in base classes when working with

inheritance.

memory management.
Destructors in C++ ensure proper resource management by
automatically deallocating memory and releasing resources when
an object is destroyed. Understanding destructors is essential for
writing efficient and memory-safe programs, especially when working
with dynamic memory allocation, inheritance, and polymorphism.
By following best practices such as using virtual destructors in base
classes and leveraging smart pointers, developers can prevent
memory leaks and undefined behavior, leading to more robust and
maintainable C++ applications.

MCQs:
1. What is a class in C++?
A. A function that performs a specific task
B. A collection of variables
C. A blueprint for creating objects
D. A type of loop

2. Which of the following is the correct way to create an object
of a class named Car?

A. Car();
B. object Car;
C. Car car1;

102
MATS Centre for Distance and Online Education, MATS University

6. Use smart pointers (unique_ptr, shared_ptr) to avoid manual

Notes D. create Car;

3. What is a constructor in C++?
A. A function used to destroy an object
B. A special function used to initialize objects
C. A loop that repeats object creation
D. A static method

4. How many constructors can a class have in C++?
A. Only one
B. Only two
C. As many as needed (function overloading applies)
D. None

5. Which of the following constructor types does NOT take any
parameters?

A. Parameterized constructor
B. Copy constructor
C. Default constructor
D. Virtual constructor

6. What is the purpose of a destructor in C++?
A. To create new objects
B. To copy one object to another
C. To initialize member variables
D. To release resources when an object is destroyed

7. What is the symbol used to define a destructor in C++?
A. +
B. *
C. ~
D. !

8. Which of the following statements about constructors is 3232

TRUE?
A. Constructors must have a return type
B. Constructors can be virtual
C. Constructors can be overloaded

103
MATS Centre for Distance and Online Education, MATS University

Notes D. Constructors cannot be defined inside the class

9. What happens if you do not define a constructor in your
class?

A. The program will not compile
B. An error will be thrown
C. The compiler provides a default constructor
D. The object cannot be created

10. Which constructor is called when an object is initialized
with another object of the same class?

A. Default constructor
B. Destructor
C. Copy constructor
D. Static constructor

Short Questions:
1. What is a class in C++?

3. How do you declare and create an object of a class in C++?
4. What is the main purpose of a constructor in C++?
5. What is a default constructor?
6. Can constructors be overloaded in C++? If yes, how?
7. What is a parameterized constructor? 43

8. What is a copy constructor? When is it invoked?
9. What is the syntax for defining a destructor in C++?
10. What is the role of a destructor in a class?
11. Can a class have more than one destructor in C++? Why or why

not?
12. What happens if you don’t define a constructor or destructor in

your class?

Long Questions:
1. Define a class and an object in C++. How do they relate to each

other in the object-oriented paradigm? Provide an example.
2. Explain how to declare and define a class in C++. Then show

how to create and use an object of that class.

104
MATS Centre for Distance and Online Education, MATS University

2. Define an object in the context of C++ OOP.

Notes 3. What is a constructor in C++? Describe its characteristics, rules,
and how it differs from a regular member function.

4. Write an algorithm that demonstrates the use of a default
constructor. Explain how it is automatically invoked.

5. What is a parameterized constructor? How is it useful in
initializing class members with specific values? Write a C++
example to support your explanation.

6. Describe the concept of constructor overloading in C++. Why is
it important? Provide a code example with at least two different
constructors.

7. What is a copy constructor in C++? When is it called? Write a

8. Define a destructor. Explain its purpose in C++ and how it differs
from a constructor. Provide an example where a destructor is
useful.

9. Can constructors or destructors be overloaded or inherited in
C++? Justify your answer with reasons and examples.

10. Explain how memory management is handled using
constructors and destructors in C++. Why are they crucial in
resource handling?

11. Write a complete C++ program that includes a class with all
types of constructors (default, parameterized, and copy) and a
destructor. Explain how each of them works during program
execution.

12. Discuss the lifecycle of an object in C++ from creation to
destruction. How do constructors and destructors play a role in
this lifecycle? Illustrate with a practical example.

105
MATS Centre for Distance and Online Education, MATS University

program to demonstrate its use and explain its behavior.

Notes
MODULE 3 3232

OPERATOR OVERLOADING AND INHERITANCE

3.0 LEARNING OUTCOMES
By the end of this Module, students will be able to:











Understand operator overloading (unary & binary) and its rules.
Implement binary operator overloading using friend functions.
Learn type conversion in C++.
Explore inheritance and its role in derived classes.
Implement single, multilevel, multiple, hierarchical, and hybrid
inheritance.





Understand virtual base classes and abstract classes.
Explain constructors in derived classes and their execution
sequence.

 Learn about member classes and their significance.

106
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Operator Overloading: Unary and Binary

3.1 Operator Overloading in C++
Operator overloading is a feature in C++ that allows redefining the
behavior of operators when applied to user-defined data types 3333

(objects). This enables objects to be manipulated in an intuitive manner,
just like primitive data types.
For example, using + to add two objects of a class makes the code more
readable and natural.
Syntax of Operator Overloading
The syntax for operator overloading is:
return_type operator symbol (parameters) {

// Function body defining the operation
}







operator is the keyword used for overloading.
symbol is the operator being overloaded (+, -, *, etc.).
The function can be defined inside the class or as a friend
function.

Unary Operator Overloading 41

Unary operators operate on a single operand. Examples include ++, --
, -, and !.
Overloading Unary Operators





When overloading a unary operator, no arguments are passed.
The overloaded function must be a member function.

Example: Overloading the ++ Operator (Prefix & Postfix)
#include <iostream>
using namespace std;

class Counter {
int value;

public:
Counter() { value = 0; } 3333

void display() {
cout << "Value: " << value << endl;

}

// Overloading Prefix ++

107
MATS Centre for Distance and Online Education, MATS University

Notes void operator++() {
++value;

}

// Overloading Postfix ++
void operator++(int) {

value++;
}

};

int main() {
Counter c1;

cout << "Initial ";
c1.display();

++c1; // Calls prefix operator++
cout << "After Prefix Increment ";
c1.display();

c1++; // Calls postfix operator++
cout << "After Postfix Increment ";
c1.display();

return 0;
}
Explanation









operator++() handles prefix increment (++c1).
operator++(int) handles postfix increment (c1++).
No arguments are passed for prefix overload.
The postfix version takes an int dummy parameter to
differentiate it from the prefix.

Output
Initial Value: 0
After Prefix Increment Value: 1
After Postfix Increment Value: 2

108
MATS Centre for Distance and Online Education, MATS University

Notes Binary Operator Overloading
Binary operators operate on two operands. Examples include +, -, *, /,
==, etc.
Overloading Binary Operators

 Binary operators require two operands, so the function typically
takes one argument.

 It can be defined as a member function or a friend function.
Example: Overloading the + Operator
#include <iostream>
using namespace std;

class Complex {
int real, imag;

public:
Complex(int r = 0, int i = 0) {

real = r;
imag = i;

}

// Overloading the + operator
Complex operator+(Complex obj) {

Complex temp;
temp.real = real + obj.real;
temp.imag = imag + obj.imag;
return temp;

}

void display() {
cout << real << " + " << imag << "i" << endl;

}
};

int main() {
Complex c1(3, 4), c2(1, 2);

Complex c3 = c1 + c2; // Calls overloaded + operator
c3.display();

109
MATS Centre for Distance and Online Education, MATS University

Notes return 0;
}
Explanation





 The function returns the result as a new object.
Output
4 + 6i

110
MATS Centre for Distance and Online Education, MATS University

The operator+ function takes an object as a parameter.
It adds the real and imaginary parts separately.

Notes Unit 8: Overloading Binary Operators Using Friends 525252

3.2 Binary Operator Overloading Using Friend Function 3333

A friend function can also be used for operator overloading when two 4747

different objects need to be operated on.
Example: Overloading * Using a Friend Function
#include <iostream>
using namespace std;
class Multiply {

int value;
public:

Multiply(int v) { value = v; }

// Friend function to overload *
friend Multiply operator*(Multiply obj1, Multiply obj2);

void display() {
cout << "Result: " << value << endl;

}
};

// Definition of the friend function
Multiply operator*(Multiply obj1, Multiply obj2) {

return Multiply(obj1.value * obj2.value);
}

int main() {
Multiply m1(4), m2(5);

Multiply m3 = m1 * m2; // Calls overloaded * operator
m3.display();

return 0;
}
Explanation







The operator* function is a friend function.
It allows access to private data of objects.
The function multiplies two objects and returns the result.

111
MATS Centre for Distance and Online Education, MATS University

Notes Output
Result: 20

Overloading Comparison Operators (==, !=, >, <)
Comparison operators (==, !=, >, <) can also be overloaded to compare
objects.
Example: Overloading == Operator
#include <iostream>
using namespace std;
class Compare {

int num;
public:

Compare(int n) { num = n; }

bool operator==(Compare obj) {
return num == obj.num;

}
};

int main() {
Compare c1(10), c2(10), c3(20);

if (c1 == c2)
cout << "c1 and c2 are equal" << endl;

else
cout << "c1 and c2 are not equal" << endl;

if (c1 == c3)
cout << "c1 and c3 are equal" << endl;

else
cout << "c1 and c3 are not equal" << endl;

return 0;
}
Output
c1 and c2 are equal
c1 and c3 are not equal

112
MATS Centre for Distance and Online Education, MATS University

Notes Key Points
✔ Operator overloading allows intuitive operations on objects.
✔ Unary operators (++, --) are overloaded as member functions.
✔ Binary operators (+, -, *, /) take one parameter.
✔ Friend functions are useful when working with two objects.
✔ Comparison operators (==, !=) can be overloaded for object
comparison.
Using operator overloading, we can make custom classes work just like
built-in types, making code more readable, efficient, and natural.

113
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Rules of Overloading Operators, Type
Conversion

3.3 Operator Overloading and Type Conversion in C++ 525252

Operator overloading is a powerful feature in C++ that allows operators
to be redefined and used with user-defined data types. Similarly, type
conversion enables converting one data type into another, either
implicitly or explicitly. This Module covers the rules of operator 525252

overloading and type conversion with theory, syntax, and examples.
1. Rules of Overloading Operators
Operator overloading allows the same operator to work with user- 3333

defined types (such as objects of a class) while maintaining its original
functionality with built-in types.
Syntax of Operator Overloading
The syntax for operator overloading is as follows:
return_type operator symbol (parameters) {

// Function body defining the behavior of the operator
}
Example of Operator Overloading
#include <iostream>
using namespace std;
class Complex {
public:

int real, imag;
Complex(int r = 0, int i = 0) {

real = r;
imag = i;

}
// Overloading + operator

Complex operator+(Complex const& obj) {
Complex result;
result.real = real + obj.real;
result.imag = imag + obj.imag;
return result;

}
void display() {

cout << real << " + " << imag << "i" << endl;
}

114
MATS Centre for Distance and Online Education, MATS University

Notes };

int main() {
Complex c1(3, 4), c2(1, 2);
Complex c3 = c1 + c2; // Uses overloaded +
c3.display();
return 0;

}
Output:
4 + 6i
Rules for Operator Overloading

1. Only Existing Operators Can Be Overloaded:
o

o

C++ does not allow defining new operators.
Example: @ cannot be overloaded because it is not a

2. At Least One Operand Must Be a User-Defined Type (Class
or Struct):

o Example: Overloading + for adding two class objects.
3. Some Operators Cannot Be Overloaded:

Operators that cannot be overloaded include: o

.

.

.

.

:: (Scope resolution operator)
.* (Pointer-to-member operator)
. (Member access operator)
sizeof (Size operator)

4. Overloaded Operators Follow Default Precedence and
Associativity:

o Even if overloaded, operators follow the standard C++
precedence rules.

5. Overloaded Operators Must Be Either Member or Friend
Functions:

o If the left operand is a built-in type, use a friend
function.

6. Unary and Binary Operators Overloading:
o

o

Unary operators (e.g., ++, --) take no arguments.
Binary operators (e.g., +, -) take one argument if
implemented as a member function and two if
implemented as a friend function.

115
MATS Centre for Distance and Online Education, MATS University

predefined C++ operator.

Notes Example: Overloading Unary Operator (++)
#include <iostream>
using namespace std;
class Counter {
public:

int value;
Counter() { value = 0; }
// Overloading prefix ++
void operator++() {

++value;
}
void display() {

cout << "Value: " << value << endl;
}

};
int main() {

Counter c;
++c; // Uses overloaded ++
c.display();
return 0;

}
Output:
Value: 1
2. Type Conversion in C++ 4747

Type conversion refers to changing a value from one data type to
another. It can be:

Figure 12: Type Conversion

116
MATS Centre for Distance and Online Education, MATS University

Notes 1. Implicit Type Conversion (Type Promotion)
2. Explicit Type Conversion (Type Casting)
3. User-Defined Type Conversion

o

o

o

Conversion from basic type to class type 999

Conversion from class type to basic type
Conversion from one class type to another class type

1. Implicit Type Conversion (Automatic Type Promotion)
C++ automatically converts a smaller data type to a larger data type
when needed.
Example:
int a = 5;
float b = a; // Implicit conversion from int to float

2. Explicit Type Conversion (Type Casting)
The user manually converts one data type into another using type
casting.
Syntax:
(data_type) value;
Example:
#include <iostream>
using namespace std;

int main() {
double num = 10.5;
int intNum = (int)num; // Explicit conversion from double to int
cout << "Converted value: " << intNum << endl;
return 0;

}
Output:
Converted value: 10

3. User-Defined Type Conversion
A. Basic Type to Class Type 999

Converting primitive data types to class objects.
Example:
#include <iostream>
using namespace std;

117
MATS Centre for Distance and Online Education, MATS University

Notes class Distance {
int meters;

public:
Distance(int m) { meters = m; } // Constructor handles conversion
void display() { cout << "Meters: " << meters << endl; }

};

int main() {
Distance d = 10; // Converts int to Distance object
d.display();
return 0;

}
Output:
Meters: 10

B. Class Type to Basic Type
Converting an object of a class to a primitive data type.
Example:
#include <iostream>
using namespace std;

class Distance {
int meters;

public:
Distance(int m) { meters = m; }
operator int() { return meters; } // Conversion function

};

int main() {
Distance d(10);
int meters = d; // Converts Distance object to int
cout << "Meters: " << meters << endl;
return 0;

}
Output:
Meters: 10

118
MATS Centre for Distance and Online Education, MATS University

Notes C. Class Type to Another Class Type
Example:
#include <iostream>
using namespace std;

class Fahrenheit {
float temp;

public:
Fahrenheit(float t) { temp = t; }
float getTemp() { return temp; }

};

class Celsius {
float temp;

public:
Celsius(float t) { temp = t; }
// Conversion constructor
Celsius(Fahrenheit f) {

temp = (f.getTemp() - 32) * 5 / 9;
}
void display() { cout << "Temperature in Celsius: " << temp << endl;

}
};

int main() {
Fahrenheit f(98.6);
Celsius c = f; // Converts Fahrenheit to Celsius
c.display();
return 0;

}
Output:
Temperature in Celsius: 37





Operator overloading allows defining custom behavior for
operators with user-defined types.
Type conversion enables converting values between data types,
either implicitly, explicitly, or via user-defined conversions.

119
MATS Centre for Distance and Online Education, MATS University

Notes 



Following operator overloading rules ensures correct
implementation without violating C++ constraints.
User-defined type conversions help in seamless data
transformations between primitive and object types.

This completes the detailed study of operator overloading and type
conversion in C++. 
3.4 Inheritance and Derived Classes in C++
Inheritance is one of the most important concepts in Object-Oriented
Programming (OOP). It allows a new class (called the derived class)
to inherit attributes and methods from an existing class (called the base
class). This promotes code reusability and improves maintainability.
Key Advantages of Inheritance:









Reduces code duplication.

Helps in achieving hierarchical classification.
Enhances code readability and structure.

1. Syntax of Inheritance in C++
Basic Syntax:
class BaseClass {

// Base class members
};

class DerivedClass : access_specifier BaseClass {
// Derived class members

};
Here, the access_specifier determines how the base class members are
inherited.
Table 3.1 Types of Access Specifiers:
Access Private Protected

Members
Inherited
private

Public
Members

as Inherited
private

Specifier Members
as

as

as

private

protected

public

Not inherited

Not inherited

Not inherited

Inherited
protected
Inherited
protected

as Inherited
protected

as Inherited
public

120
MATS Centre for Distance and Online Education, MATS University

Promotes code reusability.

Notes 3.5 Inheritance in C++
Inheritance is a fundamental concept in Object-Oriented

Programming (OOP) that allows a class to derive properties and
behaviors from another class. The class that is inherited is called the
base class (parent class), and the class that inherits is called the
derived class (child class).
Advantages of Inheritance

 Code reusability: Common functionalities can be reused in
different classes.





Extensibility: Enhances the maintainability of the code.
Improved readability: Reduces code duplication.

Syntax for Inheritance in C++
class BaseClass {

// Base class members 1010

};

class DerivedClass : access_specifier BaseClass {
// Derived class members

};
Here, access_specifier can be:







public: Public and protected members of the base class remain
the same in the derived class.
protected: Public and protected members of the base class
become protected in the derived class.
private: Public and protected members of the base class become
private in the derived class.

Types of Inheritance
The inheritance can be classified on the basis of the relationship
between the derived class and the base class. In C++, we have 5 types
of inheritances:

1. Single inheritance
2. Multilevel inheritance
3. Multiple inheritance
4. Hierarchical inheritance
5. Hybrid inheritance

121
MATS Centre for Distance and Online Education, MATS University

Notes

Figure 13: Types of Inheritance
[Source: https://medium.com]

1. Single Inheritance
In single inheritance, a class is allowed to inherit from only one class.
i.e. one base class is inherited by one derived class only.

Figure 14: single Inheritance

Syntax:
class Parent {
public:

void show() {
cout << "This is the parent class." << endl;

}
};

class Child : public Parent { 999

public:
void display() {

cout << "This is the child class." << endl;
}

};
Example:
#include <iostream>
using namespace std;

122
MATS Centre for Distance and Online Education, MATS University

Notes class Parent {
public:

void show() {
cout << "This is the parent class." << endl;

}
};

class Child : public Parent {
public:

void display() {
cout << "This is the child class." << endl;

}
};

int main() {
Child obj;
obj.show(); // Accessing parent class function
obj.display(); // Accessing child class function
return 0;

}
Output:
This is the parent class.
This is the child class.

2. Multilevel Inheritance
In multilevel inheritance, a class is derived from another derived class,
forming a chain.

Figure 15: Multilevel Inheritance

123
MATS Centre for Distance and Online Education, MATS University

Notes Syntax:
class Grandparent {

// Base class
};

class Parent : public Grandparent {
// Derived class

};

class Child : public Parent {
// Further derived class

};
Example:
#include <iostream>
using namespace std;

class Grandparent {
public:

void display1() {
cout << "This is the grandparent class." << endl;

}
};

class Parent : public Grandparent {
public:

void display2() {
cout << "This is the parent class." << endl;

}
};

class Child : public Parent {
public:

void display3() {
cout << "This is the child class." << endl;

}
};

int main() {

124
MATS Centre for Distance and Online Education, MATS University

Notes Child obj;
obj.display1();
obj.display2();
obj.display3();
return 0;

}
Output:
This is the grandparent class.
This is the parent class.
This is the child class.
3. Multiple Inheritance
In multiple inheritance, a class inherits from two or more base classes.

Figure 16: Multiple Inheritance

Syntax:
class Parent1 {

// Base class 1
};

class Parent2 {
// Base class 2

};

class Child : public Parent1, public Parent2 {
// Derived class

};
Example:
#include <iostream>
using namespace std;

class Parent1 {
public:

void show1() {

125
MATS Centre for Distance and Online Education, MATS University

Notes cout << "This is the first parent class." << endl;
}

};
class Parent2 {
public:

void show2() {
cout << "This is the second parent class." << endl;

}
};
class Child : public Parent1, public Parent2 {
public:

void display() {
cout << "This is the child class." << endl;

}
};
int main() {

Child obj;
obj.show1();
obj.show2();
obj.display();
return 0; 1010

}
Output:
This is the first parent class.
This is the second parent class.
This is the child class.
4. Hierarchical Inheritance
In hierarchical inheritance, multiple classes inherit from a single base
class.

Figure 17 : Hierarchical Inheritance

126
MATS Centre for Distance and Online Education, MATS University

Notes Syntax:
class Parent {

// Base class
};

class Child1 : public Parent {
// Derived class 1

};

class Child2 : public Parent {
// Derived class 2

};
Example:
#include <iostream>
using namespace std;

class Parent {
public:

void display() {
cout << "This is the parent class." << endl;

}
};

class Child1 : public Parent {
public:

void show1() {
cout << "This is the first child class." << endl;

}
};

class Child2 : public Parent {
public:

void show2() {
cout << "This is the second child class." << endl;

}
};

int main() {

127
MATS Centre for Distance and Online Education, MATS University

Notes Child1 obj1;
Child2 obj2;

obj1.display();
obj1.show1();

obj2.display();
obj2.show2();

return 0;
}
Output:
This is the parent class.
This is the first child class.
This is the parent class.
This is the second child class.
5. Hybrid Inheritance
Hybrid inheritance is a combination of two or more types of
inheritance (e.g., multiple and hierarchical).

Figure 18: Hybrid Inheritance

Example:
#include <iostream>
using namespace std;

class Grandparent {
public:

void grandparentFunction() {
128

MATS Centre for Distance and Online Education, MATS University

Notes cout << "This is the grandparent class." << endl;
}

};

class Parent1 : public Grandparent {
public:

void parent1Function() {
cout << "This is parent 1 class." << endl;

}
};

class Parent2 : public Grandparent {
public:

void parent2Function() {
cout << "This is parent 2 class." << endl;

}
};

class Child : public Parent1, public Parent2 {
public:

void childFunction() {
cout << "This is the child class." << endl;

}
};

int main() {
Child obj;
obj.parent1Function();
obj.parent2Function();
obj.childFunction();
return 0;

}
Output:
This is parent 1 class.
This is parent 2 class.
This is the child class.

129
MATS Centre for Distance and Online Education, MATS University

Notes Inheritance is a powerful feature in C++ that promotes code reusability
and modularity. The different types of inheritance allow developers to
design efficient and structured programs.
This Module covered:









Single Inheritance (One class inherits from another)
Multilevel Inheritance (A chain of inheritance)
Multiple Inheritance (A class inherits from multiple classes)
Hierarchical Inheritance (Multiple classes inherit from one
base class)

 Hybrid Inheritance (Combination of multiple inheritance
types)

3.6 Virtual Base Classes and Abstract Classes in C++ 181818

1. Virtual Base Classes
When a class is derived from multiple base classes, and these base
classes further inherit from a common ancestor, the common base
class can be included multiple times in the final derived class. This
leads to the Diamond Problem, causing ambiguity in data access and
redundancy in memory usage.
To solve this issue, C++ provides Virtual Base Classes. By making a
base class virtual, only one copy of the base class members is inherited,
even if multiple paths lead to the derived class.
The Diamond Problem (Before Using Virtual Base Class)
Example Without Virtual Base Class (Problematic Case)
#include <iostream>
using namespace std;

class A {
public:

int value;
};

class B : public A { }; // Inherits from A
class C : public A { }; // Inherits from A
class D : public B, public C { }; // Multiple Inheritance

int main() {
D obj;

130
MATS Centre for Distance and Online Education, MATS University

Notes // obj.value = 10; // ERROR: Ambiguity (value exists in both B and
C)

)
obj.B::value = 10; // Resolving ambiguity by specifying class
obj.C::value = 20; // Still leads to duplicate copies of A's data

cout << "Value from B: " << obj.B::value << endl;
cout << "Value from C: " << obj.C::value << endl; // Different copies

of 'value'
return 0;

}
Solution Using Virtual Base Class
By making A a virtual base class, C++ ensures only one copy of A is
inherited.
Syntax of Virtual Base Class
class Base {

// Members
};

class Derived1 : virtual public Base { };
class Derived2 : virtual public Base { };
class FinalClass : public Derived1, public Derived2 { };
Example Using Virtual Base Class (No Ambiguity)
#include <iostream>
using namespace std;

class A {
public:

int value;
};

class B : virtual public A { }; // Virtual Inheritance
class C : virtual public A { }; // Virtual Inheritance
class D : public B, public C { }; // No ambiguity

int main() {
D obj;
obj.value = 30; // No ambiguity
cout << "Value: " << obj.value << endl; // Output: 30

131
MATS Centre for Distance and Online Education, MATS University

Notes return 0;
}
Key Advantages of Virtual Base Class

1 S l h Di d P bl O l f h b

1. Solves the Diamond Problem – Only one copy of the base

2. Prevents Data Redundancy – Saves memory by avoiding
duplicate copies.

3. Removes Ambiguity – No need to specify B::value or C::value.
2. Abstract Class
An Abstract Class in C++ is a class that cannot be instantiated and
serves as a blueprint for derived classes. It contains at least one pure
virtual function, forcing derived classes to provide an implementation.
Syntax of Abstract Class
class AbstractClass {
public:

virtual void pureVirtualFunction() = 0; // Pure Virtual Function
};
Here, = 0 indicates that this function must be overridden in derived
classes.
Example of Abstract Class
#include <iostream>
using namespace std;

class Shape {
public:

virtual void draw() = 0; // Pure Virtual Function (Abstract Method)
};

class Circle : public Shape {
public:

void draw() override {
cout << "Drawing a Circle" << endl;

}
};

class Rectangle : public Shape {
public:

void draw() override {

132
MATS Centre for Distance and Online Education, MATS University

class members exists in memory.

Notes cout << "Drawing a Rectangle" << endl;
}

};

int main() {

// Shape obj; // ERROR: Cannot instantiate abstract class
Circle c;
Rectangle r;

c.draw(); // Output: Drawing a Circle
r.draw(); // Output: Drawing a Rectangle

return 0;
}
Key Properties of Abstract Classes

1. Cannot create objects of an abstract class. 181818

2. Must have at least one pure virtual function.
3. Derived classes must override the pure virtual function;

otherwise, they remain abstract.
Use Case of Abstract Classes
Abstract classes are commonly used in polymorphism where multiple
derived classes share a common interface. 181818

Example: Abstract Class with Polymorphism
#include <iostream>
using namespace std;
class Animal {
public:

virtual void makeSound() = 0; // Pure virtual function
};
class Dog : public Animal {
public:

void makeSound() override {
cout << "Dog Barks" << endl;

}
};
class Cat : public Animal {
public:

void makeSound() override {

133
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Cat Meows" << endl;
}

};
void animalSound(Animal &a) {

a.makeSound();
}
int main() {

int main() {
Dog d;
Cat c;
animalSound(d); // Output: Dog Barks
animalSound(c); // Output: Cat Meows

return 0;
}
Table 3.2: Difference Between Virtual Base Class and Abstract Class
Featur

Virtual Base Class Abstract Class
e

Solves multiple inheritance Defines an interface for 23
Purpose

issues derived classes
Instanti
ation

Can be instantiated Cannot be instantiated

Inherita Used to avoid duplicate base Used to enforce function
nce class instances overriding
Contain Normal members, virtual At least one pure virtual

inheritance function s







Virtual Base Classes solve multiple inheritance ambiguity
by ensuring only one copy of a base class is inherited.
Abstract Classes act as blueprints for derived classes,
enforcing function overriding and enabling polymorphism.
Both concepts are crucial in object-oriented programming
(OOP) to design efficient and scalable C++ applications.

This comprehensive explanation covers theory, syntax, examples,
and key differences, making it easier to understand Virtual Base
Classes and Abstract Classes in C++.
3.7 Constructors in Derived Classes
In object-oriented programming, a derived class inherits properties
and behavior from a base class. When an object of a derived class is

134
MATS Centre for Distance and Online Education, MATS University

Notes created, both the base class constructor and the derived class
constructor are executed.
The constructor of the base class is executed first, followed by the
constructor of the derived class. This ensures that the base class
members are properly initialized before the derived class adds its own
functionalities.

Syntax of Derived Class Constructor

The constructor of a derived class must first call the constructor of the
base class. This is done using an initializer list in the derived class
constructor.
class Base {
public:

Base() {
cout << "Base class constructor called" << endl;

}
};

class Derived : public Base {
public:

Derived() {
cout << "Derived class constructor called" << endl;

}
};
Example 1: Constructor Execution in Inheritance
#include <iostream>
using namespace std;

class Base {
public:

Base() {
cout << "Base class constructor called" << endl;

}
};

class Derived : public Base {
public:

Derived() {

135
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Derived class constructor called" << endl;
}

};

int main() {
Derived obj; // Creating an object of the Derived class
return 0;

}
Output:
Base class constructor called

Base class constructor called
Derived class constructor called

Parameterized Constructor in Derived Class
If the base class has a parameterized constructor, the derived class
must explicitly call it in its initializer list.
#include <iostream>
using namespace std;

class Base {
public:

Base(int x) {
cout << "Base class constructor called with value: " << x << endl;

}
};

class Derived : public Base {
public:

Derived(int y) : Base(y) { // Calling Base class constructor
cout << "Derived class constructor called with value: " << y <<

endl;
}

};

int main() {
Derived obj(10);
return 0;

}

136
MATS Centre for Distance and Online Education, MATS University

Notes Output:
Base class constructor called with value: 10
Derived class constructor called with value: 10

Order of Constructor Execution in Multiple Inheritance
If a derived class inherits from multiple base classes, the constructors 4545

of the base classes are executed in the order of inheritance. 2020

#include <iostream>
using namespace std;

class A {
public:

A() {
cout << "Constructor of A" << endl;

}
};

class B {
public:

B() {
cout << "Constructor of B" << endl;

}
};

class C : public A, public B { // Multiple inheritance
public:

C() {
cout << "Constructor of C" << endl;

}
};

int main() {
C obj;
return 0;

}
Output:
Constructor of A
Constructor of B

137
MATS Centre for Distance and Online Education, MATS University

Notes Constructor of C

2. Member Classes (Nested Classes in C++)
A member class (also called a nested class) is a class that is defined
inside another class. It has access to the private and protected members 2626

of the enclosing (outer) class.
Nested classes are used when a class logically belongs inside another
class. They help in encapsulation and keeping related functionalities
grouped together.

Syntax of Member Class
class Outer {
public:

class Inner { // Nested class
public:

void display() {
cout << "Inside Inner class" << endl;

}
};

};

Example 1: Basic Member Class
#include <iostream>
using namespace std;

class Outer {
public:

class Inner { // Nested class
public:

void show() {
cout << "Inside Inner class" << endl;

}
};

};

int main() {
Outer::Inner obj; // Creating object of Inner class
obj.show();

138
MATS Centre for Distance and Online Education, MATS University

Notes return 0;
}
Output:
Inside Inner class
Example 2: Accessing Private Members of Outer Class
The nested class can access private members of the outer class.
#include <iostream>
using namespace std;

class Outer {
private:

int data = 100;

public:
class Inner {
public:

void display(Outer &obj) { // Accessing private member
cout << "Value of data: " << obj.data << endl;

}
};

};

int main() {
Outer obj1;
Outer::Inner obj2;
obj2.display(obj1);
return 0;

}
Output:
Value of data: 100
Example 3: Constructor in Member Class
A nested class can have its own constructor.
#include <iostream>
using namespace std;

class Outer {
public:

class Inner {

139
MATS Centre for Distance and Online Education, MATS University

Notes public:
Inner() {

cout << "Inner class constructor called" << endl;
}

};
};

int main() {
Outer::Inner obj;
return 0;

}
Output:
Inner class constructor called
Example 4: Nested Class with Methods Using Outer Class
Members
#include <iostream>
using namespace std;

class Outer {
private:

int data = 42;

public:
void showData() {

cout << "Outer class data: " << data << endl;
}

class Inner {
public:

void display(Outer &obj) {
obj.showData(); // Accessing Outer class function

}
};

};

int main() {
Outer obj1;
Outer::Inner obj2;

140
MATS Centre for Distance and Online Education, MATS University

Notes obj2.display(obj1);
return 0;

}
Output:
Outer class data: 42

Table 3.3 Key Differences: Constructors in Derived Classes vs.
Member Classes

Derived Class Member
Constructor

Class
Feature

Constructor
Constructor of a derived
class in an inheritance
hierarchy

Constructor inside
nested class

a
Definition

Execution
Order

Base class constructor → Only the member class
Derived class constructor constructor is executed

Can access
Can access base class 4646

members
private/protected

Access
members of the outer 2626

class
(public/protected)

Used to define classes
within a class for logical
grouping

Used when a class
Use Case

inherits from another







Constructors in derived classes ensure that the base class is
initialized before the derived class.
Nested (member) classes allow structuring complex programs

Nested classes can access private members of the outer class
if given proper access.

These concepts are useful in modular programming, encapsulation, and
data abstraction, making C++ an efficient language for object-oriented
programming.

141
MATS Centre for Distance and Online Education, MATS University

by logically grouping related classes together.

Notes MCQs:

1. What does inheritance in C++ allow you to do?

A. Create multiple constructors
B. Reuse code by deriving a new class from an existing class
C. Declare multiple variables
D. Use templates

2. Which of the following is the correct syntax for public 4646

inheritance in C++?
A. class Derived inherits Base
B. class Derived : public Base
C. class Base -> Derived
D. class Derived extends Base

3. What is a base class in C++?
A. A class that is used only once 35

B. A class that contains only static members
C. A class from which other classes are derived
D. A class with no constructors

4. Which type of inheritance involves a class being derived
from two or more base classes?

A. Single inheritance
B. Multilevel inheritance
C. Hybrid inheritance
D. Multiple inheritance

5. What does polymorphism mean in object-oriented
programming?

A. Using only one function in a program
B. Using a single interface to represent different types
C. Writing code without any class
D. Accessing private members directly

6. Which of the following enables runtime polymorphism in
C++?

A. Function overloading
142

MATS Centre for Distance and Online Education, MATS University

Notes B. Operator overloading
C. Virtual functions
D. Static functions
7. What is function overloading an example of?
A. Runtime polymorphism
B. Compile-time polymorphism
C. Dynamic polymorphism
D. Multilevel inheritance

8. What will happen if a derived class overrides a base class
function, but the base function is not declared virtual?

A. The derived class version is always called
B. The base class version is always called when using a base

pointer
C. It causes a runtime error
D. Both functions will be executed

9. Which keyword is used to allow a derived class to redefine a
base class function?

A. override
B. virtual
C. friend
D. static

10. What is the benefit of polymorphism in C++?
A. Reduces the size of executable files
B. Improves performance in all cases
C. Allows for flexible and reusable code design
D. Prevents object creation

Short Questions:

1. What is inheritance in C++?
2. Define a base class and a derived class with an example.
3. What are the types of inheritance supported in C++? 4545

4. How does public inheritance differ from private inheritance in
C++?

5. What is multiple inheritance? Give a simple example.

143
MATS Centre for Distance and Online Education, MATS University

Notes 6. What is the main advantage of using inheritance in object-
oriented programming?

8. What is the difference between compile-time polymorphism and
run-time polymorphism?

9. How is function overloading used to achieve polymorphism in
C++?

10. What is the role of the virtual keyword in achieving run-time
polymorphism?

11. What is function overriding, and how does it relate to
polymorphism?

12. What happens if a base class function is not declared virtual and
is overridden in a derived class?

Long Questions:

1. Explain the concept of inheritance in C++. How does it support
code reusability? Provide a code example to illustrate your

2. Differentiate between single, multiple, multilevel, and
hierarchical inheritance in C++. Give examples of each.

3. What is the syntax for public, protected, and private inheritance
in C++? How does the access level of base class members
change in each case?

4. Describe how constructors and destructors behave in inheritance.
What is the order of constructor and destructor calls in an
inheritance hierarchy?

5. Write a C++ program that demonstrates multiple inheritance.
Explain how ambiguity is resolved when two base classes have
functions with the same name.

6. What is polymorphism in C++? Explain the difference between
compile-time and run-time polymorphism with appropriate
code examples.

7. How does function overloading implement compile-time
polymorphism in C++? Give at least two examples with
different parameter lists.

144
MATS Centre for Distance and Online Education, MATS University

7. Define polymorphism in the context of C++ OOP. 2020

answer.

Notes 8. Explain the concept of function overriding in C++. How does it
support run-time polymorphism? Provide a sample program.

9. What is the significance of the virtual keyword in C++? How
does it affect function binding and polymorphism?

10. Write a C++ program to demonstrate run-time polymorphism
using base class pointers and virtual functions. Explain how
dynamic dispatch works.

11. What are pure virtual functions and abstract classes in C++?
How are they used to implement interfaces in object-oriented
programming?

12. Discuss the advantages and potential pitfalls of using
inheritance and polymorphism in object-oriented design. How
can improper use of these features affect software
maintainability?

145
MATS Centre for Distance and Online Education, MATS University

MODULE 4
POINTER, VIRTUAL FUNCTION AND

POLYMORPHISM

4.0 LEARNING OUTCOMES
By the end of this Module, students will be able to:

 Implement pointers to derived classes for dynamic object
handling.

 Explore virtual functions and pure virtual functions in C++.
 Understand polymorphism, including compile-time and run-

time polymorphism.
 Differentiate between function overloading and function

overriding.
 This Module provides a deep understanding of pointers, virtual

functions, and polymorphism, essential for dynamic and
efficient object-oriented programming.

146
MATS Centre for Distance and Online Education, MATS University

 Understand pointers and their use in objects and "this" pointer.

Notes Unit 10: Pointers

4.1 Pointers in C++

A pointer is a variable that stores the memory address of another 2424

variable. Pointers are powerful in C++ as they enable dynamic
memory allocation, efficient data manipulation, and object-
oriented programming techniques.

Figure 19: pointers in c++

Syntax of a Pointer
data_type* pointer_name; // Declaring a pointer
Example: Declaring and Using a Pointer
#include <iostream>
using namespace std;

int main() {
int num = 10;
int* ptr = # // Pointer storing the address of num

cout << "Value of num: " << num << endl;
Figure 19: Concept of Pointers in OOP’S
[Source https://www.scholarhat.com]

cout << "Address of num: " << &num << endl;
cout << "Value stored in pointer ptr: " << ptr << endl;
cout << "Value accessed using pointer: " << *ptr << endl; //

Dereferencing

return 0;

147
MATS Centre for Distance and Online Education, MATS University

Notes }
Output
Value of num: 10
Address of num: 0x7ffee7b0b80c
Value stored in pointer ptr: 0x7ffee7b0b80c
Value accessed using pointer: 10

1. Pointers to Objects
In C++, pointers can also store the addresses of objects of a class. This
allows dynamic allocation of objects and facilitates polymorphism
and efficient object handling.
Syntax of Pointers to Objects
class ClassName {

// Class members
};

ClassName* objPointer; // Pointer to an object of ClassName 1111111111

Example: Using a Pointer to an Object
#include <iostream>
using namespace std;

class Student {
public:

string name;
int age;

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

}
};

int main() {
Student s1 = {"John", 20}; // Normal object
Student* ptr = &s1; // Pointer to object

// Accessing members using the pointer
cout << "Using pointer: " << ptr->name << ", " << ptr->age << endl;
ptr->display(); // Using -> to access function

148
MATS Centre for Distance and Online Education, MATS University

Notes
return 0;

}
Output
Using pointer: John, 20
Name: John, Age: 20
Dynamic Memory Allocation for Objects
We can use the new keyword to dynamically allocate objects at
runtime.
#include <iostream>
using namespace std;

class Student {
public:

string name;
int age;

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

}
};

int main() {
Student* ptr = new Student(); // Dynamically allocating an object

// Assigning values
ptr->name = "Alice";
ptr->age = 22;

ptr->display();

delete ptr; // Free allocated memory

return 0;
}
Output
Name: Alice, Age: 22

149
MATS Centre for Distance and Online Education, MATS University

Notes 2. This Pointer
This pointer is an implicit pointer available in all non-static member
functions of a class. It stores the address of the calling object and
helps in distinguishing between local and member variables when they
have the same name.
Syntax of this Pointer
class ClassName {
public:

void function() {
cout << "Address of current object: " << this << endl;

}
};
Example: Using this Pointer
#include <iostream>
using namespace std;

class Car {
public:

string brand;
int price;

void setValues(string brand, int price) {
this->brand = brand; // Using this-> to refer to member variable
this->price = price;

}

void display() {
cout << "Brand: " << brand << ", Price: " << price << endl;
cout << "Address of current object: " << this << endl;

}
};

int main() {
Car c1, c2;

c1.setValues("Toyota", 20000);
c2.setValues("Honda", 18000);

150
MATS Centre for Distance and Online Education, MATS University

Notes c1.display();
c2.display();

return 0;
}
Output
Brand: Toyota, Price: 20000
Address of current object: 0x61ff08
Brand: Honda, Price: 18000
Address of current object: 0x61ff04
Advantages of this Pointer

1. Avoids naming conflicts between member variables and
function parameters.

2. Used for returning object reference in function chaining.
3. Helps in operator overloading and method chaining.

3. Returning Object using this Pointer
The this pointer can be used to return the current object reference,
enabling function chaining.
#include <iostream>
using namespace std;

class Person {
public:

string name;
int age;

Person* setName(string name) {
this->name = name;
return this; // Returning object reference

}

Person* setAge(int age) {
this->age = age;
return this; // Returning object reference

}

void display() {
cout << "Name: " << name << ", Age: " << age << endl;

151
MATS Centre for Distance and Online Education, MATS University

Notes }
};

int main() {
Person p1;
p1.setName("Michael")->setAge(25)->display();

function calls
// Chained

return 0;
}
Output
Name: Michael, Age: 25
In this Module, we explored pointers in C++, pointers to objects, and
the this pointer.







Pointers store memory addresses and allow efficient 2424

manipulation of variables and objects.
Pointers to objects enable dynamic memory allocation and
flexible object handling.
The this pointer is an implicit pointer referring to the calling
object, helping in method chaining and resolving naming
conflicts.

Pointer to Derived Classes in C++
In C++, pointers play a crucial role in handling objects dynamically.
When working with inheritance, we often use pointers to base and 383838

derived classes to achieve polymorphism. A pointer to a derived 1111111111

class allows accessing members of both the base and derived classes
using a base class pointer.
4.2 Concept of Pointer to Derived Class
A pointer to a base class can hold the address of a derived class
object. However, when accessed through the base class pointer, it can
only use the members of the base class unless virtual functions are
used.

Key Points:




A base class pointer can point to a derived class object. 37

It can access only the base class members (unless
polymorphism is used).

152
MATS Centre for Distance and Online Education, MATS University

Notes  If virtual functions are present, the derived class function gets
executed (dynamic binding).

Syntax of Pointer to Derived Class
The general syntax for creating a pointer to a derived class is: 1111111111

BaseClass *ptr; // Pointer to Base Class
DerivedClass obj;
ptr = &obj; // Base class pointer pointing to Derived class object
Since the pointer is of the base class type, it can only access base class 383838

members. To access derived class members, we either use type casting
or virtual functions.
Example Without Virtual Functions
When a base class pointer points to a derived class object, it only 191919

accesses base class members unless virtual functions are used.
#include <iostream>
using namespace std;
class Base {
public:

void show() {
cout << "Base class show function" << endl;

}
};
class Derived : public Base {
public:

void show() {
cout << "Derived class show function" << endl;

}
};

int main() {
Base *ptr; // Base class pointer
Derived obj;
ptr = &obj; // Base class pointer points to derived class object
ptr->show(); // Calls Base class function

return 0;
}
Output:
Base class show function

153
MATS Centre for Distance and Online Education, MATS University

Notes
Explanation:

 The base class pointer (ptr) stores the address of a derived 1111111111

class object (obj).
 However, since show() is not virtual, the base class version is

called, ignoring the derived class function.
Example Using Virtual Functions
To achieve runtime polymorphism, we use the virtual keyword in
the base class function. This enables dynamic binding, allowing the
derived class function to be called even when accessed via a base class
pointer.
#include <iostream>
using namespace std; 191919

class Base {
public:

virtual void show() { // Virtual function
cout << "Base class show function" << endl;

}
};

class Derived : public Base {
public:

void show() override { // Overrides base class function
cout << "Derived class show function" << endl;

}
};

int main() {
Base *ptr; // Base class pointer
Derived obj;
ptr = &obj; // Base class pointer points to derived class object
ptr->show(); // Calls Derived class function (Dynamic Binding)

return 0;
}
Output:
Derived class show function

154
MATS Centre for Distance and Online Education, MATS University

Notes Explanation:




The show() function in the base class is declared virtual.
This enables dynamic binding, so the derived class version

4. Accessing Derived Class Members Using Base Class Pointer
Since a base class pointer cannot access derived class members 383838

directly, we use typecasting.
#include <iostream>
using namespace std; 191919

class Base {
public:

void showBase() {
cout << "Base class function" << endl;

}
};

class Derived : public Base {
public:

void showDerived() {
cout << "Derived class function" << endl;

}
};

int main() {
Base *ptr; // Base class pointer
Derived obj;

ptr = &obj; // Base class pointer points to derived class object

ptr->showBase(); // Allowed
// ptr->showDerived(); // Error: Not accessible through base class

pointer

// Accessing derived class function using typecasting
((Derived*)ptr)->showDerived();

return 0;

155
MATS Centre for Distance and Online Education, MATS University

gets executed when called through the base class pointer.

Notes }
Output:
Base class function
Derived class function
Explanation:





The base class pointer (ptr) can access only showBase().
To access showDerived(), we use typecasting: ((Derived*)ptr)-
>showDerived();.

5. Pointer to Derived Class in Multiple Inheritance 1111111111

When using multiple inheritance, a base class pointer can still access
members of the derived class.
#include <iostream>
using namespace std;

class Base1 {
public:

virtual void show() {
cout << "Base1 class function" << endl;

}
};

class Base2 {
public:

void display() {
cout << "Base2 class function" << endl;

}
};

class Derived : public Base1, public Base2 {
public:

void show() override {
cout << "Derived class function" << endl;

}
};

int main() {
Base1 *ptr;
Derived obj;

156
MATS Centre for Distance and Online Education, MATS University

Notes
ptr = &obj;
ptr->show(); // Calls Derived class function

return 0;
}
Output:
Derived class function
6. Pointer to Derived Class and Virtual Destructor 1313131313

If a base class has a non-virtual destructor, deleting a derived class
object through a base class pointer causes memory leaks. This is solved
by using a virtual destructor.
#include <iostream>
using namespace std;

class Base { 3131

public:
Base() { cout << "Base Constructor" << endl; }
virtual ~Base() { cout << "Base Destructor" << endl; } 292929

};

class Derived : public Base {
public:

Derived() { cout << "Derived Constructor" << endl; }
~Derived() { cout << "Derived Destructor" << endl; }

};

int main() {
Base *ptr = new Derived(); // Allocates memory for derived class
delete ptr; // Calls derived class destructor properly

return 0;
}
Output:
Base Constructor 3131

Derived Constructor
Derived Destructor
Base Destructor

157
MATS Centre for Distance and Online Education, MATS University

Notes Explanation:
Using a virtual destructor ensures the derived class destructor
is called properly, preventing memory leaks.



Summary
Table 4.1 Features and Behavior of Virtual Function

Feature Behavior

Base class pointer Can store derived class object address

Without virtual function Calls base class function

Calls derived class function
With virtual function

(polymorphism)
Accessing derived class
members

Requires typecasting

Virtual destructor Ensures proper cleanup in inheritance

Pointers to derived classes are essential for achieving polymorphism
in C++. Using virtual functions, we ensure that derived class functions
override base class functions correctly. Proper use of virtual
destructors avoids memory leaks when working with dynamically
allocated objects.
This topic is fundamental in object-oriented programming (OOP)
and is widely used in designing reusable and flexible software
architectures.

158
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Virtual Function, Pure Virtual Function

4.3 Virtual Function and Pure Virtual Function in C++ 343434

In C++, polymorphism allows objects of different classes to be treated 12121212121212

as objects of a common base class. This is achieved using virtual
functions.

1. virtual functions
A virtual function (also known as virtual methods) is a member 7777

function that is declared within a base class and is re-defined
(overridden) by a derived class. When you refer to a derived class
object using a pointer or a reference to the base class, you can call a
virtual function for that object and execute the derived class's version
of the method.
Virtual functions ensure that the correct function is called for an object, 1313131313

regardless of the type of reference (or pointer) used for the function
call. They are mainly used to achieve Runtime polymorphism.
Functions are declared with a virtual keyword in a base class. The
resolving of a function call is done at runtime.To enable runtime
polymorphism.

Syntax of Virtual Function 343434

A virtual function is declared using the keyword virtual in the base
class.
class Base {
public:

virtual void display() { // Virtual function
cout << "Base class display function" << endl;

}
};
When a derived class overrides the virtual function, C++ ensures that 1313131313

the correct function is called at runtime.
Example of Virtual Function
#include <iostream>
using namespace std;

class Base {
public:

virtual void show() { // Virtual function

159
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Base class show() function" << endl;
}292929

};

class Derived : public Base {
public:

void show() override { // Overriding base class function
cout << "Derived class show() function" << endl;

}
};

int main() {
Base* basePtr; // Base class pointer
Derived derivedObj;

basePtr = &derivedObj; // Base class pointer points to derived class
object

basePtr->show(); // Calls Derived class function due to late binding

return 0;
}
Output:
Derived class show() function
Explanation:







The show() function is declared as virtual in the Base class. 12121212121212

The Derived class overrides the show() function.
When calling basePtr->show(), the derived class function is
called because of dynamic binding (late binding).

Virtual Function Behavior
Calling a Virtual Function without a Derived Function 25252525

If a virtual function is not overridden in the derived class, the base 1313131313

class version is called.
#include <iostream>
using namespace std;

class Base {
public:

160
MATS Centre for Distance and Online Education, MATS University

Notes virtual void show() {
cout << "Base class function" << endl;

}292929

};

class Derived : public Base {
// No override here

};

int main() {
Derived obj;
obj.show(); // Calls Base class function
return 0;

}
Output:
Base class function
Accessing Base Class Virtual Function
The base class function can still be accessed using scope resolution
operator (::).
basePtr->Base::show();

2. Pure Virtual Function (Abstract Class) 7777

Sometimes implementation of all functions cannot be provided in a
base class because we don't know the implementation. Such a class is
called an abstract class.For example, let Shape be a base class. We
cannot provide the implementation of function draw() in Shape, but we
know every derived class must have an implementation of draw().
Similarly, an Animal class doesn't have the implementation of move() 14

(assuming that all animals move), but all animals must know how to
move. We cannot create objects of abstract classes.
A pure virtual function (or abstract function) in C++ is a virtual
function for which we can have an implementation, But we must
override that function in the derived class, otherwise, the derived class
will also become an abstract class. A pure virtual function is declared
by assigning 0 in the declaration.







FunctionsDeclared using = 0.
It makes a class abstract, meaning it cannot be instantiated.
Any derived class must override the pure virtual function.

161
MATS Centre for Distance and Online Education, MATS University

Notes Syntax of Pure Virtual Function
class Base {
public:

virtual void show() = 0; // Pure virtual function
};
Example of Pure Virtual Function
#include <iostream>
using namespace std;

class Shape {
public:

virtual void draw() = 0; // Pure virtual function 25252525

};

class Circle : public Shape {
public:

void draw() override {
cout << "Drawing a Circle" << endl;

}
};

class Rectangle : public Shape { 12121212121212

public:
void draw() override {

cout << "Drawing a Rectangle" << endl;
}

};

int main() {
Shape* shape1 = new Circle();
Shape* shape2 = new Rectangle();

shape1->draw();
shape2->draw();

delete shape1;
delete shape2;

162
MATS Centre for Distance and Online Education, MATS University

Notes return 0;
}
Output:
Drawing a Circle
Drawing a Rectangle
Explanation:







Shape is an abstract class with a pure virtual function draw().
Circle and Rectangle override the draw() function.
We create pointers of Shape type but assign Circle and
Rectangle objects.

 The correct function is called at runtime. 1313131313

Key Differences between Virtual and Pure Virtual Functions

Feature Virtual Function 343434 Pure Virtual Function
Declared using

Definition Declared using = 0 syntax.
virtual keyword.

Implementation Can have a No definition (abstract
method). in Base Class definition.

Derived Class Can be overridden, Must be overridden in
Requirement but not mandatory. derived class.

Base class cannot be
Base class can be 25252525

instantiated.
Instantiation instantiated

class).
(abstract

Real-Life Example: Employee Salary Calculation
#include <iostream>
using namespace std;

class Employee {
public:

virtual void calculateSalary() = 0; // Pure virtual function
};

class FullTime : public Employee {
public:

void calculateSalary() override {

163
MATS Centre for Distance and Online Education, MATS University

Notes cout << "Full-time Employee Salary Calculated" << endl;
}

};

class PartTime : public Employee {
public:

void calculateSalary() override {
cout << "Part-time Employee Salary Calculated" << endl;

}
};

int main() {
Employee* emp1 = new FullTime();
Employee* emp2 = new PartTime();

emp1->calculateSalary();
emp2->calculateSalary();

delete emp1;
delete emp2;

return 0;
}
Output:
Full-time Employee Salary Calculated
Part-time Employee Salary Calculated
Conclusion







Virtual functions allow runtime polymorphism, enabling

Pure virtual functions enforce mandatory overriding,
making a class abstract.
Virtual functions make code flexible and scalable by
supporting dynamic dispatch.

164
MATS Centre for Distance and Online Education, MATS University

C++ to call the correct function dynamically.

Notes Unit 12: Polymorphism: Compile Time, Run Time

4.4 Polymorphism in C++
Polymorphism is one of the four fundamental principles of Object- 12121212121212

Oriented Programming (OOP) in C++. The word "Polymorphism" is
derived from the Greek words "poly" (many) and "morph" (forms),
meaning the ability to take multiple forms.

In C++, polymorphism allows a function or an operator to behave 25252525

differently in different contexts. It provides flexibility and reusability 12121212121212

in programs, reducing code duplication.

Figure 20: Types of polymorphism

Polymorphism is broadly classified into two types:
1. Compile-time Polymorphism (Static Binding or Early

Binding)
2. Run-time Polymorphism (Dynamic Binding or Late

Binding)
Let’s understand each type with theory, syntax, and examples.
1. Compile-Time Polymorphism (Static Binding)
Compile-time polymorphism is achieved through Function
Overloading and Operator Overloading. In this type, the function 7777

call is resolved at compile time.

165
MATS Centre for Distance and Online Education, MATS University

Notes Function Overloading
Function Overloading allows multiple functions with the same name 12121212121212

but different parameter lists. The compiler determines which function 7777

to call based on the arguments passed.
Syntax of Function Overloading
return_type function_name(parameter_list1);
return_type function_name(parameter_list2);
Example: Function Overloading
#include <iostream>
using namespace std;

class Calculator {
public:

// Function to add two integers 12121212121212

int add(int a, int b) {
return a + b;

}

// Function to add three integers
int add(int a, int b, int c) {

return a + b + c;
}

// Function to add two floating-point numbers
double add(double a, double b) {

return a + b;
}

};

int main() {
Calculator calc;

cout << "Addition of 2 and 3: " << calc.add(2, 3) << endl;
cout << "Addition of 2, 3, and 4: " << calc.add(2, 3, 4) << endl;
cout << "Addition of 2.5 and 3.5: " << calc.add(2.5, 3.5) << endl;

return 0;
}

166
MATS Centre for Distance and Online Education, MATS University

Notes Output:
Addition of 2 and 3: 5
Addition of 2, 3, and 4: 9
Addition of 2.5 and 3.5: 6
Operator Overloading
Operator Overloading allows operators to be redefined for user-
defined types (like classes).
Syntax of Operator Overloading
return_type operator symbol (parameters) {

// Code for overloaded operator
}
Example: Operator Overloading
#include <iostream>
using namespace std;

class Complex {
public:

int real, imag;

Complex(int r, int i) {
real = r;
imag = i;

}

// Overloading the '+' operator
Complex operator+(Complex c) {

return Complex(real + c.real, imag + c.imag);
}

void display() {
cout << real << " + " << imag << "i" << endl;

}
};

int main() {
Complex c1(3, 4), c2(5, 6);
Complex c3 = c1 + c2; // Calls the overloaded operator
c3.display();

167
MATS Centre for Distance and Online Education, MATS University

Notes
return 0;

}
Output:
8 + 10i
Key Points:







In Function Overloading, multiple functions have the same 3939

name but different parameters.
In Operator Overloading, operators like +, -, *, etc., can be 111

redefined for user-defined data types.
Both these techniques help in achieving compile-time
polymorphism.

2. Run-Time Polymorphism (Dynamic Binding)
Run-time polymorphism is achieved through Function Overriding
and Virtual Functions. In this type, the function call is resolved at run
time using a pointer or reference to the base class.
Function Overriding
Function Overriding allows a derived class to provide a specific
implementation of a function that is already defined in the base class.
The function in the derived class must have the same name and
parameters as in the base class.
Syntax of Function Overriding
class Base {
public:

virtual void show() {
cout << "Base class function" << endl;

}
};

class Derived : public Base {
public:

void show() override {
cout << "Derived class function" << endl;

}
};
Example: Function Overriding
#include <iostream>
using namespace std;

168
MATS Centre for Distance and Online Education, MATS University

Notes
class Base {
public:

virtual void show() {
cout << "Base class function" << endl;

}
};

class Derived : public Base {
public:

void show() override {
cout << "Derived class function" << endl;

}
};

int main() {
Base* ptr;
Derived obj;
ptr = &obj; // Base class pointer points to Derived class object
ptr->show(); // Calls Derived class function

return 0;
}
Output:
Derived class function
Key Points:

 Virtual functions ensure that the correct function is called for
an object, regardless of the reference type.

 Function Overriding occurs when a derived class provides a
different implementation of a function in the base class.

Table 4.2 Comparison: Compile-Time vs. Run-Time Polymorphism
Compile-Time
Polymorphism

Run-Time
Polymorphism
Late

Feature

Binding
Binding Type Early Binding (Static)

(Dynamic)
Function
(Using

Overriding
Virtual

Function Overloading,
Achieved By

Operator Overloading
Functions)

169
MATS Centre for Distance and Online Education, MATS University

Notes Function Call
Resolved At
Speed

Compile-Time

Faster

Run-Time

Slightly Slower
Base class pointer
calling a derived class
function

Multiple
functions

add()
Example

Polymorphism is an essential feature of Object-Oriented
Programming (OOP) in C++.

 Compile-Time Polymorphism (Function Overloading,
Operator Overloading) improves code reusability and

 Run-Time Polymorphism (Function Overriding, Virtual
Functions) allows flexibility and dynamic behavior in
programs.

4.5 Overloading and Overriding in C++
In C++, overloading and overriding are two key concepts used in
polymorphism, which allows the same function name or operator to 111

have different behaviors. These concepts help in making code more
readable, reusable, and efficient.







Function Overloading allows multiple functions with the same
name but different parameters.
Operator Overloading enables the redefinition of operators for
user-defined data types.
Method Overriding allows a derived class to provide a specific
implementation of a base class function.

1. Function Overloading
Function overloading is a feature in C++ that allows multiple functions
with the same name but different parameter lists to exist. The compiler
determines which function to call based on the number and type of 3939

arguments passed.
Syntax
return_type function_name(parameter_list1);
return_type function_name(parameter_list2);
Example of Function Overloading
#include <iostream>
using namespace std;

170
MATS Centre for Distance and Online Education, MATS University

efficiency.

Notes // Function to add two integers 111

int add(int a, int b) {
return a + b;

}

// Function to add three integers
int add(int a, int b, int c) {

return a + b + c;
}

// Function to add two floating-point numbers
float add(float a, float b) {

return a + b;
}

int main() {
cout << "Addition of 2 and 3: " << add(2, 3) << endl;
cout << "Addition of 2, 3, and 5: " << add(2, 3, 5) << endl;
cout << "Addition of 2.5 and 3.5: " << add(2.5f, 3.5f) << endl;
return 0;

}
Output:
Addition of 2 and 3: 5
Addition of 2, 3, and 5: 10
Addition of 2.5 and 3.5: 6
Rules for Function Overloading

1. Functions must have the same name.
2. Functions must have different parameter lists (number or type

of arguments).
3. Functions cannot be overloaded by return type alone.

2. Operator Overloading
Definition
Operator overloading allows defining the behavior of operators (+, -,
*, /, ==, etc.) for user-defined data types like classes and structures.
Syntax
return_type operator symbol (parameters) {

// Function body
}

171
MATS Centre for Distance and Online Education, MATS University

Notes Example of Operator Overloading
#include <iostream>
using namespace std;

class Complex {
public:

int real, imag;

Complex(int r = 0, int i = 0) {
real = r;
imag = i;

}

// Overloading + operator
Complex operator + (Complex const &obj) {

Complex res;
res.real = real + obj.real;
res.imag = imag + obj.imag;
return res;

}

void display() {
cout << real << " + " << imag << "i" << endl;

}
};

int main() {
Complex c1(3, 4), c2(1, 2);
Complex c3 = c1 + c2; // Calls operator overload function
c3.display();
return 0;

}
Output:
4 + 6i
Rules for Operator Overloading

1. Only existing operators can be overloaded.
2. Cannot overload *sizeof, ::, ., . or ?:**.

172
MATS Centre for Distance and Online Education, MATS University

Notes 3. Overloaded operators must have at least one user-defined data
type operand.

3. Function Overriding
Definition
Function overriding allows a derived class to provide a specific
implementation of a function that is already defined in its base class.
Syntax
class Base {
public:

virtual void show() {
cout << "Base class function";

}
};

class Derived : public Base {
public:

void show() override {
cout << "Derived class function";

}
};
Example of Function Overriding
#include <iostream>
using namespace std;

class Base {
public:

virtual void display() {
cout << "Base class function" << endl;

}
};

class Derived : public Base {
public:

void display() override { // Overriding base class method
cout << "Derived class function" << endl;

}
};

173
MATS Centre for Distance and Online Education, MATS University

Notes int main() {
Base* basePtr;
Derived obj;
basePtr = &obj;
basePtr->display(); // Calls derived class method
return 0;

}
Output:
Derived class function
Key Rules for Overriding

1. The function name and parameters must match exactly with
the base class function.

2. The base class function must be marked as virtual to enable
runtime polymorphism.

3. If overridden incorrectly, the base class function gets called
instead of the derived class function.

Table 4.3 Differences Between Overloading and Overriding
Function

Feature Function Overriding
Overloading
Multiple functions

Redefining a base class
function in a derived
class.

with the same name
Definition

but different
parameters.

Different classes (base
and derived).

Where It Occurs Same class.

Parameters Must be different.
Can be different.

Must be the same.
Must be the same.
Requires virtual in the
base class.

Return Type

Virtual Keyword Not required.

Achieves
Purpose

compile- Achieves runtime
time polymorphism. polymorphism.

Both overloading and overriding are essential concepts in C++ that
help achieve polymorphism:

 Function Overloading enhances code readability and
flexibility by allowing multiple functions with the same name
but different signatures.

174
MATS Centre for Distance and Online Education, MATS University

Notes 



Operator Overloading allows defining custom behaviors for
operators in user-defined classes.
Function Overriding enables a derived class to modify the
behavior of an inherited function, supporting runtime
polymorphism.

MCQs:

1. What is operator overloading in C++?

A. Replacing built-in operators with macros
B. Assigning multiple meanings to an operator based on context
C. Changing the syntax of operators
D. Restricting operator use
2. Which keyword is used to overload an operator in C++?
A. override
B. define
C. operator
D. opload
3. Which of the following operators cannot be overloaded in

C++?
A. +
B. ==
C. =
D. ::
4. How is an overloaded operator function typically defined in

a class?
A. As a constructor
B. As a friend function or member function
C. As a template
D. As a macro
5. What is the return type of a type conversion operator

function in C++?
A. void
B. Same as the class name
C. The target type being converted to
D. Always int
6. What is the correct syntax for defining a conversion

operator in a class?

175
MATS Centre for Distance and Online Education, MATS University

Notes A. convert() {}
B. operator int() {}
C. int operator() {}
D. type convert operator() {}
7. Which of the following is not a rule of operator

overloading?

8. Which type of operator overloading is used when defining
operations between two different user-defined types?

A. Unary operator overloading
B. Binary operator overloading
C. Relational operator overloading
D. Ternary operator overloading
9. Can constructors be used for implicit type conversion in

C++?

B. No
C. Only with virtual functions
D. Only in templates
10. What is the primary benefit of operator overloading?
A. Code becomes more complex
B. It allows the creation of new operators
C. It increases the size of the program
D. It allows intuitive use of custom data types

Short Questions:

1. What is operator overloading in C++?
2. Which keyword is used to overload an operator in C++?
3. Name any two operators that cannot be overloaded in C++.
4. What is the difference between a member function and a friend

function when overloading operators?
5. What is the general syntax for overloading a binary operator in a

class?
6. What are the rules for operator overloading in C++? Mention any

two.
176

MATS Centre for Distance and Online Education, MATS University

A. You can’t change the precedence of operators
B. You can’t create new operators
C. You can overload all operators including ::
D. You can change the meaning of existing operators

A. Yes

Notes 7. How is unary operator overloading different from binary operator
overloading?

8. What is type conversion in C++?
9. Can a constructor be used for implicit type conversion? Explain

10. What is a type conversion operator? Provide an example.
11. How do you define a conversion operator from a class type to

int?
12. Why is operator overloading useful in object-oriented

programming?

Long Questions:

1. Explain the concept of operator overloading in C++. Why is it
used in object-oriented programming? Provide an example.

2. Describe the steps and syntax for overloading a binary operator
using a member function. Illustrate with a suitable program.

3. How can friend functions be used to overload operators in C++?
Discuss with a detailed example.

4. Compare and contrast overloading unary and binary operators.
Provide code examples for both.

5. What are the limitations and rules of operator overloading in
C++? Mention at least four important rules.

6. Write a C++ program to overload the + operator for a custom
Complex class to add two complex numbers. Explain the
output.

7. What is a type conversion in C++? Discuss the different types of
type conversions supported in C++.

8. How is a constructor used for single-argument type conversion
in C++? Provide a program to demonstrate this concept.

9. What is a type conversion operator? Write a C++ program to
convert a class type to a built-in type using a conversion

10. Discuss the importance of type conversion operators in class
design. How do they improve usability of custom data types?

11. Explain with code how to perform conversion from one user-
defined type to another user-defined type in C++.

177
MATS Centre for Distance and Online Education, MATS University

briefly.

operator.

Notes 12. What are the potential pitfalls of operator overloading and type
conversion in C++? How can they be avoided in large-scale
software development?

178
MATS Centre for Distance and Online Education, MATS University

MODULE 5
Exception Handling and File Handling

LEARNING OUTCOMES
By the end of this Module, students will be able to:

 Understand exception operations in C++ for user interaction.
 Learn about input and output streams.
 Implement formatted and unformatted I/O operations.
 Explore file handling concepts, including file streams, opening,

reading, writing, and closing files.
 Understand file modes and their impact on data handling.
 Implement sequential and random file access techniques.

179
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Stream Classes

5.1 Exception Operations and File Handling
1. Introduction to exception handling

In C++, exceptions are unexpected problems or errors that occur
while a program is running. For example, in a program that divides
two numbers, dividing a number by 0 is an exception as it may lead to
undefined errors.

The process of dealing with exceptions is known as exception
handling. It allows programmers to make the program ready for any
errors that may happen during execution and handle them gracefully
so that it keeps running without errors.

try-catch Block

C++ provides an inbuilt feature for handling exceptions using try and
catch block. It is an exception handling mechanism where the code
that may cause an exception is placed inside the try block and the
code that handles the exception is placed inside the catch block.

Syntax

try {

// Code that might throw an exception

}

catch (ExceptionType e) {

// exception handling code

}

When an exception occurs in try block, the execution stops, and the
control goes to the matching catch block for handling.

Throwing Exceptions

Throwing exception means returning some kind of value that
represent the exception from the try block. The matching catch block
is found using the type of the thrown value. The throw keyword is
used to throw the exception.

try {

throw val

}

catch (ExceptionType e) {

// exception handling code

180
MATS Centre for Distance and Online Education, MATS University

} Notes
There are three types of values that can be thrown as an exception:

1. Built-in Types
2. Standard Exceptions
3. Custom Exceptions
4. Throwing Built-in Types

Throwing built-in types is very simple but it does not provide any
useful information. For example,

#include <bits/stdc++.h>

using namespace std;

int main() {

int x = 7;

try {

if (x % 2 != 0) {

// Throwing int

throw -1;

}

}

// Catching int

catch (int e) {

cout << "Exception Caught: " << e;

}

return 0;

}

Output

Exception Caught: -1

Here, we have to make decision based on the value thrown. It is not
much different from handling errors using if else. There is a better
technique available in C++. Instead of throwing simple values, we can
throw objects of classes that contains the information about the nature
of exception in themselves.

Throwing Standard Exceptions

181
MATS Centre for Distance and Online Education, MATS University

Standard exceptions are the set of classes that represent different types
of common exceptions. All these classes are defined inside <stdexcept> 16

header file and mainly derived from std::exception class which act as
the base class for inbuilt exceptions. The below image shows standard
exceptions hierarchy in C++:

Notes

Figure 21: C++ Exception Hierarchy

These exceptions are thrown by C++ library components so we should
know how to handle them. The what() method is present in every
standard exception to provide information about the exception itself.

For example, the vector at() method throws an out_of_range exception
when the element with given index does not exists.
#include <bits/stdc++.h>
using namespace std;
int main() {

vector<int> v = {1, 2, 3};
try {

// Accessing out of bound element
v.at(10);

}
catch (out_of_range e) {

cout << "Caught: " << e.what();
}
return 0;

}
Output
Caught: vector::_M_range_check: __n (which is 10) >= this->size()
(which is 3)

182
MATS Centre for Distance and Online Education, MATS University

Notes We can also manually throw standard exceptions using throw
statement.

Throwing Custom Exceptions

When the standard exceptions cannot satisfy our requirement, we can
create a custom exception class. It is recommended to inherit standard
exception in this class to provide seamless integrity with library
components though, it is not compulsory.

Catching Exceptions

The catch block is used to catch the exceptions thrown in the try block.
The catch block takes one argument, which should be of the same type
as the exception.

catch (exceptionType e) {

...

}

Here, e is the name given to the exception. Statements inside the catch
block will be executed if the exception of exceptionType is thrown in
try block.

Catching Multiple Exceptions

There can be multiple catch blocks associated with a single try block to
handle multiple types of exceptions. For example,
try {

// Code that might throw an exception
}
catch (type1 e) {

// executed when exception is of type1
}
catch (type2 e) {

// executed when exception is of type2
}
catch (...) {

// executed when no matching catch is found
}

183
MATS Centre for Distance and Online Education, MATS University

Notes In the above code, the last statement catch(...) creates a catch-all block
which is executed when none of the above catch statements are
matched. For example,
#include <bits/stdc++.h>
using namespace std;
int main() {

// Code that might throw an exception
try {

int choice;
cout << "Enter 1 for invalid argument, "

<< "2 for out of range: ";
cin >> choice;

if (choice == 1) {
throw invalid_argument("Invalid argument");

}
else if (choice == 2) {

throw out_of_range("Out of range");
}
else {

throw "Unknown error";
}

}
// executed when exception is of type invalid_argument
catch (invalid_argument e) {

cout << "Caught exception: " << e.what() << endl;
}
// executed when exception is of type out_of_range
catch (out_of_range e) {

cout << "Caught exception: " << e.what() << endl;
}

// executed when no matching catch is found
catch (...) {

cout << "Caught an unknown exception." << endl;
}
return 0;

}
Output 1
Enter 1 for invalid argument, 2 for out of range: 2

Caught exception: Out of range

Output 2

184
MATS Centre for Distance and Online Education, MATS University

Notes Enter 1 for invalid argument, 2 for out of range: 1

Caught exception: Invalid argument

Output 3

Enter 1 for invalid argument, 2 for out of range: 10

Caught an unknown exception.

Nested Try Catch Blocks

In C++, try-catch blocks can be defined inside another try or catch
blocks. For example,
try {

// Code...... throw e2
try {

// code..... throw e1
}
catch (eType1 e1) {

// handling exception
}

}
catch (eType e2) {

// handling exception
}

Why do we need Exception Handling in C++?

Errors or abnormal conditions can also be handled without exception
handling, like it is done in C using conditional statements. But a
exception handling provides the following advantages over traditional
error handling:

Separation of Error Handling Code from Normal Code: There are
always if-else conditions to handle errors in traditional error handling
codes. These conditions and the code to handle errors get mixed up with
the normal flow. This makes the code less readable and maintainable.
With try and catch blocks, the code for error handling becomes separate
from the normal flow.

Functions/Methods can handle only the exceptions They choose: A
function can throw many exceptions but may choose to handle some of
them. The other exceptions, which are thrown but not caught, can be

185
MATS Centre for Distance and Online Education, MATS University

Notes handled by the caller. If the caller chooses not to catch them, then the
exceptions are handled by the caller of the caller.

In C++, a function can specify the exceptions that it throws using the
throw keyword. The caller of this function must handle the exception
in some way (either by specifying it again or catching it).

Grouping of Error Types: In C++, both basic types and objects can be
thrown as exceptions. We can create a hierarchy of exception objects,
group exceptions in namespaces or classes, and categorize them
according to their types.

186
MATS Centre for Distance and Online Education, MATS University

Notes
Unit 14: File Handling in OOP’s

5.2. Introduction
Object-Oriented Programming (OOP) is a paradigm based on the
concept of objects — which contain data (attributes) and methods
(functions). In file handling, using OOP improves code organization,
reusability, and scalability, especially in larger projects.
By encapsulating file operations inside classes, we can create more
structured and reusable code.

5.3. Why Use OOP for File Handling?
Traditional (procedural) file handling works fine for simple tasks.
However, OOP offers several advantages:

 Encapsulation of file operations.
 Easier maintenance and debugging.
 Promotes code reuse through inheritance.
 Makes it easy to build more complex systems (like file

managers, parsers, etc.).

1. Creating a File Handler Class
Let’s define a class that can handle basic file operations:

class FileHandler:
def __init__(self, filename, mode):

self.filename = filename
self.mode = mode
self.file = None

def open_file(self):
try:

self.file = open(self.filename, self.mode)
print(f"File '{self.filename}' opened successfully in

'{self.mode}' mode.")
except Exception as e:

print(f"Error opening file: {e}")

def read_file(self):

187
MATS Centre for Distance and Online Education, MATS University

Notes if self.file and not self.file.closed:
return self.file.read()

else:
return "File not open."

def write_file(self, data):
if self.file and not self.file.closed:

self.file.write(data)
else:

print("File not open.")

def close_file(self):
if self.file:

self.file.close()
print(f"File '{self.filename}' closed.")

2. Using the FileHandler Class
Writing to a file
writer = FileHandler("demo.txt", "w")

Reading from the same file
reader = FileHandler("demo.txt", "r")

print("File Content:\n", content)

3. Inheritance in File Handling
Let’s extend our class to specialize in handling text files and binary

class TextFileHandler(FileHandler):
def count_lines(self):

if self.file and not self.file.closed:
return len(self.file.readlines())

188
MATS Centre for Distance and Online Education, MATS University

writer.open_file()
writer.write_file("Hello from OOP-based file handler!\n")
writer.close_file()

reader.open_file()
content = reader.read_file()

reader.close_file()

files separately.

Notes else:
return 0

Usage:

reader = TextFileHandler("demo.txt", "r")

print("Number of lines:", lines)

You can similarly create a BinaryFileHandler for binary file
operations.

4. Exception Handling in OOP File Handling
Add more robust error management with try-except inside class
methods:

def write_file(self, data):
try:

if self.file and not self.file.closed:
self.file.write(data)

else:
print("File not open.")

except Exception as e:
print(f"Error writing to file: {e}")

5. Real-World Application: Log File Manager
class LogFileManager(FileHandler):

def log(self, message):
from datetime import datetime

%H:%M:%S")
self.write_file(f"[{timestamp}] {message}\n")

Usage:
logger = LogFileManager("log.txt", "a")
logger.open_file()
logger.log("System started")
logger.log("User login successful")

189
MATS Centre for Distance and Online Education, MATS University

reader.open_file()
lines = reader.count_lines()

reader.close_file()

timestamp = datetime.now().strftime("%Y-%m-%d

Notes logger.close_file()

5.4 Advantages of OOP-based File Handling

Table 5.2 Features and Benefit

Feature Benefit

Encapsulation

Inheritance

Keeps file logic isolated and clean.

Enables code reuse and extension for different file

types

Allows different file handlers to share method
names but with different behaviors.

Hides complex file logic behind simple method
calls.

Polymorphism

Abstraction

.

5.5. Best Practices
 Use context managers (with open(...)) inside methods to auto-close

files.






Always validate the file state before reading/writing.
Use custom exceptions for better debugging.

Avoid hardcoding file names; use parameters or configuration files.

File handling in OOP allows you to build scalable, readable, and reusable

systems for interacting with files. By wrapping file operations in classes and
methods, you gain the power of modular programming while keeping your

code organized.

MCQs:
1. Which keyword is used to define a block of code that might throw 2222

an exception in C++?
A. throw
B. catch
C. try
D. handle

2. What is the correct keyword to catch an exception in C++?
A. try
B. throw
C. catch

190
MATS Centre for Distance and Online Education, MATS University

Given are the benefit of the OOP, based on file handling.

Notes D. except

3. What does the throw keyword do in C++ exception handling?
A. Declares an error
B. Ignores an error
C. Transfers control to the catch block
D. Closes a file

4. Which of the following is the base class for all standard 2222

exceptions in C++?
A. exception
B. error
C. std_error
D. base_exception

5. What happens if an exception is thrown but not caught in C++?
A. Program continues as normal
B. The exception is logged
C. The program terminates
D. The OS handles it automatically

6. Which header file is required for file handling in C++?
A. iostream
B. file.h
C. fstream
D. stdio.h

7. Which C++ stream is used for reading from a file?
A. ofstream
B. fstream
C. ifstream
D. cin

8. What does the eof() function check for in file handling?
A. End of line
B. End of file
C. File not found
D. File open failure

191
MATS Centre for Distance and Online Education, MATS University

Notes
9. What mode is used to append data to a file in C++?
A. ios::in
B. ios::out
C. ios::trunc
D. ios::app

10. Which C++ stream allows both reading and writing to files?
A. fstream
B. ifstream
C. ofstream
D. ofstream with ios::in

Short Questions:
1. What is exception handling in C++?
2. Name the three main keywords used in exception handling in

C++.
3. How do you throw an exception in C++? Give an example.
4. What is the purpose of the catch block in exception handling?
5. What happens if an exception is thrown but not caught in a C++

program?
6. What is the use of catch(...) in C++?
7. What is the try block used for in exception handling?
8. What is the purpose of the fstream header in C++?
9. Differentiate between ifstream, ofstream, and fstream.
10. How do you open a file for both reading and writing in C++?
11. What does the eof() function do in file handling?
12. How can you check if a file was opened successfully in C++?

Long Questions:

1. Explain the concept of exception handling in C++. Why is it
important in object-oriented programming? Provide a simple
example.

2. Describe the use and flow of try, throw, and catch blocks in C++.
How do they work together to handle exceptions?

3. What are the advantages of using exception handling over
traditional error handling methods in C++?

192
MATS Centre for Distance and Online Education, MATS University

Notes 4. Write a C++ program that demonstrates exception handling using
custom exception classes. Explain each part of the code.

5. What is the role of catch(...) in exception handling? When and
why would you use it?

6. Discuss how multiple catch blocks can be used to handle different
types of exceptions. Provide an example.

7. Explain how exception handling can be used to make programs
more robust and maintainable. Give a real-world scenario.

8. What is file handling in C++? Explain how ifstream, ofstream,
and fstream classes are used to perform file I/O operations.

9. Write a C++ program to open a file, read its contents, and handle
any errors that may occur during file operations.

10. Explain different file modes available in C++ file handling, such
as ios::in, ios::out, ios::app, ios::binary, and ios::trunc.

11. How can exception handling be integrated with file handling in
C++ to create safer file operations? Illustrate with an example.

12. Discuss the common errors that may occur during file handling
in C++. How can these errors be detected and handled
effectively?

References

Chapter 1: Introduction to Object-Oriented Programming

1. Eckel, B. (2006). Thinking in Java (4th ed.). Prentice Hall.

2. Meyer, B. (1997). Object-oriented software construction (2nd
ed.). Prentice Hall.

3. Martin, R. C. (2008). Clean code: A handbook of agile
software craftsmanship. Prentice Hall.

4. Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley
Professional.

5. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).
Design patterns: Elements of reusable object-oriented
software. Addison-Wesley Professional.

Chapter 2: Classes and Objects

(11th ed.). Pearson.

193
MATS Centre for Distance and Online Education, MATS University

1. Horstmann, C. S. (2019). Core Java, Volume I: Fundamentals

2. Sierra, K., & Bates, B. (2005). Head First Java (2nd ed.). Notes
O'Reilly Media.

ed.). Pearson.

4. Fowler, M. (2018). Refactoring: Improving the design of
existing code (2nd ed.). Addison-Wesley Professional.

5. Lippman, S. B., Lajoie, J., & Moo, B. E. (2012). C++ primer
(5th ed.). Addison-Wesley Professional.

Chapter 3: Inheritance and Polymorphism

1. Liskov, B., & Guttag, J. (2000). Program development in Java:
Abstraction, specification, and object-oriented design.
Addison-Wesley Professional.

2. Stroustrup, B. (2013). The C++ programming language (4th
ed.). Addison-Wesley Professional.

Conallen, J., & Houston, K. A. (2007). Object-oriented
analysis and design with applications (3rd ed.). Addison-
Wesley Professional.

4. Booch, G. (1994). Object-oriented analysis and design with
applications (2nd ed.). Addison-Wesley Professional.

5. Budd, T. (2002). An introduction to object-oriented

Chapter 4: Abstract Classes and Interfaces

1. Freeman, E., & Robson, E. (2014). Head First design patterns.
O'Reilly Media.

2. Hunt, A., & Thomas, D. (2019). The pragmatic programmer:

Wesley Professional.

3. Lasater, C. G. (2006). Design patterns. Jones & Bartlett
Learning.

4. McConnell, S. (2004). Code complete: A practical handbook
of software construction (2nd ed.). Microsoft Press.

5. McLaughlin, B. D., Pollice, G., & West, D. (2006). Head First
object-oriented analysis and design. O'Reilly Media.

Chapter 5: Exception Handling and Multithreading

194
MATS Centre for Distance and Online Education, MATS University

3. Deitel, P., & Deitel, H. (2017). Java: How to program (11th

3. Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J.,

programming (3rd ed.). Addison-Wesley.

Your journey to mastery (20th anniversary ed.). Addison-

1. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., &
Lea, D. (2006). Java concurrency in practice. Addison-Wesley
Professional.

Notes

2. Lea, D. (1999). Concurrent programming in Java: Design
principles and patterns (2nd ed.). Addison-Wesley
Professional.

3. Williams, A. (2019). C++ concurrency in action (2nd ed.).
Manning Publications.

4. Oaks, S. (2014). Java performance: The definitive guide.
O'Reilly Media.

5. Marlow, S. (2013). Parallel and concurrent programming in
Haskell. O'Reilly Media.

195
MATS Centre for Distance and Online Education, MATS University

